SONET Topologies and Upgrades

The terms “Unidirectional Path Switched Ring” and “UPSR” may appear in Cisco literature. These terms do not refer to using Cisco ONS 15xxx products in a unidirectional path switched ring configuration. Rather, these terms, as well as “Path Protected Mesh Network” and “PPMN,” refer generally to Cisco’s path protection feature, which may be used in any topological network configuration. Cisco does not recommend using its path protection feature in any particular topological network configuration.

This chapter explains Cisco ONS 15454 SONET topologies and upgrades. To provision topologies, refer to the Cisco ONS 15454 Procedure Guide.

Chapter topics include:

- 11.1 SONET Rings and TCC2/TCC2P Cards, page 11-1
- 11.2 Bidirectional Line Switched Rings, page 11-3
- 11.3 Dual-Ring Interconnect, page 11-14
- 11.4 Linear ADM Configurations, page 11-18
- 11.5 Path-Protected Mesh Networks, page 11-19
- 11.6 Four-Shelf Node Configurations, page 11-21
- 11.7 OC-N Speed Upgrades, page 11-22
- 11.8 In-Service Topology Upgrades, page 11-24

11.1 SONET Rings and TCC2/TCC2P Cards

Table 11-1 shows the SONET rings that can be created on each ONS 15454 node using redundant TCC2/TCC2P cards.

<table>
<thead>
<tr>
<th>Ring Type</th>
<th>Maximum Rings per Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLSRs</td>
<td>5</td>
</tr>
<tr>
<td>2-Fiber BLSR</td>
<td>5</td>
</tr>
<tr>
<td>4-Fiber BLSR</td>
<td>1</td>
</tr>
<tr>
<td>Path protection with SDCC</td>
<td>34¹</td>
</tr>
</tbody>
</table>
Table 11-1 ONS 15454 Rings with Redundant TCC2/TCC2P Cards (continued)

<table>
<thead>
<tr>
<th>Ring Type</th>
<th>Maximum Rings per Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path protection with LDCC</td>
<td>14^2</td>
</tr>
</tbody>
</table>
Chapter 11: SONET Topologies and Upgrades

11.2 Bidirectional Line Switched Rings

The ONS 15454 can support five concurrent bidirectional line switch rings (BLSRs) in one of the following configurations:

- Five two-fiber BLSRs
- Four two-fiber and one four-fiber BLSR

Each BLSR can have up to 32 ONS 15454s. Because the working and protect bandwidths must be equal, you can create only OC-12 (two-fiber only), OC-48, or OC-192 BLSRs.

Note

For best performance, BLSRs should have one LAN connection for every ten nodes in the BLSR.

11.2.1 Two-Fiber BLSRs

In two-fiber BLSRs, each fiber is divided into working and protect bandwidths. For example, in an OC-48 BLSR (Figure 11-1), STSs 1 to 24 carry the working traffic, and STSs 25 to 48 are reserved for protection. Working traffic (STSs 1 to 24) travels in one direction on one fiber and in the opposite direction on the second fiber. The Cisco Transport Controller (CTC) circuit routing routines calculate the shortest path for circuits based on many factors, including user requirements, traffic patterns, and distance. For example, in Figure 11-1, circuits going from Node 0 to Node 1 typically travel on Fiber 1, unless that fiber is full, in which case circuits are routed on Fiber 2 through Node 3 and Node 2. Traffic from Node 0 to Node 2 (or Node 1 to Node 3) can be routed on either fiber, depending on circuit provisioning requirements and traffic loads.
The SONET K1, K2, and K3 bytes carry the information that governs BLSR protection switches. Each BLSR node monitors the K bytes to determine when to switch the SONET signal to an alternate physical path. The K bytes communicate failure conditions and actions taken between nodes in the ring.

If a break occurs on one fiber, working traffic targeted for a node beyond the break switches to the protect bandwidth on the second fiber. The traffic travels in a reverse direction on the protect bandwidth until it reaches its destination node. At that point, traffic is switched back to the working bandwidth.

Figure 11-2 shows a traffic pattern sample on a four-node, two-fiber BLSR.
Figure 11-2 *Four-Node, Two-Fiber BLSR Traffic Pattern Sample*

![Figure 11-2](image)

Figure 11-3 shows how traffic is rerouted following a line break between Node 0 and Node 3.

- All circuits originating on Node 0 that carried traffic to Node 2 on Fiber 2 are switched to the protect bandwidth of Fiber 1. For example, a circuit carrying traffic on STS-1 on Fiber 2 is switched to STS-25 on Fiber 1. A circuit carried on STS-2 on Fiber 2 is switched to STS-26 on Fiber 1. Fiber 1 carries the circuit to Node 3 (the original routing destination). Node 3 switches the circuit back to STS-1 on Fiber 2 where it is routed to Node 2 on STS-1.

- Circuits originating on Node 2 that normally carried traffic to Node 0 on Fiber 1 are switched to the protect bandwidth of Fiber 2 at Node 3. For example, a circuit carrying traffic on STS-2 on Fiber 1 is switched to STS-26 on Fiber 2. Fiber 2 carries the circuit to Node 0 where the circuit is switched back to STS-2 on Fiber 1 and then dropped to its destination.
11.2.2 Four-Fiber BLSRs

Four-fiber BLSRs double the bandwidth of two-fiber BLSRs. Because they allow span switching as well as ring switching, four-fiber BLSRs increase the reliability and flexibility of traffic protection. Two fibers are allocated for working traffic and two fibers for protection, as shown in Figure 11-4. To implement a four-fiber BLSR, you must install four OC-48, OC-48 AS, or OC-192 cards at each BLSR node.
Four-fiber BLSRs provide span and ring switching:

- Span switching (Figure 11-5 on page 11-8) occurs when a working span fails. Traffic switches to the protect fibers between the nodes (Node 0 and Node 1 in the example in Figure 11-5) and then returns to the working fibers. Multiple span switches can occur at the same time.
Ring switching (Figure 11-6) occurs when a span switch cannot recover traffic, such as when both the working and protect fibers fail on the same span. In a ring switch, traffic is routed to the protect fibers throughout the full ring.
11.2.3 BLSR Bandwidth

BLSR nodes can terminate traffic coming from either side of the ring. Therefore, BLSRs are suited for distributed node-to-node traffic applications such as interoffice networks and access networks.

BLSRs allow bandwidth to be reused around the ring and can carry more traffic than a network with traffic flowing through one central hub. BLSRs can also carry more traffic than a path protection operating at the same OC-N rate. Table 11-2 shows the bidirectional bandwidth capacities of two-fiber BLSRs. The capacity is the OC-N rate divided by two, multiplied by the number of nodes in the ring minus the number of pass-through STS-1 circuits.

Table 11-2 Two-Fiber BLSR Capacity

<table>
<thead>
<tr>
<th>OC Rate</th>
<th>Working Bandwidth</th>
<th>Protection Bandwidth</th>
<th>Ring Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-12</td>
<td>STS1-6</td>
<td>STS 7-12</td>
<td>$6 \times N^1 - PT^2$</td>
</tr>
<tr>
<td>OC-48</td>
<td>STS 1-24</td>
<td>STS 25-48</td>
<td>$24 \times N - PT$</td>
</tr>
<tr>
<td>OC-192</td>
<td>STS 1-96</td>
<td>STS 97-192</td>
<td>$96 \times N - PT$</td>
</tr>
</tbody>
</table>

1. N equals the number of ONS 15454 nodes configured as BLSR nodes.
2. PT equals the number of STS-1 circuits passed through ONS 15454 nodes in the ring (capacity can vary depending on the traffic pattern).

Table 11-3 shows the bidirectional bandwidth capacities of four-fiber BLSRs.
Figure 11-7 shows an example of BLSR bandwidth reuse. The same STS carries three different traffic sets simultaneously on different spans around the ring: one set from Node 3 to Node 1, another set from Node 1 to Node 2, and another set from Node 2 to Node 3.

Table 11-3

<table>
<thead>
<tr>
<th>OC Rate</th>
<th>Working Bandwidth</th>
<th>Protection Bandwidth</th>
<th>Ring Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-48</td>
<td>STS 1-48 (Fiber 1)</td>
<td>STS 1-48 (Fiber 2)</td>
<td>48 x N(^1) – PT(^2)</td>
</tr>
<tr>
<td>OC-192</td>
<td>STS 1-192 (Fiber 1)</td>
<td>STS 1-192 (Fiber 2)</td>
<td>192 x N – PT</td>
</tr>
</tbody>
</table>

1. \(N\) equals the number of ONS 15454 nodes configured as BLSR nodes.
2. \(PT\) equals the number of STS-1 circuits passed through ONS 15454 nodes in the ring (capacity can vary depending on the traffic pattern).

Figure 11-7 shows a two-fiber BLSR implementation example with five nodes. A regional long-distance network connects to other carriers at Node 0. Traffic is delivered to the service provider’s major hubs.

- Carrier 1 delivers six DS-3s over two OC-3 spans to Node 0. Carrier 2 provides twelve DS-3s directly. Node 0 receives the signals and delivers them around the ring to the appropriate node.
- The ring also brings 14 DS-1s back from each remote site to Node 0. Intermediate nodes serve these shorter regional connections.
• The ONS 15454 OC-3 card supports a total of four OC-3 ports so that two additional OC-3 spans can be added at little cost.

Figure 11-8 Five-Node Two-Fiber BLSR

Figure 11-9 shows the shelf assembly layout for Node 0, which has one free slot.
Figure 11-9 Shelf Assembly Layout for Node 0 in Figure 11-8

Figure 11-10 shows the shelf assembly layout for the remaining sites in the ring. In this BLSR configuration, an additional eight DS-3s at Node IDs 1 and 3 can be activated. An additional four DS-3s can be added at Node 4, and ten DS-3s can be added at Node 2. Each site has free slots for future traffic needs.

Figure 11-10 Shelf Assembly Layout for Nodes 1 to 4 in Figure 11-8
11.2.5 BLSR Fiber Connections

Plan your fiber connections and use the same plan for all BLSR nodes. For example, make the east port the farthest slot to the right and the west port the farthest slot to the left. Plug fiber connected to an east port at one node into the west port on an adjacent node. Figure 11-11 shows fiber connections for a two-fiber BLSR with trunk cards in Slot 5 (west) and Slot 12 (east). Refer to the *Cisco ONS 15454 Procedure Guide* for fiber connection procedures.

Note Always plug the transmit (Tx) connector of an OC-N card at one node into the receive (Rx) connector of an OC-N card at the adjacent node. Cards display an SF LED when Tx and Rx connections are mismatched.

Figure 11-11 Connecting Fiber to a Four-Node, Two-Fiber BLSR

For four-fiber BLSRs, use the same east-west connection pattern for the working and protect fibers. Do not mix working and protect card connections. The BLSR does not function if working and protect cards are interconnected. Figure 11-12 shows fiber connections for a four-fiber BLSR. Slot 5 (west) and Slot 12 (east) carry the working traffic. Slot 6 (west) and Slot 13 (east) carry the protect traffic.
11.3 Dual-Ring Interconnect

Dual-ring interconnect (DRI) topology provides an extra level of path protection for circuits on interconnected rings. DRI allows users to interconnect BLSRs, path protection configurations, or a path protection with a BLSR, with additional protection provided at the transition nodes. In a DRI topology, ring interconnections occur at two or four nodes.

The drop-and-continue DRI method is used for all ONS 15454 DRIs. In drop-and-continue DRI, a primary node drops the traffic to the connected ring and routes traffic to a secondary node within the same ring. The secondary node also routes the traffic to the connected ring; that is, the traffic is dropped at two different interconnection nodes to eliminate single points of failure. To route circuits on DRI, you must choose the Dual Ring Interconnect option during circuit provisioning. Dual transmit is not supported.

Two DRI topologies can be implemented on the ONS 15454:

- A traditional DRI requires two pairs of nodes to interconnect two networks. Each pair of user-defined primary and secondary nodes drops traffic over a pair of interconnection links to the other network.
- An integrated DRI requires one pair of nodes to interconnect two networks. The two interconnected nodes replace the interconnection ring.

For DRI topologies, a hold-off timer sets the amount of time before a selector switch occurs. It reduces the likelihood of multiple switches, such as:
Dual-Ring Interconnect

11.3.1 BLSR DRI

Unlike BLSR automatic protection switching (APS) protocol, BLSR-DRI is a path-level protection protocol at the circuit level. Drop-and-continue BLSR-DRI requires a service selector in the primary node for each circuit routing to the other ring. Service selectors monitor signal conditions from dual feed sources and select the one that has the best signal quality. Same-side routing drops the traffic at primary nodes set up on the same side of the connected rings, and opposite-side routing drops the traffic at primary nodes set up on the opposite sides of the connected rings. For BLSR-DRI, primary and secondary nodes cannot be the circuit source or destination.

A DRI circuit cannot be created if an intermediate node exists on the interconnecting link. However, an intermediate node can be added on the interconnecting link after the DRI circuit is created.

Figure 11-13 shows ONS 15454s in a traditional BLSR-DRI topology with same-side routing. In Ring 1, Nodes 3 and 4 are the interconnect nodes, and in Ring 2, Nodes 8 and 9 are the interconnect nodes. Duplicate signals are sent between Node 4 (Ring 1) and Node 9 (Ring 2), and between Node 3 (Ring 1) and Node 8 (Ring 2). The primary nodes (Nodes 4 and 9) are on the same side, and the secondary nodes (Nodes 3 and 8) provide an alternative route. In Ring 1, traffic at Node 4 is dropped (to Node 9) and continued (to Node 10). Similarly, at Node 9, traffic is dropped (to Node 4) and continued (to Node 5).
Figure 11-13 ONS 15454 Traditional BLSR Dual-Ring Interconnect (Same-Side Routing)

Figure 11-14 shows ONS 15454s in a traditional BLSR-DRI topology with opposite-side routing. In Ring 1, Nodes 3 and 4 are the interconnect nodes, and in Ring 2, Nodes 8 and 9 are the interconnect nodes. Duplicate signals are sent from Node 4 (Ring 1) to Node 8 (Ring 2), and between Node 3 (Ring 1) and Node 9 (Ring 2). In Ring 1, traffic at Node 4 is dropped (to Node 9) and continued (to Node 8). Similarly, at Node 8, traffic is dropped (to Node 3) and continued (to Node 4).
Figure 11-15 shows ONS 15454s in an integrated BLSR-DRI topology. The same drop-and-continue traffic routing occurs at two nodes, rather than four. This is achieved by installing an addition OC-N trunk at the two interconnect nodes. Nodes 3 and 8 are the interconnect nodes.
11.4 Linear ADM Configurations

You can configure ONS 15454s as a line of add/drop multiplexers (ADMs) by configuring one set of OC-N cards as the working path and a second set as the protect path. Unlike rings, point-to-point ADMs (two-node configurations) and linear ADMs (three-node configurations) require that the OC-N cards at each node be in 1+1 protection to ensure that a break to the working line is automatically routed to the protect line.

Figure 11-16 shows three ONS 15454s in a linear ADM configuration. Working traffic flows from Slot 5/Node 1 to Slot 5/Node 2, and from Slot 12/Node 2 to Slot 12/Node 3. You create the protect path by placing Slot 6 in 1+1 protection with Slot 5 at Nodes 1 and 2, and Slot 12 in 1+1 protection with Slot 13 at Nodes 2 and 3.
11.5 Path-Protected Mesh Networks

In addition to single BLSRs, path protection configurations, and ADMs, you can extend ONS 15454 traffic protection by creating path-protected mesh networks (PPMNs). PPMNs include multiple ONS 15454 SONET topologies and extend the protection provided by a single path protection to the meshed architecture of several interconnecting rings. In a PPMN, circuits travel diverse paths through a network of single or multiple meshed rings. When you create circuits, you can have CTC automatically route circuits across the PPMN, or you can manually route them. You can also choose levels of circuit protection. For example, if you choose full protection, CTC creates an alternate route for the circuit in addition to the main route. The second route follows a unique path through the network between the source and destination and sets up a second set of cross-connections.

For example, in Figure 11-17 a circuit is created from Node 3 to Node 9. CTC determines that the shortest route between the two nodes passes through Node 8 and Node 7, shown by the dotted line, and automatically creates cross-connections at Nodes 3, 8, 7, and 9 to provide the primary circuit path.

If full protection is selected, CTC creates a second unique route between Nodes 3 and 9 which, in this example, passes through Nodes 2, 1, and 11. Cross-connections are automatically created at Nodes 3, 2, 1, 11, and 9, shown by the dashed line. If a failure occurs on the primary path, traffic switches to the second circuit path. In this example, Node 9 switches from the traffic coming in from Node 7 to the traffic coming in from Node 11 and service resumes. The switch occurs within 50 ms.
PPMN also allows spans with different SONET speeds to be mixed together in “virtual rings.” Figure 11-18 shows Nodes 1, 2, 3, and 4 in a standard OC-48 ring. Nodes 5, 6, 7, and 8 link to the backbone ring through OC-12 fiber. The “virtual ring” formed by Nodes 5, 6, 7, and 8 uses both OC-48 and OC-12 cards.
11.6 Four-Shelf Node Configurations

You can link multiple ONS 15454s using their OC-N cards (that is, create a fiber-optic bus) to accommodate more access traffic than a single ONS 15454 can support. Refer to the *Cisco ONS 15454 Procedure Guide*. For example, to drop more than 112 DS-1s or 96 DS-3s (the maximum that can be aggregated in a single node), you can link the nodes but not merge multiple nodes into a single ONS 15454. You can link nodes with OC-12 or OC-48 fiber spans as you would link any other two network nodes. The nodes can be grouped in one facility to aggregate more local traffic.

Figure 11-19 on page 11-22 shows a four-shelf node setup. Each shelf assembly is recognized as a separate node in the ONS 15454 software interface and traffic is mapped using CTC cross-connect options. In Figure 11-19, each node uses redundant fiber-optic cards. Node 1 uses redundant OC-N transport and OC-N bus (connecting) cards for a total of four cards, with eight free slots remaining. Nodes 2 and 3 each use two redundant OC-N bus cards for a total of four cards, with eight free slots remaining. Node 4 uses redundant OC-12 bus cards for a total of two cards, with ten free slots remaining. The four-shelf node example presented here is one of many ways to set up a multiple-node configuration.
11.7 OC-N Speed Upgrades

A span is the optical fiber connection between two ONS 15454 nodes. In a span (optical speed) upgrade, the transmission rate of a span is upgraded from a lower to a higher OC-N signal but all other span configuration attributes remain unchanged. With multiple nodes, a span upgrade is a coordinated series of upgrades on all nodes in the ring or protection group. You can perform in-service span upgrades for the following ONS 15454 cards:

- Single-port OC-12 to OC-48
- Single-port OC-12 to OC-192
- OC-48 to OC-192

You can also perform in-service card upgrades for the following ONS 15454 cards:

- Four-port OC-3 to eight-port OC-3
- Single-port OC-12 to four-port OC-12

Table 11-4 lists permitted upgrades for Slots 5, 6, 12, and 13 (high-speed slots).

<table>
<thead>
<tr>
<th>Cards</th>
<th>Four-port OC-3</th>
<th>Eight-port OC-3</th>
<th>One-port OC-12</th>
<th>Four-port OC-12</th>
<th>OC-48</th>
<th>OC-192</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four-port OC-3</td>
<td>—</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>Eight-port OC-3¹</td>
<td>Not supported</td>
<td>—</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>One-port OC-12</td>
<td>Not supported</td>
<td>Not supported</td>
<td>—</td>
<td>Not supported</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Four-port OC-12²</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>—</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
Table 11-4 Slot 5, 6, 12, and 13 Upgrade Options (continued)

<table>
<thead>
<tr>
<th>Cards</th>
<th>Four-port OC-3</th>
<th>Eight-port OC-3</th>
<th>One-port OC-12</th>
<th>Four-port OC-12</th>
<th>OC-48</th>
<th>OC-192</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-48</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Yes</td>
<td>Not supported</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>OC-192</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Yes</td>
<td>Not supported</td>
<td>Yes</td>
<td>—</td>
</tr>
</tbody>
</table>

1. The eight-port OC-3 is not supported in Slots 5, 6, 12, and 13.
2. The four-port OC-12 is not supported in Slots 5, 6, 12, and 13.

Table 11-5 lists permitted upgrades for Slots 1 through 4 and 14 through 17 (low-speed slots).

Table 11-5 Upgrade Options for Slots 1 through 4 and 14 through 17

<table>
<thead>
<tr>
<th>Cards</th>
<th>Four-port OC-3</th>
<th>Eight-port OC-3</th>
<th>One-port OC-12</th>
<th>Four-port OC-12</th>
<th>OC-48</th>
<th>OC-192</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four-port OC-3</td>
<td>—</td>
<td>Yes</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>—</td>
</tr>
<tr>
<td>Eight-port OC-3</td>
<td>Yes</td>
<td>—</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>—</td>
</tr>
<tr>
<td>One-port OC-12</td>
<td>Not supported</td>
<td>Not supported</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Four-port OC-12</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Yes</td>
<td>—</td>
<td>Not supported</td>
<td>—</td>
</tr>
<tr>
<td>OC-48</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Yes</td>
<td>Not supported</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>OC-1921</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1. The OC-192 is not supported on Slots 1 through 4 and 14 through 17.

Note

Since the four-port OC-3 to eight-port OC-3 cards and the single-port OC-12 to four-port OC-12 cards are the same speed, they are not considered span upgrades.

To perform a span upgrade, the higher-rate OC-N card must replace the lower-rate card in the same slot. If the upgrade is conducted on spans residing in a BLSR, all spans in the ring must be upgraded. The protection configuration of the original lower-rate OC-N card (two-fiber BLSR, four-fiber BLSR, path protection, and 1+1) is retained for the higher-rate OC-N card.

When performing span upgrades on a large number of nodes, we recommend that you upgrade all spans in a ring consecutively and in the same maintenance window. Until all spans are upgraded, mismatched card types are present.

We recommend using the Span Upgrade Wizard to perform span upgrades. Although you can also use the manual span upgrade procedures, the manual procedures are mainly provided as error recovery for the wizard. The Span Upgrade Wizard and the Manual Span Upgrade procedures require at least two technicians (one at each end of the span) who can communicate with each other during the upgrade. Upgrading a span is non-service affecting and causes no more than three switches, each of which is less than 50 ms in duration.

Note

Span upgrades do not upgrade SONET topologies, for example, a 1+1 group to a two-fiber BLSR. Refer to the *Cisco ONS 15454 Procedure Guide* for topology upgrade procedures.
11.7.1 Span Upgrade Wizard

The Span Upgrade Wizard automates all steps in the manual span upgrade procedure (BLSR, path protection, and 1+1). The wizard can upgrade both lines on one side of a four-fiber BLSR or both lines of a 1+1 group; the wizard upgrades path protection configurations and two-fiber BLSRs one line at a time. The Span Upgrade Wizard requires that all working spans have DCC enabled.

The Span Upgrade Wizard provides no way to back out of an upgrade. In the case of an error, you must exit the wizard and initiate the manual procedure to either continue with the upgrade or back out of it. To continue with the manual procedure, examine the standing conditions and alarms to identify the stage in which the wizard failure occurred.

11.7.2 Manual Span Upgrades

Manual span upgrades are mainly provided as error recovery for the Span Upgrade Wizard, but they can be used to perform span upgrades. Downgrading can be performed to back out of a span upgrade. The procedure for downgrading is the same as upgrading except that you choose a lower-rate card type. You cannot downgrade if circuits exist on the STSs that will be removed (the higher STSs).

Procedures for manual span upgrades can be found in the “Upgrade Cards and Spans” chapter in the Cisco ONS 15454 Procedure Guide. Five manual span upgrade options are available:

- Upgrade on a two-fiber BLSR
- Upgrade on a four-fiber BLSR
- Upgrade on a path protection
- Upgrade on a 1+1 protection group
- Upgrade on an unprotected span

11.8 In-Service Topology Upgrades

Topology upgrades can be performed in-service to convert a live network to a different topology. An in-service topology upgrade is potentially service-affecting, and generally allows a traffic hit of 50 ms or less. Traffic might not be protected during the upgrade. The following in-service topology upgrades are supported:

- Unprotected point-to-point or linear ADM to path protection
- Point-to-point or linear ADM to two-fiber BLSR
- Path protection to two-fiber BLSR
- Two-fiber to four-fiber BLSR
- Node addition or removal from an existing topology

You can perform in-service topology upgrades irrespective of the service state of the involved cross-connects or circuits, however a circuit must have a DISCOVERED status.

Circuit types supported for in-service topology upgrades are:

- STS, VT, and VT tunnels
- Virtual concatenated circuits (VCAT)
- Unidirectional and bidirectional
In-Service Topology Upgrades

- Automatically routed and manually routed
- CTC-created and TL1-created
- Ethernet (unstitched)
- Multiple source and destination (both sources should be on one node and both drops on one node)

You cannot upgrade stitched Ethernet circuits during topology conversions. For in-service topology upgrade procedures, refer to the “Convert Network Configurations” chapter in the *Cisco ONS 15454 Procedure Guide*. For procedures to add or remove a node, refer to the “Add and Remove Nodes” chapter of the *Cisco ONS 15454 Procedure Guide*.

Note A database restore on all nodes in a topology returns converted circuits to their original topology.

Note Open-ended path protection and DRI configurations do not support in-service topology upgrades.

11.8.1 Unprotected Point-to-Point or Linear ADM to Path Protection

CTC provides a topology conversion wizard for converting an unprotected point-to-point or linear ADM topology to path protection. This conversion occurs at the circuit level. CTC calculates the additional path protection circuit route automatically or you can do it manually. When routing the path protection circuit, you can provision the USPR as go-and-return or unidirectional.

When performing an in-service topology upgrade on a configuration with VCAT circuits, CTC allows you to select member circuits to upgrade individually. When upgrading VT tunnels, CTC does not convert the VT tunnel to path protection, but instead creates a secondary tunnel for the alternate path. The result is two unprotected VT tunnels using alternate paths.

To convert from point-to-point or linear ADM to a path protection, the topology requires an additional circuit route to complete the ring. When the route is established, CTC creates circuit connections on any intermediate nodes and modifies existing circuit connections on the original circuit path. The number and position of network spans in the topology remains unchanged during and after the conversion.

Figure 11-20 shows an unprotected point-to-point ADM configuration converted to a path protection. An additional circuit routes through Node 3 to complete the path protection.
11.8.2 Point-to-Point or Linear ADM to Two-Fiber BLSR

A 1+1 point-to-point or linear ADM to a two-fiber BLSR conversion is manual. You must remove the protect fibers from all nodes in the linear ADM and route them from the end node to the protect port on the other end node. In addition, you must delete the circuit paths that are located in the bandwidth that will become the protection portion of the two-fiber BLSR (for example, circuits in STS 25 or higher on an OC-48 BLSR) and recreate them in the appropriate bandwidth. Finally, you must provision the nodes as BLSR nodes.

To complete a conversion from an unprotected point-to-point or linear ADM to a two-fiber BLSR, use the CTC Convert Unprotected/path protection to BLSR wizard from the Tools > Topology Upgrade menu.

11.8.3 Path Protection to Two-Fiber BLSR

CTC provides a topology conversion wizard to convert a path protection to a two-fiber BLSR. An upgrade from a path protection to a two-fiber BLSR changes path protection to line protection. A path protection can have a maximum of 16 nodes before conversion. Circuits paths must occupy the same time slots around the ring. Only the primary path through the path protection is needed; the topology conversion wizard removes the alternate path protection path during the conversion. Because circuit paths can begin and end outside of the topology, the conversion might create line-protected segments within path protection paths of circuits outside the scope of the ring. The physical arrangement of the ring nodes and spans remains the same after the conversion.
11.8.4 Two-Fiber BLSR to Four-Fiber BLSR

CTC provides a wizard to convert two-fiber OC-48 or OC-192 BLSRs to four-fiber BLSRs. To convert
the BLSR, you must install two OC-48 or OC-192 cards at each two-fiber BLSR node, then log into CTC
and convert each node from two-fiber to four-fiber. The fibers that were divided into working and protect
bandwidths for the two-fiber BLSR are now fully allocated for working BLSR traffic.

11.8.5 Add or Remove a Node from a Topology

You can add or remove a node from a linear ADM, BLSR, or path protection configuration. Adding or
removing nodes from BLSRs is potentially service affecting, however adding and removing nodes from
an existing 1+1 linear ADM or path protection configuration does not disrupt traffic. CTC provides a
wizard for adding a node to a point-to-point or 1+1 linear ADM. This wizard is used when adding a node
between two other nodes.