Optical Amplifier Cards

This chapter describes the optical amplifier cards used in Cisco ONS 15454 dense wavelength division multiplexing (DWDM) networks. For installation and card turn-up procedures, refer to the Cisco ONS 15454 DWDM Procedure Guide. For card safety and compliance information, refer to the Cisco Optical Transport Products Safety and Compliance Information document.

Note
Unless otherwise specified, “ONS 15454” refers to both ANSI and ETSI shelf assemblies.

Chapter topics include:
- 4.1 Card Overview, page 4-1
- 4.2 Class 1M Laser Safety Labels, page 4-3
- 4.3 OPT-PRE Amplifier Card, page 4-5
- 4.4 OPT-BST Amplifier Card, page 4-8
- 4.5 OPT-BST-E Amplifier Card, page 4-12
- 4.6 OPT-BST-L Amplifier Card, page 4-16
- 4.7 OPT-AMP-L Card, page 4-20
- 4.8 OPT-AMP-17-C Card, page 4-25

4.1 Card Overview

This section provides summary and compatibility information for the optical amplifier cards.

Note
Each card is marked with a symbol that corresponds to a slot (or slots) on the ONS 15454 shelf assembly. Cards should be installed in slots that have the same symbols. See the “1.16.1 Card Slot Requirements” section on page 1-59 for a list of slots and symbols.

Optical amplifiers are used in amplified nodes (such as hub nodes), amplified OADM nodes, and line amplifier nodes. The six types of ONS 15454 DWDM amplifiers are:
- Optical Preamplifier (OPT-PRE)
- Optical Booster amplifier (OPT-BST)
- Optical Booster Enhanced amplifier (OPT-BST-E)
- Optical Booster L-Band amplifier (OPT-BST-L)
- Optical L-Band preamplifier (OPT-AMP-L)
- Optical C-Band amplifier (OPT-AMP-17-C).

The OPT-AMP-L preamplifier is software-configurable as a preamplifier or as a booster amplifier.

Optical amplifier card architecture includes an optical plug-in module with a controller that manages optical power, laser current, and temperature control loops. An amplifier also manages communication with the TCC2/TCC2P card and operation, administration, maintenance, and provisioning (OAM&P) functions such as provisioning, controls, and alarms.

Optical amplifiers have a linear power feature that enables them to remain in constant gain mode if the gain falls below 28 dB. However, for longer spans, you might have to manually place amplifiers in constant power mode.

If span loss degradation causes channel loss or reprovisioning while an amplifier is in constant power mode, the amplifier cannot dynamically adjust its output power to compensate for a decreased (or later increased) number of channels. In this way, constant power mode affects automatic power control (APC) requirements.

4.1.1 Card Summary

Table 4-1 lists and summarizes the functions of each optical amplifier card.

<table>
<thead>
<tr>
<th>Card</th>
<th>Port Description</th>
<th>For Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT-PRE</td>
<td>The OPT-PRE amplifier has five optical ports (three sets) located on the faceplate. It operates in Slots 1 to 6 and 12 to 17.</td>
<td>See the “4.3 OPT-PRE Amplifier Card” section on page 4-5.</td>
</tr>
<tr>
<td>OPT-BST</td>
<td>The OPT-BST amplifier has four sets of optical ports located on the faceplate. It operates in Slots 1 to 6 and 12 to 17.</td>
<td>See the “4.4 OPT-BST Amplifier Card” section on page 4-8.</td>
</tr>
<tr>
<td>OPT-BST-E</td>
<td>The OPT-BST-E amplifier has four sets of optical ports located on the faceplate. It operates in Slots 1 to 6 and 12 to 17.</td>
<td>See the “4.5 OPT-BST-E Amplifier Card” section on page 4-12.</td>
</tr>
<tr>
<td>OPT-BST-L</td>
<td>The OPT-BST-L L-band amplifier has four sets of optical ports located on the faceplate. It operates in Slots 1 to 6 and 12 to 17.</td>
<td>See the “4.6 OPT-BST-L Amplifier Card” section on page 4-16.</td>
</tr>
<tr>
<td>OPT-AMP-L</td>
<td>The OPT-AMP-L L-band preamplifier have five sets of optical ports located on the faceplate. It is a two-slot card that operates in Slots 1 to 6 and 12 to 17.</td>
<td>See the “4.7 OPT-AMP-L Card” section on page 4-20.</td>
</tr>
<tr>
<td>OPT-AMP-17-C</td>
<td>The OPT-AMP-17-C C-band low-gain preamplifier/booster amplifier has four sets of optical ports located on the faceplate. It operates in Slots 1 to 6 and 12 to 17.</td>
<td>See the “4.8 OPT-AMP-17-C Card” section on page 4-25.</td>
</tr>
</tbody>
</table>
4.1.2 Card Compatibility

Table 4-2 lists the Cisco Transport Controller (CTC) software compatibility for each optical amplifier card.

<table>
<thead>
<tr>
<th>Card Type</th>
<th>R4.5</th>
<th>R4.6</th>
<th>R4.7</th>
<th>R5.0</th>
<th>R6.0</th>
<th>R7.0</th>
<th>R7.2</th>
<th>R8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT-PRE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>OPT-BST</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>OPT-BST-E</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>OPT-BST-L</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>OPT-AMP-L</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>OPT-AMP-17-C</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

4.2 Class 1M Laser Safety Labels

This section explains the significance of the safety labels attached to the optical amplifier cards. The faceplates of the cards are clearly labeled with warnings about the laser radiation levels. You must understand all warning labels before working on these cards.

4.2.1 Class 1M Laser Product Label

Figure 4-1 shows the Class 1M Laser Product label. Class 1M lasers are products that produce either a highly divergent beam or a large diameter beam. Therefore, only a small part of the whole laser beam can enter the eye. However, these laser products can be harmful to the eye if the beam is viewed using magnifying optical instruments.

4.2.2 Hazard Level 1M Label

Figure 4-2 shows the Hazard Level 1M label. The Hazard Level label warns users against exposure to laser radiation calculated in accordance with IEC60825-1 Ed.1.2.
4.2.3 Laser Source Connector Label

Figure 4-3 shows the Laser Source Connector label. This label indicates that a laser source is present at the optical connector where the label appears.

4.2.4 FDA Statement Label

Figure 4-4 shows the FDA Statement label. This label represents compliance to FDA standards and a hazard-level classification in accordance with IEC60825-1 Am.2 or Ed.1.2.

4.2.5 Shock Hazard Label

Figure 4-5 shows the Shock Hazard label. This label alerts you to an electrical hazard within the card. The potential for shock exists when you remove adjacent cards during maintenance or touch exposed electrical circuitry on the card.
4.3 OPT-PRE Amplifier Card

For hardware specifications, see the “A.5.1 OPT-PRE Amplifier Card Specifications” section on page A-14.

For OPT-PRE card safety labels, see the “4.2 Class 1M Laser Safety Labels” section on page 4-3.

The OPT-PRE is a C-band, DWDM, two-stage erbium-doped fiber amplifier (EDFA) with midamplifier loss (MAL) that can be connected to a dispersion compensating unit (DCU). The OPT-PRE is equipped with a built-in variable optical attenuator (VOA) that controls the gain tilt and can also be used to pad the DCU to a reference value. You can install the OPT-PRE in Slots 1 to 6 and 12 to 17. The card is designed to support up to 80 channels at 50-GHz channel spacing. The OPT-PRE features include:

- Fixed gain mode with programmable tilt
- True variable gain
- Fast transient suppression
- Nondistorting low-frequency transfer function
- Settable maximum output power
- Fixed output power mode (mode used during provisioning)
- MAL for fiber-based DCU
- Amplified spontaneous emissions (ASE) compensation in fixed gain mode
- Full monitoring and alarm handling with settable thresholds
- Four signal photodiodes to monitor the input and output optical power of the two amplifier stages through CTC
- An optical output port for external monitoring

The optical splitter has a ratio of 1:99, resulting in about 20 dB-lower power at the MON port than at the COM TX port.
4.3.1 OPT-PRE Faceplate Ports

The OPT-PRE amplifier has five optical ports located on the faceplate:

- MON is the output monitor port
- COM RX (receive) is the input signal port
- COM TX (transmit) is the output signal port
- DC RX is the MAL input signal port
- DC TX is the MAL output signal port

Figure 4-6 shows the OPT-PRE amplifier card faceplate.
4.3.2 OPT-PRE Block Diagrams

Figure 4-7 shows a simplified block diagram of the OPT-PRE card’s features.

Figure 4-7 OPT-PRE Block Diagram

![OPT-PRE Block Diagram]

Figure 4-8 shows the block diagram of how the OPT-PRE optical module functions.

Figure 4-8 OPT-PRE Optical Module Functional Block Diagram

![OPT-PRE Optical Module Functional Block Diagram]

4.3.3 OPT-PRE Power Monitoring

Physical photodiodes P1, P2, P3, and P4 monitor the power for the OPT-PRE card. Table 4-3 shows the returned power level values calibrated to each port.

Table 4-3 OPT-PRE Port Calibration

<table>
<thead>
<tr>
<th>Photodiode</th>
<th>CTC Type Name</th>
<th>Calibrated to Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Input Com</td>
<td>COM RX</td>
</tr>
<tr>
<td>P2</td>
<td>Output DC</td>
<td>DC TX</td>
</tr>
<tr>
<td>P3</td>
<td>Input DC</td>
<td>DC RX</td>
</tr>
</tbody>
</table>
Table 4-3 OPT-PRE Port Calibration (continued)

<table>
<thead>
<tr>
<th>Photodiode</th>
<th>CTC Type Name</th>
<th>Calibrated to Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4</td>
<td>Output COM (Total Output)</td>
<td>COM TX</td>
</tr>
<tr>
<td></td>
<td>Output COM (Signal Output)</td>
<td></td>
</tr>
</tbody>
</table>

For information on the associated TL1 AIDs for the optical power monitoring points, refer the “CTC Port Numbers and TL1 Aids” section in Cisco ONS SONET TL1 Command Guide, Release 8.0.

4.3.4 OPT-PRE Amplifier Card-Level Indicators

Table 4-4 shows the three card-level LED indicators on the OPT-PRE amplifier card.

Table 4-4 OPT-PRE Amplifier Card-Level Indicators

<table>
<thead>
<tr>
<th>Card-Level Indicators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red FAIL LED</td>
<td>The red FAIL LED indicates that the card’s processor is not ready or that an</td>
</tr>
<tr>
<td></td>
<td>internal hardware failure occurred. Replace the card if the red FAIL LED</td>
</tr>
<tr>
<td>Green ACT LED</td>
<td>The green ACT LED indicates that the OPT-PRE is carrying traffic or is</td>
</tr>
<tr>
<td></td>
<td>traffic-ready.</td>
</tr>
<tr>
<td>Amber SF LED</td>
<td>The amber SF LED indicates a signal failure or condition such as LOS on</td>
</tr>
<tr>
<td></td>
<td>one or more of the card’s ports. The amber SF LED also turns on when the</td>
</tr>
<tr>
<td></td>
<td>transmit and receive fibers are incorrectly connected. When the fibers are</td>
</tr>
<tr>
<td></td>
<td>properly connected, the light turns off.</td>
</tr>
</tbody>
</table>

4.3.5 OPT-PRE Port-Level Indicators

You can determine the status of the card ports using the LCD screen on the ONS 15454 fan-tray assembly. Use the LCD to view the status of any port or card slot; the screen displays the number and severity of alarms for a given port or slot.

4.4 OPT-BST Amplifier Card

Note

For hardware specifications, see the “A.5.2 OPT-BST Amplifier Card Specifications” section on page A-14.

Note

For OPT-BST card safety labels, see the “4.2 Class 1M Laser Safety Labels” section on page 4-3.
The OPT-BST is designed to ultimately support up to 80 channels at 50-GHz channel spacing. The OPT-BST is a C-band, DWDM EDFA with optical service channel (OSC) add-and-drop capability. When an OPT-BST installed in the an ONS 15454, an OSCM card is also needed to process the OSC. You can install the OPT-BST in Slots 1 to 6 and 12 to 17. The card’s features include:

- Fixed gain mode (with programmable tilt)
- Gain range of 5 to 20 dB in constant gain mode and output power mode
- True variable gain
- Built-in VOA to control gain tilt
- Fast transient suppression
- Nondistorting low-frequency transfer function
- Settable maximum output power
- Fixed output power mode (mode used during provisioning)
- ASE compensation in fixed gain mode
- Full monitoring and alarm handling with settable thresholds
- Optical Safety Remote Interlock (OSRI), a CTC software feature capable of shutting down optical output power or reducing the power to a safe level (automatic power reduction)
- Automatic laser shutdown (ALS), a safety mechanism used in the event of a fiber cut. For details on ALS provisioning for the card, refer to the Cisco ONS 15454 DWDM Procedure Guide. For information about using the card to implement ALS in a network, see the “10.7 Network Optical Safety” section on page 10-18.

Note

The optical splitters each have a ratio of 1:99. The result is that MON TX and MON RX port power is about 20 dB lower than COM TX and COM RX port power.

4.4.1 OPT-BST Faceplate Ports

The OPT-BST amplifier has eight optical ports located on the faceplate:

- MON RX is the output monitor port (receive section).
- MON TX is the output monitor port.
- COM RX is the input signal port.
- LINE TX is the output signal port.
- LINE RX is the input signal port (receive section).
- COM TX is the output signal port (receive section).
- OSC RX is the OSC add input port.
- OSC TX is the OSC drop output port.
Figure 4-9 shows the OPT-BST amplifier card faceplate.

4.4.2 OPT-BST Block Diagrams

Figure 4-10 shows a simplified block diagram of the OPT-BST card’s features.
Figure 4-10 OPT-BST Block Diagram

Figure 4-11 OPT-BST Optical Module Functional Block Diagram

4.4.3 OPT-BST Power Monitoring

Physical photodiodes P1, P2, P3, and P4 monitor the power for the OPT-BST card. Table 4-5 shows the returned power level values calibrated to each port.

Table 4-5 OPT-BST Port Calibration

<table>
<thead>
<tr>
<th>Photodiode</th>
<th>CTC Type Name</th>
<th>Calibrated to Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Input Com</td>
<td>COM RX</td>
</tr>
<tr>
<td>P2</td>
<td>Output Line (Total Output)</td>
<td>LINE TX</td>
</tr>
<tr>
<td></td>
<td>Output Line (Signal Output)</td>
<td></td>
</tr>
</tbody>
</table>
4.4.4 OPT-BST Card-Level Indicators

Table 4-6 describes the three card-level LED indicators on the OPT-BST card.

Table 4-6 OPT-BST Card-Level Indicators

<table>
<thead>
<tr>
<th>Card-Level Indicators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red FAIL LED</td>
<td>The red FAIL LED indicates that the card’s processor is not ready or that an internal hardware failure occurred. Replace the card if the red FAIL LED persists.</td>
</tr>
<tr>
<td>Green ACT LED</td>
<td>The green ACT LED indicates that the OPT-BST is carrying traffic or is traffic-ready.</td>
</tr>
<tr>
<td>Amber SF LED</td>
<td>The amber SF LED indicates a signal failure or condition such as LOS on one or more of the card’s ports. The amber SF LED also turns on when the transmit and receive fibers are incorrectly connected. When the fibers are properly connected, the light turns off.</td>
</tr>
</tbody>
</table>

4.4.5 OPT-BST Port-Level Indicators

You can determine the status of the card ports using the LCD screen on the ONS 15454 fan-tray assembly. Use the LCD to view the status of any port or card slot; the screen displays the number and severity of alarms for a given port or slot.

4.5 OPT-BST-E Amplifier Card

For hardware specifications, see the “A.5.3 OPT-BST-E Amplifier Card Specifications” section on page A-15.

For OPT-BST-E safety labels, see the “4.2 Class 1M Laser Safety Labels” section on page 4-3.

The OPT-BST-E amplifier card is a gain-enhanced version of the OPT-BST card. It is designed to support up to 80 channels at 50-GHz channel spacing. The OPT-BST-E is a C-band, DWDM EDFA with OSC add-and-drop capability. When an OPT-BST-E installed, an OSCM card is needed to process the OSC. You can install the OPT-BST-E in Slots 1 to 6 and 12 to 17. The card’s features include:
• Fixed gain mode (with programmable tilt)
• True variable gain
• Gain range of 8 to 23 dBm with the tilt managed at 0 dBm in constant gain mode and output power mode
• Enhanced gain range of 23 to 26 dBm with unmanaged tilt
• Built-in VOA to control the gain tilt
• Fast transient suppression
• Nondistorting low-frequency transfer function
• Settable maximum output power
• Fixed output power mode (mode used during provisioning)
• ASE compensation in fixed gain mode
• Full monitoring and alarm handling with settable thresholds
• OSRI
• ALS

Note
The optical splitters each have a ratio of 1:99. The result is that MON TX and MON RX port power is about 20 dB lower than COM TX and COM RX port power.

4.5.1 OPT-BST-E Faceplate Ports

The OPT-BST-E amplifier card has eight optical ports located on the faceplate:
• MON RX is the output monitor port (receive section).
• MON TX is the output monitor port.
• COM RX is the input signal port.
• LINE TX is the output signal port.
• LINE RX is the input signal port (receive section).
• COM TX is the output signal port (receive section).
• OSC RX is the OSC add input port.
• OSC TX is the OSC drop output port.
4.5.2 OPT-BST-E Block Diagrams

Figure 4-12 shows the OPT-BST-E amplifier card faceplate.

Figure 4-12 OPT-BST-E Faceplate

4.5.2 OPT-BST-E Block Diagrams

Figure 4-13 shows a simplified block diagram of the OPT-BST-E card’s features.
4.5.3 OPT-BST-E Power Monitoring

Physical photodiodes P1, P2, P3, and P4 monitor the power for the OPT-BST-E card. Table 4-7 shows the returned power level values calibrated to each port.

<table>
<thead>
<tr>
<th>Photodiode</th>
<th>CTC Type Name</th>
<th>Calibrated to Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Input Com</td>
<td>COM RX</td>
</tr>
<tr>
<td>P2</td>
<td>Output Line (Total Output)</td>
<td>LINE TX</td>
</tr>
<tr>
<td></td>
<td>Output Line (Signal Output)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-13 OPT-BST-E Block Diagram

Figure 4-14 shows a block diagram of how the OPT-BST-E optical module functions.

Figure 4-14 OPT-BST-E Optical Module Functional Block Diagram
4.5.4 OPT-BST-E Card-Level Indicators

Table 4-8 describes the three card-level LED indicators on the OPT-BST-E amplifier card.

Table 4-8 OPT-BST-E Card-Level Indicators

<table>
<thead>
<tr>
<th>Card-Level Indicators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red FAIL LED</td>
<td>The red FAIL LED indicates that the card’s processor is not ready or that an internal hardware failure occurred. Replace the card if the red FAIL LED persists.</td>
</tr>
<tr>
<td>Green ACT LED</td>
<td>The green ACT LED indicates that the OPT-BST-E is carrying traffic or is traffic-ready.</td>
</tr>
<tr>
<td>Amber SF LED</td>
<td>The amber SF LED indicates a signal failure or condition such as LOS on one or more of the card’s ports. The amber SF LED also turns on when the transmit and receive fibers are incorrectly connected. When the fibers are properly connected, the light turns off.</td>
</tr>
</tbody>
</table>

4.5.5 OPT-BST-E Port-Level Indicators

You can determine the status of the card ports using the LCD screen on the ONS 15454 fan-tray assembly. Use the LCD to view the status of any port or card slot; the screen displays the number and severity of alarms for a given port or slot.

4.6 OPT-BST-L Amplifier Card

Note

For hardware specifications, see the “A.5.4 OPT-BST-L Amplifier Card Specifications” section on page A-16.

Note

For OPT-BST-L safety labels, see the “4.2 Class 1M Laser Safety Labels” section on page 4-3.

The OPT-BST-L is an L-band, DWDM EDFA with OSC add-and-drop capability. The card is well suited for use in networks that employ dispersion shifted (DS) fiber or SMF-28 single-mode fiber. The OPT-BST-L is designed to ultimately support 64 channels at 50-GHz channel spacing, but in Software
R8.0 is limited to 32 channels at 100-GHz spacing. When an ONS 15454 has an OPT-BST-L installed, an OSCM card is needed to process the OSC. You can install the OPT-BST-L in Slots 1 to 6 and 12 to 17. The card’s features include:

- Fixed gain mode (with programmable tilt)
- Standard gain range of 8 to 20 dB in the programmable gain tilt mode
- True variable gain
- 20 to 27 dB gain range in the uncontrolled gain tilt mode
- Built-in VOA to control gain tilt
- Fast transient suppression
- Nondistorting low-frequency transfer function
- Settable maximum output power
- Fixed output power mode (mode used during provisioning)
- ASE compensation in fixed gain mode
- Full monitoring and alarm handling with settable thresholds
- OSRI
- ALS

Note

The optical splitters each have a ratio of 1:99. The result is that MON TX and MON RX port power is about 20 dB lower than COM TX and COM RX port power.

4.6.1 OPT-BST-L Faceplate Ports

The OPT-BST-L amplifier has eight optical ports located on the faceplate:

- MON RX is the output monitor port (receive section).
- MON TX is the output monitor port.
- COM RX is the input signal port.
- LINE TX is the output signal port.
- LINE RX is the input signal port (receive section).
- COM TX is the output signal port (receive section).
- OSC RX is the OSC add input port.
- OSC TX is the OSC drop output port.
Figure 4-15 shows the OPT-BST-L card faceplate.

Figure 4-15 OPT-BST-L Faceplate

4.6.2 OPT-BST-L Block Diagrams

Figure 4-16 shows a simplified block diagram of the OPT-BST-L card’s features.
4.6.3 OPT-BST-L Power Monitoring

Physical photodiodes P1, P2, P3, P4, and P5 monitor the power for the OPT-BST-L card. Table 4-9 shows the returned power level values calibrated to each port.

<table>
<thead>
<tr>
<th>Photodiode</th>
<th>CTC Type Name</th>
<th>Calibrated to Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Input COM</td>
<td>COM RX</td>
</tr>
</tbody>
</table>

Table 4-9 OPT-BST-L Port Calibration
Table 4-9

OPT-BST-L Port Calibration (continued)

<table>
<thead>
<tr>
<th>Photodiode</th>
<th>CTC Type Name</th>
<th>Calibrated to Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>Output Line (Total Output)</td>
<td>LINE TX</td>
</tr>
<tr>
<td></td>
<td>Output Line (Signal Output)</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>Output OSC-RX</td>
<td>OSC-RX</td>
</tr>
<tr>
<td>P4</td>
<td>Output COM</td>
<td>LINE RX</td>
</tr>
<tr>
<td>P5</td>
<td>Output OSC-TX</td>
<td></td>
</tr>
</tbody>
</table>

For information on the associated TL1 AIDs for the optical power monitoring points, refer the “CTC Port Numbers and TL1 Aids” section in Cisco ONS SONET TL1 Command Guide, Release 8.0.

4.6.4 OPT-BST-L Card-Level Indicators

Table 4-10 shows the three card-level LEDs on the OPT-BST-L card.

<table>
<thead>
<tr>
<th>Card-Level Indicators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red FAIL LED</td>
<td>The red FAIL LED indicates that the card’s processor is not ready or that an internal hardware failure occurred. Replace the card if the red FAIL LED persists.</td>
</tr>
<tr>
<td>Green ACT LED</td>
<td>The green ACT LED indicates that the OPT-BST-L is carrying traffic or is traffic-ready.</td>
</tr>
<tr>
<td>Amber SF LED</td>
<td>The amber SF LED indicates a signal failure or condition such as LOS on one or more of the card’s ports. The amber SF LED also turns on when the transmit and receive fibers are incorrectly connected. When the fibers are properly connected, the light turns off.</td>
</tr>
</tbody>
</table>

4.6.5 OPT-BST-L Port-Level Indicators

You can determine the status of the card ports using the LCD screen on the ONS 15454 fan-tray assembly. Use the LCD to view the status of any port or card slot; the screen displays the number and severity of alarms for a given port or slot.

4.7 OPT-AMP-L Card

Note

For hardware specifications, see the “A.5.5 OPT-AMP-L Preamplifier Card Specifications” section on page A-16.

Note

For OPT-AMP-L card safety labels, see the “4.2 Class 1M Laser Safety Labels” section on page 4-3.
The OPT-AMP-L is an L-band, DWDM optical amplifier card consisting of a two-stage EDFA with midstage access loss (MSL) for an external DCU and OSC add-and-drop capability. Using CTC, the card is provisionable as a preamplifier (OPT-PRE) or booster amplifier (OPT-BST), and is well suited for use in networks that employ DS or SMF-28 fiber. The amplifier can operate up to 64 optical transmission channels at 50-GHz channel spacing in the 1570 nm to 1605 nm wavelength range.

When an OPT-AMP-L installed, an OSCM card is needed to process the OSC. You can install the two-slot OPT-AMP-L in Slots 1 to 6 and 12 to 17.

The card has the following features:

- Maximum power output of 20 dBm
- True variable gain amplifier with settable range from 12 to 24 dBm in the standard gain range and 24 dBm to 35 dBm with uncontrolled gain tilt
- Built-in VOA to control gain tilt
- Up to 12 dBm MSL for an external DCU
- Fast transient suppression; able to adjust power levels in hundreds of microseconds to avoid bit errors in failure or capacity growth situations
- Nondistorting low frequency transfer function
- Midstage access loss for dispersion compensation unit
- Constant pump current mode (test mode)
- Constant output power mode (used during optical node setup)
- Constant gain mode
- Internal ASE compensation in constant gain mode and in constant output power mode
- Full monitoring and alarm handling capability
- Optical safety support through signal loss detection and alarm at any input port, fast power down control (less than one second), and reduced maximum output power in safe power mode. For details on ALS provisioning for the card, refer to the Cisco ONS 15454 DWDM Procedure Guide. For information on using the card to implement ALS in a network, see the “10.7 Network Optical Safety” section on page 10-18.

Note

Before disconnecting any OPT-AMP-L fiber for troubleshooting, first make sure the OPT-AMP-L card is unplugged.

4.7.1 OPT-AMP-L Faceplate Ports

The OPT-AMP-L amplifier card has ten optical ports located on the faceplate:

- MON RX is the output monitor port (receive section).
- MON TX is the output monitor port.
- COM RX is the input signal port.
- LINE TX is the output signal port.
- LINE RX is the input signal port (receive section).
- COM TX is the output signal port (receive section).
- OSC RX is the OSC add input port.
4.7.2 OPT-AMP-L Block Diagrams

Figure 4-18 shows the OPT-AMP-L card faceplate.

Figure 4-19 shows a simplified block diagram of the OPT-AMP-L card’s features.
Figure 4-20 shows a block diagram of how the OPT-AMP-L optical module functions.

Figure 4-19 OPT-AMP-L Block Diagram

Figure 4-20 OPT-AMP-L Optical Module Functional Block Diagram
4.7.3 OPT-AMP-L Power Monitoring

Physical photodiodes P1 through P7 monitor the power for the OPT-AMP-L card. Table 4-11 shows the returned power level values calibrated to each port.

<table>
<thead>
<tr>
<th>Photodiode</th>
<th>CTC Type Name</th>
<th>Calibrated to Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Input COM Power</td>
<td>COM RX</td>
</tr>
<tr>
<td>P2</td>
<td>Output DC (total power)</td>
<td>DC TX</td>
</tr>
<tr>
<td>P3</td>
<td>Input DC (signal power)</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>Output Line Transmit (total power)</td>
<td>LINE TX</td>
</tr>
<tr>
<td>P5</td>
<td>Input Line Receive Power</td>
<td>LINE RX</td>
</tr>
<tr>
<td>P6</td>
<td>Input OSC Receive Power</td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>Output OSC Transmit Power</td>
<td>OSC RX</td>
</tr>
</tbody>
</table>

For information on the associated TL1 AIDs for the optical power monitoring points, refer the “CTC Port Numbers and TL1 Aids” section in Cisco ONS SONET TL1 Command Guide, Release 8.0.

4.7.4 OPT-AMP-L Card-Level Indicators

Table 4-12 shows the three card-level LEDs on the OPT-AMP-L card.

<table>
<thead>
<tr>
<th>Card-Level Indicators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red FAIL LED</td>
<td>The red FAIL LED indicates that the card’s processor is not ready or that an internal hardware failure occurred. Replace the card if the red FAIL LED persists.</td>
</tr>
<tr>
<td>Green ACT LED</td>
<td>The green ACT LED indicates that the OPT-AMP-L is carrying traffic or is traffic-ready.</td>
</tr>
<tr>
<td>Amber SF LED</td>
<td>The amber SF LED indicates a signal failure or condition such as LOS on one or more of the card’s ports. The amber SF LED also turns on when the transmit and receive fibers are incorrectly connected. When the fibers are properly connected, the light turns off.</td>
</tr>
</tbody>
</table>

4.7.5 OPT-AMP-L Port-Level Indicators

You can determine the status of the card ports using the LCD screen on the ONS 15454 fan-tray assembly. Use the LCD to view the status of any port or card slot; the screen displays the number and severity of alarms for a given port or slot.
4.8 OPT-AMP-17-C Card

Note
For hardware specifications, see the “A.5.6 OPT-AMP-17-C Amplifier Card Specifications” section on page A-17.

Note
For OPT-AMP-17-C safety labels, see the “4.2 Class 1M Laser Safety Labels” section on page 4-3.

The OPT-AMP-17-C is a 17-dB gain, C-band, DWDM EDFA amplifier/preamplifier with OSC add-and-drop capability. It supports 80 channels at 50-GHz channel spacing in the C-band (that is, the 1529 nm to 1562.5 nm wavelength range). When an ONS 15454 has an OPT-AMP-17-C installed, an OSCM card is needed to process the OSC. You can install the OPT-AMP-17-C in Slots 1 to 6 and 12 to 17.

The card’s features include:

- Fixed gain mode (no programmable tilt)
- Standard gain range of 14 to 20 dB at startup when configured as a preamplifier
- Standard gain range of 20 to 23 dB in the transient mode when configured as a preamplifier
- Gain range of 14 to 23 dB (with no transient gain range) when configured as a booster amplifier
- True variable gain
- Fast transient suppression
- Nondistorting low-frequency transfer function
- Settable maximum output power
- Fixed output power mode (mode used during provisioning)
- ASE compensation in fixed gain mode
- Full monitoring and alarm handling with settable thresholds
- OSRI
- ALS

4.8.1 OPT-AMP-17-C Faceplate Ports

The OPT-AMP-17-C amplifier card has eight optical ports located on the faceplate:

- MON RX is the output monitor port (receive section).
- MON TX is the output monitor port.
- COM RX is the input signal port.
- LINE TX is the output signal port.
- LINE RX is the input signal port (receive section).
- COM TX is the output signal port (receive section).
- OSC RX is the OSC add input port.
- OSC TX is the OSC drop output port.
Figure 4-21 shows the OPT-AMP-17-C amplifier card faceplate.

Figure 4-22 shows a simplified block diagram of the OPT-AMP-17C card’s features.
4.8.3 **OPT-AMP-17-C Automatic Power Control**

A transient gain range of 20 to 23 dB is available to APC in order to permit other amplifiers to reach their expected set points. However, operation in this range is not continuous. At startup, the OPT-AMP-17-C card caps the gain at a maximum of 20 dB.
4.8.4 OPT-AMP-17-C Power Monitoring

Physical photodiodes P1, P2, P3, P4, and P5 monitor power for the OPT-AMP-17-C card. Table 4-13 shows the returned power level values calibrated to each port.

Table 4-13 OPT-AMP-17-C Port Calibration

<table>
<thead>
<tr>
<th>Photodiode</th>
<th>CTC Type Name</th>
<th>Calibrated to Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Input COM</td>
<td>COM RX</td>
</tr>
<tr>
<td>P2</td>
<td>Output Line (Total Output)</td>
<td>LINE TX</td>
</tr>
<tr>
<td>P2</td>
<td>Output Line (Signal Output)</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>Output OSC-RX</td>
<td>OSC-RX</td>
</tr>
<tr>
<td>P3</td>
<td>Output COM</td>
<td>LINE RX</td>
</tr>
<tr>
<td>P4</td>
<td>Output OSC-TX</td>
<td></td>
</tr>
</tbody>
</table>

For information on the associated TL1 AIDs for the optical power monitoring points, refer the “CTC Port Numbers and TL1 Aids” section in Cisco ONS SONET TL1 Command Guide, Release 8.0.

4.8.5 OPT-AMP-17-C Card-Level Indicators

Table 4-14 shows the three card-level LEDs on the OPT-AMP-17-C card.

Table 4-14 OPT-AMP-17-C Card-Level Indicators

<table>
<thead>
<tr>
<th>Card-Level Indicators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red FAIL LED</td>
<td>The red FAIL LED indicates that the card’s processor is not ready or that an internal hardware failure occurred. Replace the card if the red FAIL LED persists.</td>
</tr>
<tr>
<td>Green ACT LED</td>
<td>The green ACT LED indicates that the OPT-AMP-17-C is carrying traffic or is traffic-ready.</td>
</tr>
<tr>
<td>Amber SF LED</td>
<td>The amber SF LED indicates a signal failure or condition such as LOS on one or more of the card’s ports. The amber SF LED also turns on when the transmit and receive fibers are incorrectly connected. When the fibers are properly connected, the light turns off.</td>
</tr>
</tbody>
</table>

4.8.6 OPT-AMP-17-C Port-Level Indicators

You can determine the status of the card ports using the LCD screen on the ONS 15454 fan-tray assembly. Use the LCD to view the status of any port or card slot; the screen displays the number and severity of alarms for a given port or slot.