
NCS 1001 Application Hosting

• Application hosting, on page 1
• Third party RPMs installation using App Manager install UI, on page 8
• Supported commands on application manager, on page 9
• Top Use Cases for Application Hosting, on page 12
• Manually deploy and activate third party script, on page 12
• Automated Deployment of Third Party Python Scripts, on page 18

Application hosting
Application Hosting is the infra IOS-XR that allows you to

• run third-party applications on the NCS 1001 devices, and

• use third-party applications to extend device capabilities to complement IOS-XR features.

The Docker daemon is packaged with IOS-XR software on the base Linux OS. This provides native support
for running applications inside docker containers on IOS-XR. Docker is the preferred way to run TPAs on
IOS-XR.

App Manager

The App Manager is the infra on IOS-XR tasked with the responsibility of managing the life cycle of all
container apps (third part and Cisco internal) and process scripts. App Manager runs natively on the host as
an IOS-XR process. App Manager leverages the functionalities of docker, systemd and RPM for managing
the lifecycle of third-party applications.

Restriction in docker container application hosting
MPLS packets are not supported on Linux interfaces.

Docker Container Application Hosting Architecture
This section describes the docker container application hosting architecture.

NCS 1001 Application Hosting
1

Figure 1: Docker on IOS XR

The App manager internally uses docker client, which interacts with TPAs (docker 1 and docker 2) by using
the docker commands. The docker client sends the docker commands to docker daemon, which, then, executes
the commands. The docker daemon uses the docker.sock Unix socket to communicate with the dockers.

When the docker run command is executed, a docker container is created and started from the docker image.
Docker containers can be either in global-vrf namespace.

The docker utilizes overlayfs under the /var/lib/docker folder for managing the directories.

To host an application in docker containers, see Hosting an Application in Docker Containers.

Guidelines and Limitations
• For docker run options --mount and --volume, use the host paths.

• "/var/run/netns"

• "/var/lib/docker"

• "/misc/disk1"

• "/disk0"

• "/misc/config/grpc"

• "/etc"

• "/dev/net/tun"

• "/var/xr/config/grpc"

• "/opt/owner"

• The maximum allowed size for shm-size option is 64 Mb.

NCS 1001 Application Hosting
2

NCS 1001 Application Hosting
Guidelines and Limitations

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/application-hosting/b-application-hosting-cg-cisco8000/packet-io-functionalities-and-hosting-applications.html#Cisco_Concept.dita_dab824c2-cc3d-40e0-9491-9b934a290326

TP Application Resource Configuration
IOS XR is equipped with inherent safeguards to prevent third party applications from interfering with its role
as a Network OS.

• Although IOSXR doesn't impose a limit on the number of TPAs that can run concurrently, it does impose
constraints on the resources allocated to the Docker daemon, based on the following parameters:

• CPU: By default, ¼ of the CPU per core available in the platform.

You can hard limit the default CPU usage in the range between 25-75% of the total system CPU
using the appmgr resources containers limit cpu value command. This configuration restricts the
TPAs from using more CPU than the set hard limit value irrespective of the CPU usage by other
XR processes.

This example provides the CPU hard limit configuration.
RP/0/RSP0/CPU0:ios(config)#appmgr resources containers limit cpu ?
<25-75> In Percentage

RP/0/RSP0/CPU0:ios(config)#appmgr resources containers limit cpu 25

• RAM: By default, 1 GB of memory is available.

You can hard limit the default memory usage in the range between 1-25% of the overall system
memory using the appmgr resources containers limit memory value command. This configuration
restricts the TPAs from using more memory than the set hard limit value.

This example provides the memory hard limit configuration.
RP/0/RSP0/CPU0:ios(config)#appmgr resources containers limit memory ?
<1-25> In Percentage

RP/0/RSP0/CPU0:ios(config)#appmgr resources containers limit memory 20

• Disk space is restricted by the partition size, which varies by platform and can be checked by
executing "run df -h" and examining the size of the /misc/app_host or /var/lib/docker
mounts.

• All traffic to and from the application is monitored by the XR control protection, LPTS.

• Signed Applications are supported on IOS XR. Users have the option to sign their own applications by
onboarding an Owner Certificate (OC) through Ownership Voucher-based workflows as described in
RFC 8366. Once an Owner Certificate is onboarded, users can sign applications with GPG keys based
on the Owner Certificate, which can then be authenticated during the application installation process on
the router.

The table below shows the various functions performed by appmgr.

Monitoring and DebuggingLifecyle ManagerPackage Manager

• Logging, stats, application
health check.

• Forwards docker deamon logs
to XR syslog.

• Allows to execute into docker
shell of running application.

• Handles application
start/stop/kill operations.

• Handles automatic application
reload on:

• Router reboot

• Container crash

• Switchover

• Handles installation of docker
images packaged as RPMs.

• Syncs the required state to
standby to restart apps in cases
of switchover, etc

NCS 1001 Application Hosting
3

NCS 1001 Application Hosting
TP Application Resource Configuration

TP App Bring-up
This section provides the information, how to bring-up the TP container app. This can be done by following
below mentioned four ways.

• App Config

• UM Model

• Native Yang Model

• gNOI Containerz

Bring up TPAs using application configuration

Follow these steps to configure the docker run time options.

Procedure

Step 1 Configure the docker run time option.

Use --pids-limit to limit the number of process IDs using appmgr.

Example:

This example shows the configuration of the docker run time option --pids-limit to limit the number of process IDs using
appmgr.
RP/0/RP0/CPU0:ios#appmgr application alpine_app activate type docker source alpine docker-run-opts
"-it –pids-limit 90" docker-run-cmd "sh"

The number of process IDs is limited to 90.

Step 2 Verify the docker run time option configuration.

Use the show running-config appmgr command to verify the run time option.

Example:

This example shows how to verify the docker run time option configuration.
RP/0/RP0/CPU0:ios#show running-config appmgr
Thu Mar 23 08:22:47.014 UTC
appmgr
application alpine_app
activate type docker source alpine docker-run-opts "-it –pids-limit 90" docker-run-cmd "sh"
!
!

Bring up TPAs using UM model

Follow these steps to configure the docker run time options.

NCS 1001 Application Hosting
4

NCS 1001 Application Hosting
TP App Bring-up

Procedure

Configure the docker run time option.

Use --pids-limit to limit the number of process IDs using Netconf.

Example:

This example shows the configuration of the docker run time option --pids-limit to limit the number of process IDs using
Netconf.
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>

</target>
<config>
<appmgr xmlns=http://cisco.com/ns/yang/Cisco-IOS-XR-um-appmgr-cfg>
<applications>
<application>
<application-name>alpine_app</application-name>
<activate>
<type>docker</type>

<source-name>alpine</source-name>
<docker-run-cmd>/bin/sh</docker-run-cmd>
<docker-run-opts>-it --pids-limit=90</docker-run-opts>

</activate>
</application>

</applications>
</appmgr>

</config>
</edit-config>

The number of process IDs is limited to 90.

Bring up TPAs using Native model

This example shows the configuration of the docker run time option --pids-limit to limit the number of process
IDs using Native YANG model.
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>

</target>
<config>
<appmgr xmlns=http://cisco.com/ns/yang/Cisco-IOS-XR-appmgr-cfg>
<applications>
<application>
<application-name>alpine_app</application-name>
<activate>
<type>docker</type>
<source-name>alpine</source-name>
<docker-run-cmd>/bin/sh</docker-run-cmd>
<docker-run-opts>-it --pids-limit=90</docker-run-opts>

</activate>
</application>

</applications>
</appmgr>

NCS 1001 Application Hosting
5

NCS 1001 Application Hosting
Bring up TPAs using Native model

</config>
</edit-config>

Bringup TPAs using gNOI Containerz

The Containerz - gNOI Container Service onNCS 1001 device is a workflow to onboard andmanage third-party
applications using gNOI RPCs.

For more information, see gNOI Containerz.

Docker Run Options Using Application Manager
With this feature, runtime options for docker containerized applications on IOS-XR can be configured during
launch using the appmgr activate " command. AppMgr, which oversees docker containerized applications,
ensures that these runtime options can effectively override default configurations, covering aspects like CPU,
security, and health checks during the container launch.

This feature introduces multiple runtime options that allow users to customize different parameters of docker
containers. The configuration of these runtime options is flexible, as users can use either command or Netconf
for the configuration process. Regardless of the chosen method, runtime options must be added to
docker-run-opts as needed.

Table 1:

DescriptionDocker Run Option

Number of CPUs--cpus

CPUs in which to allow execution (0-3, 0,1)--cpuset-cpus

Drop Linux capabilities--cap-drop

Sets the username or UID--user, -u

Add additional groups to run--group-add

Run to check health--health-cmd

Time between running the check--health-interval

Consecutive failures needed to report unhealthy--health-retries

Start period for the container to initialize before starting health-retries countdown--health-start-period

Maximum time to allow one check to run--health-timeout

Disable any container-specified HEALTHCHECK--no-healthcheck

Add a custom host-to-IP mapping (host:ip)--add-host

Set custom DNS servers--dns

Set DNS options--dns-opt

Set custom DNS search domains--dns-search

NCS 1001 Application Hosting
6

NCS 1001 Application Hosting
Bringup TPAs using gNOI Containerz

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/use-grpc-protocol-to-define-network-operation-with-data-models.html#concept_dxd_fbx_s2c

DescriptionDocker Run Option

Container NIS domain name--domainname

Tune host's OOM preferences (-1000 to 1000)--oom-score-adj

Option to set the size of /dev/shm--shm-size

Run an init inside the container that forwards signals and reaps processes--init

Set meta data on a container--label, -l

Read in a line delimited file of labels--label-file

Tune container pids limit (set -1 for unlimited)--pids-limit

Working directory inside the container--work-dir

Ulimit options--ulimit

Mount the container's root filesystem as read only--read-only

Mount volumes from the specified container(s)--volumes-from

Signal to stop the container--stop-signal

Timeout (in seconds) to stop a container--stop-timeout

Enable NET_RAW capabilities--cap-addNET_RAW

Publish a container's port(s) to the host--publish

Overwrite the default ENTRYPOINT of the image--entrypoint

Expose a port or a range of ports--expose

Add link to another container--link

Set environment variables--env

Read in a file of environment variables--env-file

Connect a container to a network--network

Container host name--hostname

Keep STDIN open even if not attached--interactive

Allocate a pseudo-TTY--tty

Publish all exposed ports to random ports--publish-all

Bind mount a volume--volume

Attach a filesystem mount to the container--mount

Restart policy to apply when a container exits--restart

NCS 1001 Application Hosting
7

NCS 1001 Application Hosting
Docker Run Options Using Application Manager

DescriptionDocker Run Option

Add Linux capabilities--cap-add

Logging driver for the container--log-driver

Log driver options--log-opt

Run container in background and print container ID--detach

Memory limit--memory

Memory soft limit--memory-reservation

CPU shares (relative weight)--cpu-shares

Sysctl options--sysctl

Third party RPMs installation using App Manager install UI
This section describes how to install third party RPMs using App Manager install UI at runtime while the
router is running.

Limitation and guidelines for third party RPMs
These are the limitations and guidelines for the TP RPMs.

• RPM must not have “scriptlets”. Scriptlets allow packages to run code on installation and removal.

• RPM must not be already installed via XR Install UI.

• RPM must not be already installed via App manager UI.

• TP RPMs must install files only to the /var/lib/docker/appmgr/ filesystem location.

• RPM Signature verification is not enforced by App Manager Install UI. It supports unsigned TP RPMs.

Install third party RPMs using App Manager install UI
Use this task to install third party RPMs using App Manager install UI.

Procedure

Step 1 Create an RPM containing the application (in the form of a docker container image).
Step 2 Use App manager RPM build tool to generate TP RPMs. See https://github.com/ios-xr/xr-appmgr-build/blob/main/

README.md.
Step 3 Install the TP RPM using the App Manager Install UI command.

Example:

NCS 1001 Application Hosting
8

NCS 1001 Application Hosting
Third party RPMs installation using App Manager install UI

https://github.com/ios-xr/xr-appmgr-build/blob/main/README.md
https://github.com/ios-xr/xr-appmgr-build/blob/main/README.md

RP/0/RP0/CPU0:ios# appmgr package install rpm /harddisk\:/alpine-0.1.0-XR_7.3.1.x86_64.rpm

Uninstall third party RPMs using App Manager install UI
Use this task to uninstall third party RPMs using App Manager install UI.

Uninstallation of TP RPM can be performed using two ways.

App manager uninstall CLI uninstalls the TP RPM at runtime while NCS 1001 is running.Attention

Procedure

Step 1 Uninstall using source name.

Example:
RP/0/RP0/CPU0:ios# appmgr package uninstall source alpine

Step 2 Uninstall using package name.

Example:
RP/0/RP0/CPU0:ios# appmgr package uninstall package alpine-0.1.0-XR_7.3.1.x86_64

Supported commands on application manager
This section describes the operations and the IOSXR commands that are supported on the applicationmanager:

Action commands

AppManager action commands are used to start, stop, kill and exec shell commands inside running container.

Table 2: Action commands

PurposeCommandsCommand name

Starts a stopped container or application.appmgr application start name <name>Application
start

Stops a stopped running container or
application.

appmgr application stop name <name>Application
stop

Kills a running container or application.appmgr application kill name <name>Application kill

Copy data between host and container.appmgr application copy <storage-path>Application
copy

NCS 1001 Application Hosting
9

NCS 1001 Application Hosting
Uninstall third party RPMs using App Manager install UI

PurposeCommandsCommand name

Executes command inside TP container
application (docker only).

appmgr application exec <name>
docker-exec-cmd <cmd>

Appliction exec

Examples

Here are examples for the app manager action commands. For more information on the commands, see
Command Reference Guide for NCS 1001.

Action CLI (Start): This starts a stopped container
RP/0/RP0/CPU0:ios# appmgr application start name alpine_app

Action CLI (Stop): This stops a running container
RP/0/RP0/CPU0:ios# appmgr application stop name alpine_app

Action CLI (Kill): This forcefully kills a running container
RP/0/RP0/CPU0:ios# appmgr application kill name alpine_app

Action CLI (Copy): Copy data between host and container
RP/0/RP0/CPU0:ios# appmgr application copy harddisk:/data.txt alpine_app:/

Action CLI (Exec): Execute command inside TP container app
RP/0/RP0/CPU0:ios# appmgr application exec name txt alpine_app docker-exec-cmd “ls -ltr”

Show commands

App Manager show commands shows the application or container info.

Table 3: show commands

PurposeCommandsCommand name

Lists all third-party applications
onboarded via (XR Infra / Appmgr CLI
/ Containerz).

show appmgr source-tableSource table modification

Lists all third-party applications managed
via (Config / Containerz) workflow in a
tabular view.

show appmgr application-tableApplication table
modification

Shows the source name.show appmgr source name
<name>

Application source name

Lists all the application manager RPM
packages installed.

show appmgr packages installedApplication package install

Shows application information at desired
verbosity.

show appmgr application name
<name> info[detail|summary]

Appliction exec

Shows application logs.show appmgr application name
<name> logs

Application logs

NCS 1001 Application Hosting
10

NCS 1001 Application Hosting
Supported commands on application manager

PurposeCommandsCommand name

Shows application statistics.show appmgr application name
name stats

Application stats

Shows summary status of all registered
process-scripts.

show appmgr process-script-tableApplication process script
table

Examples

This section shows the example outputs for the show appmgr commands. For more information on the show
appmgr commands, see the Command Reference guide for the NCS 1001.

The example output shows the onboarded TP applications.
RP/0/RP0/CPU0:ios# show appmgr source-table
Sno Name File Installed By

--- ----------------- -------------------- -----------------------------------
1 alpine alpine.tar.gz containerz
2 hello-world hello-world.tar.gz app_manager
3 bonnet bonnet.tar.gz xr_install

The example output shows the Workflow column that specifies how to manage the TP applications.
RP/0/RP0/CPU0:ios#show appmgr application-table
Name Type Config State Status Workflow
------------- ------ ------------ ------------- ---------------------------------
alp-cz-app Docker Activated Up 2 minutes containerz
bnt-cfg-app Docker Activated Up 1 minutes config

The example output shows the details of the swan application. The Status value under Vrf Relay: <name>

indicates the running status of the relay agent. If it reports an Exited state or a Restarting state, use the relay
agent logs for troubleshooting.
RP/0/RP0/CPU0:ios#show appmgr application name swan info detail
Mon Nov 23 21:22:47.240 UTC
Application: swan
Type: Docker
Source: swanagent
Config State: Activated
Docker Information:
Container ID: cd27988cd5b066d6272085e5e3ff675c94a64cb4ad06f90c2d89453a8ec4af34
Container name: swan
Labels:
Image: swanagent:latest
Command: "./agentxr"
Created at: 2020-11-23 21:22:39 +0000 UTC
Running for: 8 seconds ago
Status: Up Less than a second
Size: 0B (virtual 82.9MB)
Ports:
Mounts: /var/opt/cisco/iosxr/appmgr/config/docker/swanagent,/var/run/netns
Networks: host
LocalVolumes: 0
Vrf Relays:
Vrf Relay: vrf_relay.swan.70ec1f59336271ab
Source VRF: vrf-mgmt
Source Port: 8000
Destination VRF: vrf-default
Destination Port: 10000
IP Address Range: 172.16.0.0/12

NCS 1001 Application Hosting
11

NCS 1001 Application Hosting
Supported commands on application manager

Status: Up 10 seconds
Vrf Relay: vrf_relay.swan.5c7373d41d0ec84f
Source VRF: vrf-mgmt
Source Port: 8001
Destination VRF: vrf-default
Destination Port: 10001
IP Address Range: 172.16.0.0/12
Status: Up 11 seconds

Top Use Cases for Application Hosting
Some of the top use cases for application hosting are:

• Measure Network Performance: An application can be hosted to measure the bandwidth, throughput
and latency of the network and monitor the performance. An example of such an application is the iPerf
tool.

• Automate Server Management: An application can be hosted to automate the server functions like
upgrading software, allocation of resources, creating user accounts, and so on. Examples of such an
application are the Chef and Puppet configuration management tools.

Manually deploy and activate third party script
NCS 1001 provides CLI commands to perform configurations and operations on the optical devices. If you
want to automate the NCS 1001 node operations, you can run third party scripts through App manager. See
Automatically deploy and activate third party script, on page 18.

Follow these steps to deploy and activate third party script manually.

Procedure

Step 1 Use the show script status command to check the list of the OPS scripts that are in-built in XR.

Example:

This command lists the status of xr_script_scheduler script. Ready status in the output means that the script checksum
is verified and is ready to run.
RP/0/RP0/CPU0:ios#show script status
Tue Oct 24 18:03:09.220 UTC
==

Name | Type | Status | Last Action | Action Time

--

show_interfaces_counters_ecn.py | exec | Ready | NEW | Tue Oct 24 07:10:36
2025
xr_data_collector.py | exec | Ready | NEW | Tue Oct 24 07:10:36
2025
xr_script_scheduler.py | process| Ready | NEW | Tue Oct 24 07:10:36
2025
==
RP/0/RP0/CPU0:ios#

NCS 1001 Application Hosting
12

NCS 1001 Application Hosting
Top Use Cases for Application Hosting

Step 2 Use the appmgr to run the XR scheduler script.

XR scheduler script contains the necessary

Example:
RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#appmgr
RP/0/RP0/CPU0:ios(config-appmgr)#process-script xr_script_scheduler
RP/0/RP0/CPU0:ios(config-process-script)#executable xr_script_scheduler.py
RP/0/RP0/CPU0:ios(config-process-script)#commit

Step 3 Check for available process scripts in app manager.

Example:

This output highlights the xr_script_scheduler.py process script that is not activated.
RP/0/RP0/CPU0:ios#show appmgr process-script-table
Wed Oct 22 09:45:02.795 UTC
Name Executable Activated Status Restart Policy Config Pending
-------------------- -------------------- ----------- --------- ---------------- ----------------
xr_script_scheduler xr_script_scheduler.py No Not Started Always No

Step 4 Activate the available process script.

You can start executing a process script only after it is activated.

Example:
RP/0/RP0/CPU0:ios#appmgr process-script activate name xr_script_scheduler
Wed Oct 22 09:45:41.035 UTC

(Optional) Verify the status of the process script. This example shows the process script xr_script_scheduler is Activated.
RP/0/RP0/CPU0:ios#show appmgr process-script-table
Wed Oct 22 09:45:47.275 UTC
Name Executable Activated Status Restart Policy Config Pending
-------------------- -------------------- ----------- --------- ---------------- ----------------
xr_script_scheduler xr_script_scheduler.py Yes Not Started Always No

Step 5 Use the appmgr process-script start command to start the available process script.

Example:

xr_script_scheduler is the only available process script.

This command starts the process script xr_script_scheduler.
RP/0/RP0/CPU0:ios#appmgr process-script start name xr_script_scheduler
Wed Oct 22 09:46:08.273 UTC

(Optional) Verify the status of the process script after activation. This example shows the process script
xr_script_scheduler is Activated and Started.
RP/0/RP0/CPU0:ios#show appmgr process-script-table
Wed Oct 22 09:46:24.679 UTC
Name Executable Activated Status Restart Policy Config Pending
-------------------- -------------------- ----------- --------- ---------------- ----------------
xr_script_scheduler xr_script_scheduler.py Yes Started Always No

Step 6 Verify the scheduler script is running.
a) Run the show script execution command to verify the functioning of the debug and monitoring scripts.

Example:

This command displays a list of OPS scripts currently running.

NCS 1001 Application Hosting
13

NCS 1001 Application Hosting
Manually deploy and activate third party script

RP/0/RP0/CPU0:ios# show script execution
Tue Oct 24 19:41:15.882 UTC
==

Req. ID | Name (type) | Start | Duration
| Return | Status
--

1698176223| xr_script_scheduler.py (process) | Tue Oct 24 19:37:02 2025 | 253.32s
| None | Started
==
RP/0/RP0/CPU0:ios#

b) Use the show script execution details command to verify if the scheduler script is running.

Example:

This command displays a list of OPS scripts currently running. If the scheduler script is correctly configured and
activated, the scheduler script execution detail appears in the output.
RP/0/RP0/CPU0:ios#show script execution details
Tue Oct 25 18:01:56.590 UTC
==

Req. ID | Name (type) | Start | Duration
| Return | Status
--

1698170509| xr_script_scheduler.py (process) | Tue Oct 25 18:01:49 2023 | 7.68s
| None | Started
--

Execution Details:

Script Name : xr_script_scheduler.py
Version : 25.3.1.14Iv1.0.0
Log location :
/harddisk:/mirror/script-mgmt/logs/xr_script_scheduler.py_process_xr_script_scheduler
Arguments :
Run Options : Logging level - INFO, Max. Runtime - 0s, Mode - Background
Events:

1. Event : New

Time : Tue Oct 25 18:01:49 2025
Time Elapsed : 0.00s Seconds
Description : Started by Appmgr

2. Event : Started
Time : Tue Oct 25 18:01:49 2025
Time Elapsed : 0.11s Seconds
Description : Script execution started. PID (15985)

==
RP/0/RP0/CPU0:ios#

Step 7 Copy the third party RPM files to the NCS 1001 node.
a) Use any of the file transfer mechanisms to copy third-party RPM.

Example:

This example shows copying the RPM to the harddisk of the NCS 1001 node using scp.
RP/0/RP0/CPU0:ios#scp
user@171.xx.xxx.xxx:/users/user/rpm-factory/RPMS/x86_64/nms-1.1-25.3.1.x86_64.rpm /harddisk:
Tue Oct 24 18:02:42.400 UTC
<snip>

NCS 1001 Application Hosting
14

NCS 1001 Application Hosting
Manually deploy and activate third party script

Password:
nms-1.1-24.1.1.x86_64.rpm 100% 9664 881.5KB/s
00:00
RP/0/RP0/CPU0:ios#

b) (Optional) Verify the RPM files using dir <filepath>.

Example:
RP/0/RP0/CPU0:ios#dir harddisk:/nms-1.1-24.1.1.x86_64.rpm
Wed Oct 24 19:53:54.041 UTC

Step 8 Install the third party RPM files to use the required debug and monitoring python scripts.

The third party RPM files have the customized scripts to be executed. The third-party RPM contains two types of files:

• One or more python scripts—For more information on developing python scripts, see IOS XR Programmability
with Python and xr-python-scripts.

• Run parameter JSON file—xr_script_scheduler.json has instruction for the scheduler script.

Example:

This is an example xr_script_scheduler.json file. Customize this file as per your requirements.
[

{
"name": "__template_entry__.py",
"description": ["**This is a template entry for documentation purpose. This entry will be

ignored**",
"name : Name of the python script to be executed",
" [string][mandatory]",
"description: Description of the script",

" [string or list of strings][optional: default empty string]",

"cmd_line_parameters: Script command line parameters" ,
" [list of strings][optional: default Null][Example:

",
"env_variables: Enviromental variables to be set in script run shell",
" [list of key value pairs][optional: default Null][Example:

[['INT_NAME': 'hu0/1/0/1']]",
"run_policy: Script restart policy when script exits",

" [string: one of always/once/stop][optional: default 'always']",

" always: restart the script every time it exits",
" once: do not restart the script if it exits",
" stop: stop an existing script run "
],

"cmd_line_parameters": [],
"env_variables": [],
"run_policy": "always"

},
{

"name": "monitor_int_rx_cntr.py",
"description": "Monitoring mgmt interface for Rx threshold of 100 ",
"cmd_line_parameters": ["MgmtEth0/RP0/CPU0/0", "200", "-log", "debug"],
"env_variables": [["INT_NAME", "FourHundredGigE0/9/0/0"], ["INT_NAME2",

"FourHundredGigE0/10/0/0"]],
"run_policy": "always"

},
{

"name": "monitor_int_rx_cntr.py",
"description": "Monitoring Fo0/0/0/0 interface for Rx threshold of 1000000 ",
"cmd_line_parameters": ["FourHundredGigE0/0/0/0", "1000000"],

NCS 1001 Application Hosting
15

NCS 1001 Application Hosting
Manually deploy and activate third party script

https://developer.cisco.com/docs/iosxr-python/
https://developer.cisco.com/docs/iosxr-python/
https://github.com/CiscoDevNet/xr-python-scripts

"run_policy": "once"
},
{

"name": "monitor_int_rx_cntr2.py",
"description": "Monitoring Fo0/0/0/1 interface for Rx threshold of 5000000 ",
"cmd_line_parameters": ["FourHundredGigE0/0/0/1", "5000000"],
"run_policy": "always"

},
{

"name": "monitor_int_rx_cntr2.py",
"description": "Monitoring Fo0/0/0/2 interface for Rx threshold of 5000000 ",
"cmd_line_parameters": ["FourHundredGigE0/0/0/2", "8000000"],
"run_policy": "stop"

}
]

Example:

Use the appmgr package install rpm <full RPM file path> command to install the third-party RPMs.
RP/0/RP0/CPU0:ios#appmgr package install rpm /harddisk:/nms-1.1-25.3.1.x86_64.rpm
Tue Oct 24 18:03:26.685 UTC
RP/0/RP0/CPU0:ios#
RP/0/RP0/CPU0:ios#show appmgr packages installed
Tue Oct 24 19:42:07.967 UTC
Sno Package
--- --
1 nms-1.1-25.3.1.x86_64
RP/0/RP0/CPU0:ios#

After the scripts and the run parameters file become ready, build the RPM and configure the RPM to install files at
<default exr appmgr rpm install path>/ops-script-repo/exec/<rpm name>/. RPM build
tool for TPA is available at RPM Build Tool.

Note
Install the scripts in directories named after the RPM for smoother execution.

Step 9 Use the show script status command to verify that the scripts and the run parameter files contained in the RPM are
all installed successfully and added to the script management repository.

Example:

This output shows the status that two scripts (monitor_int_xr_cntr.py and monitor_int_rx_cntr2.py) and a run parameter
file (xr_script_scheduler.json) file were installed in the third-party RPM named “nms”.
RP/0/RP0/CPU0:ios#show script status

Tue Oct 24 19:41:10.696 UTC
==

Name | Type | Status | Last Action | Action Time

--

nms/monitor_int_rx_cntr.py | exec | Ready | NEW | Tue Oct 24 19:38:41
2023
nms/monitor_int_rx_cntr2.py | exec | Ready | NEW | Tue Oct 24 19:38:41
2023
nms/xr_script_scheduler.json | exec | Ready | NEW | Tue Oct 24 19:38:41
2023
show_interfaces_counters_ecn.py | exec | Ready | NEW | Tue Oct 24 19:33:52
2023
xr_data_collector.py | exec | Ready | NEW | Tue Oct 24 19:33:52

NCS 1001 Application Hosting
16

NCS 1001 Application Hosting
Manually deploy and activate third party script

https://github.com/ios-xr/xr-appmgr-build

2023
xr_script_scheduler.py | process| Ready | NEW | Tue Oct 24 19:33:52
2023
==
RP/0/RP0/CPU0:ios#

After the scripts are installed, the scheduler script starts reading the run parameter JSON file and executes the required
debug and monitoring scripts.

The logs generated by the scripts are available in the directory /harddisk\:/mirror/script-mgmt/logs/.

Step 10 Verify that the debug and monitoring scripts are running.

Example:

Use the show script execution command to verify that the scripts are running.
RP/0/RP0/CPU0:ios#show script execution
Tue Oct 24 19:41:15.882 UTC
==

Req. ID | Name (type) | Start | Duration |
Return | Status
--

1698176223| xr_script_scheduler.py (process) | Tue Oct 24 19:37:02 2023 | 253.32s |
None | Started
1698176224| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:38:43 2023 | 152.46s |
None | Started
1698176225| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:38:44 2023 | 152.03s |
None | Started
1698176226| nms/monitor_int_rx_cntr2.py (exec) | Tue Oct 24 19:38:44 2023 | 151.63s |
None | Started
==
RP/0/RP0/CPU0:ios#

(Optional) Use the show script execution[namescript-namedetail [output][error]]

Step 11 Verify all the active packages are installed.

Example:
RP/0/RP0/CPU0:ios#show install active summary
Fri Nov 14 12:52:39.322 IST
Label : 25.3.1.31I-iso

Active Packages: 2
ncs1001-xr-25.4.1.31I version=25.4.1.31I [Boot image]
ncs1001-cosm-1.0.0.0-r253131I

Step 12 (Optional) Use the appmgr process-script stop command to stop the process script.

Example:

This command stops the execution of the process script xr_script_scheduler.
RP/0/RP0/CPU0:ios#appmgr process-script stop name xr_script_scheduler
Wed Oct 22 09:46:35.110 UTC

(Optional) Verify the status of the process script after stopping it. This example shows the process script
xr_script_scheduler is Activated and Stopped.
RP/0/RP0/CPU0:ios#show appmgr process-script-table
Wed Oct 22 09:46:41.245 UT
Name Executable Activated Status Restart Policy Config Pending

NCS 1001 Application Hosting
17

NCS 1001 Application Hosting
Manually deploy and activate third party script

-------------------- -------------------- ----------- --------- ---------------- ----------------
xr_script_scheduler xr_script_scheduler.py Yes Stopped Always No

Automated Deployment of Third Party Python Scripts
Efficient network automation is pivotal in handling extensive cloud-computing networks. The Cisco IOS XR
infrastructure plays a crucial role by enabling automation through the initiation of API calls and execution of
scripts. Traditionally, an external controller is used for this purpose, utilizing interfaces like NETCONF,
SNMP, and SSH to communicate with NCS 1001.

This feature streamlines the operational structure by executing automation scripts directly on the router, thus
eliminating the need for an external controller. It allows scripts to leverage Python libraries and access
underlying router information. This approach not only accelerates the execution of various types of scripts
but also enhances reliability by removing dependencies on the speed and network reachability of an external
controller.

The third party script is automatically executed by the xr_script_scheduler.py script upon the installation of
third-party RPMs. App manager configuration is required to activate the xr_script_scheduler.py script and
run the third party scripts after installation.

If you use the autorun configuration, the xr_script_scheduler.py script activates automatically.Note

Automatically deploy and activate third party script
NCS 1001 provides CLI commands to perform configurations and operations on the optical devices. If you
want to automate the NCS 1001 node operations, you can run third party scripts through App manager.

Follow these steps to deploy and activate third party script.

Procedure

Step 1 Use the show script status command to check the list of the OPS scripts that are in-built in XR.

Example:

This command lists the status of xr_script_scheduler script. Ready status in the output means that the script checksum
is verified and is ready to run.
RP/0/RP0/CPU0:ios#show script status
Tue Oct 24 18:03:09.220 UTC
==

Name | Type | Status | Last Action | Action Time

--

show_interfaces_counters_ecn.py | exec | Ready | NEW | Tue Oct 24 07:10:36 2025

xr_data_collector.py | exec | Ready | NEW | Tue Oct 24 07:10:36 2025

NCS 1001 Application Hosting
18

NCS 1001 Application Hosting
Automated Deployment of Third Party Python Scripts

xr_script_scheduler.py | process| Ready | NEW | Tue Oct 24 07:10:36 2025

==
RP/0/RP0/CPU0:ios#

Step 2 Use the appmgr to automatically run the XR scheduler script.

Activate the scheduler script automatically using the "autorun" option with the configuration.

Example:
RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#appmgr
RP/0/RP0/CPU0:ios(config-appmgr)#process-script xr_script_scheduler
RP/0/RP0/CPU0:ios(config-process-script)#executable xr_script_scheduler.py
RP/0/RP0/CPU0:ios(config-process-script)#autorun
RP/0/RP0/CPU0:ios(config-process-script)#commit

The 'autorun' configuration has been added to enable automatic activation of the process script. If you prefer manual
activation/deactivation using CLI, skip the 'autorun' configuration line. See Manually deploy and activate third party
script, on page 12.

Step 3 Verify the scheduler script is running.
a) Run the show script execution command to verify the functioning of the debug and monitoring scripts.

Example:

This command displays a list of OPS scripts currently running.
RP/0/RP0/CPU0:ios# show script execution
Tue Oct 24 19:41:15.882 UTC
==

Req. ID | Name (type) | Start | Duration |
Return | Status
--

1698176223| xr_script_scheduler.py (process) | Tue Oct 24 19:37:02 2025 | 253.32s |
None | Started

==
RP/0/RP0/CPU0:ios#

b) Use the show script execution details command to verify if the scheduler script is running.

Example:

This command displays a list of OPS scripts currently running. If the scheduler script is correctly configured and
activated, the scheduler script execution detail appears in the output.
RP/0/RP0/CPU0:ios#show script execution details
Tue Oct 25 18:01:56.590 UTC
==

Req. ID | Name (type) | Start | Duration |
Return | Status
--

1698170509| xr_script_scheduler.py (process) | Tue Oct 25 18:01:49 2023 | 7.68s |
None | Started
--

Execution Details:

NCS 1001 Application Hosting
19

NCS 1001 Application Hosting
Automatically deploy and activate third party script

Script Name : xr_script_scheduler.py
Version : 25.3.1.14Iv1.0.0
Log location :
/harddisk:/mirror/script-mgmt/logs/xr_script_scheduler.py_process_xr_script_scheduler
Arguments :
Run Options : Logging level - INFO, Max. Runtime - 0s, Mode - Background
Events:

1. Event : New

Time : Tue Oct 25 18:01:49 2025
Time Elapsed : 0.00s Seconds
Description : Started by Appmgr

2. Event : Started
Time : Tue Oct 25 18:01:49 2025
Time Elapsed : 0.11s Seconds
Description : Script execution started. PID (15985)

==
RP/0/RP0/CPU0:ios#

Step 4 Copy the third party RPM files to the NCS 1001 node.
a) Use any of the file transfer mechanisms to copy third-party RPM.

Example:

This example shows copying the RPM to the harddisk of the NCS 1001 node using scp.
RP/0/RP0/CPU0:ios#scp
user@171.xx.xxx.xxx:/users/user/rpm-factory/RPMS/x86_64/nms-1.1-25.3.1.x86_64.rpm /harddisk:
Tue Oct 24 18:02:42.400 UTC
<snip>
Password:
nms-1.1-24.1.1.x86_64.rpm 100% 9664 881.5KB/s 00:00

RP/0/RP0/CPU0:ios#

b) (Optional) Verify the RPM files using dir <filepath>.

Example:
RP/0/RP0/CPU0:ios#dir harddisk:/nms-1.1-24.1.1.x86_64.rpm
Wed Oct 24 19:53:54.041 UTC

Step 5 Install the third party RPM files to use the required debug and monitoring python scripts.

The third party RPM files have the customized scripts to be executed. The third-party RPM contains two types of files:

• One or more python scripts—For more information on developing python scripts, see IOS XR Programmability
with Python and xr-python-scripts.

• Run parameter JSON file—xr_script_scheduler.json has instruction for the scheduler script.

Example:

This is an example xr_script_scheduler.json file. Customize this file as per your requirements.
[

{
"name": "__template_entry__.py",
"description": ["**This is a template entry for documentation purpose. This entry will be

ignored**",
"name : Name of the python script to be executed",
" [string][mandatory]",
"description: Description of the script",
" [string or list of strings][optional: default empty string]",

NCS 1001 Application Hosting
20

NCS 1001 Application Hosting
Automatically deploy and activate third party script

https://developer.cisco.com/docs/iosxr-python/
https://developer.cisco.com/docs/iosxr-python/
https://github.com/CiscoDevNet/xr-python-scripts

"cmd_line_parameters: Script command line parameters" ,
" [list of strings][optional: default Null][Example: ",
"env_variables: Enviromental variables to be set in script run shell",
" [list of key value pairs][optional: default Null][Example:

[['INT_NAME': 'hu0/1/0/1']]",
"run_policy: Script restart policy when script exits",
" [string: one of always/once/stop][optional: default 'always']",

" always: restart the script every time it exits",
" once: do not restart the script if it exits",
" stop: stop an existing script run "
],

"cmd_line_parameters": [],
"env_variables": [],
"run_policy": "always"

},
{

"name": "monitor_int_rx_cntr.py",
"description": "Monitoring mgmt interface for Rx threshold of 100 ",
"cmd_line_parameters": ["MgmtEth0/RP0/CPU0/0", "200", "-log", "debug"],
"env_variables": [["INT_NAME", "FourHundredGigE0/9/0/0"], ["INT_NAME2",

"FourHundredGigE0/10/0/0"]],
"run_policy": "always"

},
{

"name": "monitor_int_rx_cntr.py",
"description": "Monitoring Fo0/0/0/0 interface for Rx threshold of 1000000 ",
"cmd_line_parameters": ["FourHundredGigE0/0/0/0", "1000000"],
"run_policy": "once"

},
{

"name": "monitor_int_rx_cntr2.py",
"description": "Monitoring Fo0/0/0/1 interface for Rx threshold of 5000000 ",
"cmd_line_parameters": ["FourHundredGigE0/0/0/1", "5000000"],
"run_policy": "always"

},
{

"name": "monitor_int_rx_cntr2.py",
"description": "Monitoring Fo0/0/0/2 interface for Rx threshold of 5000000 ",
"cmd_line_parameters": ["FourHundredGigE0/0/0/2", "8000000"],
"run_policy": "stop"

}
]

Example:

Use the appmgr package install rpm <full RPM file path> command to install the third-party RPMs.
RP/0/RP0/CPU0:ios#appmgr package install rpm /harddisk:/nms-1.1-25.3.1.x86_64.rpm
Tue Oct 24 18:03:26.685 UTC
RP/0/RP0/CPU0:ios#
RP/0/RP0/CPU0:ios#show appmgr packages installed
Tue Oct 24 19:42:07.967 UTC
Sno Package
--- --
1 nms-1.1-25.3.1.x86_64
RP/0/RP0/CPU0:ios#

After the scripts and the run parameters file become ready, build the RPM and configure the RPM to install files at
<default exr appmgr rpm install path>/ops-script-repo/exec/<rpm name>/. RPM build
tool for TPA is available at RPM Build Tool.

Note

NCS 1001 Application Hosting
21

NCS 1001 Application Hosting
Automatically deploy and activate third party script

https://github.com/ios-xr/xr-appmgr-build

Install the scripts in directories named after the RPM for smoother execution.

Step 6 Use the show script status command to verify that the scripts and the run parameter files contained in the RPM are all
installed successfully and added to the script management repository.

Example:

This output shows the status that two scripts (monitor_int_xr_cntr.py and monitor_int_rx_cntr2.py) and a run parameter
file (xr_script_scheduler.json) file were installed in the third-party RPM named “nms”.
RP/0/RP0/CPU0:ios#show script status

Tue Oct 24 19:41:10.696 UTC
==

Name | Type | Status | Last Action | Action Time

--

nms/monitor_int_rx_cntr.py | exec | Ready | NEW | Tue Oct 24 19:38:41 2023

nms/monitor_int_rx_cntr2.py | exec | Ready | NEW | Tue Oct 24 19:38:41 2023

nms/xr_script_scheduler.json | exec | Ready | NEW | Tue Oct 24 19:38:41 2023

show_interfaces_counters_ecn.py | exec | Ready | NEW | Tue Oct 24 19:33:52 2023

xr_data_collector.py | exec | Ready | NEW | Tue Oct 24 19:33:52 2023

xr_script_scheduler.py | process| Ready | NEW | Tue Oct 24 19:33:52 2023

==
RP/0/RP0/CPU0:ios#

After the scripts are installed, the scheduler script starts reading the run parameter JSON file and executes the required
debug and monitoring scripts.

The logs generated by the scripts are available in the directory /harddisk\:/mirror/script-mgmt/logs/.

Step 7 Verify that the debug and monitoring scripts are running.

Example:

Use the show script execution command to verify that the scripts are running.
RP/0/RP0/CPU0:ios#show script execution
Tue Oct 24 19:41:15.882 UTC
==

Req. ID | Name (type) | Start | Duration |
Return | Status
--

1698176223| xr_script_scheduler.py (process) | Tue Oct 24 19:37:02 2023 | 253.32s | None
| Started

1698176224| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:38:43 2023 | 152.46s | None
| Started

1698176225| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:38:44 2023 | 152.03s | None
| Started

1698176226| nms/monitor_int_rx_cntr2.py (exec) | Tue Oct 24 19:38:44 2023 | 151.63s | None
| Started

==
RP/0/RP0/CPU0:ios#

NCS 1001 Application Hosting
22

NCS 1001 Application Hosting
Automatically deploy and activate third party script

(Optional) Use the show script execution[namescript-namedetail [output][error]]

NCS 1001 Application Hosting
23

NCS 1001 Application Hosting
Automatically deploy and activate third party script

NCS 1001 Application Hosting
24

NCS 1001 Application Hosting
Automatically deploy and activate third party script

	NCS 1001 Application Hosting
	Application hosting
	Restriction in docker container application hosting
	Docker Container Application Hosting Architecture
	Guidelines and Limitations
	TP Application Resource Configuration
	TP App Bring-up
	Bring up TPAs using application configuration
	Bring up TPAs using UM model
	Bring up TPAs using Native model
	Bringup TPAs using gNOI Containerz

	Docker Run Options Using Application Manager

	Third party RPMs installation using App Manager install UI
	Limitation and guidelines for third party RPMs
	Install third party RPMs using App Manager install UI
	Uninstall third party RPMs using App Manager install UI

	Supported commands on application manager
	Top Use Cases for Application Hosting
	Manually deploy and activate third party script
	Automated Deployment of Third Party Python Scripts
	Automatically deploy and activate third party script

