NCS 1001 Application Hosting

* Application hosting, on page |

* Third party RPMs installation using App Manager install UL, on page 8
* Supported commands on application manager, on page 9

* Top Use Cases for Application Hosting, on page 12

* Manually deploy and activate third party script, on page 12

» Automated Deployment of Third Party Python Scripts, on page 18

Application hosting

Application Hosting is the infra IOS-XR that allows you to
* run third-party applications on the NCS 1001 devices, and

» use third-party applications to extend device capabilities to complement IOS-XR features.

The Docker daemon is packaged with IOS-XR software on the base Linux OS. This provides native support
for running applications inside docker containers on IOS-XR. Docker is the preferred way to run TPAs on
I0S-XR.

App Manager

The App Manager is the infra on IOS-XR tasked with the responsibility of managing the life cycle of all
container apps (third part and Cisco internal) and process scripts. App Manager runs natively on the host as
an [OS-XR process. App Manager leverages the functionalities of docker, systemd and RPM for managing
the lifecycle of third-party applications.

Restriction in docker container application hosting

MPLS packets are not supported on Linux interfaces.

Docker Container Application Hosting Architecture

This section describes the docker container application hosting architecture.

NCS 1001 Application Hosting [

NCS 1001 Application Hosting |
. Guidelines and Limitations

Figure 1: Docker on 10S XR

Docker Client and
App manager work
as Doker orchestrator

Docker 1 || Docker 2 Global-VRF
XR Processes ,'v(a;:‘ﬁl{iebr;f:yofi:;er d otliset: :un M:;:;F; o Docker Daemon
R e VRF-Blue Global-VRF Global-VRF
Host Operating System fvar/run/docker.sock %
XR Router

The App manager internally uses docker client, which interacts with TPAs (docker 1 and docker 2) by using
the docker commands. The docker client sends the docker commands to docker daemon, which, then, executes
the commands. The docker daemon uses the docker.sock Unix socket to communicate with the dockers.

When the docker run command is executed, a docker container is created and started from the docker image.
Docker containers can be either in global-vrf namespace.

The docker utilizes overlayfs under the /var/lib/docker folder for managing the directories.

To host an application in docker containers, see Hosting an Application in Docker Containers.

Guidelines and Limitations

* For docker run options --mount and --volume, use the host paths.

« "/var/run/netns"

3

"/var/lib/docker"

"/misc/disk1"

"/diskO"

.

"/misc/config/grpc"

3

H/etcll

"/dev/net/tun"

"/var/xr/config/grpc"

.

"/opt/owner"

* The maximum allowed size for shm-size option is 64 Mb.

Jl NCS 1001 Application Hosting

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/application-hosting/b-application-hosting-cg-cisco8000/packet-io-functionalities-and-hosting-applications.html#Cisco_Concept.dita_dab824c2-cc3d-40e0-9491-9b934a290326

| NCS 1001 Application Hosting
TP Application Resource Configuration .

TP Application Resource Configuration

IOS XR is equipped with inherent safeguards to prevent third party applications from interfering with its role
as a Network OS.

* Although IOS XR doesn't impose a limit on the number of TPAs that can run concurrently, it does impose
constraints on the resources allocated to the Docker daemon, based on the following parameters:

* CPU: By default, ¥4 of the CPU per core available in the platform.

You can hard limit the default CPU usage in the range between 25-75% of the total system CPU
using the appmgr resources containers limit cpu value command. This configuration restricts the
TPAs from using more CPU than the set hard limit value irrespective of the CPU usage by other
XR processes.

This example provides the CPU hard limit configuration.

RP/0/RSPO/CPUO:ios (config) #appmgr resources containers limit cpu ?
<25-75> 1In Percentage
RP/0/RSPO/CPUO:ios (config) #appmgr resources containers limit cpu 25

RAM: By default, I GB of memory is available.

You can hard limit the default memory usage in the range between 1-25% of the overall system
memory using the appmgr resources containers limit memory value command. This configuration
restricts the TPAs from using more memory than the set hard limit value.

This example provides the memory hard limit configuration.

RP/0/RSPO/CPUO:ios (config) #fappmgr resources containers limit memory ?
<1-25> 1In Percentage
RP/0/RSPO/CPUO:ios (config) #appmgr resources containers limit memory 20

Disk space is restricted by the partition size, which varies by platform and can be checked by
executing "run df -h" and examining the size of the /misc/app host or /var/lib/docker
mounts.

* All traffic to and from the application is monitored by the XR control protection, LPTS.

» Signed Applications are supported on IOS XR. Users have the option to sign their own applications by
onboarding an Owner Certificate (OC) through Ownership Voucher-based workflows as described in
RFC 8366. Once an Owner Certificate is onboarded, users can sign applications with GPG keys based
on the Owner Certificate, which can then be authenticated during the application installation process on
the router.

The table below shows the various functions performed by appmgr.

Package Manager Lifecyle Manager Monitoring and Debugging
* Handles installation of docker * Handles application » Logging, stats, application
images packaged as RPMs. start/stop/kill operations. health check.
* Syncs the required state to * Handles automatic application * Forwards docker deamon logs
standby to restart apps in cases reload on: to XR syslog.

of switchover, etc .
* Router reboot « Allows to execute into docker

« Container crash shell of running application.

» Switchover

NCS 1001 Application Hosting [

NCS 1001 Application Hosting |
. TP App Bring-up

TP App Bring-up

This section provides the information, how to bring-up the TP container app. This can be done by following
below mentioned four ways.

» App Config
* UM Model
* Native Yang Model

* gNOI Containerz

Bring up TPAs using application configuration

Follow these steps to configure the docker run time options.

Procedure

Step 1 Configure the docker run time option.
Use --pids-limit to limit the number of process IDs using appmgr.

Example:

This example shows the configuration of the docker run time option --pids-limit to limit the number of process IDs using
appmgr.

RP/0/RP0O/CPUO:ios#appmgr application alpine_app activate type docker source alpine docker-run-opts
"-it —-pids-1limit 90" docker-run-cmd "sh"

The number of process IDs is limited to 90.

Step 2 Verify the docker run time option configuration.
Use the show running-config appmgr command to verify the run time option.
Example:
This example shows how to verify the docker run time option configuration.

RP/0/RP0/CPUO:ios#show running-config appmgr

Thu Mar 23 08:22:47.014 UTC

appmgr

application alpine app
activate type docker source alpine docker-run-opts "-it -pids-limit 90" docker-run-cmd "sh"
|

Bring up TPAs using UM model

Follow these steps to configure the docker run time options.

Jl NCS 1001 Application Hosting

| NCS 1001 Application Hosting
Bring up TPAs using Native model .

Procedure

Configure the docker run time option.
Use --pids-limit to limit the number of process IDs using Netconf.

Example:

This example shows the configuration of the docker run time option --pids-limit to limit the number of process IDs using
Netconf.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>

<target>
<candidate/>
</target>
<config>
<appmgr xmlns=http://cisco.com/ns/yang/Cisco-I0S-XR-um-appmgr-cfg>
<applications>
<application>
<application-name>alpine app</application-name>
<activate>
<type>docker</type>
<source-name>alpine</source-name>
<docker-run-cmd>/bin/sh</docker-run-cmd>
<docker-run-opts>-it --pids-1limit=90</docker-run-opts>
</activate>
</application>
</applications>
</appmgr>
</config>

</edit-config>

The number of process IDs is limited to 90.

Bring up TPAs using Native model

This example shows the configuration of the docker run time option --pids-limit to limit the number of process
IDs using Native YANG model.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>
</target>
<config>
<appmgr xmlns=http://cisco.com/ns/yang/Cisco-IOS-XR-appmgr-cfg>
<applications>
<application>
<application-name>alpine app</application-name>
<activate>
<type>docker</type>
<source-name>alpine</source-name>
<docker-run-cmd>/bin/sh</docker-run-cmd>
<docker-run-opts>-it --pids-1limit=90</docker-run-opts>
</activate>
</application>
</applications>
</appmgr>

NCS 1001 Application Hosting [

NCS 1001 Application Hosting |
. Bringup TPAs using gNOI Containerz

</config>
</edit-config>

Bringup TPAs using gNOI Containerz

The Containerz - gNOI Container Service on NCS 1001 device is a workflow to onboard and manage third-party
applications using gNOI RPCs.

For more information, see gNOI Containerz.

Docker Run Options Using Application Manager

With this feature, runtime options for docker containerized applications on IOS-XR can be configured during
launch using the appmgr activate " command. AppMgr, which oversees docker containerized applications,
ensures that these runtime options can effectively override default configurations, covering aspects like CPU,
security, and health checks during the container launch.

This feature introduces multiple runtime options that allow users to customize different parameters of docker
containers. The configuration of these runtime options is flexible, as users can use either command or Netconf

for the configuration process. Regardless of the chosen method, runtime options must be added to
docker-run-opts as needed.

Table 1:
Docker Run Option | Description
--cpus Number of CPUs

--cpuset-cpus

CPUs in which to allow execution (0-3, 0,1)

--cap-drop Drop Linux capabilities
--user, -u Sets the username or UID
--group-add Add additional groups to run
--health-cmd Run to check health

--health-interval

Time between running the check

--health-retries

Consecutive failures needed to report unhealthy

--health-start-period

Start period for the container to initialize before starting health-retries countdown

--health-timeout

Maximum time to allow one check to run

--no-healthcheck

Disable any container-specified HEALTHCHECK

--add-host Add a custom host-to-IP mapping (host:ip)
--dns Set custom DNS servers

--dns-opt Set DNS options

--dns-search Set custom DNS search domains

Jl NCS 1001 Application Hosting

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/use-grpc-protocol-to-define-network-operation-with-data-models.html#concept_dxd_fbx_s2c

| NCS 1001 Application Hosting

Docker Run Options Using Application Manager .

Docker Run Option

Description

--domainname

Container NIS domain name

--oom-score-adj

Tune host's OOM preferences (-1000 to 1000)

--shm-size Option to set the size of /dev/shm

--init Run an init inside the container that forwards signals and reaps processes
--label, -1 Set meta data on a container

--label-file Read in a line delimited file of labels

--pids-limit Tune container pids limit (set -1 for unlimited)

--work-dir Working directory inside the container

--ulimit Ulimit options

--read-only Mount the container's root filesystem as read only

--volumes-from

Mount volumes from the specified container(s)

--stop-signal

Signal to stop the container

--stop-timeout

Timeout (in seconds) to stop a container

--cap-addNET RAW

Enable NET RAW capabilities

--publish Publish a container's port(s) to the host
--entrypoint Overwrite the default ENTRYPOINT of the image
--expose Expose a port or a range of ports

--link Add link to another container

--env Set environment variables

--env-file Read in a file of environment variables

--network Connect a container to a network

--hostname Container host name

--interactive Keep STDIN open even if not attached

--tty Allocate a pseudo-TTY

--publish-all

Publish all exposed ports to random ports

--volume Bind mount a volume
--mount Attach a filesystem mount to the container
--restart Restart policy to apply when a container exits

NCS 1001 Application Hosting [

NCS 1001 Application Hosting |
. Third party RPMs installation using App Manager install Ul

Docker Run Option | Description

--cap-add Add Linux capabilities

--log-driver Logging driver for the container

--log-opt Log driver options

--detach Run container in background and print container ID
--memory Memory limit

--memory-reservation | Memory soft limit

--cpu-shares CPU shares (relative weight)

--sysctl Sysctl options

Third party RPMs installation using App Manager install Ul

This section describes how to install third party RPMs using App Manager install UI at runtime while the
router is running.

Limitation and guidelines for third party RPMs

These are the limitations and guidelines for the TP RPMs.

* RPM must not have “scriptlets”. Scriptlets allow packages to run code on installation and removal.
* RPM must not be already installed via XR Install UI.

* RPM must not be already installed via App manager UI.

* TP RPMs must install files only to the /var/lib/docker/appmgr/ filesystem location.

* RPM Signature verification is not enforced by App Manager Install Ul It supports unsigned TP RPMs.

Install third party RPMs using App Manager install Ul

Use this task to install third party RPMs using App Manager install UL

Procedure

Step 1 Create an RPM containing the application (in the form of a docker container image).

Step 2 Use App manager RPM build tool to generate TP RPMs. See https://github.com/ios-xr/xr-appmgr-build/blob/main/
README.md.

Step 3 Install the TP RPM using the App Manager Install Ul command.

Example:

Jl NCS 1001 Application Hosting

https://github.com/ios-xr/xr-appmgr-build/blob/main/README.md
https://github.com/ios-xr/xr-appmgr-build/blob/main/README.md

| NCS 1001 Application Hosting
Uninstall third party RPMs using App Manager install Ul .

RP/0/RP0O/CPUO:ios# appmgr package install rpm /harddisk\:/alpine-0.1.0-XR 7.3.1.x86 64.rpm

Uninstall third party RPMs using App Manager install Ul

Use this task to uninstall third party RPMs using App Manager install UI.

Uninstallation of TP RPM can be performed using two ways.

A,
&

Attention App manager uninstall CLI uninstalls the TP RPM at runtime while NCS 1001 is running.

Procedure

Step 1 Uninstall using source name.

Example:

RP/0/RP0O/CPUO:ios# appmgr package uninstall source alpine

Step 2 Uninstall using package name.

Example:
RP/0/RP0O/CPUO:ios# appmgr package uninstall package alpine-0.1.0-XR 7.3.1.x86_64

Supported commands on application manager

This section describes the operations and the IOS XR commands that are supported on the application manager:

Action commands

App Manager action commands are used to start, stop, kill and exec shell commands inside running container.

Table 2: Action commands

Command name | Commands Purpose

Application appmgr application start name <name> | Starts a stopped container or application.
start

Application appmgr application stop name <name> | Stops a stopped running container or
stop application.

Application kill | appmgr application kill name <name> | Kills a running container or application.

Application appmgr application copy <storage-path> | Copy data between host and container.
copy

NCS 1001 Application Hosting [

. Supported commands on application manager

NCS 1001 Application Hosting |

Command name | Commands

Purpose

Appliction exec | appmgr application exec <name>

Executes command inside TP container

docker-exec-cmd <cmd>

application (docker only).

Examples

Here are examples for the app manager action commands. For more information on the commands, see
Command Reference Guide for NCS 1001.

Action CLI (Start): This starts a stopped container

RP/0/RPO/CPUO:ios# appmgr application start name alpine app

Action CLI (Stop): This stops a running container

RP/0/RPO/CPUO:ios# appmgr application stop name alpine app

Action CLI (Kill): This forcefully kills a running container

RP/0/RPO/CPUO:ios# appmgr application kill name alpine app

Action CLI (Copy): Copy data between host and container

RP/0/RPO/CPUO:ios# appmgr application copy harddisk:/data.txt alpine app:/

Action CLI (Exec): Execute command inside TP container app

RP/0/RPO/CPUO:ios# appmgr application exec name txt alpine app docker-exec-cmd “1s -ltr”

Show commands

App Manager show commands shows the application or container info.

Table 3: show commands

Command name

Commands

Purpose

Source table modification

show appmgr source-table

Lists all third-party applications
onboarded via (XR Infra / Appmgr CLI
/ Containerz).

Application table
modification

show appmgr application-table

Lists all third-party applications managed
via (Config / Containerz) workflow in a
tabular view.

Application source name

show appmgr source name
<name>

Shows the source name.

Application package install

show appmgr packagesinstalled

Lists all the application manager RPM
packages installed.

Appliction exec

show appmgr application name
<name> info[detail | summary]

Shows application information at desired
verbosity.

Application logs

show appmgr application name
<name> logs

Shows application logs.

Jl NCS 1001 Application Hosting

| NCS 1001 Application Hosting
Supported commands on application manager .

Command name Commands Purpose
Application stats show appmgr application name | Shows application statistics.
name stats

Application process script | show appmgr process-script-table | Shows summary status of all registered
table process-scripts.

Examples

This section shows the example outputs for the show appmgr commands. For more information on the show
appmgr commands, see the Command Reference guide for the NCS 1001.

The example output shows the onboarded TP applications.

RP/0/RP0O/CPUO:ios# show appmgr source-table

Sno Name File Installed By
1 alpine alpine.tar.gz containerz

2 hello-world hello-world.tar.gz app_manager

3 bonnet bonnet.tar.gz xr install

The example output shows the Workflow column that specifies how to manage the TP applications.

RP/0/RP0O/CPUO:ios#show appmgr application-table

Name Type Config State Status Workflow
alp-cz-app Docker Activated Up 2 minutes containerz
bnt-cfg-app Docker Activated Up 1 minutes config

The example output shows the details of the swan application. The status value under vrf Relay: <name>
indicates the running status of the relay agent. If it reports an Exited state or a Restarting state, use the relay
agent logs for troubleshooting.

RP/0/RPO/CPUO:ios#show appmgr application name swan info detail
Mon Nov 23 21:22:47.240 UTC
Application: swan
Type: Docker
Source: swanagent
Config State: Activated
Docker Information:
Container ID: cd27988cd5b066d6272085e5e3f£f675c94a64cb4ad06£90c2d89453a8ec4atfld
Container name: swan

Labels:
Image: swanagent:latest
Command: "./agentxr"

Created at: 2020-11-23 21:22:39 +0000 UTC
Running for: 8 seconds ago
Status: Up Less than a second
Size: OB (virtual 82.9MB)
Ports:
Mounts: /var/opt/cisco/iosxr/appmgr/config/docker/swanagent, /var/run/netns
Networks: host
LocalVolumes: 0
Vrf Relays:
Vrf Relay: vrf relay.swan.70eclf59336271ab
Source VRF: vrf-mgmt
Source Port: 8000
Destination VRF: vrf-default
Destination Port: 10000
IP Address Range: 172.16.0.0/12

NCS 1001 Application Hosting [

NCS 1001 Application Hosting |
. Top Use Cases for Application Hosting

Status: Up 10 seconds
Vrf Relay: vrf relay.swan.5c7373d41d0ec84f
Source VRF: vrf-mgmt
Source Port: 8001
Destination VRF: vrf-default
Destination Port: 10001
IP Address Range: 172.16.0.0/12
Status: Up 11 seconds

Top Use Cases for Application Hosting

Some of the top use cases for application hosting are:

» Measure Network Performance: An application can be hosted to measure the bandwidth, throughput
and latency of the network and monitor the performance. An example of such an application is the iPerf
tool.

» Automate Server Management: An application can be hosted to automate the server functions like
upgrading software, allocation of resources, creating user accounts, and so on. Examples of such an
application are the Chef and Puppet configuration management tools.

Manually deploy and activate third party script

NCS 1001 provides CLI commands to perform configurations and operations on the optical devices. If you
want to automate the NCS 1001 node operations, you can run third party scripts through App manager. See
Automatically deploy and activate third party script, on page 18.

Follow these steps to deploy and activate third party script manually.

Procedure

Step 1 Use the show script status command to check the list of the OPS scripts that are in-built in XR.

Example:

This command lists the status of xr_script_scheduler script. Ready status in the output means that the script checksum
is verified and is ready to run.

RP/0/RP0O/CPUO:ios#show script status
Tue Oct 24 18:03:09.220 UTC

Name | Type | Status | Last Action | Action Time

show_interfaces counters_ecn.py | exec | Ready | NEW | Tue Oct 24 07:10:36
2025

xr data_collector.py | exec | Ready | NEW | Tue Oct 24 07:10:36
2025

xr_script scheduler.py | process| Ready | NEW | Tue Oct 24 07:10:36
2025

RP/0/RPO/CPUO:i0s#

Jl NCS 1001 Application Hosting

| NCS 1001 Application Hosting
Manually deploy and activate third party script .

Step 2 Use the appmgr to run the XR scheduler script.
XR scheduler script contains the necessary

Example:

RP/0/RP0O/CPUO:ios#configure

RP/0/RP0O/CPUO:ios (config) #appmgr

RP/0/RP0O/CPUO:ios (config-appmgr) #process-script xr_script_scheduler
RP/0/RP0O/CPUO:ios (config-process-script) #executable xr_ script scheduler.py
RP/0/RP0O/CPUO:i0s (config-process-script) #commit

Step 3 Check for available process scripts in app manager.
Example:
This output highlights the xr_script_scheduler.py process script that is not activated.

RP/0/RPO/CPUO:ios#show appmgr process-script-table
Wed Oct 22 09:45:02.795 UTC

Name Executable Activated Status Restart Policy Config Pending
xr_script_scheduler xr_script scheduler.py No Not Started Always No
Step 4 Activate the available process script.

You can start executing a process script only after it is activated.

Example:

RP/0/RP0O/CPUO:ios#appmgr process-script activate name xr_ script scheduler
Wed Oct 22 09:45:41.035 UTC

(Optional) Verify the status of the process script. This example shows the process script xr_script_scheduler is Activated.

RP/0/RP0O/CPUO:ios#show appmgr process-script-table
Wed Oct 22 09:45:47.275 UTC

Name Executable Activated Status Restart Policy Config Pending

xr_script_scheduler xc_script scheduler.py Yes Not Started Always No.
Step 5 Use the appmgr process-script start command to start the available process script.

Example:

xr_script_scheduler is the only available process script.

This command starts the process script Xr_script_scheduler.

RP/0/RP0O/CPUO:ios#appmgr process-script start name xr_ script scheduler
Wed Oct 22 09:46:08.273 UTC

(Optional) Verify the status of the process script after activation. This example shows the process script
xr_script_scheduler is Activated and Started.

RP/0/RPO/CPUO:ios#show appmgr process-script-table
Wed Oct 22 09:46:24.679 UTC

Name Executable Activated Status Restart Policy Config Pending
xr_script_scheduler xr_script scheduler.py Yes Started Always No
Step 6 Verify the scheduler script is running.

a) Run the show script execution command to verify the functioning of the debug and monitoring scripts.

Example:

This command displays a list of OPS scripts currently running.

NCS 1001 Application Hosting [

NCS 1001 Application Hosting |
. Manually deploy and activate third party script

RP/0/RPO/CPUO:ios# show script execution
Tue Oct 24 19:41:15.882 UTC

Reg. ID | Name (type) | Start | Duration
| Return | Status

1698176223 | xr script scheduler.py (process) | Tue Oct 24 19:37:02 2025 | 253.32s
| None | Started

RP/0/RPO/CPUO:ios#

b) Use the show script execution details command to verify if the scheduler script is running.

Example:

This command displays a list of OPS scripts currently running. If the scheduler script is correctly configured and
activated, the scheduler script execution detail appears in the output.

RP/0/RP0O/CPUO:ios#show script execution details
Tue Oct 25 18:01:56.590 UTC

Reg. ID | Name (type) | Start | Duration
| Return | Status

1698170509| xr script scheduler.py (process) | Tue Oct 25 18:01:49 2023 | 7.68s

| None | Started

Execution Details:

Script Name : xr script scheduler.py

Version : 25.3.1.141Iv1.0.0

Log location
/harddisk:/mirror/script-mgmt/logs/xr script scheduler.py process xr script scheduler

Arguments
Run Options : Logging level - INFO, Max. Runtime - 0Os, Mode - Background
Events:
1. Event : New
Time : Tue Oct 25 18:01:49 2025
Time Elapsed : 0.00s Seconds
Description : Started by Appmgr
2. Event : Started
Time : Tue Oct 25 18:01:49 2025
Time Elapsed : 0.1lls Seconds
Description : Script execution started. PID (15985)

RP/0/RPO/CPUO:ios#

Step 7 Copy the third party RPM files to the NCS 1001 node.
a) Use any of the file transfer mechanisms to copy third-party RPM.
Example:
This example shows copying the RPM to the harddisk of the NCS 1001 node using scp.

RP/0/RP0/CPUO:ios#scp

user@l71.xx.xxx.xxx:/users/user/rpm-factory/RPMS/x86_ 64/nms-1.1-25.3.1.x86_64.rpm /harddisk:
Tue Oct 24 18:02:42.400 UTC

<snip>

Jl NCS 1001 Application Hosting

| NCS 1001 Application Hosting
Manually deploy and activate third party script .

Password:

nms-1.1-24.1.1.x86_64.rpm 100% 9664 881.5KB/s
00:00

RP/0/RPO/CPUO:ios#

b) (Optional) Verify the RPM files using dir <filepath>.

Example:

RP/0/RP0O/CPUO:ios#dir harddisk:/nms-1.1-24.1.1.x86_64.rpm
Wed Oct 24 19:53:54.041 UTC

Step 8 Install the third party RPM files to use the required debug and monitoring python scripts.
The third party RPM files have the customized scripts to be executed. The third-party RPM contains two types of files:

* One or more python scripts—For more information on developing python scripts, see IOS XR Programmability
with Python and xr-python-scripts.

* Run parameter JSON file—xr_script_scheduler.json has instruction for the scheduler script.

Example:
This is an example xr_script_scheduler.json file. Customize this file as per your requirements.
[

"name": " template entry .py",
"description": ["**This is a template entry for documentation purpose. This entry will be
ignored**",
"name : Name of the python script to be executed",
" [string] [mandatory]",
"description: Description of the script",
" [string or list of strings] [optional: default empty string]l",

"cmd line parameters: Script command line parameters"
" [list of strings] [optional: default Null] [Example:

"env_variables: Enviromental variables to be set in script run shell",
" [list of key value pairs] [optional: default Null] [Example:

[["INT NAME': 'huO/1/0/1'11",
"run policy: Script restart policy when script exits",
" [string: one of always/once/stop] [optional: default 'always']",
" always: restart the script every time it exits",
" once: do not restart the script if it exits",
" stop: stop an existing script run "
]I
"cmd line parameters": [],
"env_variables": [],
"run policy": "always"
}I
{
"name": "monitor_ int rx cntr.py",

"description": "Monitoring mgmt interface for Rx threshold of 100 ",
"cmd_line parameters": ["MgmtEthO/RPO/CPU0O/O0", "200", "-log", "debug"],
"env_variables": [["INT NAME", "FourHundredGigE0/9/0/0"], ["INT_NAME2",
"FourHundredGigE0/10/0/0"11,
"run_policy": "always"
}’

"name": "monitor_int rx cntr.py",

"description": "Monitoring Fo0/0/0/0 interface for Rx threshold of 1000000 ",
"emd _line parameters": ["FourHundredGigE0/0/0/0", "1000000"],

NCS 1001 Application Hosting [

https://developer.cisco.com/docs/iosxr-python/
https://developer.cisco.com/docs/iosxr-python/
https://github.com/CiscoDevNet/xr-python-scripts

NCS 1001 Application Hosting |
. Manually deploy and activate third party script

"run_policy": "once"

"name": "monitor_ int rx cntr2.py",

"description": "Monitoring Fo0/0/0/1 interface for Rx threshold of 5000000 ",
"cmd line parameters": ["FourHundredGigE0/0/0/1", "5000000"],

"run policy": "always"

"name": "monitor_int rx cntr2.py",

"description": "Monitoring Fo0/0/0/2 interface for Rx threshold of 5000000 ",
"cmd line parameters": ["FourHundredGigE0/0/0/2", "8000000"],

"run_policy": "stop"

]
Example:
Use the appmgr packageinstall rpm <full RPM file path> command to install the third-party RPMs.

RP/0/RP0O/CPUO:ios#appmgr package install rpm /harddisk:/nms-1.1-25.3.1.x86_ 64.rpm
Tue Oct 24 18:03:26.685 UTC

RP/0/RPO/CPUO:ios#

RP/0/RP0/CPUO:ios#show appmgr packages installed

Tue Oct 24 19:42:07.967 UTC

Sno Package

1 nms-1.1-25.3.1.x86_ 64
RP/0/RPO/CPUO:ios#

After the scripts and the run parameters file become ready, build the RPM and configure the RPM to install files at
<default exr appmgr rpm install path>/ops-script-repo/exec/<rpm name>/. RPM build
tool for TPA is available at RPM Build Tool.

Note
Install the scripts in directories named after the RPM for smoother execution.

Step 9 Use the show script status command to verify that the scripts and the run parameter files contained in the RPM are
all installed successfully and added to the script management repository.

Example:

This output shows the status that two scripts (monitor_int xr_cntr.py and monitor_int rx_cntr2.py) and a run parameter
file (xr_script_scheduler.json) file were installed in the third-party RPM named “nms”.

RP/0/RP0/CPUO:ios#show script status

Tue Oct 24 19:41:10.696 UTC

Name | Type | Status | Last Action | Action Time
nms/monitor_int_rx_cntr.py | exec | Ready | NEW | Tue Oct 24 19:38:41
2023

nms/monitor_int rx cntr2.py | exec | Ready | NEW | Tue Oct 24 19:38:41
2023

nms/xr_script_scheduler.json | exec | Ready | NEW | Tue Oct 24 19:38:41
2023

show_interfaces counters_ecn.py | exec | Ready | NEW | Tue Oct 24 19:33:52
2023

xr_data_collector.py | exec | Ready | NEW | Tue Oct 24 19:33:52

Jl NCS 1001 Application Hosting

https://github.com/ios-xr/xr-appmgr-build

| NCS 1001 Application Hosting

Step 10

Step 11

Step 12

Manually deploy and activate third party script .

2023
xr_script scheduler.py | process| Ready | NEW | Tue Oct 24 19:33:52
2023

RP/0/RPO/CPUO:ios#

After the scripts are installed, the scheduler script starts reading the run parameter JSON file and executes the required
debug and monitoring scripts.

The logs generated by the scripts are available in the directory /harddisk\:/mirror/script-mgmt/logs/.

Verify that the debug and monitoring scripts are running.
Example:
Use the show script execution command to verify that the scripts are running.

RP/0/RP0/CPUO:ios#show script execution
Tue Oct 24 19:41:15.882 UTC

Reqg. ID | Name (type) | Start | Duration
Return | Status

1698176223 | xr script scheduler.py (process) | Tue Oct 24 19:37:02 2023 | 253.32s
None | Started

1698176224 | nms/monitoriintirxicntr.py (exec) | Tue Oct 24 19:38:43 2023 | 152.46s
None | Started

1698176225 nms/monitoriintirxicntr.py (exec) | Tue Oct 24 19:38:44 2023 | 152.03s
None | Started

1698176226 nms/monitoriintirxicntr2.py (exec) | Tue Oct 24 19:38:44 2023 | 151.63s
None | Started

RP/0/RP0O/CPUO:ios#

(Optional) Use the show script execution [namescript-namedetail [output][error]]

Verify all the active packages are installed.

Example:

RP/0/RP0/CPUO:ios#show install active summary
Fri Nov 14 12:52:39.322 IST
Label : 25.3.1.31I-iso

Active Packages: 2
ncsl001-xr-25.4.1.31T version=25.4.1.311 [Boot image]
ncsl00l-cosm-1.0.0.0-r253131T

(Optional) Use the appmgr process-script stop command to stop the process script.
Example:
This command stops the execution of the process script xr_script_scheduler.

RP/0/RP0O/CPUO:ios#appmgr process-script stop name xr_ script scheduler
Wed Oct 22 09:46:35.110 UTC

(Optional) Verify the status of the process script after stopping it. This example shows the process script
xr_script_scheduler is Activated and Stopped.

RP/0/RP0O/CPUO:ios#show appmgr process-script-table
Wed Oct 22 09:46:41.245 UT
Name Executable Activated Status Restart Policy Config Pending

NCS 1001 Application Hosting [

NCS 1001 Application Hosting |

. Automated Deployment of Third Party Python Scripts

xr_script_scheduler xr_ script scheduler.py Yes Stopped Always No

Automated Deployment of Third Party Python Scripts

Efficient network automation is pivotal in handling extensive cloud-computing networks. The Cisco IOS XR
infrastructure plays a crucial role by enabling automation through the initiation of API calls and execution of
scripts. Traditionally, an external controller is used for this purpose, utilizing interfaces like NETCONF,
SNMP, and SSH to communicate with NCS 1001.

This feature streamlines the operational structure by executing automation scripts directly on the router, thus
eliminating the need for an external controller. It allows scripts to leverage Python libraries and access
underlying router information. This approach not only accelerates the execution of various types of scripts
but also enhances reliability by removing dependencies on the speed and network reachability of an external
controller.

The third party script is automatically executed by the xr_script_scheduler.py script upon the installation of
third-party RPMs. App manager configuration is required to activate the xr_script_scheduler.py script and
run the third party scripts after installation.

\)

Note If you use the autorun configuration, the Xr_script_scheduler.py script activates automatically.

Automatically deploy and activate third party script

Step 1

NCS 1001 provides CLI commands to perform configurations and operations on the optical devices. If you
want to automate the NCS 1001 node operations, you can run third party scripts through App manager.

Follow these steps to deploy and activate third party script.

Procedure

Use the show script status command to check the list of the OPS scripts that are in-built in XR.

This command lists the status of xr_script_scheduler script. Ready status in the output means that the script checksum
is verified and is ready to run.

RP/0/RP0O/CPUO:ios#show script status
Tue Oct 24 18:03:09.220 UTC

| Type | Status | Last Action | Action Time
show_interfaces_counters_ecn.py | exec | Ready | NEW | Tue Oct 24 07:10:36 2025
xr_data collector.py | exec | Ready | NEW | Tue Oct 24 07:10:36 2025

Jl NCS 1001 Application Hosting

| NCS 1001 Application Hosting

Step 2

Step 3

Automatically deploy and activate third party script .

xr_script scheduler.py | process| Ready | NEW | Tue Oct 24 07:10:36 2025

RP/0/RP0O/CPUO

:ios#

Use the appmgr to automatically run the XR scheduler script.

Activate the scheduler script automatically using the "autorun" option with the configuration.

Example:

RP/0/RP0O/CPUO
RP/0/RP0O/CPUOQ
RP/0/RPO/CPUO
RP/0/RP0O/CPUO
RP/0/RP0O/CPUOQ
RP/0/RP0O/CPUO

:ios
:ios
:ios (config-process-script) #commit

:ios#configure
:ios (config) #tappmgr
:ios (config-appmgr) #process-script xr_script scheduler

config-process-script) #executable xr_script_scheduler.py
config-process-script) #autorun

(
(
(
(

The 'autorun' configuration has been added to enable automatic activation of the process script. If you prefer manual
activation/deactivation using CLI, skip the 'autorun' configuration line. See Manually deploy and activate third party
script, on page 12.

Verify the scheduler script is running.

a) Run the show script execution command to verify the functioning of the debug and monitoring scripts.

Example:

This command displays a list of OPS scripts currently running.

RP/0/RPO/CPUO:ios# show script execution
Tue Oct 24 19:41:15.882 UTC

Reg. ID | Name (type) | Start | Duration
Return | Status

1698176223| xr script scheduler.py (process) | Tue Oct 24 19:37:02 2025 | 253.32s
None | Started

RP/0/RPO/CPUO:ios#

b) Use the show script execution details command to verify if the scheduler script is running.

Example:

This command displays a list of OPS scripts currently running. If the scheduler script is correctly configured and
activated, the scheduler script execution detail appears in the output.

RP/0/RP0O/CPUO:ios#show script execution details
Tue Oct 25 18:01:56.590 UTC

Reqg. ID | Name (type) | Start | Duration
Return | Status

1698170509| xr script scheduler.py (process) | Tue Oct 25 18:01:49 2023 | 7.68s
None | Started

Execution Details:

NCS 1001 Application Hosting [

. Automatically deploy and activate third party script

Step 4

Step 5

NCS 1001 Application Hosting |

Script Name : xr_ script_ scheduler.py

Version : 25.3.1.141Iv1.0.0

Log location
/harddisk:/mirror/script-mgmt/logs/xr script scheduler.py process xr script scheduler

Arguments
Run Options : Logging level - INFO, Max. Runtime - 0Os, Mode - Background
Events:
1. Event : New
Time : Tue Oct 25 18:01:49 2025
Time Elapsed : 0.00s Seconds
Description : Started by Appmgr
2. Event : Started
Time : Tue Oct 25 18:01:49 2025
Time Elapsed : 0.1ls Seconds
Description : Script execution started. PID (15985)

RP/0/RPO/CPUO:ios#

Copy the third party RPM files to the NCS 1001 node.
a) Use any of the file transfer mechanisms to copy third-party RPM.
Example:
This example shows copying the RPM to the harddisk of the NCS 1001 node using scp.

RP/0/RP0O/CPUO:ios#scp
user@l71.xx.xxx.xxx:/users/user/rpm-factory/RPMS/x86_64/nms-1.1-25.3.1.x86_64.rpm /harddisk:

Tue Oct 24 18:02:42.400 UTC

<snip>

Password:

nms-1.1-24.1.1.x86_ 64.rpm 100% 9664 881.5KB/s 00:00

RP/0/RPO/CPUO:ios#
b) (Optional) Verify the RPM files using dir <filepath>.

Example:

RP/0/RP0O/CPUO:ios#dir harddisk:/nms-1.1-24.1.1.x86_64.rpm
Wed Oct 24 19:53:54.041 UTC

Install the third party RPM files to use the required debug and monitoring python scripts.
The third party RPM files have the customized scripts to be executed. The third-party RPM contains two types of files:

* One or more python scripts—For more information on developing python scripts, see IOS XR Programmability
with Python and xr-python-scripts.

* Run parameter JSON file—xr_script_scheduler.json has instruction for the scheduler script.

Example:
This is an example xr_script_scheduler.json file. Customize this file as per your requirements.
[

"name": " template entry .py",
"description": ["**This is a template entry for documentation purpose. This entry will be
ignored**",
"name : Name of the python script to be executed",
" [string] [mandatory]",
"description: Description of the script",
" [string or list of strings] [optional: default empty string]l",

Jl NCS 1001 Application Hosting

https://developer.cisco.com/docs/iosxr-python/
https://developer.cisco.com/docs/iosxr-python/
https://github.com/CiscoDevNet/xr-python-scripts

| NCS 1001 Application Hosting
Automatically deploy and activate third party script .

"cmd line parameters: Script command line parameters"
" [list of strings][optional: default Null] [Example: ",
"env_variables: Enviromental variables to be set in script run shell",
" [list of key value pairs][optional: default Null] [Example:
[['INT NAME': 'huO/1/0/1'11",
"run policy: Script restart policy when script exits",
[string: one of always/once/stop] [optional: default 'always'l",

always: restart the script every time it exits",

" once: do not restart the script if it exits",
" stop: stop an existing script run "
]I
"cmd line parameters": [],
"env_variables": [],
"run policy": "always"
}I
{
"name": "monitor_int rx cntr.py",
"description": "Monitoring mgmt interface for Rx threshold of 100 ",
"cmd line_parameters": ["MgmtEthO/RP0O/CPUO/O", "200", "-log", "debug"],

"env_variables": [["INT NAME", "FourHundredGigE0/9/0/0"], ["INT NAME2",
"FourHundredGigE0/10/0/0"11,
"run_policy": "always"

"name": "monitor_int rx cntr.py",
"description": "Monitoring Fo0/0/0/0 interface for Rx threshold of 1000000 ",
"cmd line parameters": ["FourHundredGigE0/0/0/0", "1000000"],

"run_policy": "once"
}I
{
"name": "monitor_int rx cntr2.py",
"description": "Monitoring Fo0/0/0/1 interface for Rx threshold of 5000000 ",
"cmd line_ parameters": ["FourHundredGigE0/0/0/1", "5000000"],
"run _policy": "always"
by
{
"name": "monitor_int rx cntr2.py",
"description": "Monitoring Fo0/0/0/2 interface for Rx threshold of 5000000 ",
"cmd line_ parameters": ["FourHundredGigE0/0/0/2", "8000000"],

"run policy": "stop"

]
Example:
Use the appmgr packageinstall rpm <full RPM file path> command to install the third-party RPMs.

RP/0/RP0O/CPUO:ios#appmgr package install rpm /harddisk:/nms-1.1-25.3.1.x86_64.rpm
Tue Oct 24 18:03:26.685 UTC

RP/0/RPO/CPUO:ios#

RP/0/RP0/CPUO:ios#show appmgr packages installed

Tue Oct 24 19:42:07.967 UTC

Sno Package

1 nms-1.1-25.3.1.x86_64
RP/0/RPO/CPUO:ios#

After the scripts and the run parameters file become ready, build the RPM and configure the RPM to install files at
<default exr appmgr rpm install path>/ops-script-repo/exec/<rpm name>/. RPM build
tool for TPA is available at RPM Build Tool.

Note

NCS 1001 Application Hosting [

https://github.com/ios-xr/xr-appmgr-build

NCS 1001 Application Hosting |
. Automatically deploy and activate third party script

Install the scripts in directories named after the RPM for smoother execution.

Step 6 Use the show script status command to verify that the scripts and the run parameter files contained in the RPM are all
installed successfully and added to the script management repository.

Example:

This output shows the status that two scripts (monitor_int xr_cntr.py and monitor_int_rx_cntr2.py) and a run parameter
file (xr_script_scheduler.json) file were installed in the third-party RPM named “nms”.

RP/0/RPO/CPUO:ios#show script status

Tue Oct 24 19:41:10.696 UTC

Name | Type | Status | Last Action | Action Time

nms/monitor_int_rx_cntr.py | exec | Ready | NEW | Tue Oct 24 19:38:41 2023
nms/monitor_int_rx_cntrZ.py | exec | Ready | NEW | Tue Oct 24 19:38:41 2023
nms/xr_script_scheduler.json | exec | Ready | NEW | Tue Oct 24 19:38:41 2023
show interfaces counters ecn.py | exec | Ready | NEW | Tue Oct 24 19:33:52 2023
xr data collector.py | exec | Ready | NEW | Tue Oct 24 19:33:52 2023
xr script scheduler.py | process| Ready | NEW | Tue Oct 24 19:33:52 2023

RP/0/RPO/CPUO:ios#

After the scripts are installed, the scheduler script starts reading the run parameter JSON file and executes the required
debug and monitoring scripts.

The logs generated by the scripts are available in the directory /harddisk\:/mirror/script-mgmt/logs/.

Step 7 Verify that the debug and monitoring scripts are running.
Example:
Use the show script execution command to verify that the scripts are running.

RP/0/RP0O/CPUO:ios#show script execution
Tue Oct 24 19:41:15.882 UTC

Reqg. ID | Name (type) | Start | Duration
Return | Status

1698176223 | xr_script scheduler.py (process) | Tue Oct 24 19:37:02 2023 | 253.32s | None
| Started

1698176224| nms/monitor int rx cntr.py (exec) | Tue Oct 24 19:38:43 2023 | 152.46s | None
| Started

1698176225| nms/monitor int rx cntr.py (exec) | Tue Oct 24 19:38:44 2023 | 152.03s | None
| Started

1698176226| nms/monitor int rx cntr2.py (exec) | Tue Oct 24 19:38:44 2023 | 151.63s | None
| Started

RP/0/RPO/CPUO:ios#

Jl NCS 1001 Application Hosting

| NCS 1001 Application Hosting
Automatically deploy and activate third party script .

(Optional) Use the show script execution [namescript-namedetail [output][error]]

NCS 1001 Application Hosting [

NCS 1001 Application Hosting |
. Automatically deploy and activate third party script

Jl NCS 1001 Application Hosting

	NCS 1001 Application Hosting
	Application hosting
	Restriction in docker container application hosting
	Docker Container Application Hosting Architecture
	Guidelines and Limitations
	TP Application Resource Configuration
	TP App Bring-up
	Bring up TPAs using application configuration
	Bring up TPAs using UM model
	Bring up TPAs using Native model
	Bringup TPAs using gNOI Containerz

	Docker Run Options Using Application Manager

	Third party RPMs installation using App Manager install UI
	Limitation and guidelines for third party RPMs
	Install third party RPMs using App Manager install UI
	Uninstall third party RPMs using App Manager install UI

	Supported commands on application manager
	Top Use Cases for Application Hosting
	Manually deploy and activate third party script
	Automated Deployment of Third Party Python Scripts
	Automatically deploy and activate third party script

