
Cisco IOS XR Application Hosting Configuration Guide for NCS 1000
Series
First Published: 2015-12-23

Last Modified: 2016-11-01

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
 800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITEDWARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version
of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDINGANYOTHERWARRANTYHEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS"WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FORA PARTICULAR PURPOSEANDNONINFRINGEMENTORARISING FROMACOURSEOFDEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://
www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service request, and gathering additional information, seeWhat's New in Cisco
Product Documentation.

To receive new and revised Cisco technical content directly to your desktop, you can subscribe to theWhat's New in Cisco Product Documentation RSS feed. RSS
feeds are a free service.

© 2015-2016 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks
http://www.cisco.com/go/trademarks
http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html
http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html
http://www.cisco.com/assets/cdc_content_elements/rss/whats_new/whatsnew_rss_feed.xml

C O N T E N T S

C H A P T E R 1 New and Changed Feature Information 1

New and Changed Feature Information in Cisco IOS XR Release 6.1.x 1

C H A P T E R 2 Linux for Application Hosting 3

Need for Application Hosting 3

Deep Dive Into Application Hosting 4

Application Hosting on the Cisco IOS XR Linux Shell 5

Access the Third-Party Network Namespace on Cisco IOS XR Linux Shell 6

Access Global VRF on the Cisco IOS XR Linux Shell 11

Access Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box 14

Apply Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box 19

C H A P T E R 3 Access the Networking Stack 25

Communication Outside Cisco IOS XR 25

East-West Communication for Third-Party Applications 27

C H A P T E R 4 Host a Simple Application on IOS XR 29

Types of Application Hosting 29

Native Application Hosting 30

Run iPerf as a Native Application 32

Host a WRL7 Application Natively By Using a Vagrant Box 34

Container Application Hosting 40

Run iPerf as a Container Application 42

Deploy an Application Development Topology on Cisco IOS XR by Using a Vagrant Box 44

Host an Application within an LXC Container by Using a Vagrant Box 49

C H A P T E R 5 Build RPMs for Native Application Hosting 63

Set Up the Build Environment 63

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
iii

Create Native Build Environment Using QEMU Hypervisor 63

Create a Cross-Build Environment Using the SDK Shell Script 64

Build Native RPMs 65

C H A P T E R 6 Host Applications Using Configuration Management Tools 69

Chef for Native Application Hosting 69

Install and Configure the Chef Client 70

Create a Chef Cookbook with Recipes 72

C H A P T E R 7 Use Cases: Container Application Hosting 75

Run a Telemetry Receiver Within a Container on Cisco IOS XR 75

OSPF Path Failover by running iPerf with Netconf on Cisco IOS XR 79

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
iv

Contents

C H A P T E R 1
New and Changed Feature Information

This section lists all the new and changed features for the Application Hosting Configuration Guide.

• New and Changed Feature Information in Cisco IOS XR Release 6.1.x, page 1

New and Changed Feature Information in Cisco IOS XR Release
6.1.x

Table 1: New and Changed Features in Cisco IOS XR Software

Where DocumentedChanged in ReleaseDescriptionFeature

Linux for Application
Hosting chapter

Access Global VRF on
the Cisco IOS XR Linux
Shell by Using a Vagrant
Box, on page 14

Release 6.1.2This feature was
introduced.

Global VRF on the Cisco
IOS XR Linux Shell by
Using a Vagrant Box

Linux for Application
Hosting chapter

Apply Bootstrap
Configuration to Cisco
IOS XR by Using a
Vagrant Box, on page
19

Release 6.1.2This feature was
introduced.

Bootstrap configuration
to XR by using a vagrant
box

Host a Simple Application
on Cisco IOS XR chapter

Host aWRL7Application
Natively By Using a
Vagrant Box, on page
34

Release 6.1.2This feature was
introduced.

Host a native application
by using a vagrant box.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
1

Where DocumentedChanged in ReleaseDescriptionFeature

Host a Simple Application
on Cisco IOS XR chapter

Deploy an Application
Development Topology
on Cisco IOS XR by
Using a Vagrant Box, on
page 44

Release 6.1.2This feature was
introduced.

Host an application
development topology by
using a vagrant box.

Host a Simple Application
on Cisco IOS XR chapter

Host an Application
within an LXC Container
by Using a Vagrant Box,
on page 49

Release 6.1.2This feature was
introduced.

Host an applicationwithin
an LXC by using a
vagrant box.

Use Cases:Container
Application Hosting
chapter

OSPF Path Failover by
running iPerf with
Netconf on Cisco IOSXR
, on page 79

Release 6.1.2This feature was
introduced.

OSPF path failover with
iPerf and Netconf by
using a vagrant box.

•

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
2

New and Changed Feature Information
New and Changed Feature Information in Cisco IOS XR Release 6.1.x

C H A P T E R 2
Linux for Application Hosting

This section introduces application hosting and the Linux environment used for hosting applications on the
Cisco IOS XR Operating System.

• Need for Application Hosting, page 3

• Deep Dive Into Application Hosting, page 4

• Application Hosting on the Cisco IOS XR Linux Shell, page 5

Need for Application Hosting
Over the last decade, there has been a need for a network operating system that supports operational agility
and efficiency through seamless integration with existing tool chains. Service providers have been looking
for shorter product cycles, agile workflows, and modular software delivery; all of these can be automated
efficiently. The 64-bit Cisco IOS XR that replaces the older 32-bit QNX version meets these requirements.
It does that by providing an environment that simplifies the integration of applications, configuration
management tools, and industry-standard zero touch provisioning mechanisms. The 64-bit IOS XR matches
the DevOps style workflows for service providers, and it has an open internal data storage system that can be
used to automate the configuration and operation of the device hosting an application.

While we are rapidly moving to virtual environments, there is an increasing need to build applications that
are reusable, portable, and scalable. Application hosting gives administrators a platform for leveraging their
own tools and utilities. Cisco IOS XR 6.0 supports third-party off-the-shelf applications built using Linux
tool chains. Users can run custom applications cross-compiled with the software development kit that Cisco
provides. Application hosting is offered in two variants: Native and Container. An application hosted on a
network device can serve a variety of purposes. This ranges from automation, configuration management
monitoring, and integration with existing tool chains.

Before an application can be hosted on a device, the following requirements must be met:

• Suitable build environment to build your application

• A mechanism to interact with the device and the network outside the device

When network devices are managed by configuration management applications, such as Chef and Puppet,
network administrators are freed of the task of focusing only on the CLI. Because of the abstraction provided
by the application, while the application does its job, administrators can now focus on the design, and other
higher level tasks.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
3

Deep Dive Into Application Hosting
This section describes the architecture of the 64-bit IOS XR and the architecture used for application hosting.

64-bit IOS XR Architecture

IOS XR provides Linux containers for application hosting through a hypervisor. Each container provides a
unique functionality. The 64-bit host Linux (hypervisor) is based on the Wind River Yocto distribution, and
works well with embedded systems. The various containers that are offered on the host Linux, are explained
in this section.

The following figure illustrates the 64-bit IOS XR architecture.

Figure 1: 64-bit IOS XR Architecture

• Admin Plane: The admin plane is the first Linux container to be launched on booting IOS XR. The
admin plane is responsible for managing the life cycle of the IOS XR control plane container.

• XRControl Plane: Applications are hosted natively in the 64-bit IOS XR control plane. You can access
the IOS XR Linux bash shell through the control plane.

• Data Plane: The data plane substitutes and provides all the features of a line card in a modular router
chassis.

• Third-Party Container: You can create your own Linux container (LXC) for hosting third-party
applications and use the LC interfaces that are provided.

Apart from the Linux containers, several interfaces are offered on the host Linux.

Application Hosting Architecture

The 64-bit IOS XR introduces the concept of using containers on the 64-bit host Linux (hypervisor) for hosting
applications in the XR control plane LXC (native) and in the third-party LXC. The host Linux is based on the
Windriver Linux 7 distribution.

The application hosting architecture is designed to offer the following containers for both native and third-party
applications:

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
4

Linux for Application Hosting
Deep Dive Into Application Hosting

• XR Control Plane LXC (native applications reside here): The XR control plane LXC contains the
global-vrf network namespace and the XR control plane. The LXC provides the XR Linux shell to
access global-vrf and the XR router console (CLI) to access the XR control plane. The LXC is also
based on the WRL7 distribution. For more information on the XR control plane LXC, see Native
Application Hosting, on page 30.

• Third-Party Container (third-party applications reside here): The 64-bit IOS XR provides you an
option to create and launch your own Linux container, known as the third-party container. You can
install applications within the container that shares the network namespace with XR. You can access
the namespace through the XR Linux shell.

The network namespace on XR is shared across all applications and is known as global-vrf.

The Third-Party Application (TPA) IP is configured so that applications can communicate outside XR through
the fwdintf interface, which is bound to the Loopback0 interface of XR. All applications communicate with
XR through the fwd_ew interface, which is bound to the Loopback1 interface of XR.

Figure 2: Application Hosting Architecture

Application Hosting on the Cisco IOS XR Linux Shell
Linux supports an entire ecosystem of applications and tools that have been created, tested, and deployed by
system administrators, developers, and network engineers over the last few decades. Linux is well suited for
hosting servers with or without applications, because of its stability, security, scalability, reduced cost for
licensing, and the flexibility it offers to customize applications for specific infrastructure needs.

With a growing focus on DevOps style workflows that focus on automation and ease of integration, network
devices need to evolve and support standard tools and applications that make the automation process easier.
A standardized and shared tool chain can boost speed, efficiency, and collaboration. IOS XR is developed
from a Yocto-based Wind River Linux 7 distribution. The OS is RPM based and well suited for embedded
systems.

IOS XR enables hosting of 64-bit Linux applications on the box, and has the following advantages:

• Seamless integration with configuration management applications

• Easy access to file systems

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
5

Linux for Application Hosting
Application Hosting on the Cisco IOS XR Linux Shell

• Ease of operation

To host a Linux application on IOS XR, you must be familiar with the Linux shell on XR.

A typical Linux OS provides a single set of network interfaces and routing table entries that are shared across
the OS.With the introduction of network namespaces, Linux provides multiple instances of network interfaces
and routing tables that operate independently.

Support for network namespaces varies across different distributions of the Linux OS. Ensure that the
distribution you are planning to use for application hosting supports network namespaces.

Note

Network Namespaces on IOS XR

There are two ways of accessing the IOS XR Linux shell, depending on the version of Cisco IOS XR that you
are using in your network.

• If you are usingCisco IOSXRVersion 6.0.0, then you must use the procedure in Access the Third-Party
Network Namespace on Cisco IOS XR Linux Shell, on page 6. Accessing the XR Linux shell takes
you to the default network namespace, XRNNS. You must navigate from this namespace to access the
third-party network namespace (TPNNS), where all the third-party application interfaces reside. There
is a difference between what you can access and view at the XR router prompt, and what you can access
and view at the XR Linux Shell.

• If you are using Cisco IOS XR Version 6.0.2 and higher, then you must use the procedure in Access
Global VRF on the Cisco IOS XR Linux Shell, on page 11. Accessing the XR Linux shell takes you
directly to the third-party network namespace, renamed as global VRF. You can run bash commands at
the XR router prompt itself to view the interfaces and IP addresses stored in global VRF. Navigation is
faster and more intuitive in this version of IOS XR.

Access the Third-Party Network Namespace on Cisco IOS XR Linux Shell
The Cisco IOSXRLinux shell provides a Third-Party Network Namespace (TPNNS) that provides the required
isolation between third-party applications and internal XR processes, while providing the necessary access
to XR interfaces for the applications. You can use the steps mentioned in this section to access the IOS XR
Linux shell and navigate through the XRNNS (default XR Network Namespace) and the TPNNS.

This procedure is applicable only on Cisco IOSXRVersions 5.3.2 and 6.0.0. For accessing this namespace
on other versions of Cisco IOS XR, see Access Global VRF on the Cisco IOS XR Linux Shell, on page
11.

Note

Use these steps to navigate through the XR Linux shell.

1 From your Linux box, access the IOS XR console through SSH, and log in.
cisco@host:~$ ssh root@192.168.122.188
root@192.168.122.188's password:
RP/0/RP0/CPU0:ios#

You have reached the IOS XR router prompt.

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
6

Linux for Application Hosting
Access the Third-Party Network Namespace on Cisco IOS XR Linux Shell

2 View the ethernet interfaces on IOS XR.
RP/0/0/CPU0:ios# show ipv4 interface brief
...

Interface IP-Address Status Protocol
Loopback0 1.1.1.1/32 Up Up
GigabitEthernet0/0/0/0 10.1.1.1/24 Up Up
...

RP/0/RP0/CPU0:ios# show interfaces gigabitEthernet 0/0/0/0
...

GigabitEthernet0/0/0/0 is up, line protocol is up
Interface state transitions: 4
Hardware is GigabitEthernet, address is 5246.e8a3.3754 (bia
5246.e8a3.3754)
Internet address is 10.1.1.1/24
MTU 1514 bytes, BW 1000000 Kbit (Max: 1000000 Kbit)
reliability 255/255, txload 0/255, rxload 0/255
Encapsulation ARPA,
Duplex unknown, 1000Mb/s, link type is force-up
output flow control is off, input flow control is off
loopback not set,
Last link flapped 01:03:50
ARP type ARPA, ARP timeout 04:00:00
Last input 00:38:45, output 00:38:45
Last clearing of "show interface" counters never
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
12 packets input, 1260 bytes, 0 total input drops
0 drops for unrecognized upper-level protocol
Received 2 broadcast packets, 0 multicast packets
0 runts, 0 giants, 0 throttles, 0 parity
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
12 packets output, 1224 bytes, 0 total output drops
Output 1 broadcast packets, 0 multicast packets

The output displays the IP and MAC addresses of the GigabitEthernet0/0/0/0 interface.

3 Enter the run command to launch the IOS XR Linux bash shell.

You can also check the version of IOS XR when you are at the bash prompt.
RP/0/RP0/CPU0:ios# run
Wed Oct 28 18:45:56.168 IST

[xr-vm_node0_RP0_CPU0:~]$ uname -a
Linux xr-vm_node0_RP0_CPU0 3.10.19-WR7.0.0.2_standard #1 SMP Mon Jul 6
13:38:23 PDT 2015 x86_64 GNU/Linux
[xr-vm_node0_RP0_CPU0:~]$

To exit the Linux bash shell and launch the IOS XR console, enter the exit command:
[xr-vm_node0_RP0_CPU0:~]$ exit
exit
RP/0/RP0/CPU0:ios#

Note

4 Locate the network interfaces by running the ifconfig command.
[xr-vm_node0_RP0_CPU0:~]$ ifconfig
eth0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41

inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:8996 Metric:1
RX packets:280 errors:0 dropped:0 overruns:0 frame:0
TX packets:160 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:31235 (30.5 KiB) TX bytes:20005 (19.5 KiB)

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
7

Linux for Application Hosting
Access the Third-Party Network Namespace on Cisco IOS XR Linux Shell

eth-vf0 Link encap:Ethernet HWaddr 52:54:00:34:29:44
inet addr:10.11.12.14 Bcast:10.11.12.255 Mask:255.255.255.0
inet6 addr: fe80::5054:ff:fe34:2944/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:9000 Metric:1
RX packets:19 errors:0 dropped:0 overruns:0 frame:0
TX packets:13 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1566 (1.5 KiB) TX bytes:1086 (1.0 KiB)

eth-vf1 Link encap:Ethernet HWaddr 52:54:00:ee:f7:68
inet6 addr: fe80::5054:ff:feee:f768/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:9000 Metric:1
RX packets:326483 errors:0 dropped:3 overruns:0 frame:0
TX packets:290174 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:24155455 (23.0 MiB) TX bytes:215862857 (205.8 MiB)

eth-vf1.1794 Link encap:Ethernet HWaddr 52:54:01:5c:55:8e
inet6 addr: fe80::5054:1ff:fe5c:558e/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:8996 Metric:1
RX packets:10 errors:0 dropped:0 overruns:0 frame:0
TX packets:13 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:728 (728.0 B) TX bytes:1234 (1.2 KiB)

eth-vf1.3073 Link encap:Ethernet HWaddr e2:3a:dd:0a:8c:06
inet addr:192.0.0.4 Bcast:192.255.255.255 Mask:255.0.0.0
inet6 addr: fe80::e03a:ddff:fe0a:8c06/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:8996 Metric:1
RX packets:317735 errors:0 dropped:3560 overruns:0 frame:0
TX packets:257881 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:18856325 (17.9 MiB) TX bytes:204552163 (195.0 MiB)

eth-vf1.3074 Link encap:Ethernet HWaddr 4e:41:50:00:10:01
inet addr:172.0.16.1 Bcast:172.255.255.255 Mask:255.0.0.0
inet6 addr: fe80::4c41:50ff:fe00:1001/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:8996 Metric:1
RX packets:8712 errors:0 dropped:0 overruns:0 frame:0
TX packets:32267 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:723388 (706.4 KiB) TX bytes:11308374 (10.7 MiB)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:1635360 errors:0 dropped:0 overruns:0 frame:0
TX packets:1635360 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:182532711 (174.0 MiB) TX bytes:182532711 (174.0 MiB)

tap123 Link encap:Ethernet HWaddr c6:13:74:4b:dc:e3
inet6 addr: fe80::c413:74ff:fe4b:dce3/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:13 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:998 (998.0 B)

The output displays the internal interfaces (eth0 through eth-vf1.3074) used by IOSXR. These interfaces
exist in XRNetwork Namespace (XRNNS) and do not interact with the network outside IOSXR. Interfaces
that interact with the network outside IOS XR are found in the Third Party Network Namespace (TPNNS).

5 Enter the TPNNS on the IOS XR bash shell.
[XR-vm_node0_RP0_CPU0:~]$ ip netns exec tpnns bash

6 View the TPNNS interfaces.
[XR-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
8

Linux for Application Hosting
Access the Third-Party Network Namespace on Cisco IOS XR Linux Shell

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

The interfaces displayed in the output are replicas of the IOS XR interfaces in the Linux environment.
(They have the same MAC and IP addresses.)

• Gi0_0_0_0 is the IOS XR GigabitEthernet 0/0/0/0 interface.

• Mg0_RP0_CPU0_0 is the IOS XR management interface, used for administrative operations on XR.

• fwd_ew is the interface used for communication (east to west) between third-party applications and
IOS XR.

• fwdintf is the interface used for communication between third-party applications and the network
outside IOS XR.

• lo:0 is the IOS XR loopback0 interface used for communication between third-party applications
and the outside network through the fwdintf interface. The loopback0 interface must be configured
for applications to communicate outside XR. Alternatively, applications can also configure a GigE
interface for external communication, as explained in the Communication Outside Cisco IOS XR,
on page 25 section.

All interfaces that are enabled (with the no shut command) are added to TPNNS on IOS XR.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
9

Linux for Application Hosting
Access the Third-Party Network Namespace on Cisco IOS XR Linux Shell

7 (Optional) View the IP routes used by the fwd_ew and fwdintf interfaces.
[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 1.1.1.1
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.213

Alternative Method of Entering the Third Party Network Namespace on IOS XR

To directly enter the TPNNS on logging to IOS XR, without entering the ip netns exec tpnns bash command,
you can use the sshd_tpnns service, as explained in the steps that follow. The procedure involves the creation
of a non-root user in order to access the service. (Root users cannot access this service.)

On IOS XR, prior to starting a service that binds to an interface, ensure that the interface is configured,
up, and operational.

To ensure that a service starts only after an interface is configured, include the following function in the
service script:
. /etc/init.d/tpnns-functions
tpnns_wait_until_ready

The addition of the tpnns_wait_until_ready function ensures that the service script waits for one or more
interfaces to be configured before starting the service.

Note

1 (Optional) If you want the TPNNS service to start automatically on reload, add the sshd_tpnns service
and verify its presence.
bash-4.3# chkconfig --add sshd_tpnns
bash-4.3# chkconfig --list sshd_tpnns
sshd_tpnns 0:off 1:off 2:off 3:on 4:on 5:on 6:off
bash-4.3#

2 Start the sshd_tpnns service.
bash-4.3# service sshd_tpnns start
Generating SSH1 RSA host key: [OK]
Generating SSH2 RSA host key: [OK]
Generating SSH2 DSA host key: [OK]
generating ssh ECDSA key...

Starting sshd: [OK]

bash-4.3# service sshd_tpnns status
sshd (pid 6224) is running...

3 Log into the sshd_tpnns session as the non-root user created in Step 1.
host@fe-ucs36:~$ ssh devops@192.168.122.222 -p 57722
devops@192.168.122.222's password:
Last login: Tue Sep 8 20:14:11 2015 from 192.168.122.1
XR-vm_node0_RP0_CPU0:~$

4 Verify whether you are in TPNNS by viewing the interfaces.
[XR-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
10

Linux for Application Hosting
Access the Third-Party Network Namespace on Cisco IOS XR Linux Shell

inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

You are ready to use the IOS XR Linux shell for hosting applications.

Access Global VRF on the Cisco IOS XR Linux Shell
The Third-Party Network Namespace (TPNNS) is renamed as Global VRF (global-vrf) in Cisco IOS XR
Version 6.0.2 and higher. When you access the Cisco IOS XR Linux shell, you directly enter global VRF.
This is described in the following procedure.

1 From your Linux box, access the IOS XR console through SSH, and log in.
cisco@host:~$ ssh root@192.168.122.188
root@192.168.122.188's password:
RP/0/RP0/CPU0:ios#

You have reached the IOS XR router prompt.

2 View the ethernet interfaces on IOS XR.
RP/0/0/CPU0:ios# show ipv4 interface brief
...

Interface IP-Address Status Protocol
Loopback0 1.1.1.1/32 Up Up
GigabitEthernet0/0/0/0 10.1.1.1/24 Up Up
...

RP/0/RP0/CPU0:ios# show interfaces gigabitEthernet 0/0/0/0
...

GigabitEthernet0/0/0/0 is up, line protocol is up
Interface state transitions: 4

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
11

Linux for Application Hosting
Access Global VRF on the Cisco IOS XR Linux Shell

Hardware is GigabitEthernet, address is 5246.e8a3.3754 (bia
5246.e8a3.3754)
Internet address is 10.1.1.1/24
MTU 1514 bytes, BW 1000000 Kbit (Max: 1000000 Kbit)
reliability 255/255, txload 0/255, rxload 0/255
Encapsulation ARPA,
Duplex unknown, 1000Mb/s, link type is force-up
output flow control is off, input flow control is off
loopback not set,
Last link flapped 01:03:50
ARP type ARPA, ARP timeout 04:00:00
Last input 00:38:45, output 00:38:45
Last clearing of "show interface" counters never
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
12 packets input, 1260 bytes, 0 total input drops
0 drops for unrecognized upper-level protocol
Received 2 broadcast packets, 0 multicast packets
0 runts, 0 giants, 0 throttles, 0 parity
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
12 packets output, 1224 bytes, 0 total output drops
Output 1 broadcast packets, 0 multicast packets

The output displays the IP and MAC addresses of the GigabitEthernet0/0/0/0 interface.

3 Verify whether the bash command runs in global VRF by running the bash -c ifconfig command to view
the network interfaces.
RP/0/RP0/CPU0:ios# bash -c ifconfig
...
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
12

Linux for Application Hosting
Access Global VRF on the Cisco IOS XR Linux Shell

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

The presence of the following two interfaces confirms that you are in Global VRF:

fwd_ew is the interface used for communication (east to west) between third-party applications and IOS
XR.

fwdintf is the interface used for communication between third-party applications and the network outside
IOS XR.

4 Access the Linux shell by running the bash command.
RP/0/RP0/CPU0:ios# bash
Tue Aug 02 13:44:07.627 UTC
[xr-vm_node0_RP0_CPU0:~]$

5 (Optional) View the IP routes used by the fwd_ew and fwdintf interfaces.
[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 1.1.1.1
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.213

Alternative Method of Entering Global VRF on IOS XR

To directly enter global VRF on logging to IOS XR, without entering the bash command, you can use the
sshd_operns service, as explained in the steps that follow. The procedure involves the creation of a non-root
user in order to access the service. (Root users cannot access this service.)

On IOS XR, prior to starting a service that binds to an interface, ensure that the interface is configured,
up, and operational.

To ensure that a service starts only after an interface is configured, include the following function in the
service script:
. /etc/init.d/operns-functions
operns_wait_until_ready

The addition of the operns_wait_until_ready function ensures that the service script waits for one or
more interfaces to be configured before starting the service.

Note

1 (Optional) If you want the operns service to start automatically on reload, add the sshd_operns service
and verify its presence.
bash-4.3# chkconfig --add sshd_operns
bash-4.3# chkconfig --list sshd_operns
sshd_operns 0:off 1:off 2:off 3:on 4:on 5:on 6:off
bash-4.3#

2 Start the sshd_operns service.
bash-4.3# service sshd_operns start
Generating SSH1 RSA host key: [OK]
Generating SSH2 RSA host key: [OK]
Generating SSH2 DSA host key: [OK]
generating ssh ECDSA key...

Starting sshd: [OK]

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
13

Linux for Application Hosting
Access Global VRF on the Cisco IOS XR Linux Shell

bash-4.3# service sshd_operns status
sshd (pid 6224) is running...

3 Log into the sshd_operns session as the non-root user created in Step 1.
host@fe-ucs36:~$ ssh devops@192.168.122.222 -p 57722
devops@192.168.122.222's password:
Last login: Tue Sep 8 20:14:11 2015 from 192.168.122.1
XR-vm_node0_RP0_CPU0:~$

4 Verify whether you are in global VRF by viewing the network interfaces.
[XR-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

You are ready to use the IOS XR Linux shell for hosting applications.

Access Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box
The Third-Party Network Namespace (TPNNS) is renamed as Global VRF (global-vrf) in Cisco IOS XR
Version 6.0.2 and higher. From Cisco IOS XR Version 6.1.1 and higher, you can use a Linux-based vagrant
box to directly access the Global VRF on IOS XR, as described in the following procedure.

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
14

Linux for Application Hosting
Access Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

Before You Begin

Before you can access global VRF using vagrant, ensure that you have fulfilled the following requirements
on your host device.

• Latest version of Vagrant for your operating system. We recommend Version 1.8 and higher.

• A virtual box for your operating system. We recommend Version 5.1 and higher.

• Minimum of 4-5 GB of RAM on your machine.

• (Optional) If you are using the Windows Operating System, you should download the Git bash utility
for running the commands described in this section.

Procedure

To access Global VRF by using a vagrant box, use the following steps.

1 Generate an API key and a CCO ID by using the steps described in
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant.

2 Download the latest stable version of the IOS XR vagrant box.

$ curl <cco-id>:<API-KEY>

$ BOXURL --output ~/iosxrv-fullk9-x64.box

$ vagrant box add --name IOS-XRv ~/iosxrv-fullk9-x64.box

3 Verify if the vagrant box has been successfully installed.

annseque@ANNSEQUE-WS02 MINGW64 ~ vagrant box list
IOS-XRv (virtualbox, 0)

4 Create a working directory.

annseque@ANNSEQUE-WS02 MINGW64 ~ mkdir ~/iosxrv
annseque@ANNSEQUE-WS02 MINGW64 ~ cd ~/iosxrv

5 Initialize the vagrant file with the new vagrant box.
ANNSEQUE-WS02 MINGW64:iosxrv annseque$ vagrant init IOS-XRv
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

6 Launch the vagrant instance on your device.
ANNSEQUE-WS02 MINGW64:iosxrv annseque$
$ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'IOS-XRv'...
==> default: Matching MAC address for NAT networking...
==> default: Setting the name of the VM: annseque_default_1472028191221_94197
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...

default: Adapter 1: nat
==> default: Forwarding ports...

default: 57722 (guest) => 2222 (host) (adapter 1)
default: 22 (guest) => 2223 (host) (adapter 1)

==> default: Running 'pre-boot' VM customizations...
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...

default: SSH address: 127.0.0.1:2222
default: SSH username: vagrant
default: SSH auth method: private key
default: Warning: Remote connection disconnect. Retrying...
...

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
15

Linux for Application Hosting
Access Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://git-scm.com/download/win
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant

default:
default: Vagrant insecure key detected. Vagrant will automatically replace
default: this with a newly generated keypair for better security.
default:
default: Inserting generated public key within guest...
default: Removing insecure key from the guest if it's present...
default: Key inserted! Disconnecting and reconnecting using new SSH key...

==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...

default: No guest additions were detected on the base box for this VM! Guest
default: additions are required for forwarded ports, shared folders, host only
default: networking, and more. If SSH fails on this machine, please install
default: the guest additions and repackage the box to continue.
default:
default: This is not an error message; everything may continue to work properly,
default: in which case you may ignore this message.

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Machine 'default' has a post `vagrant up` message. This is a message
==> default: from the creator of the Vagrantfile, and not from Vagrant itself:
==> default:
==> default:
==> default: Welcome to the IOS XRv (64-bit) Virtualbox.
==> default: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> default: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> default: to determine the port that maps to guestport 22,
==> default: then: 'ssh vagrant@localhost -p <forwarded port>'
==> default:
==> default: IMPORTANT: READ CAREFULLY
==> default: The Software is subject to and governed by the terms and conditions
==> default: of the End User License Agreement and the Supplemental End User
==> default: License Agreement accompanying the product, made available at the
==> default: time of your order, or posted on the Cisco website at
==> default: www.cisco.com/go/terms (collectively, the 'Agreement').
==> default: As set forth more fully in the Agreement, use of the Software is
==> default: strictly limited to internal use in a non-production environment
==> default: solely for demonstration and evaluation purposes. Downloading,
==> default: installing, or using the Software constitutes acceptance of the
==> default: Agreement, and you are binding yourself and the business entity
==> default: that you represent to the Agreement. If you do not agree to all
==> default: of the terms of the Agreement, then Cisco is unwilling to license
==> default: the Software to you and (a) you may not download, install or use the
==> default: Software, and (b) you may return the Software as more fully set forth
==> default: in the Agreement.

7 Access the XR Linux shell by using SSH on vagrant.
annseque@ANNSEQUE-WS02 MINGW64 ~
$ vagrant ssh
xr-vm_node0_RP0_CPU0:~$
You have successfully accessed the IOS XR Linux shell.

8 (Optional) You can check the version of Linux.
xr-vm_node0_RP0_CPU0:~$ uname -a
Linux xr-vm_node0_RP0_CPU0 3.14.23-WR7.0.0.2_standard
#1 SMP Tue May 24 22:48:36 PDT 2016 x86_64 x86_64 x86_64 GNU/Linux

9 (Optional) You can view the list of available namespaces.
[xr-vm_node0_RP0_CPU0:~]$ ip netns list
tpnns
xrnns
global-vrf

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
16

Linux for Application Hosting
Access Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

10 View the network interfaces in the global VRF namespace.
[XR-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

The interfaces displayed in the output are replicas of the IOS XR interfaces in the Linux environment.
(They have the same MAC and IP addresses.)

• Gi0_0_0_0 is the IOS XR GigabitEthernet 0/0/0/0 interface.

• Mg0_RP0_CPU0_0 is the IOS XR management interface, used for administrative operations on XR.

• fwd_ew is the interface used for communication (east to west) between third-party applications and
IOS XR.

• fwdintf is the interface used for communication between third-party applications and the network
outside IOS XR.

• lo:0 is the IOS XR loopback0 interface used for communication between third-party applications
and the outside network through the fwdintf interface. The loopback0 interface must be configured
for applications to communicate outside XR. Alternatively, applications can also configure a GigE
interface for external communication, as explained in the Communication Outside Cisco IOS XR,
on page 25 section.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
17

Linux for Application Hosting
Access Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

The presence of fwd_ew and fwdintf interfaces confirm that you are in the global VRF namespace.
All interfaces that are enabled (with the no shut command) are added to global-vrf on IOS XR.

11 (Optional) View the IP addresses used by the fwd_ew and fwdintf interfaces.
[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 1.1.1.1
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.213

12 To access the IOS XR router prompt, use the following steps.

a Log out of the XR Linux shell virtual box.
xr-vm_node0_RP0_CPU0:~$ exit
logout
Connection to 127.0.0.1 closed.

b Check the port number for accessing XR through SSH.
annseque@ANNSEQUE-WS02 MINGW64 ~
$ vagrant port
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

c Use the port number, 2223, and the password, vagrant, for accessing XR through SSH .
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios#
You have successfully accessed the XR router prompt.

13 View the network interfaces by using the bash -c ifconfig command at the XR router prompt.
RP/0/RP0/CPU0:ios# bash -c ifconfig
Thu Jul 21 06:03:49.098 UTC

Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c
inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
18

Linux for Application Hosting
Access Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

You can view all the interfaces available in global VRF namespace through the XR router prompt.

14 (Optional) To navigate to the XR Linux shell, you can use the run command. To navigate back to the
router prompt, you can use the exit command.
RP/0/RP0/CPU0:ios# run
Thu Jul 21 05:57:04.232 UTC

[xr-vm_node0_RP0_CPU0:~]$

[xr-vm_node0_RP0_CPU0:~]$ exit
exit
RP/0/RP0/CPU0:ios#

You are ready to use the IOS XR Linux shell for hosting applications.

Apply Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box
Configuration that is applied to a router or a device during boot-up is known as bootstrap configuration. By
using a vagrant box, you can create a bootstrap configuration and apply it to an instance of the Cisco IOS XR
running on a vagrant box.

Before You Begin

Before you can start using vagrant, ensure that you have fulfilled the following requirements on your host
device.

• Latest version of Vagrant for your operating system.

• A virtual box for your operating system.

• Minimum of 4-5 GB of RAM.

• (Optional) If you are using the Windows Operating System, you should download the Git bash utility
for running the commands described in this section.

Procedure

To bootstrap configuration to an instance of XR running on a vagrant box, use the following steps.

1 Generate an API key and a CCO ID by using the steps described in
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
19

Linux for Application Hosting
Apply Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://git-scm.com/download/win
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant

2 Download the latest stable version of the IOS XR vagrant box.

$ curl <cco-id>:<API-KEY>

$ BOXURL --output ~/iosxrv-fullk9-x64.box

$ vagrant box add --name IOS-XRv ~/iosxrv-fullk9-x64.box

3 Verify if the vagrant box has been successfully installed.

annseque@ANNSEQUE-WS02 MINGW64 ~ vagrant box list
IOS-XRv (virtualbox, 0)

4 Create a working directory.

annseque@ANNSEQUE-WS02 MINGW64 ~ mkdir ~/iosxrv
annseque@ANNSEQUE-WS02 MINGW64 ~ cd ~/iosxrv

5 Initialize the vagrant file with the new vagrant box.

ANNSEQUE-WS02 MINGW64:iosxrv annseque$ vagrant init IOS-XRv
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

6 Clone the vagrant-xrdocs repository.

annseque@ANNSEQUE-WS02 MINGW64 ~
$ git clone https://github.com/ios-xr/vagrant-xrdocs.git

7 Navigate to the vagrant-xrdocs repository and locate the vagrant file containing the configuration with
which you want to bootstrap the XR.

annseque@ANNSEQUE-WS02 MINGW64 ~
$ cd vagrant-xrdocs/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ ls
ansible-tutorials/ native-app-topo-bootstrap/ simple-mixed-topo/
lxc-app-topo-bootstrap/ README.md single_node_bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ ls single_node_bootstrap/
configs/ scripts/ Vagrantfile

8 Create the bootstrap configuration file which uses a vagrant shell provisioner.

You would need a shell provisioner section for each node in your network. A sample configuration file is
as follows:

#Source a config file and apply it to XR

config.vm.provision "file", source: "configs/rtr_config", destination:
"/home/vagrant/rtr_config"

config.vm.provision "shell" do |s|
s.path = "scripts/apply_config.sh"
s.args = ["/home/vagrant/rtr_config"]

end
In the shown sample file, you are using a vagrant file provisioner (config.vm.provision "file") to
transfer a file from your host machine to the XR Linux shell. The root of the source directory is the working
directory for your vagrant instance. Hence, the rtr_config file is located in the configs directory.

You are using a shell script (config.vm.provision "shell") to apply the bootstrap configuration to XR.
The shell script eventually runs on the XR Linux shell of the vagrant instance. This script is placed in the

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
20

Linux for Application Hosting
Apply Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

scripts directory and is named as apply_config.sh. The script uses the location of the router configuration
file as the destination parameter in the vagrant file provisioner.

9 Verify the directory structure for the single node bootstrap configuration example used in this section.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ cd single_node_bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ tree ./
./
├── Vagrantfile
├── configs
│ └── rtr_config
└── scripts

└── apply_config.sh

2 directories, 3 files

10 Verify the contents of the bootstrap configuration file.

The bootstrap configuration example we are using in this section configures the gRPC server on port
57789.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ cat configs/rtr_config
!! XR configuration
!
grpc
port 57789

!
end

The bootstrap configuration is appended to the existing configuration on the instance of XR.Note

11 Verify the contents of the shell script you are using to apply the configuration to XR.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ cat scripts/apply_config.sh
#!/bin/bash

Source ztp_helper.sh to get the xrapply and xrcmd functions.
source /pkg/bin/ztp_helper.sh

function configure_xr()
{

Apply a blind config
xrapply $1
if [$? -ne 0]; then

echo "xrapply failed to run"
fi
xrcmd "show config failed" > /home/vagrant/config_failed_check

}

The location of the config file is an argument to the script
config_file=$1

Call the configure_xr() function to use xrapply and xrcmd in parallel
configure_xr $config_file

Check if there was an error during config application
grep -q "ERROR" /home/vagrant/config_failed_check

Condition based on the result of grep ($?)
if [$? -ne 0]; then

echo "Configuration was successful!"
echo "Last applied configuration was:"
xrcmd "show configuration commit changes last 1"

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
21

Linux for Application Hosting
Apply Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

else
echo "Configuration Failed. Check /home/vagrant/config_failed on the router for logs"

xrcmd "show configuration failed" > /home/vagrant/config_failed
exit 1

fi
In this example, the shell script blindly applies the configuration file specified as an argument ($1) and
then checks to see if there was an error while applying the configuration.

The following new commands are introduced in the shell script:

• xrcmd: Allows you to run privileged exec commands at the XR router prompt on the XR Linux
shell.

For example, show run, show version, and so on.

• xrapply: Allows you to apply (append) a configuration file to the existing configuration.

• xrapply_string: Applies a configuration directly using a single inline string.
For example, xrapply_string "interface Gig0/0/0/0\n ip address 1.1.1.2/24 \n no shutdown

To enable the xrapply, xrapply_string, and xrcmd commandssource /pkg/bin/ztp_helper.sh, it is
mandatory to include source /pkg/bin/ztp_helper.sh in the script.

Note

12 Verify if the shell provisioner code has been included in the vagrant file.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ cat Vagrantfile
-*- mode: ruby -*-
vi: set ft=ruby :

All Vagrant configuration is done below. The "2" in Vagrant.configure
configures the configuration version (we support older styles for
backwards compatibility). Please don't change it unless you know what
you're doing.

Vagrant.configure(2) do |config|

config.vm.box = "IOS-XRv"

#Source a config file and apply it to XR

config.vm.provision "file", source: "configs/rtr_config", destination:
"/home/vagrant/rtr_config"

config.vm.provision "shell" do |s|
s.path = "scripts/apply_config.sh"
s.args = ["/home/vagrant/rtr_config"]

end
end

13 Launch the vagrant instance from the current directory.

Launching the vagrant instance should bootstrap the configuration to XR.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'IOS-XRv'...
==> default: Matching MAC address for NAT networking...
==> default: Setting the name of the VM: single_node_bootstrap_default_1472117544017_81536
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...

default: Adapter 1: nat
==> default: Forwarding ports...

default: 57722 (guest) => 2222 (host) (adapter 1)

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
22

Linux for Application Hosting
Apply Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

default: 22 (guest) => 2223 (host) (adapter 1)
==> default: Running 'pre-boot' VM customizations...
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...

default: SSH address: 127.0.0.1:2222
default: SSH username: vagrant
default: SSH auth method: private key
default: Warning: Remote connection disconnect. Retrying...
...
default:
default: Vagrant insecure key detected. Vagrant will automatically replace
default: this with a newly generated keypair for better security.
default:
default: Inserting generated public key within guest...
default: Removing insecure key from the guest if it's present...
default: Key inserted! Disconnecting and reconnecting using new SSH key...

==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...

default: No guest additions were detected on the base box for this VM! Guest
default: additions are required for forwarded ports, shared folders, host only
default: networking, and more. If SSH fails on this machine, please install
default: the guest additions and repackage the box to continue.
default:
default: This is not an error message; everything may continue to work properly,
default: in which case you may ignore this message.

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: file...
==> default: Running provisioner: shell...

default: Running:
C:/Users/annseque/AppData/Local/Temp/vagrant-shell20160825-3292-1wncpa3.sh
==> default: Configuration was successful!
==> default: Last applied configuration was:
==> default: Building configuration...
==> default: !! IOS XR Configuration version = 6.1.1.18I
==> default: grpc
==> default: port 57789
==> default: !
==> default: end

==> default: Machine 'default' has a post `vagrant up` message. This is a message
==> default: from the creator of the Vagrantfile, and not from Vagrant itself:
==> default:
==> default:
==> default: Welcome to the IOS XRv (64-bit) Virtualbox.
==> default: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> default: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> default: to determine the port that maps to guestport 22,
==> default: then: 'ssh vagrant@localhost -p <forwarded port>'
==> default:
==> default: IMPORTANT: READ CAREFULLY
==> default: The Software is subject to and governed by the terms and conditions
==> default: of the End User License Agreement and the Supplemental End User
==> default: License Agreement accompanying the product, made available at the
==> default: time of your order, or posted on the Cisco website at
==> default: www.cisco.com/go/terms (collectively, the 'Agreement').
==> default: As set forth more fully in the Agreement, use of the Software is
==> default: strictly limited to internal use in a non-production environment
==> default: solely for demonstration and evaluation purposes. Downloading,
==> default: installing, or using the Software constitutes acceptance of the
==> default: Agreement, and you are binding yourself and the business entity
==> default: that you represent to the Agreement. If you do not agree to all
==> default: of the terms of the Agreement, then Cisco is unwilling to license
==> default: the Software to you and (a) you may not download, install or use the
==> default: Software, and (b) you may return the Software as more fully set forth
==> default: in the Agreement.
You can see the vagrant file and shell provisioner applying the gPRC server port configuration to XR.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
23

Linux for Application Hosting
Apply Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

14 (Optional) You can verify the bootstrap configuration on the XR router console from the XR Linux shell.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ vagrant port
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios# show running-config grpc
Thu Aug 25 09:42:24.010 UTC
grpc
port 57789
!

RP/0/RP0/CPU0:ios# show configuration commit changes last 1
Thu Aug 25 09:42:34.971 UTC
Building configuration...
!! IOS XR Configuration version = 6.1.1.18I
grpc
port 57789
!
end

RP/0/RP0/CPU0:ios#

You have successfully applied a bootstrap configuration to XR.

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
24

Linux for Application Hosting
Apply Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

C H A P T E R 3
Access the Networking Stack

The Cisco IOS XR Software serves as a networking stack for communication. This section explains how
applications on IOS XR can communicate with internal processes, and with servers or outside devices.

• Communication Outside Cisco IOS XR, page 25

• East-West Communication for Third-Party Applications, page 27

Communication Outside Cisco IOS XR
To communicate outside Cisco IOS XR, applications use the fwdintf interface address that maps to the
loopback0 interface or a configured Gigabit Ethernet interface address. For information on the various
interfaces on IOS XR, see Application Hosting on the Cisco IOS XR Linux Shell, on page 5.

To have an iPerf or Chef client on IOS XR communicate with its respective server outside IOS XR, you must
configure an interface address as the source address on XR. The remote servers must configure this route
address to reach the respective clients on IOS XR.

This section provides an example of configuring a Gigabit Ethernet interface address as the source address
for external communication.

Using a Gigabit Ethernet Interface for External Communication

To configure a GigE interface on IOS XR for external communication, use these steps:

1 Configure a GigE interface.
RP/0/RP0/CPU0:ios(config)# interface GigabitEthernet 0/0/0/1
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 192.57.43.10 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# no shut
RP/0/RP0/CPU0:ios(config-if)# commit
Fri Oct 30 07:51:14.785 UTC
RP/0/RP0/CPU0:ios(config-if)# exit
RP/0/RP0/CPU0:ios(config)# exit

2 Verify whether the configured interface is up and operational on IOS XR.
RP/0/RP0/CPU0:ios# show ipv4 interface brief
Fri Oct 30 07:51:48.996 UTC

Interface IP-Address Status Protocol
Loopback0 1.1.1.1 Up Up
Loopback1 8.8.8.8 Up Up

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
25

GigabitEthernet0/0/0/0 192.164.168.10 Up Up
GigabitEthernet0/0/0/1 192.57.43.10 Up Up
GigabitEthernet0/0/0/2 unassigned Shutdown Down
MgmtEth0/RP0/CPU0/0 192.168.122.197 Up Up
RP/0/RP0/CPU0:ios#

3 Enter the Linux bash shell and verify if the configured interface is up and running.

/* If you are using Cisco IOS XR Version 6.0.0, run the following command */
RP/0/RP0/CPU0:ios# run ip netns exec tpnns bash

/* If you are using Cisco IOS XR Version 6.0.2, run the following command */
RP/0/RP0/CPU0:ios# bash

[xr-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Gi0_0_0_1 Link encap:Ethernet HWaddr 52:46:2e:49:f6:ff
inet addr:192.57.43.10 Mask:255.255.255.0
inet6 addr: fe80::5046:2eff:fe49:f6ff/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:3 errors:0 dropped:0 overruns:0 frame:0
TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:294 (294.0 B) TX bytes:504 (504.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:4 errors:0 dropped:0 overruns:0 frame:0
TX packets:6 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:392 (392.0 B) TX bytes:532 (532.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:8 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:672 (672.0 B) TX bytes:672 (672.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
26

Access the Networking Stack
Communication Outside Cisco IOS XR

4 Exit the Linux bash shell and configure the GigE interface as the source address for external communication.

[xr-vm_node0_RP0_CPU0:~]$ exit

RP/0/RP0/CPU0:ios# config
Fri Oct 30 08:55:17.992 UTC
RP/0/RP0/CPU0:ios(config)# tpa address-family ipv4 update-source gigabitEthernet 0/0/0/1
RP/0/RP0/CPU0:ios(config)# commit
Fri Oct 30 08:55:38.795 UTC

By default, the fwdintf interface maps to the loopback0 interface for external communication. This is
similar to binding a routing process or router ID to the loopback0 interface. When you use the tpa
address-family ipv4 update-source command to bind the fwdintf interface to a Gigabit Ethernet
interface, network connectivity can be affected if the interface goes down.

Note

5 Enter the Linux bash shell and verify whether the GigE interface address is used by the fwdintf interface
for external communication.

/* If you are using Cisco IOS XR Version 6.0.0, run the following command */
RP/0/RP0/CPU0:ios# run ip netns exec tpnns bash

/* If you are using Cisco IOS XR Version 6.0.2, run the following command */
RP/0/RP0/CPU0:ios# bash

[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 192.57.43.10
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.197
[xr-vm_node0_RP0_CPU0:~]$

External communication is successfully enabled on IOS XR.

East-West Communication for Third-Party Applications
East-West communication on IOS XR is a mechanism by which applications hosted in containers interact
with native XR applications (hosted in the XR control plane).

The following figure illustrates how a third-party application hosted on IOS XR interacts with the XR Control
Plane.

The application sends data to the Forwarding Information Base (FIB) of IOS XR. The application is hosted
in the east portion of IOS XR, while the XR control plane is located in the west region. Therefore, this form
of communication between a third-party application and the XR control plane is termed as East-West (E-W)
communication.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
27

Access the Networking Stack
East-West Communication for Third-Party Applications

Third-party applications such as Chef Client and Puppet Agent use this mode of communication to configure
and manage containers, packages, and applications on IOS XR. In the future, this support could be extended
to IOS XR, configured and managed by such third-party applications.

Figure 3: East-West Communication on IOS XR

For a third-party application to communicate with IOS XR, the Loopback1 interface must be configured. This
is explained in the following procedure.

1 Configure the Loopback1 interface on IOS XR.
RP/0/RP0/CPU0:ios(config)# interface Loopback1
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 8.8.8.8/32
RP/0/RP0/CPU0:ios(config-if)# no shut
RP/0/RP0/CPU0:ios(config-if)# commit
RP/0/RP0/CPU0:ios(config-if)# exit
RP/0/RP0/CPU0:ios(config)#

2 Verify the creation of the Loopback1 interface.
RP/0/RP0/CPU0:ios# show ipv4 interface brief
Thu Nov 12 10:01:00.874 UTC

Interface IP-Address Status Protocol
Loopback0 1.1.1.1 Up Up
Loopback1 8.8.8.8 Up Up
GigabitEthernet0/0/0/0 192.164.168.10 Up Up
GigabitEthernet0/0/0/1 192.57.43.10 Up Up
GigabitEthernet0/0/0/2 unassigned Shutdown Down
MgmtEth0/RP0/CPU0/0 192.168.122.197 Up Up
RP/0/RP0/CPU0:ios#

3 Enter the third-party network namespace or global VRF depending on the version of IOS XR version you
are using for your network.
/* If you are using Cisco IOS XR Version 6.0.0, run the following command */
RP/0/RP0/CPU0:ios# run ip netns exec tpnns bash

/* If you are using Cisco IOS XR Version 6.0.2, run the following command */
RP/0/RP0/CPU0:ios# bash

4 Verify whether the Loopback1 interface address has been mapped to the E-W interface.
[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 192.57.43.10
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.197
[xr-vm_node0_RP0_CPU0:~]$

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
28

Access the Networking Stack
East-West Communication for Third-Party Applications

C H A P T E R 4
Host a Simple Application on IOS XR

This section explains the different kinds of application hosting, and demonstrates how a simple application,
such as iPerf, can be hosted natively or in a third-party container on IOS XR.

• Types of Application Hosting, page 29

• Native Application Hosting, page 30

• Container Application Hosting, page 40

Types of Application Hosting
Application hosting on IOS XR is offered in two variants:

• Native: You can host applications inside the container provided by IOS XR. Applications must be built
with a Cisco-specified Linux distribution (Wind River Linux 7), which uses RPM as the packagemanager.
The applications use the libraries found in the IOS XR root file system. Configuration management
tools, such as Chef and Puppet, can be used to automate the installation of the application.

• Container: You can create your own container on IOS XR, and host applications within the container.
The applications can be developed using any Linux distribution. This is well suited for applications that
use system libraries that are different from that provided by the IOS XR root file system.

Selecting the Type of Application Hosting

You can select an application hosting type, depending on your requirement and the following criteria.

• Resources: If you need to manage the amount of resources consumed by the hosted applications, you
must choose the container model, where constraints can be configured. In a native model, you can only
deploy applications that use allotted resources, which are shared with internal IOS XR processes.

• Choice of Environment: Applications to be hosted natively must be built with the Wind River Linux
7 distribution that is offered by IOS XR. If you decide to choose the Linux distribution that is to be used
for building your applications, then you must choose the container model. When you host an application
using the container model, you can pre-package it prior to deployment.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
29

Native Application Hosting
This section describes the architecture and workflow for native application hosting.

Workflow for Native Application Hosting By Using the Shell Script

The workflow for native application hosting by using a shell script is illustrated in the following figure.

Figure 4: Native Application Hosting Using the SDK Shell Script

1 The SDK is built with Wind River Linux 7 (WRL7) distribution that uses a Yocto project workspace.

IOS XR uses the open embedded kernel infrastructure from the Yocto project as a base. Thus, IOS XR
contains all the system libraries, and the basic tool chain to support applications. As a result, applications
that are to be hosted natively on IOS XR must be rebuilt for the Wind River distribution and can later be
customized with other IOS XR features, such as Telemetry and YANG data models.

2 The SDK is compiled and saved in the Cisco (YUM) repository.

The native application hosting environment is built either by using the QEMU hypervisor, or by running
the SDK shell script.

Note

Yellowdog Updated, Modified (YUM) is an open source command-line package management utility for
Linux that enables creating and compiling of an embedded distribution source file into suitable formats,
such as Red Hat Packet Manager (RPM). YUM allows automatic package updates. By using YUM, you
can install, delete, update, and view available packages.

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
30

Host a Simple Application on IOS XR
Native Application Hosting

3 The Cisco repository is made accessible to the application developer over the Internet.

4 The developer downloads the SDK and runs the SDK shell script for installation. See Create a Cross-Build
Environment Using the SDK Shell Script, on page 64 for more information.

5 The developer rebuilds the application to be hosted on IOS XR. See Build Native RPMs, on page 65 for
more information.

6 The developer hosts the rebuilt application on the test router.

7 The developer hosts the rebuilt application on the hosting router running IOS XR.

For information on preparing the build environment for native application hosting, see Set Up the Build
Environment, on page 63.

Native Application Hosting Architecture

The architecture for native application hosting is described in the following figure.

Figure 5: Native Application Hosting Architecture

The XR control plane LXC offers the following two components:

• global-vrf network namespace: All native applications reside in the global-vrf network namespace.
The applications use TPA IP address to communicate outside XR through the fwdintf / Loopback0
interface of XR. You can access the namespace through the XR Linux shell. The namespace contains
the following routes by default:

• Default route to XRFIB: A packet with an unknown destination is sent from the Linux application
to XR through the fwdintf/loopback0 interface.

•Management routes: Routes in the subnet of the management interface, which is local to the
namespace.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
31

Host a Simple Application on IOS XR
Native Application Hosting

global-vrf is referred to as the Third-Party Network Namespace (TPNNS) in Cisco
IOS XR Versions 5.3.2 and 6.0.0

Note

• XR control plane: The XR control plane contains the XR routing processes and protocols and can be
accessed through the XR router console (CLI). The XR FIB is programmed by the XR control plane.

Run iPerf as a Native Application
As an example of native application hosting, you can install an iPerf client natively on IOS XR and check its
connectivity with an iPerf server installed natively on another router, as described in this section.

Topology

This figure illustrates the topology used in this example.

Figure 6: iPerf as a Native Application

iPerf server is installed on Router A, and iPerf client is installed on Router B. Both installations are done
natively on IOS XR. The iPerf client communicates with the iPerf server through the interfaces offered by
IOS XR.

Prerequisites

Ensure that you have configured the two routers as shown in the topology.

Configuration Procedure

To run iPerf as a native application, follow these steps:

1 Log into Router A, and enter the XRNNS.
RP/0/RP0/CPU0:ios# run
[xr-vm_node0_RP0_CPU0:~]$

2 Install the iPerf server as an RPM on Router A.
[xr-vm_node0_RP0_CPU0:~]$yum install
https://s3.amazonaws.com/alpha-builds/iperf-2.0.5.ios_xr6.x86_64.rpm

3 Perform Steps 1 and 2 to install the iPerf client on Router B.

4 Verify the iPerf server installation on Router A.
[xr-vm_node0_RP0_CPU0:~]$ iperf -v

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
32

Host a Simple Application on IOS XR
Run iPerf as a Native Application

iperf version 2.0.5 (08 Jul 2010) pthreads

Similarly, verify the iPerf client installation on Router B.

5 Bind the Loopback0 interface on Router A to the iPerf server, and launch the iPerf server instance.

In this example, 1.1.1.1 is the assigned Loopback0 interface address of Router A, and 57730 is the port
number used for communication.
[xr-vm_node0_RP0_CPU0:~]$ iperf -s -B 1.1.1.1 -p 57730
Server listening on TCP port 57730
Binding to local address 1.1.1.1
TCP window size: 85.3 KByte (default)

6 Launch the iPerf client instance on Router B, by specifying the same port number used for the iPerf server,
and the management IP address of Router A.

In this example, 192.168.122.213 is the management IP address of Router A, and 57730 is the port number
used to access the iPerf server.
[xr-vm_node0_RP0_CPU0:~]$ iperf -c 192.168.122.213 -p 57730
--
Client connecting to 192.168.122.213, TCP port 57730
TCP window size: 85.0 KByte (default)
--
[3] local 192.168.122.1 port 46974 connected with 192.168.122.213 port 57730
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 146 MBytes 122 Mbits/sec

To use UDP, instead of TCP, to communicate with the iPerf server, use the following command:
[xr-vm_node0_RP0_CPU0:~]$ iperf -c 192.168.122.213 -p 57730 -u
--
Client connecting to 192.168.122.213, UDP port 57730
Sending 1470 byte datagrams
UDP buffer size: 208 KByte (default)
--
[3] local 192.168.122.1 port 41466 connected with 192.168.122.213 port 57730
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec
[3] Sent 893 datagrams
[3] Server Report:
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.233 ms 0/ 893 (0%)
[root@hostB ~]#

7 Ping the iPerf server from the iPerf client on Router B.
[xr-vm_node0_RP0_CPU0:~]$ /bin/ping 192.164.168.10
PING 192.164.168.10 (192.164.168.10) 56(84) bytes of data.
64 bytes from 192.164.168.10: icmp_seq=1 ttl=255 time=13.0 ms
64 bytes from 192.164.168.10: icmp_seq=2 ttl=255 time=2.14 ms
64 bytes from 192.164.168.10: icmp_seq=3 ttl=255 time=2.21 ms

The iPerf client hosted on Router B accesses the iPerf server hosted on Router A.

Native application hosting for iPerf is successful.

iPerf Operations on IOS XR By Using System V Init Script

The iPerf server or client service can be started, stopped, or restarted automatically on IOS XR. To achieve
this, a System V (SysV) script must be created, and added as shown in this example:

1 Create the SysV script for starting, stopping, or reloading the iPerf server or client.

In this example, the script is created for the iPerf server. To create the script for the iPerf client, instead,
use the command described in Step 5 of the iPerf configuration procedure.
#!/bin/bash
#

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
33

Host a Simple Application on IOS XR
Run iPerf as a Native Application

description: iPerf server
#
Get function from functions library
. /etc/init.d/functions

Start the service iperf
start() {

iperf -s -B 1.1.1.1 -p 57730 & "Starting the iPerf Server: "
/path/to/iperf &
Create the lock file
touch /var/lock/subsys/iperf
success $"iPerf server startup"
echo

}

Restart the service iperf
stop() {

iperf -s -B 1.1.1.1 -p 57730 & "Stopping the iPerf Server: "
killproc iperf
Delete the lock file
rm -f /var/lock/subsys/iperf
echo

}
main logic
case "$1" in
start)

start
;;

stop)
stop
;;

status)
status iperf
;;

restart|reload|condrestart)
stop
start
;;

*)
echo $"Usage: $0 {start|stop|restart|reload|status}"
exit 1

esac
exit 0

2 Add the script to IOS XR hosting the iPerf server or client.
bash-4.3# chkconfig --add iperf

Host a WRL7 Application Natively By Using a Vagrant Box
This section describes how you can host a Wind river Linux (WRL7) application natively by using a vagrant
box.

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
34

Host a Simple Application on IOS XR
Host a WRL7 Application Natively By Using a Vagrant Box

Native Application Hosting Topology

For the sake of illustration, we will use the three vagrant instance topology as shown in the following figure.

Figure 7: Native Application Hosting Topology on a Vagrant Box

Before You Begin

Before you can start using vagrant, ensure that you have fulfilled the following requirements on your host
device.

• Latest version of Vagrant for your operating system.

• A virtual box for your operating system.

• Minimum of 4-5 GB of RAM with two cores.

• (Optional) If you are using the Windows Operating System, you should download the Git bash utility
for running the commands described in this section.

• Host the two-node (rtr and devbox) application development topology as described in Deploy an
Application Development Topology on Cisco IOS XR by Using a Vagrant Box, on page 44.

Procedure

Use the following steps to host an application natively on IOS XR.

1 Verify if you have the IOS-XRv and the ciscoxr/appdev-xr6.1.1 vagrant boxes installed on your machine.
annseque@ANNSEQUE-WS02 MINGW64 ~
$ vagrant box list
IOS-XRv (virtualbox, 0)
ciscoxr/appdev-xr6.1.1 (virtualbox, 1.0)
ubuntu/trusty64 (virtualbox, 20160602.0.0)

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
35

Host a Simple Application on IOS XR
Host a WRL7 Application Natively By Using a Vagrant Box

https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://git-scm.com/download/win

2 Clone the vagrant-xrdocs repository.
annseque@ANNSEQUE-WS02 MINGW64 ~
$ git clone https://github.com/ios-xr/vagrant-xrdocs.git

3 Navigate to the vagrant-xrdocs/native-app-topo-bootstrap directory and launch the vagrant instance.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ cd native-app-topo-bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant up

Bringing machine 'rtr' up with 'virtualbox' provider...
Bringing machine 'devbox' up with 'virtualbox' provider...
Bringing machine 'wrl7_build' up with 'virtualbox' provider...
==> rtr: Clearing any previously set forwarded ports...
==> rtr: Clearing any previously set network interfaces...
==> rtr: Preparing network interfaces based on configuration...

rtr: Adapter 1: nat
rtr: Adapter 2: intnet

==> rtr: Forwarding ports...
rtr: 57722 (guest) => 2222 (host) (adapter 1)
rtr: 22 (guest) => 2223 (host) (adapter 1)

==> rtr: Running 'pre-boot' VM customizations...
==> rtr: Booting VM...
==> rtr: Waiting for machine to boot. This may take a few minutes...

rtr: SSH address: 127.0.0.1:2222
rtr: SSH username: vagrant
rtr: SSH auth method: private key
rtr: Warning: Remote connection disconnect. Retrying...

...
==> rtr: Machine booted and ready!
==> rtr: Checking for guest additions in VM...

rtr: No guest additions were detected on the base box for this VM! Guest
rtr: additions are required for forwarded ports, shared folders, host only
rtr: networking, and more. If SSH fails on this machine, please install
rtr: the guest additions and repackage the box to continue.
rtr:
rtr: This is not an error message; everything may continue to work properly,
rtr: in which case you may ignore this message.

==> rtr: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> rtr: flag to force provisioning. Provisioners marked to run always will still run.
==> devbox: Checking if box 'ubuntu/trusty64' is up to date...
==> devbox: A newer version of the box 'ubuntu/trusty64' is available! You currently
==> devbox: have version '20160801.0.0'. The latest is version '20160907.0.0'. Run
==> devbox: `vagrant box update` to update.
==> devbox: Clearing any previously set forwarded ports...
==> devbox: Fixed port collision for 22 => 2222. Now on port 2200.
==> devbox: Clearing any previously set network interfaces...
==> devbox: Preparing network interfaces based on configuration...

devbox: Adapter 1: nat
devbox: Adapter 2: intnet

==> devbox: Forwarding ports...
devbox: 22 (guest) => 2200 (host) (adapter 1)

==> devbox: Booting VM...
==> devbox: Waiting for machine to boot. This may take a few minutes...

devbox: SSH address: 127.0.0.1:2200
devbox: SSH username: vagrant
devbox: SSH auth method: private key
devbox: Warning: Remote connection disconnect. Retrying...
devbox: Warning: Remote connection disconnect. Retrying...

==> devbox: Machine booted and ready!
...
==> wrl7_build: Checking if box 'ciscoxr/appdev-xr6.1.1' is up to date...
==> wrl7_build: Clearing any previously set forwarded ports...
==> wrl7_build: Fixed port collision for 22 => 2222. Now on port 2201.
==> wrl7_build: Clearing any previously set network interfaces...
==> wrl7_build: Preparing network interfaces based on configuration...

wrl7_build: Adapter 1: nat
==> wrl7_build: Forwarding ports...

wrl7_build: 22 (guest) => 2201 (host) (adapter 1)
==> wrl7_build: Booting VM...

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
36

Host a Simple Application on IOS XR
Host a WRL7 Application Natively By Using a Vagrant Box

==> wrl7_build: Waiting for machine to boot. This may take a few minutes...
wrl7_build: SSH address: 127.0.0.1:2201
wrl7_build: SSH username: vagrant
wrl7_build: SSH auth method: private key
wrl7_build: Warning: Remote connection disconnect. Retrying...

...
==> wrl7_build: Welcome to the IOS XR Application Development (AppDev) VM that provides
a WRL7 based native environment to build appli

cations for IOS XR (Release 6.1.1)
platforms.

4 Verify if the WRL7 build instance has launched.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant status
Current machine states:

rtr running (virtualbox)
devbox running (virtualbox)
wrl7_build running (virtualbox)
...

5 Access the WRL7 build instance through SSH, and retrieve the source code of the application you want
to host natively.

In this example, we fetch the source code for the iPerf application.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh wrl7_build

localhost:~$ wget https://iperf.fr/download/source/iperf-2.0.9-source.tar.gz
--2016-09-13 01:54:58-- https://iperf.fr/download/source/iperf-2.0.9-source.tar.gz
Resolving iperf.fr... 194.158.119.186, 2001:860:f70a::2
Connecting to iperf.fr|194.158.119.186|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 277702 (271K) [application/x-gzip]
Saving to: 'iperf-2.0.9-source.tar.gz'

100%[===>] 277,702
153KB/s in 1.8s

2016-09-13 01:55:01 (153 KB/s) - 'iperf-2.0.9-source.tar.gz' saved [277702/277702]

localhost:~$ ls
iperf-2.0.9-source.tar.gz
localhost:~$

6 Copy the source code tar ball to the /usr/src/rpm/SOURCES/ build location.
localhost:~$ sudo cp /home/vagrant/iperf-2.0.9-source.tar.gz /usr/src/rpm/SOURCES/

7 Retrieve the XML spec file (iperf.spec) for building the RPM.
localhost:~$ wget http://10.30.110.214/iperf.spec
--2016-09-13 01:58:44-- http://10.30.110.214/iperf.spec
Connecting to 10.30.110.214:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 609
Saving to: 'iperf.spec'

100%[===>] 609 --.-K/s
in 0s

2016-09-13 01:58:45 (38.2 MB/s) - 'iperf.spec' saved [609/609]

--
localhost:~$ ls
iperf-2.0.9-source.tar.gz iperf.spec

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
37

Host a Simple Application on IOS XR
Host a WRL7 Application Natively By Using a Vagrant Box

8 Build the RPM by using the retrieved spec file.
localhost:~$ sudo rpmbuild -ba iperf.spec
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.59743
+ umask 022
+ cd /usr/lib64/rpm/../../src/rpm/BUILD
+ cd /usr/src/rpm/BUILD
+ rm -rf iperf-2.0.9
+ /bin/tar -xf -
...
Requires: libc.so.6()(64bit) libc.so.6(GLIBC_2.14)(64bit) libc.so.6(GLIBC_2.2.5)(64bit)
libc.so.6(GLIBC_2.3)(64bit) libc.so.6(GLIBC_2.7)(64bit)
libgcc_s.so.1()(64bit) libgcc_s.so.1(GCC_3.0)(64bit) libm.so.6()
(64bit) libm.so.6(GLIBC_2.2.5)(64bit) libpthread.so.0()(64bit)
libpthread.so.0(GLIBC_2.2.5)(64bit) libpthread.so.0(GLIBC_2.3.2)(64bit)
librt.so.1()(64bit) librt.so.1(GLIBC_2.2.5)(64bit) libstdc++.so.6()(64bit)
libstdc++.so.6(CXXABI_1.3)(64bit) libstdc++.so.6(GLIBCXX_3.4)(64bit) rtld(GNU_HASH)
Checking for unpackaged file(s): /usr/lib64/rpm/check-files
/usr/lib64/rpm/../../../var/tmp/iperf-root
Wrote: /usr/src/rpm/SRPMS/iperf-2.0.9-XR_6.1.1.src.rpm
Wrote: /usr/src/rpm/RPMS/x86_64/iperf-2.0.9-XR_6.1.1.x86_64.rpm
...

localhost:~$ ls -l /usr/src/rpm/RPMS/x86_64/
total 48
-rw-r--r-- 1 root root 48118 Sep 13 02:03 iperf-2.0.9-XR_6.1.1.x86_64.rpm

9 Transfer the RPM file to XR.

a Note down the port number on XR for transferring the RPM file.
localhost:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant port rtr
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

b Access the WRL7 build instance, and copy the RPM file by using the SCP command with the port
number of XR.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh wrl7_build
Last login: Tue Sep 13 01:49:37 2016 from 10.0.2.2

localhost:~$ scp -P 2222 /usr/src/rpm/RPMS/x86_64/iperf-2.0.9-XR_6.1.1.x86_64.rpm
vagrant@10.0.2.2:/home/vagrant/
vagrant@10.0.2.2's password:
iperf-2.0.9-XR_6.1.1.x86_64.rpm

10 Install the application (iPerf) on XR.

a Access XR through SSH.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh rtr
Last login: Fri Sep 9 19:20:56 2016 from 10.0.2.2
xr-vm_node0_RP0_CPU0:~$

b Verify the presence of the RPM file on XR.
xr-vm_node0_RP0_CPU0:~$ ls -l iperf-2.0.9-XR_6.1.1.x86_64.rpm
-rw-r--r-- 1 vagrant vagrant 48118 Sep 13 06:33 iperf-2.0.9-XR_6.1.1.x86_64.rpm

c Install iPerf by using yum.
xr-vm_node0_RP0_CPU0:~$ sudo yum install -y iperf-2.0.9-XR_6.1.1.x86_64.rpm
Loaded plugins: downloadonly, protect-packages, rpm-persistence
Setting up Install Process

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
38

Host a Simple Application on IOS XR
Host a WRL7 Application Natively By Using a Vagrant Box

Examining iperf-2.0.9-XR_6.1.1.x86_64.rpm: iperf-2.0.9-XR_6.1.1.x86_64
Marking iperf-2.0.9-XR_6.1.1.x86_64.rpm to be installed
Resolving Dependencies
--> Running transaction check
---> Package iperf.x86_64 0:2.0.9-XR_6.1.1 will be installed
--> Finished Dependency Resolution

...

Total size: 103 k
Installed size: 103 k
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : iperf-2.0.9-XR_6.1.1.x86_64

Installed:
iperf.x86_64 0:2.0.9-XR_6.1.1

Complete!
xr-vm_node0_RP0_CPU0:~$

d Verify iPerf installation.
xr-vm_node0_RP0_CPU0:~$ iperf -v
iperf version 2.0.9 (1 June 2016) pthreads

11 Test the natively installed application (iPerf) on XR.

a Access the XR router console and configure the Third-party Application (TPA) access for outside
networks.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios# config
Tue Sep 13 06:46:56.368 UTC
RP/0/RP0/CPU0:ios(config)# tpa address-family ipv4 update-source loopback 0
RP/0/RP0/CPU0:ios(config)# commit
Tue Sep 13 06:47:04.642 UTC
RP/0/RP0/CPU0:ios(config)# end
RP/0/RP0/CPU0:ios# bash -c ip route
Tue Sep 13 06:47:43.792 UTC
default dev fwdintf scope link src 1.1.1.1
10.0.2.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 10.0.2.15

b Exit the XR router console, and launch the iPerf server on XR.
RP/0/RP0/CPU0:ios# exit
Connection to localhost closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh rtr
Last login: Tue Sep 13 06:44:53 2016 from 10.0.2.2

xr-vm_node0_RP0_CPU0:~$ iperf -s -u
--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 64.0 MByte (default)
--

12 Install the iPerf (client) on devbox.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
39

Host a Simple Application on IOS XR
Host a WRL7 Application Natively By Using a Vagrant Box

a Access devbox through SSH.

xr-vm_node0_RP0_CPU0:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-92-generic x86_64)
...

13 Install iPerf application.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo apt-get -y install iperf
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
iperf

...

14 Test the iPerf application on devbox.

a Configure TPA route to XR from devbox.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo ip route add 1.1.1.1/32 via 11.1.1.10
vagrant@vagrant-ubuntu-trusty-64:~$ ping 1.1.1.1
PING 1.1.1.1 (1.1.1.1) 56(84) bytes of data.
64 bytes from 1.1.1.1: icmp_seq=1 ttl=255 time=15.1 ms
64 bytes from 1.1.1.1: icmp_seq=2 ttl=255 time=3.81 ms
^C
--- 1.1.1.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 3.817/9.480/15.143/5.663 ms

b Test if the iPerf client on devbox can communicate with the iPerf server on XR.
vagrant@vagrant-ubuntu-trusty-64:~$ iperf -c 1.1.1.1 -u
--
Client connecting to 1.1.1.1, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 208 KByte (default)
--
[3] local 11.1.1.20 port 34348 connected with 1.1.1.1 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec
[3] Sent 893 datagrams
[3] Server Report:
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.256 ms 0/ 893 (0%)

You have successfully built an application RPM on XR and hosted it natively by using a vagrant box.

Container Application Hosting
This section introduces the concept of container application hosting and describes its workflow.

Container application hosting makes it possible for applications to be hosted in their own environment and
process space (namespace) within a Linux container on Cisco IOSXR. The application developer has complete
control over the application development environment, and can use a Linux distribution of choice. The
applications are isolated from the IOS XR control plane processes; yet, they can connect to networks outside
XR through the XR GigE interfaces. The applications can also easily access local file systems on IOS XR.

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
40

Host a Simple Application on IOS XR
Container Application Hosting

This figure illustrates the workflow for creating a Linux container for application hosting. For the complete
configuration procedure, see Run iPerf as a Container Application, on page 42.

Figure 8: Container Application Hosting Workflow

There are two components in container application hosting:

• Linux server: This is the server you use to develop your application, to bring up the Linux Container
(LXC), and to prepare the container environment.

• Router: This is the router running the 64-bit IOS XR that is used to host your container with the
application you want to run.

1 On the Linux server, bring up the LXC, and do the following:

a Prepare the container environment and the required libraries.

b Shut down the LXC.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
41

Host a Simple Application on IOS XR
Container Application Hosting

2 Connect to the router running IOS XR, and copy the root file system.

3 Create the configuration file for the container in .xml format. This file specifies the attributes for the
container, such as name of the container, default namespace, and so on.

If you specify a network namespace (third-party), then by default, the LXC is launched in that namespace.Note

4 Launch the LXC on the router.

5 Log into the LXC on the router through IOS XR console access.

6 Manually start the application, or configure the application to start automatically when the LXC is launched.

You can use a container, like a Linux box, to install and host applications for users.

Run iPerf as a Container Application
As an example of container application hosting, you can install an iPerf client within a LXC on IOS XR, and
check its connectivity with an iPerf server installed within an LXC on another router, as described in this
section.

Topology

The following illustration describes the topology used in this example.

Figure 9: iPerf as a Container Application

iPerf server is installed on Router A, and iPerf client is installed on Router B. Both installations are done
within containers on the 64-bit IOS XR. The iPerf client communicates with the iPerf server through the
interfaces offered by IOS XR.

Prerequisites

Ensure that you have configured the two routers as shown in the topology.

Configuration Procedure

To run iPerf as a container application, follow these steps:

1 Log into Router A, and enter the XRNNS.
RP/0/RP0/CPU0:ios# run
[xr-vm_node0_RP0_CPU0:~]$

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
42

Host a Simple Application on IOS XR
Run iPerf as a Container Application

2 Launch the LXC.
[xr-vm_node0_RP0_CPU0:~]$virsh -c lxc+tcp://10.11.12.15:16509/ -e ^Q console demo1

3 Log into the LXC when prompted.
Connected to domain demo
Escape character is ^Q
Kernel 3.14.23-WR7.0.0.2_standard on an x86_64

host login: Password:

4 Install the iPerf server within the LXC on Router A.
[root@host ~]#apt-get install iperf

5 Perform Steps 1 to 4 to install the iPerf client on Router B.

6 Verify the iPerf server installation on Router A.
[root@host ~]#iperf -v

iperf version 2.0.5 (08 Jul 2010) pthreads

Similarly, verify the iPerf client installation on Router B.

7 Bind the Loopback0 interface on Router A to the iPerf server, and launch the iPerf server instance.

In this example, 1.1.1.1 is the assigned Loopback0 interface address of Router A, and 57730 is the port
number used for communication.
[root@host ~]#iperf -s -B 1.1.1.1 -p 57730
Server listening on TCP port 57730
Binding to local address 1.1.1.1
TCP window size: 85.3 KByte (default)

8 Launch the iPerf client instance on Router B, by specifying the same port number used for the iPerf server,
and the management IP address of Router A.

In this example, 192.168.122.213 is the management IP address of Router A, and 57730 is the port number
used to access the iPerf server.
[root@host ~]#iperf -c 192.168.122.213 -p 57730
--
Client connecting to 192.168.122.213, TCP port 57730
TCP window size: 85.0 KByte (default)
--
[3] local 192.168.122.1 port 46974 connected with 192.168.122.213 port 57730
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 146 MBytes 122 Mbits/sec

To use UDP, instead of TCP, to communicate with the iPerf server, use the following command.
[root@host ~]#iperf -c 192.168.122.213 -p 57730 -u
--
Client connecting to 192.168.122.213, UDP port 57730
Sending 1470 byte datagrams
UDP buffer size: 208 KByte (default)
--
[3] local 192.168.122.1 port 41466 connected with 192.168.122.213 port 57730
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec
[3] Sent 893 datagrams
[3] Server Report:
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.233 ms 0/ 893 (0%)
[root@hostB ~]#

9 Ping the iPerf server from the iPerf client on Router B.
[root@host ~]#/bin/ping 192.164.168.10
PING 192.164.168.10 (192.164.168.10) 56(84) bytes of data.
64 bytes from 192.164.168.10: icmp_seq=1 ttl=255 time=13.0 ms

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
43

Host a Simple Application on IOS XR
Run iPerf as a Container Application

64 bytes from 192.164.168.10: icmp_seq=2 ttl=255 time=2.14 ms
64 bytes from 192.164.168.10: icmp_seq=3 ttl=255 time=2.21 ms

The iPerf client hosted on Router B can access the iPerf server hosted on Router A.

Container application hosting for iPerf is successful. For information on a use case of container application
hosting, see Run a Telemetry Receiver Within a Container on Cisco IOS XR, on page 75.

Deploy an Application Development Topology on Cisco IOS XR by Using a
Vagrant Box

This section describes how you can create an application development topology on Cisco IOS XR for creating
and hosting your applications, by using a vagrant box.

For the sake of illustration, we will use a simple two-node topology, where an instance of Cisco IOS XR
behaves as one node (rtr), and an instance of Ubuntu (hypervisor) behaves as the other (devbox). We will
use the devbox to develop the app topology and deploy it on the rtr.

Figure 10: Application Development Topology

Before You Begin

Before you can start using vagrant, ensure that you have fulfilled the following requirements on your host
device.

• Latest version of Vagrant for your operating system.

• A virtual box for your operating system.

• Minimum of 4-5 GB of RAM with two cores.

• (Optional) If you are using the Windows Operating System, you should download the Git bash utility
for running the commands described in this section.

Procedure

To create and host an application development topology on XR, follow these steps.

1 Generate an API key and a CCO ID by using the steps described in
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant.

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
44

Host a Simple Application on IOS XR
Deploy an Application Development Topology on Cisco IOS XR by Using a Vagrant Box

https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://git-scm.com/download/win
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant

2 Download the latest stable version of the IOS XR vagrant box.

$ curl <cco-id>:<API-KEY>

$ BOXURL --output ~/iosxrv-fullk9-x64.box

$ vagrant box add --name IOS-XRv ~/iosxrv-fullk9-x64.box

3 Verify if the vagrant box has been successfully installed.

annseque@ANNSEQUE-WS02 MINGW64 ~ vagrant box list
IOS-XRv (virtualbox, 0)

4 Create a working directory.

annseque@ANNSEQUE-WS02 MINGW64 ~ mkdir ~/iosxrv
annseque@ANNSEQUE-WS02 MINGW64 ~ cd ~/iosxrv

5 Initialize the vagrant file with the new vagrant box.
ANNSEQUE-WS02 MINGW64:iosxrv annseque$ vagrant init IOS-XRv
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

6 Clone the vagrant-xrdocs repository.

annseque@ANNSEQUE-WS02 MINGW64 ~
$ git clone https://github.com/ios-xr/vagrant-xrdocs.git

7 Navigate to the vagrant-xrdocs repository and locate the lxc-app-topo-bootstrap directory.

annseque@ANNSEQUE-WS02 MINGW64 ~
$ cd vagrant-xrdocs/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ ls
ansible-tutorials/ native-app-topo-bootstrap/ simple-mixed-topo/
lxc-app-topo-bootstrap/ README.md single_node_bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ ls lxc-app-topo-bootstrap/
configs/ scripts/ Vagrantfile

8 (Optional) View the contents of the vagrant file in the lxc-app-topo-bootstrap directory.

The vagrant file (Vagrantfile) contains the two node topology for application development. You can
modify this by using a vi editor, if required.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ cd lxc-app-topo-bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ cat Vagrantfile
-*- mode: ruby -*-
vi: set ft=ruby :

All Vagrant configuration is done below. The "2" in Vagrant.configure
configures the configuration version (we support older styles for
backwards compatibility). Please don't change it unless you know what
you're doing.

Vagrant.configure(2) do |config|

config.vm.define "rtr" do |node|
node.vm.box = "IOS-XRv"

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
45

Host a Simple Application on IOS XR
Deploy an Application Development Topology on Cisco IOS XR by Using a Vagrant Box

gig0/0/0 connected to "link1"
auto_config is not supported for XR, set to false

node.vm.network :private_network, virtualbox__intnet: "link1", auto_config
:

false

#Source a config file and apply it to XR

node.vm.provision "file", source: "configs/rtr_config", destination: "/hom

e/vagrant/rtr_config"

node.vm.provision "shell" do |s|
s.path = "scripts/apply_config.sh"
s.args = ["/home/vagrant/rtr_config"]

end

end

config.vm.define "devbox" do |node|
node.vm.box = "ubuntu/trusty64"

eth1 connected to link1
auto_config is supported for an ubuntu instance

node.vm.network :private_network, virtualbox__intnet: "link1", ip: "11.1.1
.20"

end

end

9 Ensure you are in the lxc-app-topo-bootstrap directory, and launch the vagrant instance.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant up

Bringing machine 'rtr' up with 'virtualbox' provider...
Bringing machine 'devbox' up with 'virtualbox' provider...
==> rtr: Clearing any previously set forwarded ports...
==> rtr: Clearing any previously set network interfaces...
==> rtr: Preparing network interfaces based on configuration...

rtr: Adapter 1: nat
rtr: Adapter 2: intnet

==> rtr: Forwarding ports...
rtr: 57722 (guest) => 2222 (host) (adapter 1)
rtr: 22 (guest) => 2223 (host) (adapter 1)

==> rtr: Running 'pre-boot' VM customizations...
==> rtr: Booting VM...
==> rtr: Waiting for machine to boot. This may take a few minutes...

rtr: SSH address: 127.0.0.1:2222
rtr: SSH username: vagrant
rtr: SSH auth method: private key
rtr: Warning: Remote connection disconnect. Retrying...
...

==> rtr: Machine booted and ready!
==> rtr: Checking for guest additions in VM...

rtr: No guest additions were detected on the base box for this VM! Guest
rtr: additions are required for forwarded ports, shared folders, host only
rtr: networking, and more. If SSH fails on this machine, please install
rtr: the guest additions and repackage the box to continue.
rtr:
rtr: This is not an error message; everything may continue to work properly,
rtr: in which case you may ignore this message.

==> rtr: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> rtr: flag to force provisioning. Provisioners marked to run always will still run.
==> devbox: Checking if box 'ubuntu/trusty64' is up to date...

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
46

Host a Simple Application on IOS XR
Deploy an Application Development Topology on Cisco IOS XR by Using a Vagrant Box

==> devbox: A newer version of the box 'ubuntu/trusty64' is available! You currently
==> devbox: have version '20160801.0.0'. The latest is version '20160826.0.1'. Run
==> devbox: `vagrant box update` to update.
==> devbox: Clearing any previously set forwarded ports...
==> devbox: Fixed port collision for 22 => 2222. Now on port 2200.
==> devbox: Clearing any previously set network interfaces...
==> devbox: Preparing network interfaces based on configuration...

devbox: Adapter 1: nat
devbox: Adapter 2: intnet

==> devbox: Forwarding ports...
devbox: 22 (guest) => 2200 (host) (adapter 1)

==> devbox: Booting VM...
==> devbox: Waiting for machine to boot. This may take a few minutes...

devbox: SSH address: 127.0.0.1:2200
devbox: SSH username: vagrant
devbox: SSH auth method: private key
devbox: Warning: Remote connection disconnect. Retrying...
devbox: Warning: Remote connection disconnect. Retrying...

==> devbox: Machine booted and ready!
==> devbox: Checking for guest additions in VM...

devbox: The guest additions on this VM do not match the installed version of
devbox: VirtualBox! In most cases this is fine, but in rare cases it can
devbox: prevent things such as shared folders from working properly. If you see
devbox: shared folder errors, please make sure the guest additions within the
devbox: virtual machine match the version of VirtualBox you have installed on
devbox: your host and reload your VM.
devbox:
devbox: Guest Additions Version: 4.3.36
devbox: VirtualBox Version: 5.0

==> devbox: Configuring and enabling network interfaces...
==> devbox: Mounting shared folders...

devbox: /vagrant => C:/Users/annseque/vagrant-xrdocs/lxc-app-topo-bootstrap
==> devbox: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> devbox: flag to force provisioning. Provisioners marked to run always will still run.

==> rtr: Machine 'rtr' has a post `vagrant up` message. This is a message
==> rtr: from the creator of the Vagrantfile, and not from Vagrant itself:
==> rtr:
==> rtr:
==> rtr: Welcome to the IOS XRv (64-bit) Virtualbox.
==> rtr: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> rtr: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> rtr: to determine the port that maps to guestport 22,
==> rtr: then: 'ssh vagrant@localhost -p <forwarded port>'
==> rtr:
==> rtr: IMPORTANT: READ CAREFULLY
==> rtr: The Software is subject to and governed by the terms and conditions
==> rtr: of the End User License Agreement and the Supplemental End User
==> rtr: License Agreement accompanying the product, made available at the
==> rtr: time of your order, or posted on the Cisco website at
==> rtr: www.cisco.com/go/terms (collectively, the 'Agreement').
==> rtr: As set forth more fully in the Agreement, use of the Software is
==> rtr: strictly limited to internal use in a non-production environment
==> rtr: solely for demonstration and evaluation purposes. Downloading,
==> rtr: installing, or using the Software constitutes acceptance of the
==> rtr: Agreement, and you are binding yourself and the business entity
==> rtr: that you represent to the Agreement. If you do not agree to all
==> rtr: of the terms of the Agreement, then Cisco is unwilling to license
==> rtr: the Software to you and (a) you may not download, install or use the
==> rtr: Software, and (b) you may return the Software as more fully set forth
==> rtr: in the Agreement.
You have successfully deployed the two nodes, rtr and devbox on your host machine.

10 To access the XR router console, check the port number that maps to the guest port number 22.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant port rtr
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
47

Host a Simple Application on IOS XR
Deploy an Application Development Topology on Cisco IOS XR by Using a Vagrant Box

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)
You need to use port number 2223 to SSH to the rtr node (XR).

11 Access the XR router console (rtr console) through SSH.

The password for vagrant@localhost is vagrant.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios#
You are at the XR router console, or the console of the rtr node in this example.

12 Check the GigE interface IP address of the rtr.

You will need the GigE interface IP address to access the rtr console from the devbox console at a later
stage.

RP/0/RP0/CPU0:ios# show ipv4 interface gigabitEthernet 0/0/0/0 brief
Wed Aug 31 04:00:48.006 UTC

Interface IP-Address Status Protocol
GigabitEthernet0/0/0/0 11.1.1.10 Up Up

To access the XR Linux shell from the rtr console, use the run command.

RP/0/RP0/CPU0:ios# run
Wed Aug 31 04:01:45.119 UTC

[xr-vm_node0_RP0_CPU0:~]$

Note

13 Exit the rtr console, and access the devbox console through SSH.

RP/0/RP0/CPU0:ios# exit
Connection to localhost closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh devbox

Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information disabled due to load higher than 1.0

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

25 packages can be updated.
12 updates are security updates.

vagrant@vagrant-ubuntu-trusty-64:~$

14 Verify if you can access the rtr console from the devbox console, by pinging the GigE interface of the
rtr.

Use the GigE interface IP address you retrieved in Step 12.

vagrant@vagrant-ubuntu-trusty-64:~$ ping 11.1.1.10 -c 2
PING 11.1.1.10 (11.1.1.10) 56(84) bytes of data.
64 bytes from 11.1.1.10: icmp_seq=1 ttl=255 time=40.2 ms
64 bytes from 11.1.1.10: icmp_seq=2 ttl=255 time=6.67 ms

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
48

Host a Simple Application on IOS XR
Deploy an Application Development Topology on Cisco IOS XR by Using a Vagrant Box

--- 11.1.1.10 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 6.670/23.457/40.245/16.788 ms
vagrant@vagrant-ubuntu-trusty-64:~$

To access the XR Linux console, exit the devbox console and run the vagrant ssh rtr command from the
lxc-app-topo-bootstrap directory.

vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh rtr
Last login: Thu Jul 21 05:51:28 2016 from 10.0.2.2
xr-vm_node0_RP0_CPU0:~$

Note

You have successfully deployed an application development topology on your host machine.

Host an Application within an LXC Container by Using a Vagrant Box
This section describes how you can host an application within your own container (LXC) by using a vagrant
box.

Before You Begin

Before you can start using vagrant, ensure that you have fulfilled the following requirements on your host
device.

• Latest version of Vagrant for your operating system.

• A virtual box for your operating system.

• Minimum of 4-5 GB of RAM with two cores.

• (Optional) If you are using the Windows Operating System, you should download the Git bash utility
for running the commands described in this section.

• Host the two-node (rtr and devbox) application development topology as described in Deploy an
Application Development Topology on Cisco IOS XR by Using a Vagrant Box, on page 44.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
49

Host a Simple Application on IOS XR
Host an Application within an LXC Container by Using a Vagrant Box

https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://git-scm.com/download/win

Workflow for Deploying Your LXC Container

The workflow for launching your container on IOS XR is described in this section and illustrated in the
following topology.

Figure 11: LXC Container Deployment Workflow

1 Build the container rootfs tar ball on devbox.

2 Transfer the rootfs tar ball to IOS XR (rtr).

3 Launch the rootfs by running the virsh command.

Procedure

To host your application within your own container, use the following steps.

1 Navigate to the lxc-app-topo-bootstrap directory and ensure the vagrant instance is running. If not,
launch the vagrant instance.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant status
Current machine states:

rtr aborted (virtualbox)
devbox aborted (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant up
Bringing machine 'rtr' up with 'virtualbox' provider...
Bringing machine 'devbox' up with 'virtualbox' provider...
==> rtr: Clearing any previously set forwarded ports...
==> rtr: Clearing any previously set network interfaces...
==> rtr: Preparing network interfaces based on configuration...

rtr: Adapter 1: nat
rtr: Adapter 2: intnet

==> rtr: Forwarding ports...
rtr: 57722 (guest) => 2222 (host) (adapter 1)
rtr: 22 (guest) => 2223 (host) (adapter 1)

==> rtr: Running 'pre-boot' VM customizations...
==> rtr: Booting VM...

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
50

Host a Simple Application on IOS XR
Host an Application within an LXC Container by Using a Vagrant Box

==> rtr: Waiting for machine to boot. This may take a few minutes...
rtr: SSH address: 127.0.0.1:2222
rtr: SSH username: vagrant
rtr: SSH auth method: private key
rtr: Warning: Remote connection disconnect. Retrying...
...

==> rtr: Machine booted and ready!
...
==> rtr: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> rtr: flag to force provisioning. Provisioners marked to run always will still run.
==> devbox: Checking if box 'ubuntu/trusty64' is up to date...
==> devbox: A newer version of the box 'ubuntu/trusty64' is available! You currently
==> devbox: have version '20160801.0.0'. The latest is version '20160826.0.1'. Run
==> devbox: `vagrant box update` to update.
==> devbox: Clearing any previously set forwarded ports...
==> devbox: Fixed port collision for 22 => 2222. Now on port 2200.
==> devbox: Clearing any previously set network interfaces...
==> devbox: Preparing network interfaces based on configuration...

devbox: Adapter 1: nat
devbox: Adapter 2: intnet

==> devbox: Forwarding ports...
devbox: 22 (guest) => 2200 (host) (adapter 1)

==> devbox: Booting VM...
==> devbox: Waiting for machine to boot. This may take a few minutes...

devbox: SSH address: 127.0.0.1:2200
devbox: SSH username: vagrant
devbox: SSH auth method: private key
devbox: Warning: Remote connection disconnect. Retrying...
devbox: Warning: Remote connection disconnect. Retrying...

==> devbox: Machine booted and ready!
...

devbox: Guest Additions Version: 4.3.36
devbox: VirtualBox Version: 5.0

==> devbox: Configuring and enabling network interfaces...
==> devbox: Mounting shared folders...

devbox: /vagrant => C:/Users/annseque/vagrant-xrdocs/lxc-app-topo-bootstrap
==> devbox: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> devbox: flag to force provisioning. Provisioners marked to run always will still run.

==> rtr: Machine 'rtr' has a post `vagrant up` message. This is a message
==> rtr: from the creator of the Vagrantfile, and not from Vagrant itself:
==> rtr:
==> rtr:
==> rtr: Welcome to the IOS XRv (64-bit) Virtualbox.
==> rtr: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> rtr: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> rtr: to determine the port that maps to guestport 22,
==> rtr: then: 'ssh vagrant@localhost -p <forwarded port>'
...
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant status
Current machine states:

rtr running (virtualbox)
devbox running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.

2 Access the devbox through SSH and install LXC tools.

To launch an LXC container, you need the following, which can be obtained by installing LXC tools:

• A container rootfs tar ball

• An XML file to launch the container using virsh/libvirt

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
51

Host a Simple Application on IOS XR
Host an Application within an LXC Container by Using a Vagrant Box

* Documentation: https://help.ubuntu.com/

System information as of Thu Sep 1 03:55:29 UTC 2016

System load: 0.99 Processes: 94
Usage of /: 3.9% of 39.34GB Users logged in: 0
Memory usage: 14% IP address for eth0: 10.0.2.15
Swap usage: 0% IP address for eth1: 11.1.1.20

Graph this data and manage this system at:
https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

25 packages can be updated.
12 updates are security updates.

New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

--
Last login: Wed Aug 31 04:02:20 2016 from 10.0.2.2
vagrant@vagrant-ubuntu-trusty-64:~$ sudo apt-get update
Ign http://archive.ubuntu.com trusty InRelease
Get:1 http://security.ubuntu.com trusty-security InRelease [65.9 kB]
...
Get:33 http://archive.ubuntu.com trusty-backports/universe Translation-en [36.8 kB]
Hit http://archive.ubuntu.com trusty Release
...
Hit http://archive.ubuntu.com trusty/universe Translation-en
Ign http://archive.ubuntu.com trusty/main Translation-en_US
Ign http://archive.ubuntu.com trusty/multiverse Translation-en_US
Ign http://archive.ubuntu.com trusty/restricted Translation-en_US
Ign http://archive.ubuntu.com trusty/universe Translation-en_US
Fetched 4,022 kB in 16s (246 kB/s)
Reading package lists... Done

--
vagrant@vagrant-ubuntu-trusty-64:~$ sudo apt-get -y install lxc
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
bridge-utils cgmanager cloud-image-utils debootstrap dnsmasq-base euca2ools
genisoimage libaio1 libboost-system1.54.0 libboost-thread1.54.0 liblxc1
libmnl0 libnetfilter-conntrack3 libnspr4 libnss3 libnss3-nssdb librados2
librbd1 libseccomp2 libxslt1.1 lxc-templates python-distro-info python-lxml
python-requestbuilder python-setuptools python3-lxc qemu-utils sharutils
uidmap

Suggested packages:
cgmanager-utils wodim cdrkit-doc btrfs-tools lvm2 lxctl qemu-user-static
python-lxml-dbg bsd-mailx mailx

The following NEW packages will be installed:
bridge-utils cgmanager cloud-image-utils debootstrap dnsmasq-base euca2ools
genisoimage libaio1 libboost-system1.54.0 libboost-thread1.54.0 liblxc1
libmnl0 libnetfilter-conntrack3 libnspr4 libnss3 libnss3-nssdb librados2
librbd1 libseccomp2 libxslt1.1 lxc lxc-templates python-distro-info
python-lxml python-requestbuilder python-setuptools python3-lxc qemu-utils
sharutils uidmap

0 upgraded, 30 newly installed, 0 to remove and 52 not upgraded.
Need to get 6,469 kB of archives.
After this operation, 25.5 MB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu/ trusty/main libaio1 amd64 0.3.109-4 [6,364 B]
...
Get:30 http://archive.ubuntu.com/ubuntu/ trusty-updates/main debootstrap all
1.0.59ubuntu0.5 [29.6 kB]
Fetched 6,469 kB in 22s (289 kB/s)
Selecting previously unselected package libaio1:amd64.
(Reading database ... 62989 files and directories currently installed.)
Preparing to unpack .../libaio1_0.3.109-4_amd64.deb ...
...

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
52

Host a Simple Application on IOS XR
Host an Application within an LXC Container by Using a Vagrant Box

Setting up lxc (1.0.8-0ubuntu0.3) ...
lxc start/running
Setting up lxc dnsmasq configuration.
Processing triggers for ureadahead (0.100.0-16) ...
Setting up lxc-templates (1.0.8-0ubuntu0.3) ...
Setting up libnss3-nssdb (2:3.23-0ubuntu0.14.04.1) ...
Setting up libnss3:amd64 (2:3.23-0ubuntu0.14.04.1) ...
Setting up librados2 (0.80.11-0ubuntu1.14.04.1) ...
Setting up librbd1 (0.80.11-0ubuntu1.14.04.1) ...
Setting up qemu-utils (2.0.0+dfsg-2ubuntu1.27) ...
Setting up cloud-image-utils (0.27-0ubuntu9.2) ...
Processing triggers for libc-bin (2.19-0ubuntu6.9) ...

3 Verify that the LXC was properly installed.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-start --version
1.0.8

4 Create the LXC container with a standard Ubuntu base template and launch it in devbox.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-create -t ubuntu --name xr-lxc-app
Checking cache download in /var/cache/lxc/trusty/rootfs-amd64 ...
Installing packages in template: ssh,vim,language-pack-en
Downloading ubuntu trusty minimal ...
I: Retrieving Release
I: Retrieving Release.gpg
...
Generation complete.
Setting up perl-modules (5.18.2-2ubuntu1.1) ...
Setting up perl (5.18.2-2ubuntu1.1) ...
Processing triggers for libc-bin (2.19-0ubuntu6.9) ...
Processing triggers for initramfs-tools (0.103ubuntu4.4) ...
Download complete
Copy /var/cache/lxc/trusty/rootfs-amd64 to /var/lib/lxc/xr-lxc-app/rootfs ...
Copying rootfs to /var/lib/lxc/xr-lxc-app/rootfs ...
Generating locales...
en_US.UTF-8... up-to-date

Generation complete.
Creating SSH2 RSA key; this may take some time ...
Creating SSH2 DSA key; this may take some time ...
Creating SSH2 ECDSA key; this may take some time ...
Creating SSH2 ED25519 key; this may take some time ...
update-rc.d: warning: default stop runlevel arguments (0 1 6) do not match ssh Default-Stop
values (none)
invoke-rc.d: policy-rc.d denied execution of start.

Current default time zone: 'Etc/UTC'
Local time is now: Thu Sep 1 04:46:22 UTC 2016.
Universal Time is now: Thu Sep 1 04:46:22 UTC 2016.

##
The default user is 'ubuntu' with password 'ubuntu'!
Use the 'sudo' command to run tasks as root in the container.
##

5 Verify if the LXC container has been successfully created.

vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-ls --fancy
NAME STATE IPV4 IPV6 AUTOSTART
--
xr-lxc-app STOPPED - - NO

6 Start the LXC container.

You will be prompted to log into the LXC container. The login credentials are ubuntu/ubuntu.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-start --name xr-lxc-app
<4>init: plymouth-upstart-bridge main process (5) terminated with status 1
...

xr-lxc-app login: ubuntu

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
53

Host a Simple Application on IOS XR
Host an Application within an LXC Container by Using a Vagrant Box

Password:
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

ubuntu@xr-lxc-app:~$

7 Install your application within the LXC container.

For the sake of illustration, in this example we will install the iPerf application.

ubuntu@xr-lxc-app:~$ sudo apt-get -y install iperf
[sudo] password for ubuntu:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
iperf

0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 56.3 kB of archives.
After this operation, 174 kB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu/ trusty/universe iperf amd64 2.0.5-3 [56.3 kB]
Fetched 56.3 kB in 16s (3,460 B/s)
Selecting previously unselected package iperf.
(Reading database ... 14648 files and directories currently installed.)
Preparing to unpack .../iperf_2.0.5-3_amd64.deb ...
Unpacking iperf (2.0.5-3) ...
Setting up iperf (2.0.5-3) ...
ubuntu@xr-lxc-app:~$

8 Change the SSH port inside the container and verify that it has been correctly assigned.

When you deploy your container to IOS XR, it shares the network namespace with XR. Since IOS XR
already uses Ports 22 and 57722 for other purposes, you must pick some other port number for your
container.

ubuntu@xr-lxc-app:~$ sudo sed -i s/Port\ 22/Port\ 58822/ /etc/ssh/sshd_config
[sudo] password for ubuntu:

ubuntu@xr-lxc-app:~$ cat /etc/ssh/sshd_config | grep Port
Port 58822
ubuntu@xr-lxc-app:~$

9 Shut the container down.
ubuntu@xr-lxc-app:~$ sudo shutdown -h now
ubuntu@xr-lxc-app:~$
Broadcast message from ubuntu@xr-lxc-app

(/dev/lxc/console) at 5:17 ...

The system is going down for halt NOW!
<4>init: tty4 main process (369) killed by TERM signal
...
wait-for-state stop/waiting
* Asking all remaining processes to terminate...
...done.

* All processes ended within 1 seconds...
...done.

* Deactivating swap...
...done.

mount: cannot mount block device /dev/sda1 read-only
* Will now halt

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
54

Host a Simple Application on IOS XR
Host an Application within an LXC Container by Using a Vagrant Box

10 Assume the root user role.

vagrant@vagrant-ubuntu-trusty-64:~$ sudo -s
root@vagrant-ubuntu-trusty-64:~# whoami
root

11 Navigate to the /var/lib/lxc/xr-lxc-app/ directory and package the rootfs into a tar ball.

root@vagrant-ubuntu-trusty-64:~# cd /var/lib/lxc/xr-lxc-app/
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app# ls
config fstab rootfs
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app# cd rootfs
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# tar -czvf
xr-lxc-app-rootfs.tar.gz *
tar: dev/log: socket ignored
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs#

12 Transfer the rootfs tar ball to the home directory (~/ or /home/vagrant) and verify if the transfer is
successful.

root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# mv *.tar.gz /home/vagrant
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# ls -l /home/vagrant
total 120516
-rw-r--r-- 1 root root 123404860 Sep 1 05:22 xr-lxc-app-rootfs.tar.gz
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs#

13 Create an LXC spec XML file for specifying attributes required to launch the LXC container with the
application.

You must navigate to the /home/vagrant directory on devbox and use a vi editor to create the XML file.
Save the file as xr-lxc-app.xml.

A sample LXC spec file to launch the application within the container is as shown.

root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# exit
exit
vagrant@vagrant-ubuntu-trusty-64:~$ pwd
/home/vagrant
vagrant@vagrant-ubuntu-trusty-64:~$ vi xr-lxc-app.xml

<domain type='lxc' xmlns:lxc='http://libvirt.org/schemas/domain/lxc/1.0' >
<name>xr-lxc-app</name>
<memory>327680</memory>
<os>
<type>exe</type>
<init>/sbin/init</init>
</os>
<lxc:namespace>
<sharenet type='netns' value='global-vrf'/>
</lxc:namespace>
<vcpu>1</vcpu>
<clock offset='utc'/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>
<devices>
<emulator>/usr/lib64/libvirt/libvirt_lxc</emulator>
<filesystem type='mount'>
<source dir='/misc/app_host/xr-lxc-app/'/>
<target dir='/'/>
</filesystem>
<console type='pty'/>
</devices>
</domain>

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
55

Host a Simple Application on IOS XR
Host an Application within an LXC Container by Using a Vagrant Box

In IOS-XR the global-vrf network namespace contains all the XR GigE or management interfaces. The
sharenet configuration in the XML file ensures that the container on being launched has native access to
all XR interfaces.

/misc/app_host/ on IOS XR is a special mount volume that is designed to provide nearly 3.9GB of disk
space. This mount volume can be used to host custom container rootfs and other large files without
occupying disk space on XR. In this example, we expect to untar the rootfs to the
/misc/app_host/xr-lxc-app/ directory.

14 Verify if the rootfs tar ball and the LXC XML spec file are present in the home directory.

root@vagrant-ubuntu-trusty-64:~# pwd
/home/vagrant
root@vagrant-ubuntu-trusty-64:~# ls -l
total 119988
-rw-r--r-- 1 root root 122863332 Jun 16 19:41 xr-lxc-app-rootfs.tar.gz
-rw-r--r-- 1 root root 590 Jun 16 23:29 xr-lxc-app.xml
root@vagrant-ubuntu-trusty-64:~#

15 Transfer the rootfs tar ball and XML spec file to XR.

There are two ways of transferring the files: Through the GigE interface (a little slower) or the management
interface. You can use the method that works best for you.

• Transfer Through the Management Interface of XR:

1 Check the port number that maps to the management port on XR.

Vagrant forwards the port number 57722 to a host port for XR over the management port. In a
virtual box, the IP address of the host (your laptop) is always 10.0.2.2 for the port that was
translated (NAT).
vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant port rtr
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)
The output shows that port number 2222 maps to port number 57722.

2 Access devbox and use the port number 2222 to transfer the rootfs tar ball and XML spec file
to XR.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Fri Sep 2 05:38:20 UTC 2016

System load: 0.49 Users logged in: 0
Usage of /: 6.4% of 39.34GB IP address for eth0: 10.0.2.15
Memory usage: 25% IP address for eth1: 11.1.1.20
Swap usage: 0% IP address for lxcbr0: 10.0.3.1
Processes: 80

Graph this data and manage this system at:
https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
56

Host a Simple Application on IOS XR
Host an Application within an LXC Container by Using a Vagrant Box

http://www.ubuntu.com/business/services/cloud

New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Last login: Fri Sep 2 05:38:20 2016 from 10.0.2.2
vagrant@vagrant-ubuntu-trusty-64:~$ scp -P 2222 /home/vagrant/*.*
vagrant@10.0.2.2:/misc/app_host/scratch
The authenticity of host '[10.0.2.2]:2222 ([10.0.2.2]:2222)' can't be established.
ECDSA key fingerprint is db:25:e2:27:49:2a:7b:27:e1:76:a6:7a:e4:70:f5:f7.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[10.0.2.2]:2222' (ECDSA) to the list of known hosts.
vagrant@10.0.2.2's password:
xr-lxc-app-rootfs.tar.gz

100%
234MB 18.0MB/s 00:13

xr-lxc-app.xml
100%

591 0.6KB/s 00:00
vagrant@vagrant-ubuntu-trusty-64:~$

• Transfer Through the GigE Interface of XR:

1 Determine the GigE interface IP address on XR.
vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh rtr
Last login: Wed Aug 31 07:09:51 2016 from 10.0.2.2
xr-vm_node0_RP0_CPU0:~$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 08:00:27:5a:29:77

inet addr:11.1.1.10 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe5a:2977/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:1 errors:0 dropped:3 overruns:0 carrier:1
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:42 (42.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 08:00:27:13:ad:eb
inet addr:10.0.2.15 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe13:adeb/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:94 errors:0 dropped:0 overruns:0 frame:0
TX packets:66 errors:0 dropped:0 overruns:0 carrier:1
collisions:0 txqueuelen:1000
RX bytes:13325 (13.0 KiB) TX bytes:11041 (10.7 KiB)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1496 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:4 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:302 (302.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
57

Host a Simple Application on IOS XR
Host an Application within an LXC Container by Using a Vagrant Box

RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

In this example, the IP address of the GigE interface is 11.1.1.10.

2 Copy the rootfs tar ball to XR by using the GigE interface address.
vagrant@vagrant-ubuntu-trusty-64:~$ scp -P 57722
/home/vagrant/xr-lxc-app-rootfs.tar.gz
vagrant@11.1.1.10:/misc/app_host/scratch/
The authenticity of host '[11.1.1.10]:57722 ([11.1.1.10]:57722)' can't be
established.
ECDSA key fingerprint is db:25:e2:27:49:2a:7b:27:e1:76:a6:7a:e4:70:f5:f7.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[11.1.1.10]:57722' (ECDSA) to the list of known hosts.
vagrant@11.1.1.10's password:
xr-lxc-app-rootfs.tar.gz

3 Copy the XML spec file to XR by using the GigE interface address.
vagrant@vagrant-ubuntu-trusty-64:~$ scp -P 57722 /home/vagrant/xr-lxc-app.xml
vagrant@11.1.1.10:/misc/app_host/scratch/
vagrant@11.1.1.10's password:
xr-lxc-app.xml

16 Create a directory (/misc/app_host/xr-lxc-app/)on XR (rtr) to untar the rootfs tar ball.
vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh rtr
Last login: Fri Sep 2 05:49:01 2016 from 10.0.2.2

xr-vm_node0_RP0_CPU0:~$ sudo mkdir /misc/app_host/xr-lxc-app/

17 Navigate to the /misc/app_host/xr-lxc-app/ directory and untar the tar ball.
xr-vm_node0_RP0_CPU0:~$ cd /misc/app_host/xr-lxc-app/
xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ sudo tar -zxf
../scratch/xr-lxc-app-rootfs.tar.gz
tar: dev/audio3: Cannot mknod: Operation not permitted
...

18 Use the XML spec file to launch the container and verify its existence on XR.
xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ virsh create
/misc/app_host/scratch/xr-lxc-app.xml
Domain xr-lxc-app created from /misc/app_host/scratch/xr-lxc-app.xml

xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ virsh list
Id Name State
--
2095 xr-lxc-app running
4932 sysadmin running
12086 default-sdr--1 running

19 Log into the container. The default login credentials are ubuntu/ubuntu.

There are two ways of logging into the container. You can use the method that works best for you:

• Logging into the container by using virsh command:
xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ virsh console xr-lxc-app
Connected to domain xr-lxc-app
Escape character is ^]
init: Unable to create device: /dev/kmsg
* Stopping Send an event to indicate plymouth is up [OK]
* Starting Mount filesystems on boot [OK]
* Starting Signal sysvinit that the rootfs is mounted [OK]

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
58

Host a Simple Application on IOS XR
Host an Application within an LXC Container by Using a Vagrant Box

* Starting Fix-up sensitive /proc filesystem entries [OK]

xr-lxc-app login: * Starting OpenSSH server [OK]

Ubuntu 14.04.5 LTS xr-lxc-app tty1
xr-lxc-app login: ubuntu
Password:
Last login: Fri Sep 2 05:40:11 UTC 2016 on lxc/console
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.14.23-WR7.0.0.2_standard x86_64)

* Documentation: https://help.ubuntu.com/
ubuntu@xr-lxc-app:~$

• Logging into the container by using SSH:
Use the SSH port number you configured, 58822, and any of XR interface IP addresses to log in.
xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ ssh -p 58822 ubuntu@11.1.1.10
Warning: Permanently added '[11.1.1.10]:58822' (ECDSA) to the list of known hosts.
ubuntu@11.1.1.10's password:
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.14.23-WR7.0.0.2_standard x86_64)

* Documentation: https://help.ubuntu.com/
Last login: Fri Sep 2 07:42:37 2016
ubuntu@xr-lxc-app:~$

Note • To exit the container, use the press CTRL and] keys simultaneously.

• To access the container directly from your host machine, ensure you forward the intended port (in
this example, 58822) to your laptop (any port of your choice), in the Vagrant file:
node.vm.network "forwarded_port", guest: 58822, host: 58822
You can then SSH to the LXC container by using the following command:
ssh -p 58822 vagrant@localhost

20 Verify if the interfaces on XR are available inside the LXC container.

The LXC container operates as your own Linux server on XR. Because the network namespace is shared
between the LXC and XR, all of XR interfaces (GigE, management, and so on) are available to bind to
and run your applications.
ubuntu@xr-lxc-app:~$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 08:00:27:5a:29:77

inet addr:11.1.1.10 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe5a:2977/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:186070 errors:0 dropped:0 overruns:0 frame:0
TX packets:155519 errors:0 dropped:3 overruns:0 carrier:1
collisions:0 txqueuelen:1000
RX bytes:301968784 (301.9 MB) TX bytes:10762900 (10.7 MB)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 08:00:27:13:ad:eb
inet addr:10.0.2.15 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe13:adeb/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:170562 errors:0 dropped:0 overruns:0 frame:0
TX packets:70309 errors:0 dropped:0 overruns:0 carrier:1
collisions:0 txqueuelen:1000
RX bytes:254586763 (254.5 MB) TX bytes:3886846 (3.8 MB)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
59

Host a Simple Application on IOS XR
Host an Application within an LXC Container by Using a Vagrant Box

RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1496 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:155549 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:10765764 (10.7 MB)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:64 errors:0 dropped:0 overruns:0 frame:0
TX packets:64 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:9400 (9.4 KB) TX bytes:9400 (9.4 KB)

21 Configure the container to communicate outside XR with other nodes in the network.

By default, your XR Vagrant box is set up to talk to the internet using a default route through your
management port. If you want the router to use the routing table on XR to talk to other nodes in the network,
then you must configure tpa-address on XR. This becomes the src-hint for all Linux application traffic.

In this example, we use Loopback 0 for tpa-address to ensure that the IP address for any originating traffic
for applications on the XR is a reachable IP address across your topology.
ubuntu@xr-lxc-app:~$ exit
logout
Connection to 11.1.1.10 closed.
xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant port rtr | grep 22

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios# configure
Fri Sep 2 08:03:05.094 UTC
RP/0/RP0/CPU0:ios(config)# interface loopback 0
RP/0/RP0/CPU0:ios(config-if)# ip address 1.1.1.1/32
RP/0/RP0/CPU0:ios(config-if)# exit
RP/0/RP0/CPU0:ios(config)# tpa address-family ipv4 update-source loopback 0
RP/0/RP0/CPU0:ios(config)# commit
Fri Sep 2 08:03:39.602 UTC
RP/0/RP0/CPU0:ios(config)# exit
RP/0/RP0/CPU0:ios# bash
Fri Sep 2 08:03:58.232 UTC

[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 1.1.1.1
10.0.2.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 10.0.2.15
You can see the configured Loopback 0 IP address (1.1.1.1).

22 Test your application within the launched container.

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
60

Host a Simple Application on IOS XR
Host an Application within an LXC Container by Using a Vagrant Box

We installed iPerf in our container. We will run the iPerf server within the container, and the iPerf client
on the devbox and see if they can communicate. Basically, the hosted application within a container on
rtr should be able to talk to a client application on devbox.

a Check if the iPerf server is running within the LXC container on XR.
[xr-vm_node0_RP0_CPU0:~]$ssh -p 58822 ubuntu@11.1.1.10
Warning: Permanently added '[11.1.1.10]:58822' (ECDSA) to the list of known hosts.
ubuntu@11.1.1.10's password:
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.14.23-WR7.0.0.2_standard x86_64)

* Documentation: https://help.ubuntu.com/
Last login: Fri Sep 2 07:47:28 2016 from 11.1.1.10

ubuntu@xr-lxc-app:~$ iperf -s -u
--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 64.0 MByte (default)
--

b Check if XR Loopback interface is accessible on devbox. (Open a new Git bash window for this step.)
annseque@ANNSEQUE-WS02 MINGW64 ~
$ cd vagrant-xrdocs

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ cd lxc-app-topo-bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Fri Sep 2 05:51:19 UTC 2016

System load: 0.08 Users logged in: 0
Usage of /: 6.4% of 39.34GB IP address for eth0: 10.0.2.15
Memory usage: 28% IP address for eth1: 11.1.1.20
Swap usage: 0% IP address for lxcbr0: 10.0.3.1
Processes: 77

Graph this data and manage this system at:
https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

53 packages can be updated.
26 updates are security updates.

New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Last login: Fri Sep 2 05:51:21 2016 from 10.0.2.2
vagrant@vagrant-ubuntu-trusty-64:~$ sudo ip route add 1.1.1.1/32 via 11.1.1.10
vagrant@vagrant-ubuntu-trusty-64:~$ ping 1.1.1.1
PING 1.1.1.1 (1.1.1.1) 56(84) bytes of data.
64 bytes from 1.1.1.1: icmp_seq=1 ttl=255 time=1.87 ms
64 bytes from 1.1.1.1: icmp_seq=2 ttl=255 time=10.5 ms
64 bytes from 1.1.1.1: icmp_seq=3 ttl=255 time=4.13 ms
^C
--- 1.1.1.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2007ms
rtt min/avg/max/mdev = 1.876/5.510/10.520/3.661 ms

c Install the iPerf client on devbox.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo apt-get install iperf
Reading package lists... Done

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
61

Host a Simple Application on IOS XR
Host an Application within an LXC Container by Using a Vagrant Box

Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
iperf

0 upgraded, 1 newly installed, 0 to remove and 52 not upgraded.
Need to get 56.3 kB of archives.
After this operation, 174 kB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu/ trusty/universe iperf amd64 2.0.5-3 [56.3 kB]
Fetched 56.3 kB in 10s (5,520 B/s)
Selecting previously unselected package iperf.
(Reading database ... 64313 files and directories currently installed.)
Preparing to unpack .../iperf_2.0.5-3_amd64.deb ...
Unpacking iperf (2.0.5-3) ...
Processing triggers for man-db (2.6.7.1-1ubuntu1) ...
Setting up iperf (2.0.5-3) ...

d Launch the iPerf client on devbox and verify if it is communicating with the iPerf server within the
LXC on XR.
vagrant@vagrant-ubuntu-trusty-64:~$ iperf -u -c 1.1.1.1
--
Client connecting to 1.1.1.1, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 208 KByte (default)
--
[3] local 11.1.1.20 port 37800 connected with 1.1.1.1 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec
[3] Sent 893 datagrams
[3] Server Report:
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 1.791 ms 0/ 893 (0%)

You have successfully hosted an application within an LXC container on XR by using a vagrant box.

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
62

Host a Simple Application on IOS XR
Host an Application within an LXC Container by Using a Vagrant Box

C H A P T E R 5
Build RPMs for Native Application Hosting

This section explains how you can build RPMs for native application hosting.

• Set Up the Build Environment, page 63

• Build Native RPMs, page 65

Set Up the Build Environment
This section describes the two methods of preparing and setting the build environment for native application
hosting.

Create Native Build Environment Using QEMU Hypervisor
This section describes a method of creating the native Wind River Linux 7.0 build environment, and running
the environment ISO by using a Quick Emulator (QEMU) hypervisor.

Prerequisites

• Ensure that you have access to the Cisco repository containing the native WRL7 ISO.

• Download the native ISO with the .iso extension.

Configuration Procedure

1 Launch the native WRL7 ISO and install it onto a disk image.
qemu-system-x86_64 -m 16G -cdrom <path-to-the-downloaded-iso-file> -net nic -net user
-hda ./wrl7.img
-cpu core2duo -show-cursor -usb -usbdevice wacom-tablet -vga vmware

2 Relaunch the native build environment with the installed image.
qemu-system-x86_64 -m 16G -net nic -net user -hda ./wrl7.img -cpu core2duo -show-cursor
-usb -usbdevice wacom-tablet -vga vmware
The native build environment is ready for hosting third-party applications. The user is connected to the
VGA console port of the native QEMU VM.

Alternatively, a user can connect to an SSH service running inside the VM.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
63

Create a Cross-Build Environment Using the SDK Shell Script
As an alternative to the native environment, you can create a cross-build environment by using a WRL7
cross-SDK shell script. You can install the SDK by running the shell script on a general-purpose Linux
environment, such as an Ubuntu 14.04 host machine.

Prerequisites

Ensure that the following requirements are met before you proceed with the installation.

• Access to the SDK in the Cisco repository.

• Ability to build any customization, as needed, on the SDK.

Installation Procedure

To install the SDK for native application hosting, use these steps:

1 Download the SDK from the Cisco repository.
wget https://devhub.cisco.com/artifactory/xr600/app-dev-sdk/x86_64/
wrlinux-7.0.0.2-glibc-x86_64-intel_x86_64-wrlinux-image-glibc-std-sdk.sh

2 Install the SDK by running the shell script.
john@sjc-ads-4587:john$
./wrlinux-7.0.0.2-glibc-x86_64-intel_x86_64-wrlinux-image-glibc-std-sdk.sh

3 Enter the target directory for installing the SDK.

Choose a target directory that has sufficient storage space.
Enter target directory for SDK
(default: /opt/windriver/wrlinux/7.0-intel-x86-64):
/nobackup/john/sdk_extract
You are about to install the SDK to "/nobackup/john/sdk_extract". Proceed[Y/n]? Y

On successful installation, a message is displayed on the screen.
Extracting SDK...done
Setting it up...done
SDK has been successfully set up and is ready to be used.

The SDK for native application hosting is successfully installed.

What to do Next

You can set up the environment variables, and validate them as explained in this section.

1 Navigate to the directory, where the SDK is installed and set up the environment variables by running the
following commands:

• If you are using a bash shell, run the . ./env.sh command.

• For any other shell, run the source . ./env.sh command.

The commands execute the environment setup file that was extracted during SDK installation.

2 Validate the installed environment variables by running the env command to view all variable values.

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
64

Build RPMs for Native Application Hosting
Create a Cross-Build Environment Using the SDK Shell Script

3 Validate the CC environment variable by running the env | grep CC command, and verifying whether the
following value is assigned:
CC=x86_64-wrs-linux-gcc -m64
--sysroot=/nobackup/john/sdk_extract/sysroots/core2-64-wrs-linux

Alternatively, you can use the echo command:
echo $CC
x86_64-wrs-linux-gcc -m64
--sysroot=/opt/windriver/wrlinux/7.0-intel-x86-64/sysroots/core2-64-wrs-linux

4 Verify whether the PATH environment variable points to the base directory, where the SDK was installed.

To verify the path, run the env | grep PATH command and check whether the following path is displayed:
PATH=<sdk_extract>/sysroots/
x86_64-wrlinuxsdk-linux/usr/bin:
<sdk_extract>/sysroots/x86_64-wrlinuxsdk-linux/usr/bin/x86_64-wrs-linux

Alternatively, you can use the echo command:
echo $PATH
<sdk_extract>/sysroots/x86_64-wrlinuxsdk-linux/usr/bin:
<sdk_extract>/sysroots/x86_64-wrlinuxsdk-linux/usr/bin/x86_64-wrs-linux

5 Navigate to the directory that contains the application source code, and start building the application.

You should remove all the *.la temporary files from the SDK root file system. To do this, use the following
commands:
bash# cd <sdk_extract>/sysroots/
bash# find . -name *.la | xargs rm -f

Note

Build Native RPMs
This section describes the procedure for building applications by using either the native environment, or the
cross-build environment. It is recommended that you use the native build environment.

There are two ways of building applications from source code.

One method is to build an application from a source code archive; this is explained in this section. The other
method is to build it from a source RPM, which is not recommended.

Prerequisites

Ensure that the following requirements are met before you proceed:

• The application build environment has been set up to use either the native build environment, or the
cross-build environment.

• You have read the README file to understand the build process for building the application.

Configuration Procedure

To build applications, use the following steps:

1 Navigate to the directory that contains the source code for the application.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
65

Build RPMs for Native Application Hosting
Build Native RPMs

2 Run the following commands to extract the application (if compressed).
bash-4.1$ tar xzvf tcpdump-4.7.4.tar.gz

3 Change your directory to the application directory.
bash-4.1$ cd tcpdump-4.7.4

4 Build your application to generate an executable file.
tcpdump-4.7.4$./configure
tcpdump-4.7.4$ make

5 Verify the executable file in your directory.
tcpdump-4.7.4$ ls -1 ./tcpdump
-rwxr-xr-x 1 john eng 3677288 Jun 15 23:10 ./tcpdump

The executable file is listed as tcpdump.

The executable file is ready to be packaged for hosting your application on IOS XR.

What to do Next

Package the application binaries so that it can be installed on IOS XR.

The recommended packaging format is RPM so that it can hosted on IOS XR.

To build an RPM:

• You need a .spec file.

• You must run the rpmbuild command.

Use the following steps to package the binaries:

1 Create a .spec file in the SPECS directory.
%define __strip /bin/true

Name: tcpdump
Version: 4.7.4
Release: XR
Buildroot: %{_tmppath}/%{name}-%{version}-%{release}-root
License: Copyright (c) 2015 Cisco Systems Inc. All rights reserved.
Packager: mark
SOURCE0 : %{name}-%{version}.tar.gz
Group: 3'rd party applicaiton
Summary: Tcpdump cross compiled for WRL6

%description
This is a cross compiled version of tcpdump using IOS XR sdk for WRL7

%prep

%setup -q -n %{name}-%{version}

%build
This where sdk is being sourced

source /nobackup/mark/sdk_extract_18/tmp/env.sh
./configure
make

%install
rm -rf ${RPM_BUILD_ROOT}
make DESTDIR=$RPM_BUILD_ROOT install
mkdir -p ${RPM_BUILD_ROOT}%{_sbindir}
install -m755 tcpdump ${RPM_BUILD_ROOT}%{_sbindir}

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
66

Build RPMs for Native Application Hosting
Build Native RPMs

%files
%defattr(-,root,root)
%{_sbindir}/tcpdump

%pre

%post

%preun

%postun

%clean
rm -rf $RPM_BUILD_ROOT

2 Build the RPM.
mark@tenby:redhat$ cd /usr/src/redhat/SPECS/
mark@tenby:SPECS$ rpmbuild -ba tcpdump.spec

The RPM build used is the 5.4.14 version.

3 Verify that the binary is built in the RPMS directory.
mark@tenby:x86_64$ pwd /usr/src/redhat/RPMS/x86_64

mark@tenby:x86_64$ ls

tcpdump-4.7.4-XR.x86_64.rpm

The native applications are ready to be hosted. For information on hosting native applications, see Run iPerf
as a Native Application, on page 32.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
67

Build RPMs for Native Application Hosting
Build Native RPMs

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
68

Build RPMs for Native Application Hosting
Build Native RPMs

C H A P T E R 6
Host Applications Using Configuration
Management Tools

Configuration management tools are used to automate manual tasks, such as setting up servers and network
devices. As application delivery requirements keep changing, reconfiguring network equipment becomes a
challenge. The manual reconfiguration process is prone to errors, which in turn can cause network outages.
Configuration management tools help when configurations need to be updated constantly, and on multiple
network devices.

The Cisco IOS XR Software works well with the following configuration management tools:

• Chef

• Puppet

This section explains how you can install, configure, and use the configuration management tools, Chef and
Puppet for application hosting on IOS XR.

• Chef for Native Application Hosting, page 69

Chef for Native Application Hosting
Chef is an open-source IT automation tool that you can use to install, configure, and deploy various applications
natively on IOS XR.

To use Chef to deploy your applications natively on IOS XR, you need the following components:

• Chef Client RPM Version 12.5, or later for Cisco IOS XR 6.0

• Chef Server Version 12.4, or higher

• Applications that are compatible with the Wind River Linux 7 environment of IOS XR

You also need three Chef built-in resources to deploy your application natively on IOS XR. The three built-in
Chef Resources are:

• Package Resource

• File Resource

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
69

• Service Resource

Access the links provided in the following table for additional details on Chef and Chef resources:

Table 2: Chef Resources

LinkTopic

https://www.chef.io/Chef Software, Inc.

https://docs.chef.io/chef_overview.htmlChef Overview

https://docs.chef.io/resource_package.htmlPackage Resource Reference

https://docs.chef.io/resource_file.htmlFile Resource Reference

https://docs.chef.io/resource_service.htmlService Resource Reference

https://docs.chef.io/install_server.htmlChef Server Reference

Chef ClientChef Client for Native XR Environment

The following subsections describe how you can install, configure, and create Chef recipes for native application
hosting. For information on native application hosting, see Native Application Hosting, on page 30.

Install and Configure the Chef Client
This section describes the procedure for installing the Chef Client on IOS XR.

Prerequisites

Ensure that the following requirements are met before you proceed with installation:

• Your workstation is set up with the Chef repository and the Chef Development Kit.

• Chef Server Version 12.4, or higher is installed and accessible from your Linux box.

• The Chef Server identification files are available.

• You have the right name server and domain name entries configured in the Linux environment
(/etc/resolv.conf).

• The router is using a valid NTP server.

Configuration Procedure

To install and configure the Chef Client on IOS XR, follow these steps:

1 From your Linux box, access the IOS XR console through SSH, and log in.
cisco@host:~$ ssh root@192.168.122.188
root@192.168.122.188's password:
RP/0/RP0/CPU0:ios#

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
70

Host Applications Using Configuration Management Tools
Install and Configure the Chef Client

https://www.chef.io/
https://docs.chef.io/chef_overview.html
https://docs.chef.io/resource_package.html
https://docs.chef.io/resource_file.html
https://docs.chef.io/resource_service.html
https://docs.chef.io/install_server.html
https://s3.amazonaws.com/alpha-builds/chef-12.5.1-1.ios_xr6.x86_64.rpm
https://docs.chef.io/install_dk.html

You have entered the IOS XR prompt.

2 Enter the third-party network namespace or global VRF, depending on the version of Cisco IOS XR you
are using in your network.

You can verify whether you are in the namespace by viewing the interfaces, as shown here:

/* If you are using Cisco IOS XR Version 6.0.0, run the following command */
RP/0/RP0/CPU0:ios# run ip netns exec tpnns bash

/* If you are using Cisco IOS XR Version 6.0.2, run the following command */
RP/0/RP0/CPU0:ios# bash

[xr-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

3 (Optional) Configure a proxy server (http_proxy, https_proxy) as needed.
http_proxy=http://proxy.youtube.com:8080
https_proxy=https://proxy.youtube.com:8080

4 Install the Chef Client.
[xr-vm_node0_RP0_CPU0:~]$ yum install https://chef.io/chef/install.sh

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
71

Host Applications Using Configuration Management Tools
Install and Configure the Chef Client

The Chef install.sh script automatically determines the latest version of the Chef Client RPM for installation.

5 Copy the validation.pem file from the Chef server to /etc/chef/validation.pem

6 Edit the Chef Client configuration file at /etc/chef/client.rbwith Chef Server identification and Client
settings.
validation_client_name 'chef-validator'
chef_server_url 'https://my_chef_server.youtube.com/organizations/chef'
node_name 'n3k.youtube.com' # "This" client device.
cookbook_sync_threads 5 # necessary for small memory switches (4G or less)
interval 30 # client-run interval; remove for "never"

7 Run the Chef Client.
[xr-vm_node0_RP0_CPU0:~]$ chef-client

To run the Client once, use the chef-client --once command. For more information, see the Chef
documentation at https://docs.chef.io/chef_client.html

Note

The Chef Client is successfully installed on IOS XR.

Create a Chef Cookbook with Recipes
A Chef cookbook, loaded with Chef recipes, can be created on your Linux workstation, and copied to the
Chef server. After you install the Chef client on IOS XR, the cookbook with recipes can be downloaded from
the Chef server, and used while running the client.

Prerequisites

Ensure the following requirements are met before you proceed:

• You have access to the application package compatible with the native IOS XR environment.

• Target application package is hosted on an accessible repository or downloaded to a boot flash.

Configuration Procedure

Use the following procedure to create a Chef recipe that starts the bootlogd service, and installs iPerf on IOS
XR:

1 Create a cookbook on your Linux workstation by using the corresponding knife command.
knife cookbook create cisco-network-chef-cookbook

2 Create the Chef recipe file to install iPerf, and add it to the cookbook.

The Chef recipe must be created in the cisco-network-chef-cookbook/recipes/ directory. For it to be
loaded automatically by the Chef Client, the Chef recipe must be named as default.rb.

#
Recipe:: demo_default_providers
#
Copyright (c) 2015 The Authors, All Rights Reserved.

package = 'iperf-2.0.5-r0.0.core2_64.rpm'
service = 'bootlogd'

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
72

Host Applications Using Configuration Management Tools
Create a Chef Cookbook with Recipes

https://docs.chef.io/chef_client.html

remote_file "/#{package}" do
source "http://10.105.247.73/wrl7_yum_repo/#{package}"
action :create

end

yum_package "#{package}" do
source "/#{package}"
action :install

end

service "#{service}" do
action :start

end

3 Access the Chef Server from your Linux workstation and upload the cookbook to the server.

4 Log into the IOS XR shell, and run the Chef Client to load and execute the cookbook.
[xr-vm_node0_RP0_CPU0:~]$chef-client

The iperf RPM is installed on IOS XR.

For additional details on the Chef Client, refer to https://docs.chef.io/chef_client.html

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
73

Host Applications Using Configuration Management Tools
Create a Chef Cookbook with Recipes

https://docs.chef.io/chef_client.html

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
74

Host Applications Using Configuration Management Tools
Create a Chef Cookbook with Recipes

C H A P T E R 7
Use Cases: Container Application Hosting

This section describes use cases for running applications within a container on IOS XR. For information on
container application hosting, see Container Application Hosting, on page 40.

• Run a Telemetry Receiver Within a Container on Cisco IOS XR, page 75

• OSPF Path Failover by running iPerf with Netconf on Cisco IOS XR , page 79

Run a Telemetry Receiver Within a Container on Cisco IOS XR
For telemetry to work on Cisco IOS XR, it must use GPB (Google Protocol Buffer) over UDP, instead of
TCP.

The procedure consists of the following steps:

1 Create a telemetry policy file.

2 Generate and compile a .proto file.

3 Configure the GPB encoder.

4 Launch a third-party container (LXC).

5 Configure the telemetry receiver.

Create a Telemetry Policy File

A telemetry policy file is used to specify the kind of data to be generated and pushed to the telemetry receiver.
The following steps describe how you can create the policy file for telemetry:

1 Determine the schema paths to stream data.
RP/0/RP0/CPU0:ios# schema-describe show interface
Wed Aug 26 02:24:40.556 PDT
RootOper.InfraStatistics.Interface(*).Latest.GenericCounters

2 Create a policy file that contains these paths:
{
"Name": "Test",
"Metadata": {
"Version": 25,
"Description": "This is a sample policy",

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
75

"Comment": "This is the first draft",
"Identifier": "<data that may be sent by the encoder to the mgmt stn"
},
"CollectionGroups": {
"FirstGroup": {
"Period": 30,
"Paths": [
"RootOper.InfraStatistics.Interface(*).Latest.GenericCounters"

]
}
}
}

3 Enter the XR Linux bash shell, and copy the policy file to IOS XR by using Secure Copy Protocol (SCP).

/* If you are using Cisco IOS XR Version 6.0.0, run the following command */
RP/0/RP0/CPU0:ios# run ip netns exec tpnns bash

/* If you are using Cisco IOS XR Version 6.0.2, run the following command */
RP/0/RP0/CPU0:ios# bash

[XR-vm_node0_RP0_CPU0:~]$ scp Test.policy cisco@10.0.0.1:/telemetry/policies
cisco@10.0.0.1's password:
Test.policy
100% 779 0.8KB/s 00:00
Connection to 10.0.0.1 closed by remote host.

Where 10.0.0.1 is the IP address of the device on which you are copying the policy file.

4 Navigate to the IOS XR prompt and verify if the policy file has been successfully installed.
RP/0/RP0/CPU0:ios# show telemetry policies brief
Wed Aug 26 02:24:40.556 PDT
Name	Active?	Version	Description
Test N 1 This is a sample policy

Generate and Compile a .proto File

The path in a policy file that you created needs a .proto file associated with it. The .proto file describes the
GPB message format used to stream data. The following steps describe how you can generate and compile a
.proto file for a telemetry receiver:
The .proto file is complied into a .map file. The compilation is done on a server.

1 Generate a .proto file.
telemetry generate gpb-encoding path
"RootOper.InfraStatistics.Interface(*).Latest.GenericCounters" file
disk0:generic_counters.proto

The .proto file is generated by an on-box tool. The tool ignores naming parameters, and are hence optional.

The tool ignores text within quotes; therefore, the path should not contain quotes.Note

2 Compile the .proto file off the box.

a Cisco provides a telemetry compiler on Dev Hub. You can copy the directory to your Linux box, and
run it, as shown here:
telemetry_protoc -f generic_counters.proto -o generic_counters.map

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
76

Use Cases: Container Application Hosting
Run a Telemetry Receiver Within a Container on Cisco IOS XR

b Access the copy of the .proto file from Dev Hub, and run the standard compiler on your Linux box,
as shown here:
protoc python_out . -I=/
sw/packages/protoc/current/google/include/:.
generic_counters.proto ipv4_counters.proto

3 Copy the map file to IOS XR at /telemetry/gpb/maps.

Configure the GPB Encoder

Configure the GPB encoder to activate the telemetry policy and stream data as outlined in the following steps:

1 Configure a loopback interface address for mapping the telemetry receiver to IOS XR, as shown here:
RP/0/RP0/CPU0:ios(config)# interface Loopback2
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 2.2.2.2/32
RP/0/RP0/CPU0:ios(config-if)# no shut
RP/0/RP0/CPU0:ios(config-if)# commit
Fri Oct 30 07:51:14.785 UTC
RP/0/RP0/CPU0:ios(config-if)# exit
RP/0/RP0/CPU0:ios(config)# exit
RP/0/RP0/CPU0:ios# show ipv4 interface brief
Fri Oct 30 07:51:48.996 UTC

Interface IP-Address Status Protocol
Loopback0 1.1.1.1 Up Up
Loopback1 8.8.8.8 Up Up
Loopback2 2.2.2.2 Up Up
GigabitEthernet0/0/0/0 192.164.168.10 Up Up
GigabitEthernet0/0/0/1 192.57.43.10 Up Up
GigabitEthernet0/0/0/2 unassigned Shutdown Down
MgmtEth0/RP0/CPU0/0 192.168.122.197 Up Up
RP/0/RP0/CPU0:ios#

2 Configure the encoder to stream the policy to the loopback interface of IOS XR that was just configured.
telemetry

encoder gpb
policy group alpha
policy demo
destination ipv4 2.2.2.2 port 5555

!
!

!

Launch a Third-Party Container (LXC)

This section describes how you can launch a third-party container (LXC) on IOS XR.

1 Log into IOS XR.
RP/0/RP0/CPU0:ios# run
[xr-vm_node0_RP0_CPU0:~]$

2 Launch the third-party container.
[xr-vm_node0_RP0_CPU0:~]$ virsh -c lxc+tcp://10.11.12.15:16509/ -e ^Q console demo1

3 Log into the container when prompted.
Connected to domain demo
Escape character is ^Q
Kernel 3.14.23-WR7.0.0.2_standard on an x86_64
host login: Password:

You have successfully launched a third-party container.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
77

Use Cases: Container Application Hosting
Run a Telemetry Receiver Within a Container on Cisco IOS XR

Configure the Telemetry Receiver

A telemetry receiver listens for streamed data on the specified interface IP address and port number, and it
prints the header of the received packets. If .proto files are provided, they are compiled using the protoc
compiler and the message contents are also printed. By default, only the first row of each table is printed,
though the print-all option can be used to print the complete output.

To run a telemetry receiver within the container you launched, use the following steps:

1 Download all the receiver files to the third-party container. The receiver files are available on IOS XR at
https://github.com/cisco/bigmuddy-network-telemetry-collector.

2 Run the receiver to stream and print data.
python gpb_receiver.py ipaddress 2.2.2.2 port 5555 proto
generic_counters.proto ipv4_counters.proto

You can see data on the telemetry receiver, as shown here:
Waiting for message
Got message of length:1036bytes from address:('10.1.1.1', 5555)
Encoding:2271560481
Policy Name:demo
Version:25
Identifier:<data that may be sent by the encoder to the mgmt stn>
Start Time:Wed Jan 21 09:54:33 1970
End Time:Wed Aug 26 09:28:37 2015
Tables:1
Schema
Path:RootOper.InfraStatistics.Interface.Latest.GenericCounters
Rows:6
Row 0:
applique:0
availability_flag:0
broadcast_packets_received:0
broadcast_packets_sent:0
bytes_received:0
bytes_sent:0
carrier_transitions:0
crc_errors:0
framing_errors_received:0
giant_packets_received:0
input_aborts:0
input_drops:0
input_errors:0
input_ignored_packets:0
input_overruns:0
input_queue_drops:0
interface_name:Null0
last_data_time:1440606516
last_discontinuity_time:1440498130
multicast_packets_received:0
multicast_packets_sent:0
output_buffer_failures:0
output_buffers_swapped_out:0
output_drops:0
output_errors:0
output_queue_drops:0
output_underruns:0
packets_received:0
packets_sent:0
parity_packets_received:0
resets:0
runt_packets_received:0
seconds_since_last_clear_counters:0
seconds_since_packet_received:4294967295
seconds_since_packet_sent:4294967295
throttled_packets_received:0
unknown_protocol_packets_received:0
Waiting for message
Got message of length:510bytes from address:('2.2.2.2', 5555)

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
78

Use Cases: Container Application Hosting
Run a Telemetry Receiver Within a Container on Cisco IOS XR

https://github.com/cisco/bigmuddy-network-telemetry-collector

Encoding:2271560481
Policy Name:demo
Version:25
Identifier:<data that may be sent by the encoder to the mgmt stn>
Start Time:Wed Jan 21 09:54:33 1970
End Time:Wed Aug 26 09:28:38 2015
Tables:1
Schema Path:RootOper.InfraStatistics.Interface.Latest.Protocol
Rows:5
Row 0:
bytes_received:0
bytes_sent:0
input_data_rate:0
input_packet_rate:0
interface_name:Loopback2
last_data_time:1440606517
output_data_rate:0
output_packet_rate:0
packets_received:0
packets_sent:0
protocol:24
protocol_name:IPV4_UNICAST

The telemetry receiver runs successfully within the third-party container (LXC).

OSPF Path Failover by running iPerf with Netconf on Cisco IOS
XR

This section describes how you can solve a path remediation problem by running iPerf and Netconf applications
on Cisco IOS XR by using a vagrant box.

Topology

The topology used for OSPF path remediation is illustrated in the following figure.

The router on the left is rtr1 and is the source of traffic. We run the pathchecker application inside an LXC
on this router. Pathchecker uses an iPerf client to determine the health of the path.

The router on the right is rtr2 and is the destination for traffic. We run the pathchecker application inside an
LXC on this router. Pathchecker uses an iPerf server that talks to the iPerf client on rtr1.

devbox serves two purposes in this topology:

• To create an LXC tar ball with pathchecker before being deployed to the routers.

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
79

Use Cases: Container Application Hosting
OSPF Path Failover by running iPerf with Netconf on Cisco IOS XR

• To bridge the two networks between the two routers over the parallel paths.

Figure 12: OSPF Path Failover with iPerf and Netconf on Vagrant

This example uses the following process for OSPF path failover:

1 Configure and establish OSPF neighbor relationship between two routers over two parallel paths.

2 Increase the cost of one path so that the other path is the preferred active path.

3 Use the pathchecker python application to monitor the OSPF active path by determining the bandwidth,
jitter, packet loss and other parameters. Pathchecker uses the iPerf application to measure health of the
active traffic path.

4 Use pathchecker to simulate network degradation by changing the OSPF active path cost during a Netconf
session.

Before you Begin

Before you can start using vagrant, ensure that you have fulfilled the following requirements on your host
device.

• Latest version of Vagrant for your operating system.

• A virtual box for your operating system.

• Minimum of 9-10 GB of RAM with two cores.

• (Optional) If you are using the Windows Operating System, you should download the Git bash utility
for running the commands described in this section.

Procedure

Use the following steps to use iPerf with Netconf for OSPF path failover.

1 Generate an API key and a CCO ID by using the steps described in
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant.

2 Download the latest stable version of the IOS XR vagrant box.

$ curl <cco-id>:<API-KEY>

$ BOXURL --output ~/iosxrv-fullk9-x64.box

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
80

Use Cases: Container Application Hosting
OSPF Path Failover by running iPerf with Netconf on Cisco IOS XR

https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://git-scm.com/download/win
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant

$ vagrant box add --name IOS-XRv ~/iosxrv-fullk9-x64.box

3 Verify if the vagrant box has been successfully installed.

AKSHSHAR-M-K0DS:~ akshshar$ vagrant box list
IOS-XRv (virtualbox, 0)

4 Create a working directory.

AKSHSHAR-M-K0DS:~ akshshar$ mkdir ~/iosxrv
AKSHSHAR-M-K0DS:~ akshshar$cd ~/iosxrv

5 Initialize the vagrant file with the new vagrant box.

AKSHSHAR-M-K0DS:~ akshshar$ vagrant init IOS-XRv
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

6 Clone the repository containing the pathchecker code.

AKSHSHAR-M-K0DS:~ akshshar$ git clone https://github.com/ios-xr/pathchecker.git
Cloning into 'pathchecker'...
remote: Counting objects: 46, done.
remote: Compressing objects: 100% (28/28), done.
remote: Total 46 (delta 8), reused 0 (delta 0), pack-reused 18
Unpacking objects: 100% (46/46), done.
Checking connectivity... done.

7 Navigate to the pathchecker/vagrant directory and launch devbox.

AKSHSHAR-M-K0DS:~ akshshar$ cd pathchecker/
AKSHSHAR-M-K0DS:pathchecker akshshar$ cd vagrant/
AKSHSHAR-M-K0DS:vagrant akshshar$ pwd
/Users/akshshar/pathchecker/vagrant

AKSHSHAR-M-K0DS:vagrant akshshar$ vagrant up devbox
Bringing machine 'devbox' up with 'virtualbox' provider...
==> devbox: Importing base box 'ubuntu/trusty64'...

---------------------------- snip output ---------------------------------

==> devbox: Running provisioner: file...
AKSHSHAR-M-K0DS:vagrant akshshar$
AKSHSHAR-M-K0DS:vagrant akshshar$
AKSHSHAR-M-K0DS:vagrant akshshar$ vagrant status
Current machine states:

rtr1 not created (virtualbox)
devbox running (virtualbox)
rtr2 not created (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.

8 Launch an LXC withindevbox.

AKSHSHAR-M-K0DS:vagrant akshshar$ vagrant ssh devbox

vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-create -t ubuntu --name pathchecker
Checking cache download in /var/cache/lxc/trusty/rootfs-amd64 ...
Installing packages in template: ssh,vim,language-pack-en
Downloading ubuntu trusty minimal ...
I: Retrieving Release
I: Retrieving Release.gpg
I: Checking Release signature
...

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
81

Use Cases: Container Application Hosting
OSPF Path Failover by running iPerf with Netconf on Cisco IOS XR

vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-start --name pathchecker
<4>init: hostname main process (3) terminated with status 1
<4>init: plymouth-upstart-bridge main process (5) terminated with status 1
<4>init: plymouth-upstart-bridge main process ended, respawning

Ubuntu 14.04.4 LTS nc_iperf console

pathchecker login: ubuntu
Password:
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

...

9 Install all the required iPerf and Netconf application dependencies within the LXC.
ubuntu@pathchecker:~$ sudo apt-get -y install python-pip python-lxml
python-dev libffi-dev libssl-dev iperf git

ubuntu@pathchecker:~$ sudo pip install ncclient jinja2 cryptography==1.2.1

10 Retrieve the iPerf and Netconf application code from Github.

ubuntu@pathchecker:~$ git clone https://github.com/ios-xr/pathchecker.git
Cloning into 'pathchecker'...
remote: Counting objects: 46, done.
remote: Compressing objects: 100% (28/28), done.
remote: Total 46 (delta 8), reused 0 (delta 0), pack-reused 18
Unpacking objects: 100% (46/46), done.
Checking connectivity... done.
ubuntu@pathchecker:~$

11 Change the SSH port inside the LXC.

When a container is deployed on XR, it shares the network namespace of XR. Since XR uses ports 22 and
57722 for internal processes, we change the port number to 58822 in this example.
ubuntu@pathchecker:~$ sudo sed -i s/Port\ 22/Port\ 58822/ /etc/ssh/sshd_config

ubuntu@pathchecker:~$ cat /etc/ssh/sshd_config | grep Port
Port 58822

12 Create the LXC tar ball.

a Shut down the LXC.

ubuntu@pathchecker:~$ sudo shutdown -h now
ubuntu@pathchecker:~$
Broadcast message from ubuntu@pathchecker
(/dev/lxc/console) at 10:24 ...

The system is going down for halt NOW!

b Assume the root user role.

vagrant@vagrant-ubuntu-trusty-64:~$ sudo -s
root@vagrant-ubuntu-trusty-64:~# whoami
root

c Navigate to the /var/lib/lxc/pathchecker/rootfs/ directory and package the rootfs into a tar ball.
root@vagrant-ubuntu-trusty-64:~# cd /var/lib/lxc/pathchecker/rootfs/
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/pathchecker/rootfs/# tar -czvf
/vagrant/pathchecker_rootfs.tar.gz *
tar: dev/log: socket ignored
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/pathchecker/rootfs/# exit

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
82

Use Cases: Container Application Hosting
OSPF Path Failover by running iPerf with Netconf on Cisco IOS XR

vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

AKSHSHAR-M-K0DS:vagrant akshshar$ pwd
/Users/akshshar/pathchecker/vagrant
AKSHSHAR-M-K0DS:vagrant akshshar$ ls -l pathchecker_rootfs.tar.gz
-rw-r--r-- 1 akshshar staff 301262995 Jul 18 07:57 pathchecker_rootfs.tar.gz
AKSHSHAR-M-K0DS:vagrant akshshar$

13 Launch the two router topology.

a Navigate to the pathchecker/vagrant directory and launch the vagrant instance.

AKSHSHAR-M-K0DS:vagrant akshshar$ pwd
/Users/akshshar/pathchecker/vagrant

AKSHSHAR-M-K0DS:vagrant akshshar$ vagrant up
Bringing machine 'rtr1' up with 'virtualbox' provider...
Bringing machine 'devbox' up with 'virtualbox' provider...
Bringing machine 'rtr2' up with 'virtualbox' provider...

b Verify if the topology has been launched.

AKSHSHAR-M-K0DS:vagrant akshshar$ vagrant status
Current machine states:

rtr1 running (virtualbox)
devbox running (virtualbox)
rtr2 running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.

14 Verify if OSPF is running on rtr1 and check the path state.

You can also see the cost of the OSPF path.

AKSHSHAR-M-K0DS:vagrant akshshar$ vagrant port rtr1
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2200 (host)
58822 (guest) => 58822 (host)
AKSHSHAR-M-K0DS:vagrant akshshar$ ssh -p 2223 vagrant@localhost
The authenticity of host '[localhost]:2223 ([127.0.0.1]:2223)' can't be established.
RSA key fingerprint is b1:c1:5e:a5:7e:e7:c0:4f:32:ef:85:f9:3d:27:36:0f.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[localhost]:2223' (RSA) to the list of known hosts.
vagrant@localhost's password:

RP/0/RP0/CPU0:rtr1# show running-config router ospf
Mon Jul 18 15:25:53.875 UTC
router ospf apphost
area 0
interface Loopback0
!
interface GigabitEthernet0/0/0/0
!
interface GigabitEthernet0/0/0/1
cost 20

!
!
!

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
83

Use Cases: Container Application Hosting
OSPF Path Failover by running iPerf with Netconf on Cisco IOS XR

RP/0/RP0/CPU0:rtr1# show route 2.2.2.2
Mon Jul 18 15:26:03.576 UTC

Routing entry for 2.2.2.2/32
Known via "ospf apphost", distance 110, metric 2, type intra area
Installed Jul 18 15:18:28.218 for 00:07:35
Routing Descriptor Blocks
10.1.1.20, from 2.2.2.2, via GigabitEthernet0/0/0/0

Route metric is 2
No advertising protos.

RP/0/RP0/CPU0:rtr1#

15 Start the iPerf server on rtr2 and configure it for receiving packets from rtr1.

iPerf was launched as a native application on rtr2 while launching the vagrant instance.Note

AKSHSHAR-M-K0DS:vagrant akshshar$ vagrant ssh rtr2
Last login: Mon Jul 18 15:57:05 2016 from 10.0.2.2
xr-vm_node0_RP0_CPU0:~$
xr-vm_node0_RP0_CPU0:~$ iperf -s -u
--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 64.0 MByte (default)

16 Launch the pathchecker application within the LXC on rtr1.

a Log in to the LXC on rtr1.

Password for user ubuntu is ubuntu.

AKSHSHAR-M-K0DS:vagrant akshshar$ ssh -p 58822 ubuntu@localhost
The authenticity of host '[localhost]:58822 ([127.0.0.1]:58822)' can't be established.
RSA key fingerprint is 19:54:83:a9:7a:9f:0a:18:62:d1:f3:91:87:3c:e9:0b.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[localhost]:58822' (RSA) to the list of known hosts.
ubuntu@localhost's password:
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.14.23-WR7.0.0.2_standard x86_64)

* Documentation: https://help.ubuntu.com/
Last login: Mon Jul 18 15:19:45 2016 from 10.0.2.2
ubuntu@pathchecker:~$

b Navigate to the pathchecker repository within the LXC, and check the contents of the pathchecker
script.
ubuntu@pathchecker:~$ cd pathchecker/
ubuntu@pathchecker:~/pathchecker$ cat pc_run.sh
#!/bin/bash

./pathchecker.py --host 6.6.6.6 -u vagrant -p vagrant --port 830 -c 10 -o
apphost -a 0 -i GigabitEthernet0/0/0/0 -s 2.2.2.2 -j 4 -l 5 -f -t 10
-I represents the threshold for packet loss and has been set to 5% for this run. -j represents the jitter
threshold that has a value of 4.

c Start the pathchecker application by running the script.

ubuntu@pathchecker:~/pathchecker$./pc_run.sh
Error while opening state file, let's assume low cost state
Currently, on reference link GigabitEthernet0/0/0/0
Starting an iperf run.....
20160718162513,1.1.1.1,62786,2.2.2.2,5001,6,0.0-10.0,1311240,1048992
20160718162513,1.1.1.1,62786,2.2.2.2,5001,6,0.0-10.0,1312710,1048474
20160718162513,2.2.2.2,5001,1.1.1.1,62786,6,0.0-10.0,1312710,1048679,2.453,0,892,0.000,1

bw is
1025.5546875

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
84

Use Cases: Container Application Hosting
OSPF Path Failover by running iPerf with Netconf on Cisco IOS XR

jitter is
2.453
pkt_loss is
0.000
verdict is
False
Currently, on reference link GigabitEthernet0/0/0/0
Starting an iperf run.....
The pathchecker application is running on the path from GigabitEthernet0/0/0/0 interface.

17 Open a parallel Git bash window and simulate impairment on the active path.

a Access devbox through SSH.

AKSHSHAR-M-K0DS:vagrant akshshar$ cd pathchecker/vagrant

AKSHSHAR-M-K0DS:vagrant akshshar$ vagrant ssh devbox
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

...

b View the impairment script and run it on devbox.

vagrant@vagrant-ubuntu-trusty-64:~$ ls
impair_backup.sh impair_reference.sh stop_impair.sh

vagrant@vagrant-ubuntu-trusty-64:~$ cat impair_reference.sh
#!/bin/bash
echo "Stopping all current impairments"
sudo tc qdisc del dev eth3 root &> /dev/null
sudo tc qdisc del dev eth4 root &> /dev/null
echo "Starting packet loss on reference link"
sudo tc qdisc add dev eth3 root netem loss 7%

vagrant@vagrant-ubuntu-trusty-64:~$./impair_reference.sh
Stopping all current impairments
Starting packet loss on reference link
The script creates a packet loss of 7% on the reference link.

18 Open the first Git bash window to view the pathchecker application running on rtr1.
Currently, on reference link GigabitEthernet0/0/0/0
Starting an iperf run.....
20160718164745,1.1.1.1,60318,2.2.2.2,5001,6,0.0-10.0,1311240,1048992
20160718164745,1.1.1.1,60318,2.2.2.2,5001,6,0.0-10.0,1312710,1048516
20160718164745,2.2.2.2,5001,1.1.1.1,60318,6,0.0-573.0,1312710,18328,5.215,0,892,0.000,1

bw is
1025.5546875
jitter is
5.215
pkt_loss is
0.000
verdict is
True
Woah! iperf run reported discrepancy, increase cost of reference link !
Increasing cost of the reference link GigabitEthernet0/0/0/0
Currently, on backup link
Starting an iperf run.....
20160718164755,1.1.1.1,61649,2.2.2.2,5001,6,0.0-10.0,1311240,1048992
20160718164755,1.1.1.1,61649,2.2.2.2,5001,6,0.0-10.0,1312710,1048577
20160718164755,2.2.2.2,5001,1.1.1.1,61649,6,0.0-583.3,1312710,18002,1.627,0,893,0.000,0

bw is
1025.5546875
jitter is
1.627
pkt_loss is
0.000

Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
85

Use Cases: Container Application Hosting
OSPF Path Failover by running iPerf with Netconf on Cisco IOS XR

verdict is
False
Currently, on backup link
Starting an iperf run.....
20160718164805,1.1.1.1,59343,2.2.2.2,5001,6,0.0-10.0,1311240,1048992
20160718164805,1.1.1.1,59343,2.2.2.2,5001,6,0.0-10.0,1312710,1048520
20160718164805,2.2.2.2,5001,1.1.1.1,59343,6,0.0-593.4,1312710,17697,2.038,0,893,0.000,0
Pathchecker has initiated a failover from primary to secondary link.

19 Verify if the failover was successful on rtr1.

AKSHSHAR-M-K0DS:vagrant akshshar$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:rtr1# show running-config router ospf
Mon Jul 18 17:50:47.851 UTC
router ospf apphost
area 0
interface Loopback0
!
interface GigabitEthernet0/0/0/0
cost 30
!
interface GigabitEthernet0/0/0/1
cost 20
!
!
!
The path cost from the GigabitEthernet0/0/0/0 interface is greater than that from the GigabitEthernet0/0/0/1
interface. Hence, failover takes place to the GigabitEthernet0/0/0/1 interface for traffic from rt1 to rtr2.

20 Verify the OSPF path failover on rtr1.

The Loopback 0 interface IP address of rtr1 in this example is 2.2.2.2

RP/0/RP0/CPU0:rtr1# show route 2.2.2.2
Mon Jul 18 18:01:49.297 UTC

Routing entry for 2.2.2.2/32
Known via "ospf apphost", distance 110, metric 21, type intra area
Installed Jul 18 16:47:45.705 for 01:14:03
Routing Descriptor Blocks
11.1.1.20, from 2.2.2.2, via GigabitEthernet0/0/0/1

Route metric is 21
No advertising protos.

RP/0/RP0/CPU0:rtr1#
The next hop for rtr1 is 11.1.1.20 through the backup reference link: GigabitEthernet0/0/0/1

You have successfully configured OSPF path failover by using iPerf and Netconf on a vagrant box.

 Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
86

Use Cases: Container Application Hosting
OSPF Path Failover by running iPerf with Netconf on Cisco IOS XR

	Cisco IOS XR Application Hosting Configuration Guide for NCS 1000 Series
	Contents
	New and Changed Feature Information
	New and Changed Feature Information in Cisco IOS XR Release 6.1.x

	Linux for Application Hosting
	Need for Application Hosting
	Deep Dive Into Application Hosting
	Application Hosting on the Cisco IOS XR Linux Shell
	Access the Third-Party Network Namespace on Cisco IOS XR Linux Shell
	Access Global VRF on the Cisco IOS XR Linux Shell
	Access Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box
	Apply Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

	Access the Networking Stack
	Communication Outside Cisco IOS XR
	East-West Communication for Third-Party Applications

	Host a Simple Application on IOS XR
	Types of Application Hosting
	Native Application Hosting
	Run iPerf as a Native Application
	Host a WRL7 Application Natively By Using a Vagrant Box

	Container Application Hosting
	Run iPerf as a Container Application
	Deploy an Application Development Topology on Cisco IOS XR by Using a Vagrant Box
	Host an Application within an LXC Container by Using a Vagrant Box

	Build RPMs for Native Application Hosting
	Set Up the Build Environment
	Create Native Build Environment Using QEMU Hypervisor
	Create a Cross-Build Environment Using the SDK Shell Script

	Build Native RPMs

	Host Applications Using Configuration Management Tools
	Chef for Native Application Hosting
	Install and Configure the Chef Client
	Create a Chef Cookbook with Recipes

	Use Cases: Container Application Hosting
	Run a Telemetry Receiver Within a Container on Cisco IOS XR
	OSPF Path Failover by running iPerf with Netconf on Cisco IOS XR

