

CHAPTER 6

Create Circuits

This chapter explains how to create Cisco ONS 15600 SDH circuits and tunnels. For additional information, refer to the "Circuits and Tunnels" chapter in the Cisco ONS 15600 SDH Reference Manual.

Before You Begin

Before performing any of the following procedures, investigate all alarms and clear any trouble conditions. Refer to the *Cisco ONS 15600 SDH Troubleshooting Guide* as necessary.

This section lists the chapter procedures (NTPs). Turn to a procedure for a list of applicable tasks (DLPs).

- 1. NTP-F163 Verify Network Turn-Up, page 6-2—Complete this procedure before you create any circuits.
- 2. NTP-F164 Create an Automatically Routed Optical Circuit, page 6-4—Complete as needed.
- 3. NTP-F165 Create a Manually Routed Optical Circuit, page 6-9—Complete as needed.
- **4.** NTP-F166 Create a Unidirectional Optical Circuit with Multiple Drops, page 6-12—Complete as needed.
- 5. NTP-F167 Test Optical Circuits, page 6-16—Complete this procedure after you create circuits.
- **6.** NTP-F168 Create a Half Circuit on an MS-SPRing or 1+1 Node, page 6-17—Complete as needed to create a half circuit using an STM-N as a destination in a multiplex section-shared protection ring (MS-SPRing) or 1+1 topology.
- 7. NTP-F169 Create a Half Circuit on an SNCP Node, page 6-19—Complete as needed to create a half circuit using an STM-N as a destination in a subnetwork connection protection (SNCP) ring.
- **8.** NTP-F170 Create Overhead Circuits, page 6-21—Complete as needed.
- 9. NTP-F171 Create an ASAP Ethernet Circuit, page 6-22—Complete as needed.
- **10.** NTP-F172 Test ASAP Ethernet Circuits, page 6-24—Complete as needed.
- 11. NTP-F173 Create a High-Order Test Circuit around the Ring, page 6-25—Complete as needed.
- **12.** NTP-F174 Create a Server Trail, page 6-28—Complete as needed.
- **13.** NTP-F175 Create an Automatically Routed Open-Ended SNCP High-Order Circuit, page 6-29—Complete as needed.
- **14.** NTP-E199 Create an Overlay Ring Circuit, page 6-32—Complete as needed.

You cannot set up low-order circuits to terminate on an ONS 15600 SDH node. However, you can create both high-order and low-order circuits that have an ONS 15454 SDH source and destination with an ONS 15600 SDH as a pass-through node. For information on ONS 15454 SDH low-order circuit creation and tunneling, refer to the circuit chapters in the *Cisco ONS 15454 SDH Procedure Guide*. If your network includes Software Release 4.1 or earlier ONS 15454 SDH nodes, you must launch Cisco Transport Controller (CTC) from an ONS 15600 SDH node before provisioning circuits.

During circuit provisioning in a network that includes ONS 15600 SDHs and ONS 15454 SDHs, the ONS 15600 SDH raises a temporary unequipped path (HP-UNEQ or LP-UNEQ) alarm. The alarm clears when the circuit is complete.

Table 6-1 defines key ONS 15600 SDH circuit creation terms and options.

Table 6-1 ONS 15600 SDH Circuit Options

Circuit Option	Description
Source	The circuit source is where the circuit enters the ONS 15600 SDH network.
Destination	The circuit destination is where the circuit exits an ONS 15600 SDH network.
Automatic circuit routing	CTC routes the circuit automatically on the shortest available path based on routing parameters and bandwidth availability.
Manual circuit routing	Manual routing allows you to choose a specific path, not just the shortest path chosen by automatic routing. You can choose a specific virtual channel (VC) for each circuit segment and create circuits from work orders prepared by an operations support system (OSS) like the Telcordia Trunk Information Record Keeping System (TIRKS).

NTP-F163 Verify Network Turn-Up

Purpose This procedure verifies that the ONS 15600 SDH network is ready for

circuit provisioning.

Tools/Equipment None

Prerequisite Procedures Chapter 5, "Turn Up a Network"

Required/As Needed Required

Onsite/Remote Onsite or remote
Security Level Provisioning or higher

Step 1 Complete the "DLP-F181 Log into CTC" task on page 16-32 at a node on the network where you will create circuits. If you are already logged in, continue with Step 2.

Step 2 From the View menu, choose **Go To Network View**. Wait for all the nodes that are part of the network to appear on the network map. (Large networks might take several minutes to display all the nodes.)

If this is the first time your computer has connected to this ONS 15600 SDH network, the node icons are stacked on the left side of the graphic area, possibly out of view. Use the scroll bar below the network map to display the icons. To separate the icons, press **Ctrl** and drag and drop the icon to the new location. Repeat until all the nodes are visible on the graphic area.

- **Step 3** Verify node accessibility. In the network view, all node icons must be either green, yellow, orange, or red.
 - If all network nodes do not appear after a few minutes, or if a node icon is gray with an IP address under it, do not continue. Look at the NET box in the lower right corner of the window. If it is gray, log in again, making sure not to check the Disable Network Discovery check box in the CTC Login dialog box. If problems persist, see Chapter 5, "Turn Up a Network" to review the network turn-up procedure appropriate for your network topology, or refer to the Cisco ONS 15600 SDH Troubleshooting Guide for troubleshooting procedures.
- Step 4 Verify data communications channel (DCC) connectivity. All nodes must be connected by green lines. If lines are missing or gray, do not continue. See Chapter 5, "Turn Up a Network" and follow the network turn-up procedure appropriate for your network topology. Verify that all nodes have DCC connectivity before continuing.
- Step 5 Click the Alarms tab to view alarm descriptions. Investigate and resolve, if necessary, all critical (red node icon) or major (orange node icon) alarms. Refer to the Cisco ONS 15600 SDH Troubleshooting Guide to resolve alarms before continuing.
- **Step 6** From the View menu, choose **Go To Home View**. Verify that the node is provisioned according to your site or engineering plan:
 - a. View the cards in the shelf map. Verify that the ONS 15600 SDH cards appear in the specified slots.
 - b. Click the Provisioning > General tabs. Verify that the node name, contacts, date, time, and Network Time Protocol/Simple Network Time Protocol (NTP/SNTP) server IP address (if used) are correctly provisioned. If needed, make corrections using the "NTP-F133 Set Up Date, Time, and Contact Information" procedure on page 4-4.
 - c. Click the Network tab. Verify that the IP address, Subnet Mask, Default Router, and Gateway Settings are correctly provisioned. If not, make corrections using the "NTP-F135 Set Up CTC Network Access" procedure on page 4-7.
 - **d.** Click the **Protection** tab. Verify that protection groups are created as specified in your site plan. If the protection groups are not created, complete the "NTP-F138 Create a 1+1 Protection Group" procedure on page 4-10.
 - **e.** If the node is in an MS-SPRing, click the **MS-SPRing** tab. (If the node is not in an MS-SPRing, continue with Step f.) Verify that the following items are provisioned as specified in your site plan:
 - MS-SPRing type (two-fiber)
 - MS-SPRing ring ID and node IDs
 - Ring reversion time
 - East and west port assignments

If you need to make corrections, see the "NTP-F147 Provision MS-SPRing Nodes" procedure on page 5-6 for instructions.

f. Click the Security tab. Verify that the users and access levels are provisioned as specified. If not, see the "NTP-F132 Create Users and Assign Security" procedure on page 4-3 to correct the information.

- **g.** If Simple Network Management Protocol (SNMP) is used, click the **SNMP** tab and verify the trap and destination information. If the information is not correct, see the "NTP-F139 Set Up SNMP" procedure on page 4-11 to correct the information.
- h. Click the Comm Channels tab. Verify that regenerator-section DCCs (RS-DCCs) and/or multiplex-section DCCs (MS-DCCs) were created to the applicable STM-N ports. If not, go to the "DLP-F253 Provision RS-DCC Terminations" task on page 17-46 or "DLP-F314 Provision MS-DCC Terminations" task on page 18-14.
- i. Click the **Timing** tab. Verify that timing is provisioned as specified. If not, go to the "NTP-F205 Change Node Timing" procedure on page 11-5 to make the changes.
- j. Click the **Alarm Profiles** tab. If you provisioned optional alarm profiles, verify that the alarms are provisioned as specified. If not, see the "NTP-F194 Create, Assign, and Delete Alarm Severity Profiles" procedure on page 9-6 to change the information.
- **k.** Verify that the network element defaults listed in the status area of the node view window are correct.
- **Step 7** Repeat Step 6 for each node in the network.
- Step 8 Complete the appropriate circuit creation procedure from the NTP list in the "Before You Begin" section on page 6-1.

NTP-F164 Create an Automatically Routed Optical Circuit

Purpose This procedure creates an automatically routed optical circuit, including

VC3, VC4, or concatenated VC4-2c, VC4-3c, VC4-4c, VC4-8c, VC4-16c, or VC4-64c speed. CTC automatically routes the circuit based on the entries that you make at circuit creation and during the system load.

Tools/Equipment None

Prerequisite Procedures NTP-F163 Verify Network Turn-Up, page 6-2

Required/As Needed As needed
Onsite/Remote Onsite or remote
Security Level Provisioning or higher

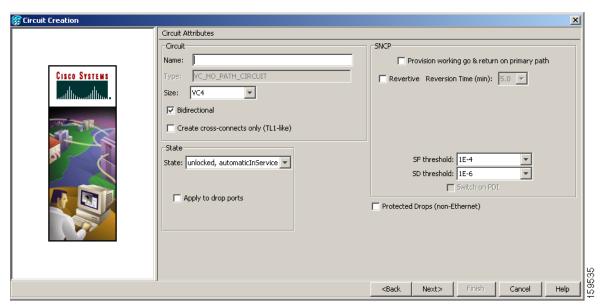
This procedure requires the use of automatic routing. Automatic routing is not available if both the Automatic Circuit Routing NE default and the Network Circuit Automatic Routing Overridable NE default are set to FALSE. For a full description of these defaults, see the "Network Element Defaults" appendix in the *Cisco ONS 15600 SDH Reference Manual*.

To create a VC4-8c circuit on an STM-16 card port or an ASAP card with port type set to STM-16, the VC4-1 through VC4-8 or the VC4-9 through VC4-16 sub-pool must be available.

Step 1 Complete the "DLP-F181 Log into CTC" task on page 16-32 at a node on the network where you will create the high-order circuit. The default (node) view appears. If you are already logged in, continue with Step 2.

- **Step 2** If you want to assign a name to the circuit source and destination ports before you create the circuit, complete the "DLP-F249 Assign a Name to a Port" task on page 17-42. If not, continue with Step 3.
- **Step 3** If the optical ports at the source and/or destination nodes are ASAP pluggable port module (PPM) ports, complete the "NTP-F196 Manage Pluggable Port Modules on the ASAP Card" procedure on page 10-1 and set the port type to STM1, STM4, STM16, or STM 64, as necessary.
- Step 4 From the View menu, choose Go To Network View.
- **Step 5** Click the **Circuits** tab, then click **Create**. In the Circuit Creation dialog box, complete the following:
 - Circuit Type—Choose VC_HO_PATH_CIRCUIT.
 - Number of Circuits—Enter the number of STM-N circuits you want to create. The default is 1. If you are creating multiple circuits with the same source and destination, you can use autoranging to create the circuits automatically.
 - Auto-ranged—This check box is automatically checked when you enter more than 1 in the Number
 of Circuits field. Leave it checked if you are creating multiple STM-N circuits with the same source
 and destination and you want CTC to create the circuits automatically. Uncheck this check box if
 you do not want CTC to create the circuits automatically.
- Step 6 Click Next.
- **Step 7** Define the circuit attributes (Figure 6-1 on page 6-6):
 - Name—Assign a name to the circuit. The name can be alphanumeric and up to 48 characters (including spaces). Circuit names should be 44 characters or less if you want the ability to create monitor circuits. If you leave the field blank, CTC assigns a default name to the circuit.
 - Size—Choose the circuit size: VC3, VC4, VC4-4c, VC4-8c, VC4-16c, or VC4-64c. ASAP optical ports also allow circuit sizes of VC4-2c and VC4-3c.
 - Bidirectional—When checked (default), creates a two-way circuit. Leave checked for this circuit.
 - Create cross-connects only (TL1-like)—Check this check box if you want to create one or more cross-connects to complete a signal path for TL1-generated circuits. Also, low-order tunnels and Ethergroup sources and destinations are unavailable.
 - Diagnostic—Leave unchecked.
 - State—Choose the administrative state to apply to all of the cross-connects in a circuit:
 - Unlocked—Puts the circuit cross-connects in the Unlocked-enabled service state.
 - Locked, disabled—Puts the circuit cross-connects in the Locked-enabled, disabled service state.
 Traffic is not passed on the circuit.
 - Unlocked,automaticInService—Puts the circuit cross-connects in the
 Unlocked-disabled,automaticInService service state and suppresses alarms and conditions.
 When the connections receive a valid signal, the service state automatically changes to
 Unlocked-enabled.
 - Locked,maintenance—Puts the circuit cross-connects in the Locked-enabled,maintenance service state. The maintenance state does not interrupt traffic flow; it suppresses alarms and conditions and allows loopbacks to be performed on the circuit. Use Locked,maintenance for circuit testing or to suppress circuit alarms temporarily. Change the administrative state to Unlocked; Unlocked,automaticInService or Locked,disabled when testing is complete. See the "DLP-F313 Change a Circuit Service State" task on page 18-13.

For additional information about circuit service states, refer to the "Circuits and Tunnels" chapter in the Cisco ONS 15600 SDH Reference Manual.


• Apply to drop ports—Check this check box if you want to apply the administrative state chosen in the State field to the circuit source and destination ports. CTC applies the administrative state to the ports only if the circuit bandwidth is the same as the port bandwidth or, if the port bandwidth is larger than the circuit, the circuit must be the first circuit to use the port. If not, a Warning dialog box displays the ports where the administrative state could not be applied. If the check box is unchecked, CTC does not apply the administrative state of the source and destination ports.

If ports managed into the Unlocked administrative state are not receiving signals, loss of signal alarms are generated and the port service state transitions to Unlocked-disabled, failed.

 Protected Drops—Check this check box if you want CTC to display only protected cards and ports (1+1 protection) as choices for the circuit source and destination.

Figure 6-1 Defining Circuit Attributes

- **Step 8** If the circuit will be routed on an SNCP ring, complete the "DLP-F250 Provision SNCP Selectors During Circuit Creation" task on page 17-43.
- Step 9 Click Next.
- **Step 10** Complete the "DLP-F194 Provision an Optical Circuit Source and Destination" task on page 16-50 for the optical circuit that you are creating.
- **Step 11** In the Circuit Routing Preferences area (Figure 6-2), check **Route Automatically**. Two options are available; choose either, both, or none based on your preferences.
 - Using Required Nodes/Spans—Check this box to specify nodes and spans to include or exclude in the CTC-generated circuit route.
 - Including nodes and spans for a circuit ensures that those nodes and spans are in the working path of the circuit (but not the protect path). Excluding nodes and spans ensures that the nodes and spans are not in the working or protect path of the circuit.
 - Review Route Before Creation—Check this box to review and edit the circuit route before the circuit is created.

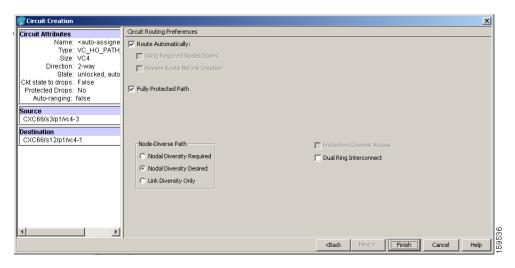


Figure 6-2 Setting Circuit Routing Preferences

Step 12 Set the circuit path protection:

- To route the circuit on a protected path, leave **Fully Protected Path** checked and continue with Step 13. CTC creates a fully protected circuit route based on the path diversity option you choose. Fully protected paths might or might not have SNCP path segments (with primary and alternate paths), and the path diversity options apply only to SNCP path segments, if any exist.
- To create an unprotected circuit, uncheck Fully Protected Path and continue with Step 17.
- To route the circuit on an MS-SPRing protection channel, if available, uncheck Fully Protected
 Path, check Protection Channel Access, click Yes in the Warning dialog box, and then continue
 with Step 17.
- **Step 13** If you selected Fully Protected Path in Step 12 and the circuit will be routed on an SNCP ring, choose one of the following:
 - **Nodal Diversity Required**—Ensures that the primary and alternate paths within SNCP portions of the complete circuit path are nodally diverse.
 - **Nodal Diversity Desired**—Specifies that node diversity is preferred, but if node diversity is not possible, CTC creates fiber-diverse paths for the SNCP portion of the complete circuit path.
 - Link Diversity Only—Specifies that only fiber-diverse primary and alternate paths for SNCP portions of the complete circuit path are needed. The paths might be node-diverse, but CTC does not check for node diversity.
- Step 14 If you selected Fully Protected Path in Step 12 and the circuit will be routed on an MS-SPRing DRI or SNCP DRI, check the **Dual Ring Interconnect** check box. If not, continue with Step 17.
- **Step 15** If you checked Dual Ring Interconnect for an SNCP ring in Step 14, complete the following substeps. If you checked Dual Ring Interconnect for an MS-SPRing, skip this step and continue with Step 16.
 - a. Click Next.
 - **b.** In the Circuit Route Constraints area, click a node or span on the circuit map.
 - c. Click Include to include the node or span in the circuit, or click Exclude to exclude the node/span from the circuit. The order in which you select included nodes and spans sets the circuit sequence. Click spans twice to change the circuit direction.
 - **d.** Repeat Step c for each node or span you wish to include or exclude.

- **e.** Review the circuit route. To change the circuit routing order, select a node beneath the Required Nodes/Lines or Excluded Nodes Links lists, then click the **Up** or **Down** buttons to change the circuit routing order. Click **Remove** to remove a node or span.
- **Step 16** If you checked Dual Ring Interconnect for an MS-SPRing in Step 14, complete the following substeps to assign primary and secondary nodes and ring type:
 - a. In the Circuit Constraints for Automatic Routing area, click Add MS-SPRing DRI.
 - **b.** In the confirmation dialog box, click **OK**.
 - c. In the Node options area of the MS-SPRing DRI Options dialog box, complete the following:
 - Primary Node—For a traditional or integrated MS-SPRing-DRI, choose the node where the circuit interconnects the rings.
 - Secondary Node—For a traditional or integrated MS-SPRing-DRI, choose the secondary node for the circuit to interconnect the rings. This route is used if the route on the primary node fails.
 - Primary Node #2—For a traditional MS-SPRing-DRI where two primary nodes are required to interconnect rings, choose the second primary node.
 - Secondary Node #2—For a traditional MS-SPRing-DRI where two secondary nodes are required, choose the second secondary node.
 - **d.** In the Ring and Path Options area, complete the following:
 - The first ring is—Choose SNCP or MS-SPRing from the drop-down list.
 - The second ring is—Choose SNCP or MS-SPRing from the drop-down list.
 - Use ring interworking protection (RIP) on secondary path—Check this box to carry the secondary spans on the protection channels. These spans will be preempted during a ring/span switch.
 - **e.** Click **OK**. The node information appears in the Required Nodes/Lines list, and the map graphic indicates which nodes are primary and secondary.
 - f. In the Circuit Constraints for Automatic Routing area, click a node or span on the circuit map.
 - g. Click Include to include the node or span in the circuit, or click Exclude to exclude the node or span from the circuit. The order in which you choose included nodes and spans is the order in which the circuit will be routed. Click spans twice to change the circuit direction. If you are creating an SNCP to MS-SPRing traditional handoff, exclude the unprotected links from the primary node towards the secondary node. If you are creating an SNCP to MS-SPRing integrated handoff, exclude unnecessary DRIs on the SNCP segments.
 - h. Review the circuit constraints. To change the circuit routing order, choose a node in the Required Nodes/Lines lists and click the Up or Down buttons to change the circuit routing order. Click Remove to remove a node or span.
- **Step 17** If you selected Review Route Before Creation in Step 11, complete the following substeps; otherwise, continue with Step 18:
 - a. Click Next.
 - **b.** Review the circuit route. To add or delete a circuit span, select a node on the circuit route. Blue arrows show the circuit route. Green arrows indicate spans that you can add. Click a span arrowhead, then click **Include** to include the span or **Remove** to remove the span.
 - c. If the provisioned circuit does not reflect the routing and configuration you want, click Back to verify and change circuit information. If the circuit needs to be routed to a different path, see the "NTP-F165 Create a Manually Routed Optical Circuit" procedure on page 6-9 to assign the circuit route yourself.

- **Step 18** Click **Finish**. One of the following occurs, based on the circuit properties you provisioned in the Circuit Creation dialog box:
 - If you entered more than 1 in Number of Circuits and checked Auto-ranged, CTC automatically creates the number of circuits entered in Number of Circuits. If autoranging cannot complete all the circuits (for example, not enough bandwidth is available on the source or destination), a dialog box appears. Set the new source or destination for the remaining circuits, then click **Finish** to continue autoranging. After completing the circuit(s), the Circuits window appears.
 - If you entered more than 1 in Number of Circuits and did not check Auto-ranged, the Circuit Creation dialog box appears for you to create the remaining circuits. Repeat Steps 7 through 17 for each additional circuit. After completing the circuit(s), the Circuits window appears.
- Step 19 In the Circuits window, verify that the circuit(s) you created appear in the circuits list.
- **Step 20** Complete the "NTP-F167 Test Optical Circuits" procedure on page 6-16. Skip this step if you built a test circuit.

NTP-F165 Create a Manually Routed Optical Circuit

Purpose This procedure creates a manually routed, bidirectional or unidirectional

STM-N circuit, including VC3, VC4, or concatenated VC4-2c, VC4-3c,

VC4-4c, VC4-8c, VC4-16c, or VC4-64c.

Tools/Equipment None

Prerequisite Procedures NTP-F163 Verify Network Turn-Up, page 6-2

Required/As Needed As needed

Onsite/Remote Onsite or remote
Security Level Provisioning or higher

To create a VC4-8c circuit on an STM-16 card port or an ASAP card with port type set to STM-16, the VC4-1 through VC4-8 or the VC4-9 through VC4-16 sub-pool must be available.

- Step 1 Complete the "DLP-F181 Log into CTC" task on page 16-32 at a node on the network where you want to create an optical circuit. If you are already logged in, continue with Step 2.
- **Step 2** If you want to assign a name to the circuit source and destination ports before you create the circuit, complete the "DLP-F249 Assign a Name to a Port" task on page 17-42. If not, continue with Step 3.
- Step 3 If the optical ports at the source and/or destination nodes are ASAP PPM ports, complete the "NTP-F196 Manage Pluggable Port Modules on the ASAP Card" task on page 10-1 and set the port type to STM1, STM4, STM16, or STM64, as necessary.
- Step 4 From the View menu, choose Go To Network View.
- **Step 5** Click the **Circuits** tab, then click **Create**.
- **Step 6** In the Circuit Creation dialog box, complete the following fields:
 - Circuit Type—Choose VC_HO_PATH_CIRCUIT.
 - Number of Circuits—Enter the number of STM-N circuits you want to create. The default is 1.

• Auto-ranged—Applies to automatically routed circuits only. If you entered more than 1 in the Number of Circuits field, uncheck this box. (The box is unavailable if only one circuit is entered in Number of Circuits.)

Step 7 Click Next.

Step 8 Define the circuit attributes (Figure 6-1 on page 6-6):

- Name—Assign a name to the circuit. The name can be alphanumeric and up to 48 characters (including spaces). Circuit names should be 44 characters or less if you want the ability to create monitor circuits. If you leave the field blank, CTC assigns a default name to the circuit.
- Size—Choose the circuit size: VC3, VC4, VC4-4c, VC4-8c, VC4-16c, or VC4-64c. ASAP optical ports also allow circuit sizes of VC4-2c and VC4-3c.
- Bidirectional—Leave checked (default) for this circuit. When checked, CTC creates a two-way circuit.
- Create cross-connects only (TL1-like)—Check this check box if you want to create one or more cross-connects to complete a signal path for TL1-generated circuits. Also, low-order tunnels and Ethergroup sources and destinations are unavailable.
- Diagnostic—Leave unchecked.
- State—Choose the administrative state to apply to all of the cross-connects in a circuit:
 - Unlocked—Puts the circuit cross-connects in the Unlocked-enabled service state.
 - Locked, disabled—Puts the circuit cross-connects in the Locked-enabled, disabled service state.
 Traffic is not passed on the circuit.
 - Unlocked,automaticInService—Puts the circuit cross-connects in the
 Unlocked-disabled,automaticInService service state and suppresses alarms and conditions.
 When the connections receive a valid signal, the service state automatically changes to
 Unlocked-enabled.
 - Locked,maintenance—Puts the circuit cross-connects in the Locked-enabled,maintenance service state. The maintenance state does not interrupt traffic flow; it suppresses alarms and conditions and allows loopbacks to be performed on the circuit. Use Locked,maintenance for circuit testing or to suppress circuit alarms temporarily. Change the administrative state to Unlocked; Unlocked,automaticInService; or Locked,disabled when testing is complete. See the "DLP-F313 Change a Circuit Service State" task on page 18-13. For additional information about circuit service states, refer to the "Circuits and Tunnels" chapter in the Cisco ONS 15600 SDH Reference Manual.
- Apply to drop ports—Check this check box if you want to apply the administrative state chosen in the State field to the circuit source and destination ports. CTC applies the administrative state to the ports only if the circuit bandwidth is the same as the port bandwidth or, if the port bandwidth is larger than the circuit, the circuit must be the first circuit to use the port. If not, a Warning dialog box displays the ports where the administrative state could not be applied. If the check box is unchecked, CTC does not apply the administrative state of the source and destination ports.

Note

If ports managed into the Unlocked administrative state are not receiving signals, loss of signal alarms are generated and the port service state transitions to Unlocked-disabled, failed.

• Protected Drops—If selected, CTC displays only protected cards and ports (1+1 protection) as choices for the circuit source and destination.

- **Step 9** If the circuit will be routed on an SNCP ring, complete the "DLP-F250 Provision SNCP Selectors During Circuit Creation" task on page 17-43.
- Step 10 Click Next.
- Step 11 Complete the "DLP-F194 Provision an Optical Circuit Source and Destination" task on page 16-50 for the STM-N circuit you are creating.
- **Step 12** In the Circuit Routing Preferences area (Figure 6-2 on page 6-7), uncheck **Route Automatically**.
- **Step 13** Set the circuit path protection:
 - To route the circuit on a protected path, leave **Fully Protected Path** checked and continue with Step 14.
 - To create an unprotected circuit, uncheck **Fully Protected Path** and continue with Step 18.
 - To route the circuit on an MS-SPRing protection channel, if available, uncheck Fully Protected
 Path, check Protection Channel Access, click Yes in the Warning dialog box, and then continue
 with Step 18.

Circuits routed on MS-SPRing protection channels are not protected and are preempted during MS-SPRing switches.

- **Step 14** If you selected Fully Protected Path in Step 13 and the circuit will be routed on an SNCP ring, choose one of the following:
 - **Nodal Diversity Required**—Ensures that the primary and alternate paths within the SNCP ring portions of the complete circuit path are nodally diverse.
 - **Nodal Diversity Desired**—Specifies that node diversity is preferred, but if node diversity is not possible, CTC creates fiber-diverse paths for the SNCP ring portion of the complete circuit path.
 - Link Diversity Only—Specifies that only fiber-diverse primary and alternate paths for SNCP ring portions of the complete circuit path are needed. The paths might be node-diverse, but CTC does not check for node diversity.
- Step 15 If you selected Fully Protected Path in Step 13 and the circuit will be routed on an MS-SPRing DRI or SNCP DRI, check the **Dual Ring Interconnect** check box.
- Step 16 Click Next. In the Route Review/Edit area, node icons appear for you to route the circuit manually. The green arrows pointing from the source node to other network nodes indicate spans that are available for routing the circuit. If you checked Dual Ring Interconnect for MS-SPRing, continue with Step 17. If you did not check Dual Ring Interconnect, continue with Step 18.
- **Step 17** If you checked Dual Ring Interconnect in Step 15 for an MS-SPRing DRI, complete the following substeps to assign primary and secondary nodes and ring type.
 - **a.** In the Route/Review Edit area, click the **MS-SPRing-DRI Nodes** tab.
 - b. Click Add MS-SPRing DRI.
 - c. In the Node options area of the MS-SPRing DRI Options dialog box, complete the following:
 - Primary Node—For a traditional or integrated MS-SPRing-DRI, choose the node where the circuit interconnects the rings.
 - Secondary Node—For a traditional or integrated MS-SPRing-DRI, choose the secondary node for the circuit to interconnect the rings. This route is used if the route on the primary node fails.
 - Primary Node #2—For a traditional MS-SPRing-DRI where two primary nodes are required to interconnect rings, choose the second primary node.

- Secondary Node #2—For a traditional MS-SPRing-DRI where two secondary nodes are required, choose the second secondary node.
- d. Click OK.
- **e.** Review the circuit constraints. To change the circuit routing order, choose a node in the Required Nodes/Lines lists and click the **Up** or **Down** buttons to change the circuit routing order. Click **Remove** to remove a node or span.
- f. Click the **Included Spans** tab, and continue with Step 18.
- Step 18 Complete the "DLP-F343 Provision an STM-N Circuit Route" task on page 18-47.
- Step 19 Click Finish. If the path does not meet the specified path diversity requirement, an error message appears and allows you to change the circuit path. If you entered more than 1 in the Number of circuits field, the Circuit Creation dialog box appears after the circuit is created so you can create the remaining circuits. Repeat Steps 8 through 18 for each additional circuit.

When provisioning a protected circuit, you only need to select one path of 1+1 spans from the source to the drop. If you select unprotected spans as part of the path, select two different paths for the unprotected segment of the path.

- **Step 20** When all the circuits are created, the main Circuits window appears. Verify that the circuit(s) you created appear in the window.
- **Step 21** Complete the "NTP-F167 Test Optical Circuits" procedure on page 6-16.

Stop. You have completed this procedure.

NTP-F166 Create a Unidirectional Optical Circuit with Multiple Drops

Purpose This procedure creates a unidirectional STM-N circuit with multiple traffic

drops (circuit destinations). The ONS 15600 SDH supports up to 2048 1:2 nonblocking broadcast connections or up to 682 1:n (where n is less than

or equal to 8) nonblocking broadcast connections.

Tools/Equipment None

Prerequisite Procedures NTP-F163 Verify Network Turn-Up, page 6-2

Required/As Needed As needed
Onsite/Remote Onsite or remote
Security Level Provisioning or higher

- Step 1 Complete the "DLP-F181 Log into CTC" task on page 16-32 at a node on the network where you will create the optical circuit. If you are already logged in, continue with Step 2.
- **Step 2** If you want to assign a name to the circuit source and destination ports before you create the circuit, complete the "DLP-F249 Assign a Name to a Port" task on page 17-42. If not, continue with Step 3.
- Step 3 If the optical ports at the source and/or destination nodes are ASAP PPM ports, complete the "NTP-F196 Manage Pluggable Port Modules on the ASAP Card" procedure on page 10-1 and set the port type to STM1, STM4, STM16, or STM 64 as necessary.
- Step 4 From the View menu, choose Go To Network View.

- Step 5 Click the Circuits tab. then click Create.
- Step 6 In the Circuit Creation dialog box, complete the following fields:
 - Circuit Type—Choose VC HO PATH CIRCUIT.
 - Number of Circuits—Leave the default unchanged (1).
 - Auto-ranged—Unavailable when the Number of Circuits field is 1.
- Step 7 Click Next.
- Step 8 Define the circuit attributes:
 - Name—Assign a name to the circuit. The name can be alphanumeric and up to 48 characters (including spaces). Circuit names should be 44 characters or less if you want the ability to create monitor circuits. If you leave the field blank, CTC assigns a default name to the circuit.
 - Size—Choose the circuit size: VC3, VC4, VC4-4c, VC4-8c, VC4-16c, or VC4-64c. ASAP optical ports also allow circuit sizes of VC4-2c and VC4-3c.
 - Bidirectional—Uncheck this box for this circuit.
 - Create cross-connects only (TL1-like)—Check this check box if you want to create one or more cross-connects to complete a signal path for TL1-generated circuits. Also, low-order tunnels and Ethergroup sources and destinations are unavailable.
 - Diagnostic—Leave unchecked.
 - State—Choose the administrative state to apply to all of the cross-connects in a circuit:
 - Unlocked—Puts the circuit cross-connects in the Unlocked-enabled service state.
 - **Locked, disabled**—Puts the circuit cross-connects in the Locked-enabled, disabled service state. Traffic is not passed on the circuit.
 - Unlocked, automatic In Service—Puts the circuit cross-connects in the Unlocked-disabled, automaticInService service state and suppresses alarms and conditions. When the connections receive a valid signal, the service state automatically changes to Unlocked-enabled.
 - **Locked, maintenance**—Puts the circuit cross-connects in the Locked-enabled, maintenance service state. The maintenance state does not interrupt traffic flow; it suppresses alarms and conditions and allows loopbacks to be performed on the circuit. Use Locked, maintenance for circuit testing or to suppress circuit alarms temporarily. Change the administrative state to Unlocked; Unlocked, automaticInService; or Locked, disabled when testing is complete. See the "DLP-F313 Change a Circuit Service State" task on page 18-13. For additional information about circuit service states, refer to the "Circuits and Tunnels" chapter in the Cisco ONS 15600 SDH Reference Manual.
 - Apply to drop ports—Check this check box if you want to apply the administrative state chosen in the State field to the circuit source and destination ports. CTC applies the administrative state to the ports only if the circuit bandwidth is the same as the port bandwidth or, if the port bandwidth is larger than the circuit, the circuit must be the first circuit to use the port. If not, a Warning dialog box displays the ports where the administrative state could not be applied. If the check box is unchecked, CTC does not apply the administrative state of the source and destination ports.

Note

If ports managed into the Unlocked administrative state are not receiving signals, loss of signal alarms are generated and the port service state transitions to Unlocked-disabled.failed.

- Protected Drops—Check this box if you want the circuit routed to only protect drops. If you check this box, CTC displays only protected cards as source and destination choices.
- Step 9 If the circuit will be routed on an SNCP ring, complete the "DLP-F250 Provision SNCP Selectors During Circuit Creation" task on page 17-43.
- Step 10 Click Next.
- Complete the "DLP-F194 Provision an Optical Circuit Source and Destination" task on page 16-50 for Step 11 the circuit you are creating.
- In the Circuit Routing Preferences area, uncheck Route Automatically. When unchecked, the Step 12 Using Required Nodes/Spans and Review Route Before Circuit Creation check boxes are not available.
- Set the circuit path protection: Step 13
 - To route the circuit on a protected path, leave **Fully Protected Path** checked and continue with Step 14. Fully protected paths might or might not have SNCP ring path segments (with primary and alternate paths), and the path diversity options apply only to SNCP ring path segments, if any exist.
 - To create an unprotected circuit, uncheck Fully Protected Path and continue with Step 16.
 - To route the circuit on an MS-SPRing protection channel, if available, uncheck Fully Protected Path, check Protection Channel Access, click Yes in the Warning dialog box, and then continue with Step 16.

Circuits routed on MS-SPRing protection channels are not protected and are preempted during MS-SPRing switches.

- Step 14 If you selected Fully Protected Path in Step 13, choose one of the following:
 - Nodal Diversity Required—Ensures that the primary and alternate paths within the SNCP ring portions of the complete circuit path are nodally diverse.
 - Nodal Diversity Desired—Specifies that node diversity is preferred, but if node diversity is not possible, CTC creates fiber-diverse paths for the SNCP ring portion of the complete circuit path.
 - **Link Diversity Only**—Specifies that only fiber-diverse primary and alternate paths for SNCP ring portions of the complete circuit path are needed. The paths might be node-diverse, but CTC does not check for node diversity.

Note

For manually routed circuits, CTC checks your manually provisioned path against the path diversity option you choose. If the path does not meet the path diversity requirement that is specified, CTC displays an error message.

- Step 15 If you selected Fully Protected Path in Step 13 and the circuit will be routed on an SNCP DRI, check the **Dual Ring Interconnect** check box.
- Click **Next**. In the Route Review and Edit area, node icons appear so you can route the circuit manually. Step 16 The green arrows pointing from the selected node to other network nodes indicate spans that are available for routing the circuit.
- Complete the "DLP-F343 Provision an STM-N Circuit Route" task on page 18-47. Step 17

When provisioning a protected circuit, you only need to select one 1+1 span paths from the source to the drop. If you select unprotected spans as part of the path, you must provision both the working and protect paths.

- **Step 18** Click **Finish**. After completing the circuit, the Circuits window appears.
- **Step 19** In the Circuits window, click the circuit that you want to route to multiple drops. The Delete, Edit, and Search radio buttons become active.
- Step 20 Click Edit. The Edit Circuit window appears with the General tab selected. All nodes in the DCC network appear on the network. Circuit source and destination information appears under the source and destination nodes. To display a detailed view of the circuit, click Show Detailed Map. You can rearrange the node icons by selecting the node with the left mouse button, pressing Ctrl, and dragging the icon to the new location.
- **Step 21** In the Edit Circuit dialog box, click the **Drops** tab. A list of existing drops appears.
- Step 22 Click Create.
- **Step 23** In the Define New Drop dialog box, define the new drop:
 - **a.** Node—Choose the target node for the circuit drop.
 - b. Slot—Choose the target card and slot.
 - **c.** Port, VC—Choose the port and/or VC from the Port and VC drop-down lists. The choice in these lists depends on the card selected in Step b.
 - **d.** The routing preferences for the new drop will match those of the original circuit. However, you can modify the following:
 - If the original circuit was routed on a protected path, you can change the nodal diversity options: Nodal Diversity Required, Nodal Diversity Desired, or Link Diversity Only. See Step 14 for options descriptions.
 - If the original circuit was not routed on a protected path, the Protection Channel Access option is available. See Step 13 for a description of the PCA option.
 - **e.** Click **OK**. The new drop appears in the Drops list.
- **Step 24** If you need to create additional drops on the circuit, repeat Steps 21 through 23.
- **Step 25** Click **Close**. The Circuits window appears.
- Step 26 Verify that the new drops appear under the Destination column for the circuit you edited. If they do not appear, repeat Steps 21 through 25 while verifying that all options are provisioned correctly.
- Step 27 Complete the "NTP-F167 Test Optical Circuits" procedure on page 6-16.

NTP-F167 Test Optical Circuits

Purpose This procedure tests the first optical circuit created on the source or

destination port.

Tools/Equipment Test set capable of optical speeds, appropriate fibers, and attenuators

Prerequisite Procedures This procedure assumes you completed facility loopback tests to test the

fibers and cables from the source and destination ONS 15600 SDHs to the fiber distribution panel or the DSX. If this has not been done, do so now. Refer to the Cisco ONS 15600 SDH Troubleshooting Guide. In addition,

you must complete one of the following procedures:

• NTP-F164 Create an Automatically Routed Optical Circuit, page 6-4

• NTP-F165 Create a Manually Routed Optical Circuit, page 6-9

Required/As Needed Required Onsite/Remote Onsite

Security Level Provisioning or higher

You cannot disconnect fibers and connect test sets if the circuit is carrying traffic.

- Step 1 Complete the "DLP-F181 Log into CTC" task on page 16-32 at the source node. If you are already logged in, continue with Step 2.
- **Step 2** Complete the "DLP-F313 Change a Circuit Service State" task on page 18-13 to set the circuit and circuit ports to the Locked-enabled,maintenance service state.
- **Step 3** Set up the loopback cable at the destination node:
 - **a.** Test the loopback cable by connecting one end to the test set transmit (Tx) port and the other end to the test set receive (Rx) port. Use appropriate attenuation; for information on attenuation, refer to the test set manual. If the test set does not run error-free, check the cable for damage and check the test set to make sure it is set up correctly.
 - **b.** Install the loopback cable on the port you are testing. Connect the Tx connector to the Rx connector of the port being tested.

Use an appropriately sized attenuator when connecting transmit ports to receive ports. On the long-reach optical cards, use a 15 dB attenuator; on the short-reach optical cards, use a 3 dB attenuator.

- **Step 4** Set up the loopback cable at the source node:
 - **a.** Test the loopback cable by connecting one end to the test set Tx port and the other end to the test set Rx port. Use appropriate attenuation; for more information, refer to the test set manual. If the test set does not run error-free, check the cable for damage and check the test set to make sure it is set up correctly.
 - **b.** At the source node, attach the loopback cable to the port you are testing. Connect the Tx port of the test set to the circuit Rx port, and the test set Rx port to the circuit Tx port.

Use an appropriately sized attenuator when connecting transmit ports to receive ports. On the long-reach optical cards (OC48/STM16 LR/LH 16 Port 1550 and the OC192/STM64 LR/LH 4 Port 1550), use a 15 dB attenuator; on the short-reach optical cards (OC48/STM16 SR/SH 16 Port 1310 and OC192/STM64 SR/SH 4 Port 1310), use a 3 dB attenuator.

- Step 5 Configure the test set for the source STM-16 or STM-64 ONS 15600 SDH card. For information about configuring your test set, consult your test set user guide.
- Step 6 Verify that the test set displays a clean signal. If a clean signal is not present, repeat Steps 2 through 5 to make sure you have configured the test set and cabling correctly.
- **Step 7** Inject errors from the test set. Verify that the errors appear at the source and destination nodes.
- Step 8 Clear the performance monitoring (PM) parameters for the ports that you tested. See the "DLP-F213 Clear Selected PM Counts" task on page 17-12 for instructions.
- **Step 9** Perform protection switch testing appropriate to the SDH topology:
 - For MS-SPRings, see the "DLP-F342 MS-SPRing Switch Test" task on page 18-43.
 - For SNCP rings, see the "DLP-F193 SNCP Protection Switching Test" task on page 16-49.
- **Step 10** Perform a bit error rate (BER) test for 12 hours or according to site specification. For information about configuring your test set for BER testing, see your test set user guide.
- **Step 11** After the BER test is complete, print the results or save them to a disk for future reference. For information about printing or saving test results, see your test set user guide.
- Step 12 Complete the "DLP-F313 Change a Circuit Service State" task on page 18-13 to change the circuit and circuit ports from the Locked-enabled, maintenance service state to their previous service states.

Stop. You have completed this procedure.

NTP-F168 Create a Half Circuit on an MS-SPRing or 1+1 Node

Purpose This procedure creates an STM-N circuit from a drop card to an STM-N

trunk card on the same node in an MS-SPRing or 1+1 topology.

Tools/Equipment None

Prerequisite Procedures NTP-F163 Verify Network Turn-Up, page 6-2

Required/As Needed As needed
Onsite/Remote Onsite or remote
Security Level Provisioning or higher

- Step 1 Complete the "DLP-F181 Log into CTC" task on page 16-32 at a node on the network where you will create the half circuit. If you are already logged in, continue with Step 2.
- **Step 2** If you want to assign a name to the circuit source and destination ports before you create the circuit, complete the "DLP-F249 Assign a Name to a Port" task on page 17-42. If not, continue with Step 3.
- Step 3 If the ports at the source and/or destination nodes are ASAP PPM ports, complete the "NTP-F196 Manage Pluggable Port Modules on the ASAP Card" procedure on page 10-1.

- Step 4 From the View menu, choose Go To Network View.
- Step 5 Click the Circuits tab, then click Create.
- **Step 6** In the Circuit Creation dialog box, complete the following fields:
 - Circuit Type—Choose VC_HO_PATH_CIRCUIT.
 - Number of circuits—Enter the number of circuits you want to create. The default is 1.
 - Auto-ranged—Uncheck this check box; it is automatically selected if you enter more than 1 in the Number of Circuits field.

Step 7 Click Next.

Step 8 Define the circuit attributes:

- Name—Assign a name to the circuit. The name can be alphanumeric and up to 48 characters (including spaces). Circuit names should be 44 characters or less if you want the ability to create monitor circuits. If you leave the field blank, CTC assigns a default name to the circuit.
- Size—Choose VC4.
- Bidirectional—Leave checked for this circuit (default).
- Create cross-connects only (TL1-like)—Check this box if you want to create one or more cross-connects to complete a signal path for TL1-generated circuits. Also, low-order tunnels and Ethergroup sources and destinations are unavailable.
- Diagnostic—Leave unchecked.
- State—Choose the administrative state to apply to all of the cross-connects in a circuit:
 - Unlocked—Puts the circuit cross-connects in the Unlocked-enabled service state.
 - Locked, disabled—Puts the circuit cross-connects in the Locked-enabled, disabled service state.
 Traffic is not passed on the circuit.
 - Unlocked,automaticInService—Puts the circuit cross-connects in the
 Unlocked-disabled,automaticInService service state and suppresses alarms and conditions.
 When the connections receive a valid signal, the service state automatically changes to
 Unlocked-enabled.
 - Locked,maintenance—Puts the circuit cross-connects in the Locked-enabled,maintenance service state. The maintenance state does not interrupt traffic flow; it suppresses alarms and conditions and allows loopbacks to be performed on the circuit. Use Locked,maintenance for circuit testing or to suppress circuit alarms temporarily. Change the administrative state to Unlocked; Unlocked,automaticInService or Locked,disabled when testing is complete. See the "DLP-F313 Change a Circuit Service State" task on page 18-13. For additional information about circuit service states, refer to the "Circuits and Tunnels" chapter in the Cisco ONS 15600 SDH Reference Manual.
- Apply to drop ports—Check this check box if you want to apply the administrative state chosen in the State field to the circuit source and destination ports. CTC applies the administrative state to the ports only if the circuit bandwidth is the same as the port bandwidth or, if the port bandwidth is larger than the circuit, the circuit must be the first circuit to use the port. If not, a Warning dialog box displays the ports where the administrative state could not be applied. If the check box is unchecked, CTC does not apply the administrative state of the source and destination ports.

If ports managed into the Unlocked administrative state are not receiving signals, loss of signal alarms are generated and the port service state transitions to Unlocked-disabled.failed.

- Protected Drops—Uncheck this box.
- Step 9 Click Next.
- Step 10 Complete the "DLP-F251 Provision a Half Circuit Source and Destination on an MS-SPRing or 1+1 Protection Group" task on page 17-44.
- **Step 11** Click **Finish**. One of the following results occurs, depending on the circuit properties you chose in the Circuit Creation dialog box:
 - If you entered more than 1 in the Number of circuits field and checked Auto-ranged, CTC automatically creates the number of circuits entered in Number of circuits. If autoranging cannot complete all the circuits, for example, because sequential ports are unavailable at the source or destination, a dialog box appears. Set the new source or destination for the remaining circuits, then click **Finish** to continue autoranging. After completing the circuit(s), the Circuits window appears.
 - If you entered more than 1 in the Number of circuits field and did not check Auto-ranged, the Circuit Creation dialog box appears so you can create the remaining circuits. Repeat Steps 6 through 10 for each additional circuit. After completing the circuit(s), the Circuits window appears.
- **Step 12** In the Circuits window, verify that the new circuits appear in the circuits list.
- **Step 13** Complete the "NTP-F167 Test Optical Circuits" procedure on page 6-16. Skip this step if you built a test circuit.

NTP-F169 Create a Half Circuit on an SNCP Node

Purpose This procedure creates an STM-N circuit from a drop card to an STM-N

line card on the same SNCP node.

Tools/Equipment None

Prerequisite Procedures NTP-F163 Verify Network Turn-Up, page 6-2

Required/As Needed As needed
Onsite/Remote Onsite or remote
Security Level Provisioning or higher

- Step 1 Complete the "DLP-F181 Log into CTC" task on page 16-32 at a node on the network where you will create the circuit. If you are already logged in, continue with Step 2.
- **Step 2** If you want to assign a name to the circuit source and destination ports before you create the circuit, complete the "DLP-F249 Assign a Name to a Port" task on page 17-42. If not, continue with Step 3.
- **Step 3** If the ports at the source and/or destination nodes are ASAP PPM ports, complete the "NTP-F196 Manage Pluggable Port Modules on the ASAP Card" procedure on page 10-1.
- Step 4 From the View menu, choose Go To Network View.
- Step 5 Click the Circuits tab, then click Create.
- **Step 6** In the Circuit Creation dialog box, complete the following fields:
 - Circuit Type—Choose VC_HO_PATH_CIRCUIT.
 - Number of Circuits—Enter the number of circuits you want to create. The default is 1.

 Auto-ranged—Uncheck this check box; it is automatically selected if you enter more than 1 in the Number of Circuits field.

Step 7 Click Next.

Step 8 Define the circuit attributes:

- Name—Assign a name to the circuit. The name can be alphanumeric and up to 48 characters (including spaces). Circuit names should be 44 characters or less if you want the ability to create monitor circuits. If you leave the field blank, CTC assigns a default name to the circuit.
- Size—Choose VC3, VC4, VC4-4c, VC4-8c, VC4-16c, or VC4-64c. ASAP optical ports also allow circuit sizes of VC4-2c and VC4-3c.
- Bidirectional—Leave checked for this circuit (default).
- Create cross-connects only (TL1-like)—Check this box if you want to create one or more cross-connects to complete a signal path for TL1-generated circuits.
- · Diagnostic—Leave unchecked.
- State—Choose the administrative state to apply to all of the cross-connects in a circuit:
 - Unlocked—Puts the circuit cross-connects in the Unlocked-enabled service state.
 - Locked, disabled—Puts the circuit cross-connects in the Locked-enabled, disabled service state.
 Traffic is not passed on the circuit.
 - Unlocked,automaticInService—Puts the circuit cross-connects in the
 Unlocked-disabled,automaticInService service state and suppresses alarms and conditions.
 When the connections receive a valid signal, the service state automatically changes to
 Unlocked-enabled.
 - Locked,maintenance—Puts the circuit cross-connects in the Locked-enabled,maintenance service state. The maintenance state does not interrupt traffic flow; it suppresses alarms and conditions and allows loopbacks to be performed on the circuit. Use Locked,maintenance for circuit testing or to suppress circuit alarms temporarily. Change the administrative state to Unlocked; Unlocked,automaticInService; or Locked,disabled when testing is complete. See the "DLP-F313 Change a Circuit Service State" task on page 18-13. For additional information about circuit service states, refer to the "Circuits and Tunnels" chapter in the Cisco ONS 15600 SDH Reference Manual.
- Apply to drop ports—Check this box if you want to apply the state chosen in the State field to the circuit source and destination ports. CTC will apply the circuit state to the ports only if the circuit bandwidth is the same as the port bandwidth or, if the port bandwidth is larger than the circuit, the circuit must be the first circuit to use the drop port. If not, a Warning dialog box displays the ports where the circuit state could not be applied. If the box is unchecked, CTC will not change the state of the source and destination ports.

Note

If ports managed into the Unlocked administrative state are not receiving signals, loss of signal alarms are generated and the port service state transitions to Unlocked-disabled, failed.

- Protected Drops—Leave this box unchecked.
- **Step 9** Complete the "DLP-F250 Provision SNCP Selectors During Circuit Creation" task on page 17-43.
- Step 10 Click Next.
- Step 11 Complete the "DLP-F252 Provision a Half Circuit Source and Destination on an SNCP" task on page 17-45.

- **Step 12** Click **Finish**. One of the following results occurs, depending on the circuit properties you chose in the Circuit Creation dialog box:
 - If you entered more than 1 in the Number of circuits field and checked Auto-ranged, CTC automatically creates the number of circuits entered in Number of circuits. If autoranging cannot complete all the circuits, for example, because sequential ports are unavailable at the source or destination, a dialog box appears. Set the new source or destination for the remaining circuits, then click Finish to continue autoranging. After completing the circuit(s), the Circuits window appears.
 - If you entered more than 1 in the Number of circuits field and did not check Auto-ranged, the Circuit Creation dialog box appears so you can create the remaining circuits. Repeat Steps 6 through 11 for each additional circuit. After completing the circuit(s), the Circuits window appears.
- **Step 13** In the Circuits window, verify that the new circuits appear in the circuits list.
- Step 14 Complete the "NTP-F167 Test Optical Circuits" procedure on page 6-16. Skip this step if you built a test circuit.

NTP-F170 Create Overhead Circuits

Purpose This procedure creates overhead circuits on an ONS 15600 SDH network.

ONS 15600 SDH overhead circuits include DCC tunnels and

IP-encapsulated tunnels.

Tools/Equipment None

Prerequisite Procedures NTP-F163 Verify Network Turn-Up, page 6-2

Required/As Needed As needed

Onsite/Remote Onsite or remote
Security Level Provisioning or higher

- Step 1 Complete the "DLP-F181 Log into CTC" task on page 16-32 at the node where you will create the overhead circuit. If you are already logged in, continue with Step 2.
- Step 2 From the View menu, choose Go to Network View.
- **Step 3** As needed, complete the "DLP-F244 Create a DCC Tunnel" task on page 17-36.
- **Step 4** As needed, complete the "DLP-F166 Create an IP-Encapsulated Tunnel" task on page 16-7.

Stop. You have completed this procedure.

NTP-F171 Create an ASAP Ethernet Circuit

Purpose This procedure creates an Ethernet circuit using ASAP PPM ports.

Tools/Equipment An ASAP card must be installed.

Prerequisite Procedures NTP-F163 Verify Network Turn-Up, page 6-2

Required/As Needed As needed
Onsite/Remote Onsite or remote

Security Level Provisioning or higher

This procedure requires the use of automatic routing. Automatic routing is not available if both the Automatic Circuit Routing NE default and the Network Circuit Automatic Routing Overridable NE default are set to FALSE. For a full description of these defaults see Appendix C, "Network Element Defaults," in the *Cisco ONS 15600 SDH Reference Manual*.

- Step 1 Complete the "DLP-F181 Log into CTC" task on page 16-32 at the node where you will create the circuit. If you are already logged in, continue with Step 2.
- Step 2 Complete the "NTP-F196 Manage Pluggable Port Modules on the ASAP Card" procedure on page 10-1 and set the port type to ETHR.
- Step 3 From the View menu, choose Go to Network View.
- Step 4 Click the Circuits tab and click Create.
- **Step 5** In the Create Circuits dialog box, complete the following fields:
 - Circuit Type—Choose VC_HO_PATH_CIRCUIT.
 - Number of Circuits—Leave the default unchanged (1).
 - Auto-ranged—Unavailable.
- Step 6 Click Next.
- **Step 7** Define the circuit attributes:
 - Name—Assign a name to the circuit. The name can be alphanumeric and up to 48 characters (including spaces). Circuit names should be 44 characters or less if you want the ability to create monitor circuits. If you leave the field blank, CTC assigns a default name to the circuit.
 - Size—Choose the circuit size. Valid circuit sizes for an ASAP circuit are VC3, VC4, VC4-2c, VC4-3c, VC4-4c, and VC4-8c.
 - Bidirectional—Leave the default unchanged (checked).
 - Create cross-connects only (TL1-like)—Uncheck this box.
 - Diagnostic—Leave unchecked.
 - State—Choose the administrative state to apply to all of the cross-connects in a circuit:
 - Unlocked—Puts the circuit cross-connects in the Unlocked-enabled service state.
 - Locked, disabled—Puts the circuit cross-connects in the Locked-enabled, disabled service state.
 Traffic is not passed on the circuit.

- Unlocked,automaticInService—Puts the circuit cross-connects in the
 Unlocked-disabled,automaticInService service state and suppresses alarms and conditions.
 When the connections receive a valid signal, the service state automatically changes to
 Unlocked-enabled.
- Locked,maintenance—Puts the circuit cross-connects in the Locked-enabled,maintenance service state. The maintenance state does not interrupt traffic flow; it suppresses alarms and conditions and allows loopbacks to be performed on the circuit. Use Locked,maintenance for circuit testing or to suppress circuit alarms temporarily. Change the administrative state to Unlocked; Unlocked,automaticInService; or Locked,disabled when testing is complete. See the "DLP-F313 Change a Circuit Service State" task on page 18-13. For additional information about circuit service states, refer to the "Circuits and Tunnels" chapter in the Cisco ONS 15600 SDH Reference Manual.
- Apply to drop ports—Leave this box at the default (unchecked).

If ports managed into the Unlocked administrative state are not receiving signals, loss of signal alarms are generated and the port service state transitions to Unlocked-disabled, failed.

- Protected Drops—Leave the default unchanged (unchecked).
- **Step 8** If the circuit will be routed on an SNCP ring, complete the "DLP-F250 Provision SNCP Selectors During Circuit Creation" task on page 17-43.
- Step 9 Click Next.
- **Step 10** Provision the circuit source:
 - **a.** From the Node drop-down list, choose the circuit source node. Either end node can be the point-to-point circuit source.
 - **b.** From the Slot drop-down list, choose the slot containing the ASAP card that you will use for one end of the point-to-point circuit.
 - **c.** From the Port drop-down list, choose a port.
- Step 11 Click Next.
- **Step 12** Provision the circuit destination:
 - **a.** From the Node drop-down list, choose the circuit destination node.
 - **b.** From the Slot drop-down list, choose the slot containing the card that you will use for other end of the point-to-point circuit.
 - **c.** From the Port drop-down list, choose a port, if applicable.
- Step 13 Click Next.
- **Step 14** In the left pane of the Circuit Routing Preferences window, confirm that the following information is correct:
 - Circuit name
 - Circuit type
 - · Circuit size
 - ONS nodes
- **Step 15** If the information is not correct, click the **Back** button and repeat Steps 5 through 14 with the correct information. If the information is correct, check **Route Automatically**.

Step 16 Click Finish.

To change the capacity of an ASAP circuit, you must delete the original circuit and reprovision a new larger circuit.

- Step 17 Complete the "DLP-F324 Provision ASAP Ethernet Ports" task on page 18-22, as necessary.
- Step 18 Complete the "DLP-F325 Provision ASAP POS Ports" task on page 18-23, as necessary.
- Step 19 Complete the "NTP-F172 Test ASAP Ethernet Circuits" procedure on page 6-24.

Stop. You have completed this procedure.

NTP-F172 Test ASAP Ethernet Circuits

Purpose This procedure tests circuits created on ASAP Ethernet ports.

Tools/Equipment Ethernet test set and appropriate fibers

Prerequisite Procedures This procedure assumes you completed facility loopback tests to test the

fibers and cables from the source and destination ONS 15600 SDHs to the fiber distribution panel or the DSX, and "NTP-F171 Create an ASAP Ethernet Circuit" procedure on page 6-22. For more information on facility loopback tests, refer to the *Cisco ONS 15600 SDH Troubleshooting Guide*.

Required/As Needed As needed **Onsite/Remote** Onsite

Security Level Provisioning or higher

- Step 1 Complete the "DLP-F181 Log into CTC" task on page 16-32 at the node where you will create the circuit.
- Step 2 Complete the "DLP-F313 Change a Circuit Service State" task on page 18-13 to change the circuit and circuit ports to the Locked-enabled, maintenance service state.
- **Step 3** On the shelf graphic, double-click the circuit source card.
- **Step 4** Click the **Provisioning > Ethernet > Port** tabs.
- **Step 5** Verify the following settings:
 - Admin State—Locked, maintenance
 - Flow Control Neg—Checked or unchecked as indicated by the circuit or site plan
 - Max Size—Checked or unchecked as indicated by the circuit or site plan
- **Step 6** Repeat Steps 1 through 5 for the destination node.
- **Step 7** At the destination node, connect the Ethernet test to the destination port and configure the test set to send and receive the appropriate Ethernet traffic.

At this point, you are not able to send and receive Ethernet traffic.

- **Step 8** At the source node, connect an Ethernet test set to the source port and configure the test set to send and receive the appropriate Ethernet traffic.
- **Step 9** Transmit Ethernet frames between both test sets. If you cannot transmit and receive Ethernet traffic between the nodes, repeat Steps 1 through 8 to make sure you configured the Ethernet ports and test set correctly.
- **Step 10** Perform protection switch testing appropriate to the SDH topology:
 - For SNCP rings, complete the "DLP-F193 SNCP Protection Switching Test" task on page 16-49.
 - For MS-SPRings, complete the "DLP-F342 MS-SPRing Switch Test" task on page 18-43.

Configure your test set according to local site practice. For information about configuring your test set, see your test set user guide.

- Step 11 Complete the "DLP-F313 Change a Circuit Service State" task on page 18-13 to change the circuit and circuit ports to the Unlocked-enabled service state.
- **Step 12** After the circuit test is complete, print the results or save them to a disk for future reference. For information about printing or saving test results, see your test set user guide.

Stop. You have completed this procedure.

NTP-F173 Create a High-Order Test Circuit around the Ring

Purpose This procedure creates a high-order test circuit that routes traffic around a

ring with the source and destination located on different ports of the same

node.

Tools/Equipment None

Prerequisite Procedures NTP-F163 Verify Network Turn-Up, page 6-2

Required/As Needed As needed
Onsite/Remote Onsite or remote
Security Level Provisioning or higher

- Step 1 Complete the "DLP-F181 Log into CTC" task on page 16-32 at a node on the network where you want to create an optical circuit. If you are already logged in, continue with Step 2.
- **Step 2** If you want to assign a name to the circuit source and destination ports before you create the circuit, complete the "DLP-F249 Assign a Name to a Port" task on page 17-42. If not, continue with Step 3.
- Step 3 If the optical ports at the source and/or destination nodes are ASAP PPM ports, complete the "NTP-F196 Manage Pluggable Port Modules on the ASAP Card" procedure on page 10-1 and set the port type to STM1, STM4, or STM16, as necessary.
- Step 4 From the View menu, choose Go To Network View.
- Step 5 Click the Circuits tab, then click Create.
- **Step 6** In the Circuit Creation dialog box, complete the following fields:
 - Circuit Type—Choose VC_HO_PATH_CIRCUIT.
 - Number of Circuits—Enter the number of STM-N circuits you want to create. The default is 1.

• Auto-ranged—Applies to automatically routed circuits only. If you entered more than 1 in the Number of Circuits field, uncheck this box. (The box is unavailable if only one circuit is entered in Number of Circuits.)

Step 7 Click Next.

Step 8 Define the circuit attributes (Figure 6-1 on page 6-6):

- Name—Assign a name to the circuit. The name can be alphanumeric and up to 48 characters (including spaces). Circuit names should be 44 characters or less if you want the ability to create monitor circuits. If you leave the field blank, CTC assigns a default name to the circuit.
- Size—Choose the circuit size: VC3, VC4, VC4-4c, VC4-8c, VC4-16c, or VC4-64c. ASAP optical ports also allow circuit sizes of VC4-2c and VC4-3c.
- Bidirectional—Leave checked (default) for this circuit. When checked, CTC creates a two-way circuit.
- Create cross-connects only (TL1-like)—Check this check box if you want to create one or more cross-connects to complete a signal path for TL1-generated circuits. Also, low-order tunnels and Ethergroup sources and destinations are unavailable.
- Diagnostic—Leave unchecked.
- State—Choose the administrative state to apply to all of the cross-connects in a circuit:
 - Unlocked—Puts the circuit cross-connects in the Unlocked-enabled service state.
 - Locked, disabled—Puts the circuit cross-connects in the Locked-enabled, disabled service state.
 Traffic is not passed on the circuit.
 - Unlocked,automaticInService—Puts the circuit cross-connects in the
 Unlocked-disabled,automaticInService service state and suppresses alarms and conditions.
 When the connections receive a valid signal, the service state automatically changes to
 Unlocked-enabled.
 - Locked,maintenance—Puts the circuit cross-connects in the Locked-enabled,maintenance service state. The maintenance state does not interrupt traffic flow; it suppresses alarms and conditions and allows loopbacks to be performed on the circuit. Use Locked,maintenance for circuit testing or to suppress circuit alarms temporarily. Change the administrative state to Unlocked; Unlocked,automaticInService; or Locked,disabled when testing is complete. See the "DLP-F313 Change a Circuit Service State" task on page 18-13. For additional information about circuit service states, refer to the "Circuits and Tunnels" chapter in the Cisco ONS 15600 SDH Reference Manual.
- Apply to drop ports—Check this check box if you want to apply the administrative state chosen in the State field to the circuit source and destination ports. CTC applies the administrative state to the ports only if the circuit bandwidth is the same as the port bandwidth or, if the port bandwidth is larger than the circuit, the circuit must be the first circuit to use the port. If not, a Warning dialog box displays the ports where the administrative state could not be applied. If the check box is unchecked, CTC does not apply the administrative state of the source and destination ports.

Note

If ports managed into the Unlocked administrative state are not receiving signals, loss of signal alarms are generated and the port service state transitions to Unlocked-disabled, failed.

• Protected Drops—If selected, CTC displays only protected cards and ports (1+1 protection) as choices for the circuit source and destination.

Step 9 Click Next.

Step 10 Choose the circuit source:

- a. From the Node drop-down list, choose the node where the circuit will originate.
- **b.** From the Slot drop-down list, choose the slot containing the card where the circuit originates. (If card capacity is fully utilized, it does not appear in the list.)
- c. Depending on the circuit origination card, choose the source port and/or VC from the Port and VC drop-down list. The Port drop-down list is only available if the card has multiple ports. VCs do not appear if they are already in use by other circuits.

Note

The VCs that appear depend on the card, circuit size, and protection scheme.

Step 11 Click Next.

Step 12 Choose the circuit destination:

Note

The destination port must be located on the same node as the circuit source port.

- a. From the Node drop-down list, choose the node selected in Step 10a.
- **b.** From the Slot drop-down list, choose the slot containing the card where the circuit will terminate (destination card). (If a card's capacity is fully utilized, the card does not appear in the drop-down list.)
- **c.** Depending on the card selected in Step b, choose the destination port and/or VC from the Port and VC drop-down lists. The Port drop-down list is available only if the card has multiple ports. The VCs that appear depend on the card, circuit size, and protection scheme.
- Step 13 Click Next.
- Step 14 In the Circuit Routing Preferences area (Figure 6-2 on page 6-7), uncheck Route Automatically.
- **Step 15** When routing a test circuit with source and destination ports on the same node, the Fully Protected Path check box is automatically disabled. Choose one of the following options:
 - To leave the test circuit unprotected, skip this step and continue with Step 16.
 - To route the test circuit on an MS-SPRing protection channel, check **Protection Channel Access**, click **Yes** in the Warning dialog box, then continue with Step 16.

Caution

Circuits routed on MS-SPRing protection channels are not protected and are preempted during MS-SPRing switches.

- **Step 16** Click **Next**. In the Route Review/Edit area, node icons appear for you to route the circuit manually. The green arrows pointing from the source node to other network nodes indicate spans that are available for routing the circuit.
- Step 17 Complete the "DLP-F343 Provision an STM-N Circuit Route" task on page 18-47.
- Step 18 Click Finish. If the path does not meet the specified path diversity requirement, an error message appears and allows you to change the circuit path. If you entered more than 1 in the Number of circuits field, the Circuit Creation dialog box appears after the circuit is created so you can create the remaining circuits. Repeat Steps 8 through 17 for each additional circuit.
- **Step 19** When all the circuits are created, the main Circuits window appears. Verify that the circuit(s) you created appear in the window.

NTP-F174 Create a Server Trail

Purpose This procedure creates a server trail, which provides a connection between

ONS nodes through a third-party network. You can create server trails

between any two any two STM-N or EC1 ports.

Tools/Equipment None

Prerequisite Procedures NTP-F163 Verify Network Turn-Up, page 6-2

Required/As Needed As needed
Onsite/Remote Onsite or remote
Security Level Provisioning or higher

You cannot create server trails on ports with DCC links.

- Step 1 Complete the "DLP-F181 Log into CTC" task on page 16-32 at the node where you will create the circuit. If you are already logged in, continue with Step 2.
- Step 2 From the View menu, choose Go to Network View.
- Step 3 Click the **Provisioning > Server Trails** tabs.
- Step 4 Click Create.
- **Step 5** In the Server Trail Creation dialog box, complete the following fields:
 - Type—Choose VC_HO_PATH_CIRCUIT.
 - Size—Depending on the type selected, choose the server trail size. For VC_HO_PATH_CIRCUIT, choose VC4-2c, VC4-3c, VC4-4c, VC4-6c, VC4-8c, VC4-12c, VC4-16c, VC4-64c, or VC4. For VC_LO_PATH_CIRCUIT, choose VC3, VC12, or VC11.
 - Protection Type—Choose one of the following protection types: Preemptible, Unprotected, or Fully Protected. The server trail protection sets the protection type for any circuit that traverses it.
 - Preemptible— PCA circuits will use server trails with the Preemptible attribute.
 - Unprotected—In Unprotected Server Trail, CTC assumes that the circuits going out from that
 specific port will not be protected by provider network and will look for a secondary path from
 source to destination if you are creating a protected circuit.
 - Fully Protected—In Fully Protected Server Trail, CTC assumes that the circuits going out from that specific port will be protected by provider network and will not look for a secondary path from source to destination.
 - Number of Trails—Enter the number of server trails. Number of trails determine the number of circuits that can be created on server trail. You can create a maximum of 3744 server trails on a node. You can create multiple server trails from the same port. This is determined by how many circuits of a particular server trail size can be supported on the port (for example, you can create one VC4 server trail from one STM-1 port or 3 VC3 and 63 VC12 server trails from one STM-1 port).
- Step 6 Click Next.

- **Step 7** In the Source area, complete the following:
 - **a.** From the Node drop-down list, choose the node where the source will originate.
 - **b.** From the Slot drop-down list, choose the slot containing the card where the server trail originates. (If a card's capacity is fully utilized, the card does not appear in the list.)
 - **c.** Depending on the card selected, choose the destination port and/or VC3, VC4, VC11, or VC12 from the Port and VC3, VC4, VC11, or VC12 lists. The Port list is only available if the card has multiple ports. VC3, VC4, VC11, or VC12 do not appear if they are already in use by other circuits.

Step 8 Click Next.

- **Step 9** In the Destination area, complete the following:
 - **a.** From the Node drop-down list, choose the destination node.
 - **b.** From the Slot drop-down list, choose the slot containing the card where the server trail will terminate (destination card). (If a card's capacity is fully utilized, the card does not appear in the list.)
 - **c.** Depending on the card selected, choose the destination port and/or VC3, VC4, VC11, or VC12 from the Port and VC3, VC4, VC11, or VC12 lists. The Port list is only available if the card has multiple ports. VC3, VC4, VC11, or VC12 do not appear if they are already in use by other circuits.

Step 10 Click Finish.

When Server Trails are created on an IPv4 or IPv6 node and the IP address of the node changes, complete the "DLP-F417 Repair Server Trails" task on page 19-16 to repair the Server Trails.

Stop. You have completed this procedure.

NTP-F175 Create an Automatically Routed Open-Ended SNCP High-Order Circuit

Purpose This procedure creates an open-ended high-order SNCP. Use this

procedure when it is necessary to route low-order traffic across an

ONS 15600 SDH hub.

Tools/Equipment None

Prerequisite Procedures NTP-F160 Provision an ONS 15600 SDH Node as a Protection Domain

Hub, page 5-28

NTP-F163 Verify Network Turn-Up, page 6-2

Required/As NeededAs neededOnsite/RemoteOnsite or remoteSecurity LevelProvisioning or higher

Step 1 Complete the "DLP-F181 Log into CTC" task on page 16-32 at a node on the network where you want to create the circuit. If you are already logged in, continue with Step 2.

- **Step 2** If you want to assign a name to the circuit source and destination ports before you create the circuit, complete the "DLP-F249 Assign a Name to a Port" task on page 17-42. If not, continue with Step 3.
- Step 3 If the optical ports at the source and/or destination nodes are ASAP PPM ports, complete the "NTP-F196 Manage Pluggable Port Modules on the ASAP Card" procedure on page 10-1 and set the port type to STM1, STM4, STM16, or STM 64, as necessary.
- **Step 4** From the View menu, choose **Go To Network View**.
- **Step 5** Click the **Circuits** tab, then click **Create**.
- **Step 6** In the Circuit Creation dialog box, complete the following fields:
 - Circuit Type—Choose VC HO PATH CIRCUIT.
 - Number of Circuits—Leave set to 1.
 - Auto-ranged—Leave unchecked.
- Step 7 Click Next.
- **Step 8** Define the circuit attributes (Figure 6-1 on page 6-6):
 - Name—Assign a name to the circuit. The name can be alphanumeric and up to 48 characters (including spaces). Circuit names should be 44 characters or less if you want the ability to create monitor circuits. If you leave the field blank, CTC assigns a default name to the circuit.
 - Size—Choose VC-4.
 - Bidirectional—As desired. When checked, CTC creates a two-way circuit.
 - Create cross-connects only (TL1-like)—Check this check box to create one or more cross-connects to complete a signal path for TL1-generated circuits. If you are creating an open-ended high-order SNCP circuit to bridge low-order traffic, you must check this check box.
 - · Diagnostic—Leave unchecked.
 - State—Choose the administrative state to apply to all of the cross-connects in a circuit:
 - Unlocked—Puts the circuit cross-connects in the Unlocked-enabled service state.
 - Locked, disabled—Puts the circuit cross-connects in the Locked-enabled, disabled service state.
 Traffic is not passed on the circuit.
 - Unlocked,automaticInService—Puts the circuit cross-connects in the
 Unlocked-disabled,automaticInService service state and suppresses alarms and conditions.
 When the connections receive a valid signal, the service state automatically changes to
 Unlocked-enabled.
 - Locked,maintenance—Puts the circuit cross-connects in the Locked-enabled,maintenance service state. The maintenance state does not interrupt traffic flow; it suppresses alarms and conditions and allows loopbacks to be performed on the circuit. Use Locked,maintenance for circuit testing or to suppress circuit alarms temporarily. Change the administrative state to Unlocked; Unlocked,automaticInService; or Locked,disabled when testing is complete. See the "DLP-F313 Change a Circuit Service State" task on page 18-13. For additional information about circuit service states, refer to the "Circuits and Tunnels" chapter in the Cisco ONS 15600 SDH Reference Manual.
 - Apply to drop ports—Check this check box if you want to apply the administrative state chosen in the State field to the circuit source and destination ports. CTC applies the administrative state to the ports only if the circuit bandwidth is the same as the port bandwidth or, if the port bandwidth is larger than the circuit, the circuit must be the first circuit to use the port. If not, a Warning dialog box displays the ports where the administrative state could not be applied. If the check box is unchecked, CTC does not apply the administrative state of the source and destination ports.

If ports managed into the Unlocked administrative state are not receiving signals, loss of signal alarms are generated and the port service state transitions to Unlocked-disabled, failed.

- Protected Drops—If selected, CTC displays only protected cards and ports (1+1 protection) as choices for the circuit source and destination.
- **Step 9** If the circuit will be routed on an SNCP ring, complete the "DLP-F250 Provision SNCP Selectors During Circuit Creation" task on page 17-43.
- Step 10 Click Next.
- Step 11 Complete the "DLP-F194 Provision an Optical Circuit Source and Destination" task on page 16-50 for the optical circuit that you are creating. Choose a single source and secondary destinations to create the open-ended SNCP circuit.
- **Step 12** In the Circuit Routing Preferences area (Figure 6-2 on page 6-7), check **Route Automatically**. Two options are available; choose either, both, or none based on your preferences.
 - Using Required Nodes/Spans—Check this box to specify nodes and spans to include or exclude in the CTC-generated circuit route.
 - Including nodes and spans for a circuit ensures that those nodes and spans are in the working path of the circuit (but not the protect path). Excluding nodes and spans ensures that the nodes and spans are not in the working or protect path of the circuit.
 - Review Route Before Creation—Check this box to review and edit the circuit route before the circuit
 is created.
- Step 13 Leave Fully Protected Path checked.
- **Step 14** Choose one of the following:
 - **Nodal Diversity Required**—Ensures that the primary and alternate paths within the SNCP ring portions of the complete circuit path are nodally diverse.
 - **Nodal Diversity Desired**—Specifies that node diversity is preferred, but if node diversity is not possible, CTC creates fiber-diverse paths for the SNCP ring portion of the complete circuit path.
 - Link Diversity Only—Specifies that only fiber-diverse primary and alternate paths for SNCP ring portions of the complete circuit path are needed. The paths might be node-diverse, but CTC does not check for node diversity.
- **Step 15** Click **Next**. If you selected Review Route Before Creation in Step 12, complete the following substeps; otherwise, continue with Step 16:
 - a. Click Next.
 - **b.** Review the circuit route. To add or delete a circuit span, select a node on the circuit route. Blue arrows show the circuit route. Green arrows indicate spans that you can add. Click a span arrowhead, then click **Include** to include the span or **Remove** to remove the span.
 - c. If the provisioned circuit does not reflect the routing and configuration you want, click Back to verify and change circuit information. If the circuit needs to be routed to a different path, see the "NTP-F165 Create a Manually Routed Optical Circuit" procedure on page 6-9 to assign the circuit route yourself.
- Step 16 Click Finish. If the path does not meet the specified path diversity requirement, an error message appears and allows you to change the circuit path. If you entered more than 1 in the Number of circuits field, the Circuit Creation dialog box appears after the circuit is created so you can create the remaining circuits. Repeat Steps 6 through 15 for each additional circuit.

- **Step 17** When all the circuits are created, the main Circuits window appears. Verify that the circuit(s) you created appear in the window.
- **Step 18** Complete the "NTP-F167 Test Optical Circuits" procedure on page 6-16.

NTP-E199 Create an Overlay Ring Circuit

Purpose This procedure creates an overlay ring circuit that routes traffic around

multiple rings, passing through one or more nodes more than once.

Tools/Equipment None

Prerequisite Procedures NTP-F163 Verify Network Turn-Up, page 6-2

Required/As Needed As needed

Onsite/Remote Onsite or remote

Security Level Provisioning or HIGHER

- Step 1 Complete the "DLP-F181 Log into CTC" task on page 16-32 at an ONS 15600 SDH on the network where you will create the circuit. If you are already logged in, continue with Step 2.
- **Step 2** If you want to assign a name to the circuit source and destination ports before you create the circuit, complete the "DLP-F249 Assign a Name to a Port" task on page 17-42. If you want CTC to assign a name automatically based on circuit type, node name, and sequence number, continue with Step 3.
- Step 3 From the View menu, choose Go to Network View.
- **Step 4** In the Circuit Creation dialog box, complete the following fields:
 - Circuit Type—Choose VC_HO_PATH_CIRCUIT.
 - Number of Circuits—Enter the number of circuits that you want to create. The default is 1.
 - Auto-ranged—Uncheck this checkbox.

Note

If specify the number of circuits as more than 1 and if the auto-ranged check box is selected, the Route Automatically check box in the Circuit Routing Preferences area is automatically checked; this prevents you from creating an overlay ring circuit.

- Step 5 Click Next.
- **Step 6** Define the circuit attributes:
 - Name—Assign a name to the circuit. The name can be alphanumeric and up to 48 characters (including spaces). Circuit names should be 44 characters or less if you want the ability to create monitor circuits. If you leave the field blank, CTC assigns a default name to the circuit.
 - Size—Choose the high-order circuit size: VC4, VC4-2c, VC4-3c, VC4-4c, VC4-8c, VC4-16c, or VC4-64c.
 - Bidirectional—Leave checked for this circuit.

- Create cross-connects only (TL1-like)—Check this check box if you want to create one or more cross-connects to complete a signal path for TL1-generated circuits. If you check this box, low-order tunnels and Ethergroup sources and destinations are unavailable.
- State—Choose the administrative state to apply to all of the cross-connects in a circuit:
 - Unlocked—Puts the circuit cross-connects in the Unlocked-enabled service state.
 - **Locked, disabled**—Puts the circuit cross-connects in the Locked-enabled, disabled service state. Traffic is not passed on the circuit.
 - Unlocked, automaticInService—Puts the circuit cross-connects in the Unlocked-disabled, automaticInService service state and suppresses alarms and conditions. When the connections receive a valid signal, the service state automatically changes to Unlocked-enabled.
 - Locked, maintenance—Puts the circuit cross-connects in the Locked-enabled, maintenance service state. The maintenance state does not interrupt traffic flow; it suppresses alarms and conditions and allows loopbacks to be performed on the circuit. Use Locked, maintenance for circuit testing or to suppress circuit alarms temporarily. Change the administrative state to Unlocked; Unlocked, automaticInService; or Locked, disabled when testing is complete. See the "DLP-F313 Change a Circuit Service State" task on page 18-13.

For additional information about circuit service states, refer to the "Circuits and Tunnels" chapter in the Cisco ONS 15454 SDH Reference Manual.

Apply to drop ports—Check this box if you want to apply the state chosen in the State field to the circuit source and destination ports. CTC applies the circuit state to the ports only if the circuit bandwidth is the same as the port bandwidth or, if the port bandwidth is larger than the circuit, the circuit must be the first circuit to use the drop port. If not, a Warning dialog box shows the ports where the circuit state could not be applied. If the box is unchecked, CTC does not change the state of the source and destination ports.

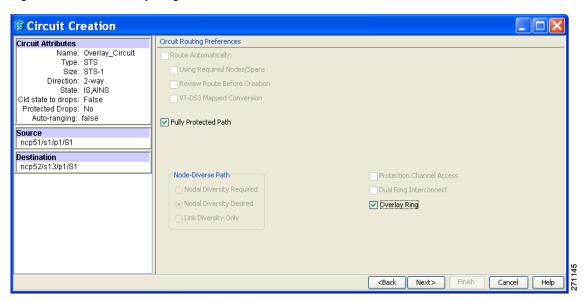
Note

If ports managed into the Unlocked administrative state are not receiving signals, loss of signal alarms are generated and the port service state transitions to Unlocked-disabled, failed.

Protected Drops—Select this check box if you want the circuit routed to protect drops only, that is, to ONS 15454 SDH cards that are in 1:1, 1:N, or 1+1 protection. If you select this check box, CTC shows only protected cards as source and destination choices.

Step 7 Click Next.

- Step 8 Choose the circuit source:
 - a. From the Node drop-down list, choose the node where the circuit will originate.
 - b. From the Slot drop-down list, choose the slot containing the high-order card where the circuit originates. (If a card's capacity is fully utilized, it does not appear in the drop-down list.)
 - c. Depending on the circuit origination card, choose the source port and/or VC-4 from the Port and VC-4 drop-down lists. The Port drop-down list is only available if the card has multiple ports. VC-4s are not shown if they are already in use by other circuits.



The VC4s that appear depend on the card, circuit size, and protection scheme.

Click Next. Step 9

- **Step 10** Choose the circuit destination:
 - **a.** From the Node drop-down list, choose the node selected in Step 8a.
 - **b.** From the Slot drop-down list, choose the slot containing the optical card where the circuit will terminate (destination card). (If a card's capacity is fully utilized, the card does not appear in the drop-down list.)
 - **c.** Depending on the card selected in Step b, choose the destination port and/or VC-4 from the Port and VC-4 drop-down lists. The Port drop-down list is available only if the card has multiple ports. The VC-4s that appear depend on the card, circuit size, and protection scheme.
- Step 11 Click Next.
- Step 12 In the Circuit Routing Preferences area, uncheck Route Automatically to enable the Overlay Ring check box.
- **Step 13** To set the circuit path protection, complete one of the following:
 - To create an unprotected circuit, uncheck the Fully Protected Path check box.
 - To create a protected circuit, check the Fully Protected Path check box.
- **Step 14** Check the **Overlay Ring** check box (Figure 6-3).

Figure 6-3 Overlay Ring Check Box

Step 15 Click **Next**. In the Route Review/Edit area, node icons appear for circuit routing. The circuit source node is selected. Green arrows pointing from the source node to other network nodes indicate spans that are available for routing the circuit.

During manual routing, while creating an overlay ring circuit, you can create loops. Creating loops allows you to return to the same node more than once while selecting the spans.

- Step 16 Click Finish.
- **Step 17** When all the circuits are created, the main Circuits window appears. Verify that the circuits you created appear in the window.

NTP- E199 Create an Overlay Ring Circuit