This chapter provides information about configuring Ethernet virtual circuits (EVC) for the Cisco ONS 15454 ML-MR-10 card.

This chapter contains the following major sections:

- Understanding EVC, page 32-1
- Configuring EVC, page 32-1

The ML-MR-10 card employs the Cisco IOS Modular QoS command-line interface (CLI), known as the MQC. For more information on general MQC configuration, refer to the following Cisco IOS documents:

- Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.2
- Cisco IOS Quality of Service Solutions Command Reference, Release 12.2

Understanding EVC

Ethernet virtual connection services (EVCS) uses the concepts of EVCs and service instances to provide Layer 2 switched Ethernet services. An EVC is an end-to-end representation of a single instance of a Layer 2 service being offered by a provider to a customer. It embodies the different parameters on which the service is being offered. A service instance is the instantiation of an EVC on a given port on a given ML-MR-10 card.

Configuring EVC

Establishing EVC on the ML-MR-10 card involves three basic operations:

- Configuring Layer 2 Ethernet services
- (Optional) Configuring quality of service (QoS)
- Configuring resilient packet ring (RPR) interfaces
Layer 2 Ethernet Services

IEEE 802.1Q (QinQ) mapping and service awareness on the ML-MR-10 card provides the following functionality:

- Only point-to-point EVC services are supported in Software Release 9.0 and above
- MAC address learning is not supported in Software Release 9.0 and above
- QinQ (1-to-2 translation) Layer 2 switching—QinQ adds an outer tag to the received dot1q traffic and then performs Layer 2 switching.
- Local VLAN significance—VLAN tags are significant only to the port.
- VLAN translation is supported

Restrictions and Usage Guidelines

When configuring QinQ Mapping and Service Awareness on ML-MR-10 cards, follow these restrictions and usage guidelines:

- Service Scalability:
 - Service Instances: 8,000
 - Bridge-domains: 4,000
- MQC actions supported include:
 - Bandwidth/Weighted Deficit Round Robin (WDRR) queuing
 - One priority queue per policy
 - Police, set Class of Service (CoS) (marks 802.1p bits)
 - Police, set QoS-group (egress queue number)
 - Police, set discard-class (typically on non-edge nodes)
 - Police, set rpr-ieee service-class {A | B | C}
 - Valid for traffic out of RPR interface
 - Qos-group is ignored for service-class A and B traffic
 - Qos-group will be considered for service-class C traffic (C0, C1, C2, C3 queues are used for this case)
 - Police, set discard-class {0 | 1 | 2} (0 = Green, 1 = Yellow, 2 = Red)

Configuring Layer 2

Use the following commands to configure Layer 2.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if</td>
<td></td>
</tr>
<tr>
<td></td>
<td>prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Configuring EVC

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 3** | `interface gigabitethernet [port number]` | Specifies the Gigabit Ethernet interface to configure, where:
- *port number*—Specifies the location of the interface. |
| **Step 4** | `Router(config-if)# [no] service instance id Ethernet [service-name]` | Creates a service instance (an instantiation of an EVC) on an interface and sets the device into the config-if-srv submode. | | |
| **Step 5** | `Router(config-if)# encapsulation dot1q vlan-id` | Defines the matching criteria to be used in order to map ingress dot1q frames on an interface to the appropriate service instance. |
| **Step 6** | `Router(config-if)# rewrite egress tag {push dot1q vlan-id | pop 1 | translate 1-to-1 dot1q vlan-id}` | Specifies the tag manipulation that is to be performed on the frame egress to the service instance. |

Examples

The following section provides examples for Configuring Ethernet Virtual Circuits and QoS on ML-MR-10 Card

QinQ Point-to-Point EVC

In this example, an incoming frame with a dot1q tag of 10 enters GigabitEthernet1 and exits with a dot1q tag of 11. No MAC learning is involved.

```plaintext
!Customer facing port  
Router(config)# interface GigabitEthernet1  
Router(config-if)# service instance 100 ethernet  
Router(config-if-srv)# encapsulation dot1q 10  
Router(config-if-srv)# rewrite egress tag pop 1  
Router(config-if-srv)# bridge-domain 10  
!RPR IEEE 802.17 Ring facing port  
Router(config)# interface rpr-ieee0  
Router(config-if)# service instance 101 ethernet  
Router(config-if-srv)# encapsulation dot1q 11  
Router(config-if-srv)# rewrite egress tag push 1 dot1q 11  
Router(config-if-srv)# bridge-domain 10
```

VLAN Translation

```plaintext
!Customer facing port  
Router(config)# interface GigabitEthernet1  
Router(config-if)# service instance 100 ethernet  
Router(config-if-srv)# encapsulation dot1q 10  
Router(config-if-srv)# rewrite egress tag translate 1-to-1 dot1q 10  
Router(config-if-srv)# bridge-domain 10  
!RPR IEEE 802.17 Ring facing port  
Router(config)# interface rpr-ieee0  
Router(config-if)# service instance 101 ethernet  
Router(config-if-srv)# encapsulation dot1q 11  
Router(config-if-srv)# rewrite egress tag translate 1-to-1 dot1q 11  
Router(config-if-srv)# bridge-domain 10
```
Untagged Service Instance

!Customer facing port
```
Router(config)# interface GigabitEthernet1
Router(config-if)# service instance 11 ethernet
Router(config-if-srv)# encapsulation untagged
Router(config-if-srv)# rewrite egress tag pop 1
Router(config-if-srv)# bridge-domain 11
!RPR IEEE 802.17 Ring facing port
Router(config)# interface rpr-ieee0
Router(config-if)# service instance 11 ethernet
Router(config-if-srv)# encapsulation dot1q 10
Router(config-if-srv)# rewrite egress tag push dot1q 10
Router(config-if-srv)# bridge-domain 11
```

Default Service Instance

The default service instance aggregates all the traffic except for the previously configured service instances on that interface.

Note The Default Service instance cannot be configured with any other Service instances. The default service instance captures all of the traffic on that interface including tagged, priority tagged, and untagged traffic.

!Customer facing port
```
Router(config)# interface GigabitEthernet2
Router(config-if)# service instance 12 ethernet
Router(config-if-srv)# encapsulation default
Router(config-if-srv)# rewrite egress tag pop 1
Router(config-if-srv)# bridge-domain 12
!RPR IEEE 802.17 Ring facing port
Router(config)# interface rpr-ieee0
Router(config-if)# service instance 12 ethernet
Router(config-if-srv)# encapsulation dot1q 12
Router(config-if-srv)# rewrite egress tag push dot1q 12
Router(config-if-srv)# bridge-domain 12
```

Verification

Use the following commands to verify operation.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show ethernet service instance [id instance-id] interface interface-id</td>
<td>Displays information about one or more service instances: If a service instance ID and interface are specified, only data pertaining to that particular service instance is displayed. If only an interface ID is specified, displays data for all service instances on the given interface.</td>
</tr>
<tr>
<td>Router# show ethernet service interface [interface-id] [detail]</td>
<td>Displays information in the Port Data Block (PDB).</td>
</tr>
<tr>
<td>Router# show ethernet service instance [id instance-id] [platform]</td>
<td>Displays all the Ethernet Flow Points (EFP) platform information (EFP status and RPR destination) for the card</td>
</tr>
</tbody>
</table>
EFP status has three possible states.

- **UP**
 - Both the ingress and egress EFP physical interfaces IDB state should be UP. (One exception is that when CPP is enabled look at CPP state instead of IDB state)
 - Hardware programming (TCAM) is intended for both the ingress and egress EFPs, and configuring both of the EFP encapsulation, rewrite, and bridge domains is a prerequisite to hardware programming
 - When Service Advertisements are enabled for one of the EFP, the RPR destination should be in the Resolved status

- **DOWN**
 - If any of the above criteria (for declaring the EFP status UP) is not met then the EFP status is declared DOWN.

- **FLAPPING**
 - The ML-MR-10 card supports only point-to-point services. The S-VLAN (VLAN is the S-VLAN or outer tag) must be configured on exactly two RPR stations. If more than two RPR stations are configured to have the same service/S-VLAN, the Service Advertisement scheme will advertise two or more destinations for the same service. In this scenario the EVC platform can detect, and will declare, EFP status as FLAPPING.

Note
An error message automatically displays on the console when there is a FLAPPING service. This is useful to determine which service is FLAPPING. When the EFP is in FLAPPING status it is service affecting because for a few seconds traffic goes to one destination and then another destination, and follows a circular path as multiple destinations keep advertising the other - the same S-VLAN.

The RPR destination field is valid only for the EFPs that are configured on RPR interfaces. It provides three possible types of output:

- **Unresolved**
 - When the Service Advertisement cannot resolve the RPR destination for the point-to-point service because it is misconfigured, or due to operational errors (like interface down) then the RPR destination are displayed as Unresolved

- **<mac-address> (learnt)**
 - When the Service Advertisement scheme is able to resolve the RPR destination, the MAC address and the keyword learnt, are displayed.

- **<mac-address> (static)**
 - When the RPR destination is configured statically (using rpr-destination under service instance mode) the MAC address together with the keyword static, are displayed.
Sample Output

```bash
!show ethernet service instance platform
Router# show ethernet service instance platform
NOTE: EFP status UP/DOWN is determined based on both ingress and egress interface states and RPR destination resolving status. EFP status FLAPPING means more than one RPR station is advertising this specific P2P service and need to check the network level config.
(*) RPR-destination field is valid only for EFPs configured on RPR interfaces

<table>
<thead>
<tr>
<th>EFP-ID</th>
<th>Intf</th>
<th>EFP-Status</th>
<th>RPR-Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gi0</td>
<td>DOWN</td>
<td>Not applicable</td>
</tr>
<tr>
<td>1</td>
<td>Gi8</td>
<td>DOWN</td>
<td>Not applicable</td>
</tr>
<tr>
<td>30</td>
<td>Gi8</td>
<td>DOWN</td>
<td>Not applicable</td>
</tr>
<tr>
<td>30</td>
<td>RP0</td>
<td>UP</td>
<td>aabb.bbbb.cccc (static)</td>
</tr>
</tbody>
</table>
```

Configuring EtherChannel on ML-MR Card

You can configure an EtherChannel on the ML-MR card by creating an EtherChannel interface (port channel). All interfaces that are members of an EtherChannel should have the same link parameters, such as duplex and speed.

To create an EtherChannel interface, perform the following procedure beginning in global configuration mode:

Table 32-1 Creating an EtherChannel on the ML-MR card

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface port-channel channel-number</td>
</tr>
<tr>
<td>Creates the EtherChannel interface. You can configure up to 10 EtherChannels on the ML-MR card.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Exits to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# copy running-config startup-config</td>
</tr>
<tr>
<td>(Optional) Saves configuration changes to NVRAM.</td>
<td></td>
</tr>
</tbody>
</table>

To assign Ethernet interfaces to the EtherChannel perform the following procedure, beginning in global configuration mode:

Table 32-2 Assigning Ethernet Interface to the EtherChannel on the ML-MR card

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface gigabitethernet number</td>
</tr>
<tr>
<td>Enters one of the interface configuration modes to configure the Gigabit Ethernet interface that you want to assign to the EtherChannel. You can assign any Ethernet interface on the system to the EtherChannel.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)#channel-group channel number</td>
</tr>
<tr>
<td>Assigns the Gigabit Ethernet interfaces to the EtherChannel. The channel number must be the same channel number you assigned to the EtherChannel interface.</td>
<td></td>
</tr>
</tbody>
</table>
Table 32-2 Assigning Ethernet Interface to the EtherChannel on the ML-MR card

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 Router(config-if)# end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 Router# copy running-config startup-config</td>
<td>(Optional) Saves configuration changes to NVRAM.</td>
</tr>
</tbody>
</table>

EtherChannel Configuration Example

Figure 32-1 shows an example of EtherChannel. The associated commands are provided in Example 13-1 (Switch A) and Example 13-2 (Switch B).

Example 32-1 Switch A Configuration

```
hostname MLMR-A
!
interface Port-channel10
  no ip address
  no negotiation auto
  load-balance src-dst-mac
  service instance 20 ethernet
  encapsulation dot1q 20
  bridge-domain 20
!
interface GigabitEthernet0
  no ip address
  speed auto
duplex auto
negotiation auto
channel-group 10
  no keepalive
!
interface GigabitEthernet1
  no ip address
  speed auto
duplex auto
negotiation auto
channel-group 10
  no keepalive
```
Configuring EVC

```plaintext
! interface POS0
  no ip address
  pos mode gfp
  service instance 20 ethernet
  encapsulation dot1q 20
  bridge-domain 20
  !

Example 32-2  Switch B Configuration

hostname MLMR-B
  !
  interface Port-channel10
  no ip address
  no negotiation auto
  load-balance src-dst-mac
  service instance 20 ethernet
  encapsulation dot1q 20
  bridge-domain 20
  !
  interface GigabitEthernet0
  no ip address
  speed auto
  duplex auto
  negotiation auto
  channel-group 10
  no keepalive
  !
  interface GigabitEthernet1
  no ip address
  speed auto
  duplex auto
  negotiation auto
  channel-group 10
  no keepalive
  !
  interface POS0
  no ip address
  pos mode gfp
  service instance 20 ethernet
  encapsulation dot1q 20
  bridge-domain 20
  !
```

Configuring LACP on ML-MR

To configure LACP over the EtherChannel perform the following procedure beginning in global configuration mode:
Configuring EVC

Refer to Example 12-8 on page 12-13 for LACP configuration example on the ML-MR-10 card.

EVC QoS Support

Refer to “Configuring Quality of Service” for information on QoS and for additional details on configuring the ML-Series cards.

Restrictions and Usage Guidelines

When configuring QoS with EVCS on the ML-MR-10 card, follow these restrictions and usage guidelines:

- Service instances use MQC.

Table 32-3 Configuring LACP on EtherChannel

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>Router(config)# int port-channel <interface-number>.</code></td>
<td>Accesses the port interface where you will create the LACP.</td>
</tr>
<tr>
<td>2</td>
<td><code>Router(config-if)# int gigabitEthernet <facility-number></code></td>
<td>Access the facility number on the port.</td>
</tr>
<tr>
<td>3</td>
<td><code>Router(config-if)# channel-group <channel-number> mode ?</code></td>
<td>Accesses the channel group of commands. Queries the current mode of the channel group. Options include active and passive.</td>
</tr>
<tr>
<td>4</td>
<td><code>Router(config-if)# channel-group <channel-number> mode active</code></td>
<td>Places the channel group in active mode.</td>
</tr>
<tr>
<td>5</td>
<td><code>Router(config-if)# exit</code></td>
<td>Exits the channel group configuration.</td>
</tr>
<tr>
<td>6</td>
<td><code>Router(config-if)# int gigabitEthernet <facility-number></code></td>
<td>Accesses the facility.</td>
</tr>
<tr>
<td>7</td>
<td><code>Router(config-if)# lacp-port</code></td>
<td>Access the link aggregation control protocol commands for the port.</td>
</tr>
<tr>
<td>8</td>
<td><code>Router(config-if)# lacp port-priority <priority number></code></td>
<td>Sets the LACP port's priority. Range of values is from 1 through 65535. For example, lacp port-priority 100.</td>
</tr>
<tr>
<td>9</td>
<td><code>Router(config-if)# exit</code></td>
<td>Exits the port's configuration mode.</td>
</tr>
<tr>
<td>10</td>
<td><code>Router(config)#lacp sys</code></td>
<td>Accesses the system LACP settings.</td>
</tr>
<tr>
<td>11</td>
<td><code>Router(config)#lacp system-priority <system priority></code></td>
<td>Sets the LACP system priority in a range of values from 1 through 65535. For example, lacp system-priority 100.</td>
</tr>
<tr>
<td>12</td>
<td><code>Router(config-if)# exit</code></td>
<td>Exits the global configuration mode.</td>
</tr>
<tr>
<td>13</td>
<td><code>Router(config)# copy running-config startup-config</code></td>
<td>(Optional) Saves the configuration changes to NVRAM.</td>
</tr>
</tbody>
</table>
QoS supports 4,000 service instances.

For ingress and egress QoS, only flat policy maps are supported.

As service instance configurations change, Cisco recommends that you remove and reapply the policy because the policy map configuration may no longer be valid.

Ethernet Flow Points (EFP) are supported on port channels.

EVC QoS supports:

- EVC QoS, classification is based on the following filters, which can be combined:
 - Inner VLAN tag
 - Outer VLAN tag
 - CoS

- Egress QoS Policy supports the bandwidth and priority actions
 - Bandwidth command - assigns the queue in Weighted Deficit Round Robin (WDRR) mode, and the bandwidth value can either be absolute value or a percentage value.
 - Priority command - assigns the queue in strict priority mode; no bandwidth value needs to be associated with this queue.
 - For RPR interfaces, only bandwidth in percentage values is supported for the bandwidth command.
 - For port-channel interfaces it is recommended that you use percentage values for the bandwidth command, as the total bandwidth of a port-channel varies, based on member availability.

- EVC QoS, actions supported:
 - Supports up to 4 queues per port scheduled with a WDRR scheduler.
 - One egress strict priority queue per port.
 - There are two modes of operation for the egress queues: all four queues operate in WDRR mode, or one queue is in strict priority mode and the other three are in WDRR mode.
 - Mappings between the cos index values and the egress queue are allowed and achieved using the qos-group value.
 - Re-marking of the IEEE 802.1p VLAN priority bits in a frame is supported.

- Policing:
 - A 2-rate 3-color policer is supported.
 - The two rates are cir (committed information rate) and pir (peak information rate).
 - The two burst sizes corresponding to the rates are cbs (committed burst size) and pbs (peak burst size).
 - The 3 colors correspond to the possible outcomes of the policer (conform, exceed and violate).
 - Conform actions are transmit and set cos-transmit.
 - Exceed actions are drop and set cos-transmit.
 - Violate actions are drop and set cos-transmit.

- MOQ (Modular QOS CLI)
 - Service policy is configurable on a physical Ethernet interface in the ingress direction.
 - Service policy is configurable on a physical Ethernet interface in the egress direction.
Chapter 32 Configuring Ethernet Virtual Circuits and QoS on the ML-MR-10 Card

Configuring EVC

- Service policy is configurable on an EtherChannel/ port-channel bundle interface in the ingress direction.
- Service policy is configurable on an EtherChannel/ port-channel bundle interface in the egress direction.
- If a physical interface is a member of an EtherChannel/ link aggregation bundle it will not allow configuration of any MQC service policy (service policies must be configured on the logical etherchannel/ link aggregation bundle interface only).
- MQC service policy is configurable on an Ethernet Flow Point (EFP) in the ingress direction.
- Match cos 0-7 is supported on ingress service policies attached to physical Ethernet interfaces, and to EFPs, as long as the type of the EFP is not untagged (supports packet classification based on the IEEE 802.1p priority bits in the outermost 802.1Q VLAN header in the packet).
- Match ip dscp 0-63 is supported on physical interfaces in the ingress direction.
- Match ip precedence 0-7 is supported on physical interfaces in the ingress direction.
- Match ip dscp 0-63 is supported on EFPs in the ingress direction, as long as the type of the EFP is untagged.
- Match ip precedence 0-7 is supported on EFPs in the ingress direction as long as the type of the EFP is untagged.
- Set cos 0-7 is supported as a possible action in an ingress service policy (interpreted to mean setting of the 802.1p bits in the outermost 802.1Q header of the packet (if there is one) when the packet goes out the egress port).
- private or public are set equal to cir and cbs.
- All actions in an egress service policy configured on an etherchannel bundle interface are applied equally across all members of the bundle (and not in an aggregate as on the ingress side). For example, it is not correct to calculate the egress bandwidth that can be reserved on an etherchannel bundle to be equal to the sum of the bandwidths of the individual members interfaces, instead, it is the minimum of the bandwidths of any of the members.

Port Channel QoS

QoS is supported on port-channel interfaces, and service policies are applied on the port-channel interfaces. Instead, of a member interface. At the ingress, the QoS actions are applied on the aggregate interface. At the egress, the bandwidth guaranteed on a port-channel interface is limited to one member interface’s bandwidth. Policing can be configured up to the maximum port channel bandwidth.

QoS Classification

Use the QoS classification features to select your network traffic and categorize it into classes for further QoS processing based on matching certain criteria. The default class, named “class-default,” is the class to which traffic is directed for any traffic that does not match any of the selection criteria in the configured class maps.

Note

When class-default is applied on a physical interface, any traffic on the interface, regardless of the EVC, matches this class. When “class-default” is applied on an EFP, any traffic on this EFP matches the class.
Restrictions and Usage Guidelines

When configuring traffic classes on an ML-MR-10 card, follow these restrictions and usage guidelines:

- You can define up to four unique class maps per output Service Policy.
- You can define up to 65 class maps on ingress.
QoS Classifiers Supported on Various Frames on ML-MR-10 Card

The following are QoS classifiers supported on various frames on the ML-MR-10 card:

<table>
<thead>
<tr>
<th>Supported Ethernet Frame Types on ML-MR-10</th>
<th>Frame Type Seen by Classifier</th>
<th>Fields Used for Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untagged IP frame</td>
<td>Untagged IP</td>
<td>IP Precedence/DSCP depending on the class map configured on the interface</td>
</tr>
<tr>
<td>Untagged SNAP(^1)</td>
<td>Untagged SNAP</td>
<td>IP Precedence/DSCP depending on the class map configured on the interface</td>
</tr>
<tr>
<td>Tagged IP frame</td>
<td>Tagged IP</td>
<td>IP Precedence/DSCP or VLAN CoS value depending on the class map configured on the interface</td>
</tr>
<tr>
<td>Tagged SNAP frame</td>
<td>Tagged SNAP</td>
<td>IP Precedence/DSCP or VLAN CoS value depending on the class map configured on the interface</td>
</tr>
<tr>
<td>Q-in-Q</td>
<td>802.1Q</td>
<td>Outer Q-in-Q VLAN CoS value based on the configuration on the interface</td>
</tr>
</tbody>
</table>

1. SNAP = Subnetwork Access Protocol
Configuring QoS Traffic Class

To create a user-defined QoS traffic class, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Creates a traffic class, where:</td>
</tr>
<tr>
<td>Router(config)# class-map [match-all] class-name</td>
<td>• match-all—(Optional) Specifies that all match criteria in the class map must be matched, using a logical AND of all matching statements defined under the class. This is the default.</td>
</tr>
<tr>
<td></td>
<td>• class-name—Specifies the user-defined name of the class.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Specifies the matching criterion to be applied to the traffic, where type represents one of the forms of the match command supported by the ML-MR-10 card.</td>
</tr>
<tr>
<td>Router(config-cmap)# match type</td>
<td>• match any are allow.</td>
</tr>
<tr>
<td></td>
<td>• On egress interface policy, match qos-group, and match any are allowed.</td>
</tr>
</tbody>
</table>

Configuring Policing

This section describes information for configuring QoS traffic policing policies.

Restrictions and Usage Guidelines

The ML-MR-10 card supports different forms of policing using the **police** command.

When configuring ingress policing on interfaces, and VLANs, follow these restrictions and usage guidelines:

- Policing on physical interfaces is supported.
- Policing on service instances is supported.
- Policing supports three actions:
 - Transmit
 - Set-cos transmit
 - Drop
- Set-dscp-transmit is not supported

See Table 32-4 for Policer action details.
Configuring QoS Traffic Policies

To create QoS traffic policies with policing, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# policy-map</td>
<td>Creates or modifies a traffic policy and enters policy map configuration mode, where:</td>
</tr>
</tbody>
</table>
Configuring EVC

Step 2

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router (config-pmap)# class {class-name</td>
<td>class-default}</td>
</tr>
<tr>
<td></td>
<td>• class-name—Specifies that the policy applies to a user-defined class name previously configured.</td>
</tr>
<tr>
<td></td>
<td>• class-default—Specifies that the policy applies to the default traffic class.</td>
</tr>
</tbody>
</table>

Step 3

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router (config-pmap-c)# police bps [burst-normal][burst-max] conform-action action exceed-action action violate-action action.</td>
<td>Specifies a maximum bandwidth usage by a traffic class through the use of a token bucket algorithm, where:</td>
</tr>
<tr>
<td>or</td>
<td>• bps—Specifies the average rate in bits per second. Valid values are 1000000 to 1000000000.</td>
</tr>
<tr>
<td>Router (config-pmap-c)# police {cir cir} [bc conform-burst] [pir pir] [be peak-burst] [conform-action action [exceed-action action [violate-action action]]]</td>
<td>• burst-normal—(Optional) Specifies the normal burst size in bytes. Valid values are 16384 to 134217728.</td>
</tr>
<tr>
<td></td>
<td>• burst-max—(Optional) Specifies the excess burst size in bytes. Valid values are 16384 to 134217728.</td>
</tr>
<tr>
<td></td>
<td>• action—Specifies the policing command (as shown in Table 32-4) for the action to be applied to the corresponding conforming, exceeding, or violating traffic.</td>
</tr>
<tr>
<td></td>
<td>• 200 ms of burst is recommend when configuring rates.</td>
</tr>
</tbody>
</table>

Configures traffic policing using two rates, the committed information rate (CIR) and the peak information rate (PIR), where:

- **cir cir**—Specifies the CIR at which the first token bucket is updated as a value in bits per second. The value is a number from 1000000 to 1000000000.
- **bc conform-burst**—(Optional) Specifies the conform burst (bc) size in bytes used by the first token bucket for policing. The value is a number from 16384 to 134217728.
- **pir pir**—Specifies the PIR at which the second token bucket is updated as a value in bits per second. The value is a number from 1000000 to 1000000000.
- **be peak-burst**—(Optional) Specifies the peak burst (be) size in bytes used by the second token bucket for policing. The size varies according to the interface and platform in use. The value is a number from 16384 to 134217728.
- **action**—(Optional) Specifies the policing command (as shown in Table 32-4) for the action to be applied to the corresponding conforming, exceeding, or violating traffic.
Examples

Input service policy can be applied to a physical interface, or to the service instance.

This example shows classmap configuration;

```
Router(config)# class-map match-all voip_class
Router(config-cmap)# match cos 5

Single Rate Two color Policer
Router(config)# policy-map example_policy
Router(config-pmap)# class voip_class
Router(config-pmap-c)# police 1000000 25000 conform-action transmit exceed-action drop

Two rate three color marker example
Router(config)# policy-map remark_policy
Router(config-pmap)# class voip_class
Router(config-pmap-c)# police 50000000 1250000 2500000 pir 100000000 conform-action transmit exceed-action set-cos-transmit 3 violate-action drop
```

Verification

Use the following commands to verify policing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show policy-map</td>
<td>Displays all configured policy maps.</td>
</tr>
<tr>
<td>Router# show policy-map policy-map-name</td>
<td>Displays the user-specified policy map.</td>
</tr>
<tr>
<td>Router# show policy-map interface</td>
<td>Displays statistics and configurations of all input and output policies that are attached to an interface.</td>
</tr>
</tbody>
</table>

This example shows an ingress service police with two color policer action specified.

```
Router# show policy-map interface 7

service-policy input: in
class-map: i1(match-all)
  3323921 packets, 3058072732 bytes
  5 minute rate 70861000 bps, drop rate 776000 bps
  match: cos 1
  police:
    2000000 bps, 50000 limit
    conformed 120206 packets, 11895232 bytes; actions: transmit
    exceeded 33110625 packets, 3046177500 bytes; action: drop

class-map: class-default (match-all)
  0 packets, 0 bytes
  5 minute offered rate 0 bps, drop rate 0 bps
  match: any
  20 packets, 0 bytes
  5 minute 0 bps
```

This example displays an egress service policy.

```
Router# show policy-map interface 9

GigabitEthernet9
  Service-policy output: 1
```
Associating a QoS Traffic Policy with an Interface or Service Instance

Before a traffic policy can be enabled for a class of traffic, it must be configured on an interface. A traffic policy also can be associated with Ethernet service instances.

Traffic policies can be applied for traffic coming into an interface (input) and for traffic leaving that interface (output).

Traffic policies can not be applied for output on service instance.

Associating a QoS Traffic Policy with an Input Interface

When you associate a traffic policy with an input interface, the policy is applied to traffic coming into that interface. To attach a traffic policy for an input interface, use the following command beginning in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# service-policy input policy-map-name</code></td>
<td>Attaches a traffic policy to the input direction of an interface, where:</td>
</tr>
<tr>
<td></td>
<td>• <code>policy-map-name</code>—Specifies the name of the traffic policy to configure.</td>
</tr>
</tbody>
</table>

Counters last updated 00:00:00 ago
class-map: 1 (match-all)
 3 packets, 1014 bytes
 5 minute offered rate 0 bps, drop rate 0 bps
 match: qos-group 2

class-map: 2 (match-all)
 0 packets, 0 bytes
 5 minute offered rate 0 bps, drop rate 0 bps
 match: qos-group 1

class-map: class-default (match-all)
 129296 packets, 12925268 bytes
 5 minute offered rate 270000 bps, drop rate 0 bps
 match: any
 3 packets, 990 bytes
 5 minute 0 bps
Associating a QoS Traffic Policy with an Output Interface

When you associate a traffic policy with an output interface, the policy is applied to traffic leaving that interface. To attach a traffic policy to an output interface, use the following command beginning in interface configuration mode:

```
Router(config-if)# service-policy output policy-map-name
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config-if)# service-policy output policy-map-name | Attaches a traffic policy to the output direction of an interface, where:
 - policy-map-name—Specifies the name of the traffic policy to configure. |

Configuring Marking

After you have created your traffic classes, you can configure traffic policies to configure marking features to apply certain actions to the selected traffic in those classes.

In most cases, the purpose of a packet mark is identification. After a packet is marked, downstream devices identify traffic based on the marking and categorize the traffic according to network needs. This categorization occurs when the `match` commands in the traffic class are configured to identify the packets by the mark (for example, `match ip precedence`, `match ip dscp`, `match cos`, and so on). The traffic policy using this traffic class can then set the appropriate QoS features for the marked traffic.

Restrictions and Usage Guidelines

When configuring class-based marking on an ML-MR-10 cards, follow these restrictions and usage guidelines:

- Marking is supported two ways:
 - policing
 - class-based marking
Configuring QoS Class-based Marking

To configure a QoS traffic policy with class-based marking, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# policy-map policy-map-name</td>
</tr>
<tr>
<td></td>
<td>Creates or modifies a traffic policy and enters policy map configuration mode, where:</td>
</tr>
<tr>
<td></td>
<td>• policy-map-name—Specifies the name of the traffic policy to configure. Names can be a maximum of 40 alphanumeric characters.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-pmap)# class {class-name</td>
</tr>
<tr>
<td></td>
<td>Specifies the name of the traffic class to which this policy applies and enters policy-map class configuration mode, where:</td>
</tr>
<tr>
<td></td>
<td>• class-name—Specifies that the policy applies to a user-defined class name previously configured.</td>
</tr>
<tr>
<td></td>
<td>• class-default—Specifies that the policy applies to the default traffic class.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-pmap-c)# set cos [0-7]</td>
</tr>
<tr>
<td></td>
<td>IEEE802.1p bits can be marked.</td>
</tr>
</tbody>
</table>

Examples

This example shows the creation of a service policy called policy1. This service policy is associated to a previously defined classification policy through the use of the class command. This example assumes that a classification policy called class1 was previously configured.

Router(config)# policy-map policy1
Router(config-pmap)# class class1
Router(config-pmap-c)# set cos 3

Verification

Use the following commands to verify marking:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show policy-map</td>
<td>Displays all configured policy maps.</td>
</tr>
<tr>
<td>Router# show policy-map policy-map-name</td>
<td>Displays the user-specified policy map.</td>
</tr>
<tr>
<td>Router# show policy-map interface</td>
<td>Displays statistics and configurations of all input and output policies that are attached to an interface.</td>
</tr>
</tbody>
</table>
For more detailed information about configuring class-based marking features, refer to the *Class-Based Marking* document located at the following URL:

Configuring EVC on RPR-IEEE

Refer to Chapter 29, “Configuring IEEE 802.17b Resilient Packet Ring on the ML-MR-10 Card,” for information on RPR-IEEE. Two commands are available: configure service advertisements, and configure static RPR destinations. Begin in global command mode and use the commands provided in the table below.

Restrictions and Usage Guidelines

When configuring RPR features on an ML-MR-10 card, follow these restrictions and usage guidelines:

- All packets use bandwidth only between the source and destination nodes on the ring associated with the EVC.
- Flooding of broadcast packets or unknown destination packets is not supported. The RPR connections are point-to-point only for each frame associated with a given EVC.
- An EVC will have two EFPs on the RPR ring: both EFPs share a unique VLAN tag.
- The EFP VLAN tag is added to the frame (along with the source and destination RPR node MAC addresses) when the frame is sent to the RPR ring. The EFP VLAN is removed from the frame (along with the source and destination RPR node MAC addresses) when the frame is received from the RPR ring.
- Flooding of broadcast packets or unknown destination packets is not supported on point-to-point EVCs.
- RPR connections are point to point only for each frame associated with a given point-to-point EVC.
- Attribute discovery frames (ATD) are used to advertise remote EFPs for each EVC on the RPR ring.
- Source MAC address learning of destination RPR nodes is not supported. ATD frames are used to determine the EFP mapping to the remote RPR node.
- EVC frames associated with an EFP are dropped and not sent to the RPR ring if there has been no ATD frame received for the remote EFp associated with the EVC.
- Traffic can be put in bandwidth queues based on QoS classification via MQC. This along with assigning an MQC class to an 802.17 Class of Service provides unequal local fairness within an 802.17 Class.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface rpr-ieee 0</td>
<td>Activates interface configuration mode to configure the RPR-IEEE interface.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# service instance 50 ethernet</td>
<td>Specifies the service instance Ethernet Flow Point (EFP).</td>
</tr>
<tr>
<td>Step 3 Router(config-if-srv)# bridge-domain 1</td>
<td>Specifies the EFP Bridge Domain.</td>
</tr>
<tr>
<td>Step 4 Router(config-if-srv)# encapsulation</td>
<td>Configures Ethernet frame match criteria.</td>
</tr>
<tr>
<td>Step 5 Router(config-if-srv)# rewrite</td>
<td>Configures Egress rewrite criteria.</td>
</tr>
</tbody>
</table>
Chapter 32 Configuring Ethernet Virtual Circuits and QoS on the ML-MR-10 Card

Configuring EVC

Configuring Service Domains

The following example shows a service domain configuration.

Note

All of the existing services, except services with static RPR destinations configured, will be interrupted and re-assigned to the new domain-id

Examples

```
Router(config)# interface RPR-IEEE0
Router(config-if)# no ip address
Router(config-if)# no ip route-cache
Router(config-if)# no rpr-ieee sas
Router(config-if)# rpr-ieee vlan-service-domain 10
Router(config-if-srv)# service instance 10
Router(config-if-srv)# ethernet encapsulation dot1q 10
Router(config-if-srv)# bridge-domain 10
```

EFP Configuration Combinations on the ML-MR-10 Card

There are three Types of EFP encapsulation:

- Untagged
- Default
- Tagged - Either 1 tag or 2 tag (Q-in-Q)

Three types of Egress Rewrite Operations are supported:

- POP tags
- Push tags
- Translate tags

Configuration Examples

Table 32-5 provides configuration examples for EFP combinations on the ML-MR-10 card.
Table 32-5 EFP Configuration Examples on ML-MR-10 card

<table>
<thead>
<tr>
<th>INGRESS</th>
<th>EGRESS</th>
<th>OPERATION TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabit Ethernet 0</td>
<td>RPR 0</td>
<td></td>
</tr>
<tr>
<td>Incoming Traffic</td>
<td>Outgoing Traffic</td>
<td></td>
</tr>
<tr>
<td>Untagged Packets</td>
<td>Single Tagged Packets</td>
<td></td>
</tr>
<tr>
<td>interface gigabit 0</td>
<td>interface RPR 0</td>
<td>POP/PUSH</td>
</tr>
<tr>
<td>service instance 10 ethernet</td>
<td>service instance 10 ethernet</td>
<td></td>
</tr>
<tr>
<td>encapsulation untagged</td>
<td>encapsulation dot1q 10</td>
<td></td>
</tr>
<tr>
<td>rewrite egress tag pop 1</td>
<td>rewrite egress tag push dot1q 10</td>
<td></td>
</tr>
<tr>
<td>bridge-domain 10</td>
<td>bridge-domain 10</td>
<td></td>
</tr>
<tr>
<td>Single DOT1Q Tag (Same Tag Value)</td>
<td>Single DOT1Q Tagged Packets</td>
<td>No Operation (NOP)/NOP</td>
</tr>
<tr>
<td>interface gigabit 0</td>
<td>interface RPR 0</td>
<td>No Operation (NOP)/NOP</td>
</tr>
<tr>
<td>service instance 10 ethernet</td>
<td>service instance 10 ethernet</td>
<td></td>
</tr>
<tr>
<td>encapsulation dot1q 10</td>
<td>encapsulation dot1q 10</td>
<td></td>
</tr>
<tr>
<td>bridge-domain 10</td>
<td>bridge-domain 10</td>
<td></td>
</tr>
<tr>
<td>Single DOT1Q Tagged (Range)</td>
<td>Single DOT1Q Tagged (Range)</td>
<td>NOP/NOP</td>
</tr>
<tr>
<td>interface gigabit 0</td>
<td>interface RPR 0</td>
<td>NOP/NOP</td>
</tr>
<tr>
<td>service instance 10 ethernet</td>
<td>service instance 10 ethernet</td>
<td></td>
</tr>
<tr>
<td>encapsulation dot1q 10 -100</td>
<td>encapsulation dot1q 10 -100</td>
<td></td>
</tr>
<tr>
<td>bridge-domain 10</td>
<td>bridge-domain 10</td>
<td></td>
</tr>
<tr>
<td>VLAN translation</td>
<td>VLAN translation</td>
<td></td>
</tr>
<tr>
<td>Single DOT1Q tagged</td>
<td>Single DOT1Q Tagged</td>
<td>Translate/Translate</td>
</tr>
<tr>
<td>interface gigabit 0</td>
<td>interface RPR 0</td>
<td>Translate/Translate</td>
</tr>
<tr>
<td>service instance 10 ethernet</td>
<td>service instance 10 ethernet</td>
<td></td>
</tr>
<tr>
<td>bridge-domain 20 (needs to replaced with - encapsulation dot1q 20)</td>
<td>encapsulation dot1q 30</td>
<td></td>
</tr>
<tr>
<td>rewrite egress tag translate dot1q 20</td>
<td>rewrite egress tag translate dot1q 30</td>
<td></td>
</tr>
<tr>
<td>bridge-domain 20</td>
<td>bridge-domain 20</td>
<td></td>
</tr>
<tr>
<td>Single DOT1Q Tagged</td>
<td>Double Tag (Q-in-Q)</td>
<td></td>
</tr>
<tr>
<td>interface gigabit 0</td>
<td>interface RPR 0</td>
<td>POP/PUSH</td>
</tr>
<tr>
<td>service instance 10 ethernet</td>
<td>service instance 10 ethernet</td>
<td></td>
</tr>
<tr>
<td>encapsulation dot1q 20</td>
<td>encapsulation dot1q 30</td>
<td></td>
</tr>
<tr>
<td>rewrite egress tag pop 1</td>
<td>rewrite egress tag push dot1q 30</td>
<td></td>
</tr>
<tr>
<td>bridge-domain 20</td>
<td>bridge-domain 20</td>
<td></td>
</tr>
<tr>
<td>Double Tagged (Q-in-Q)</td>
<td>Double tagged (Q-in-Q)</td>
<td>NOP/NOP</td>
</tr>
<tr>
<td>interface gigabit 0</td>
<td>interface RPR 0</td>
<td>NOP/NOP</td>
</tr>
</tbody>
</table>
Chapter 32 Configuring Ethernet Virtual Circuits and QoS on the ML-MR-10 Card

Configuring EVC

1. The above mentioned combinations are the possible EFP configurations, but it has to be noted that not all the combinations would work with dynamic Service advertisements.

2. Also, some of the combinations would need to be used carefully based on network planning.

3. The above mentioned combinations hold good for the following EFP configurations - Gig-to-Gig, Gig-to-POS, Gig-to-RPR, POS-to-Gig, POS-to-POS, POS-to-RPR, RPR-to-Gig, RPR-to-POS.

Table 32-5 EFP Configuration Examples on ML-MR-10 card

<table>
<thead>
<tr>
<th>INGRESS</th>
<th>EGRESS</th>
<th>OPERATION TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>service instance 10 ethernet</td>
<td>service instance 10 ethernet</td>
<td></td>
</tr>
<tr>
<td>encapsulation dot1q 10 second-dot1q 20 bridge-domain 20</td>
<td>encapsulation dot1q 10 second-dot1q 20 bridge-domain 20</td>
<td>Double Tagged (Q-in-Q) Range Double Tagged (Q-in-Q) Range</td>
</tr>
<tr>
<td>interface gigabit 0</td>
<td>interface RPR 0</td>
<td>NOP/NOP</td>
</tr>
<tr>
<td>service instance 10 ethernet</td>
<td>service instance 10 ethernet</td>
<td></td>
</tr>
<tr>
<td>encapsulation dot1q 10 second-dot1q 20 -50 bridge-domain 20</td>
<td>encapsulation dot1q 10 second-dot1q 20 -50 bridge-domain 20</td>
<td>Tagged and Untagged Traffic: all traffic coming in on port Tagged Traffic</td>
</tr>
<tr>
<td>interface gigabit 0</td>
<td>interface RPR 0</td>
<td>POP/PUSH</td>
</tr>
<tr>
<td>encapsulation default</td>
<td>encapsulation dot1q 10</td>
<td></td>
</tr>
<tr>
<td>rewrite egress tag pop 1</td>
<td>rewrite egress tag push dot1q</td>
<td></td>
</tr>
<tr>
<td>bridge-domain 10</td>
<td>bridge-domain 10</td>
<td></td>
</tr>
<tr>
<td>Port-Mapped interface gigabit 0 service instance 10 ethernet encapsulation default bridge-domain 10</td>
<td>interface gigabit 1 service instance 10 ethernet encapsulation default bridge-domain 10</td>
<td>NOP/NOP</td>
</tr>
<tr>
<td>interface gigabit 0 service instance 10 ethernet encapsulation default bridge-domain 10</td>
<td>interface gigabit 1 service instance 10 ethernet encapsulation default bridge-domain 10</td>
<td>Would not be recommended for mapping gig to RPR, as this would block the entire RPR interface for one gig traffic.</td>
</tr>
<tr>
<td>interface gigabit 0 service instance 10 ethernet encapsulation untagged, dot1q any bridge-domain 10</td>
<td>interface gigabit 1 service instance 10 ethernet encapsulation untagged, dot1q any bridge-domain 10</td>
<td></td>
</tr>
<tr>
<td>interface gigabit 0 service instance 10 ethernet encapsulation untagged bridge-domain 10</td>
<td>interface gigabit 1 service instance 10 ethernet encapsulation untagged bridge-domain 10</td>
<td>Untagged Untagged Packets</td>
</tr>
<tr>
<td>interface gigabit 0 service instance 10 ethernet encapsulation untagged bridge-domain 10</td>
<td>interface RPR 0 service instance 10 ethernet encapsulation untagged bridge-domain 10</td>
<td>NOP/NOP</td>
</tr>
<tr>
<td>interface gigabit 0 encapsulation untagged bridge-domain 10</td>
<td>interface RPR 0 encapsulation untagged bridge-domain 10</td>
<td></td>
</tr>
<tr>
<td>interface gigabit 0 encapsulation untagged bridge-domain 10</td>
<td>interface RPR 0 encapsulation untagged bridge-domain 10</td>
<td></td>
</tr>
</tbody>
</table>

1. The above mentioned combinations are the possible EFP configurations, but it has to be noted that not all the combinations would work with dynamic Service advertisements.

2. Also, some of the combinations would need to be used carefully based on network planning.

3. The above mentioned combinations hold good for the following EFP configurations - Gig-to-Gig, Gig-to-POS, Gig-to-RPR, POS-to-Gig, POS-to-POS, POS-to-RPR, RPR-to-Gig, RPR-to-POS.
4. Unsupported Configuration Combinations: Tag push is not supported - i.e. untagged --> Q-in-Q type of traffic.