
Managing TLS Certificate, KeyStore, and
TrustStore Files

This chapter contains the following sections:

• About the TLS Certificate, KeyStore, and TrustStore Files, page 1

• Preparing to Generate the TLS Credentials, page 2

About the TLS Certificate, KeyStore, and TrustStore Files

To support onePK devices, all connections to Cisco Nexus Data Broker that use onePK or OpenFlow
agents require Transport Layer Security (TLS). For NX-API devices, TLS is optional.

Note

When Cisco Nexus Data Broker is started in a normal way, the connection to the device is HTTP. When
Cisco Nexus Data Broker is started using the TLS protocol, the connection to the device is in HTTPS.

Note

Enabling the TLS connections between Cisco Nexus Data Broker and the OpenFlow or onePK switches
requires TLS KeyStore and TrustStore files. The TLS KeyStore and TLS TrustStore files are password
protected.

Cisco Nexus Series switches connecting to Cisco Nexus Data Broker over OpenFlow require additional
credentials, including Private Key, Certificate, and Certificate Authority (CA).

• The TLS KeyStore file contains the private key and certificate information used by Cisco Nexus Data
Broker.

• The TLS TrustStore file contains the Certification Authority (CA) certificates used to sign the certificates
on the connecting switches.

If TLS connections are required in your Cisco Nexus Data Broker implementation, all of the connections in
the network must be TLS encrypted, and you must run Cisco Nexus Data Broker with TLS enabled). After
Cisco Nexus Data Broker is started with TLS, you must run the TLS KeyStore password configuration
command to provide the passwords for Cisco Nexus Data Broker to unlock the KeyStore files.

Cisco Nexus Data Broker Configuration Guide, Release 2.2
1

Preparing to Generate the TLS Credentials
OpenFlow and Cisco onePK switches require cryptographic configuration to enable TLS.

The NX-API protocol plugin now supports TLS for secure communication to the devices. You can connect
to the NX-API protocol plugin on the secure port 443. All configuration, discovery, and statistics collection
is done using secure communication. Cisco Nexus Data Broker should be configured with the required
certificates and it should be started in the secure mode. When Cisco Nexus Data Broker is started in TLS
mode, all devices support the TLS connection. The normal unencrypted connection to the switches is not
accepted.

Self-signed certificates are appropriate only for testing in small deployments. For additional security and
more granular controls over individual certificate use and revocation, you should use certificates generated
by your organization's Certificate Authority. In addition, you should never use the keys and certificates
generated by this procedure in a production environment.

Caution

Before You Begin

Ensure that OpenSSL is installed on the Linux host where these steps will be performed.

Procedure

Step 1 Create a TLS directory usingmkdir -p TLS command and then navigate to it using cd TLS command:
mkdir -p TLS

cd TLS

Step 2 Set up the directories for your CA system to function within. Create three directories under mypersonalca
usingmkdir -p mypersonalca/<directory name> command. To initialize the serial file and the
index.txt file, enter echo "01" > mypersonalca/serial command and touch mypersonalca/index.txt
command respectively.
mkdir -p mypersonalca/certs

mkdir -p mypersonalca/private

mkdir -p mypersonalca/crl

echo "01" > mypersonalca/serial

touch mypersonalca/index.txt

The serial file and the index.txt file are used by the CA to maintain its database of the certificate files.

Step 3 Create the CA configuration file (ca.cnf). Before saving the ca.cnf file, some changes need to be made that
are specific to the devices. One critical change is to change the [alt_names] section in the ca.cnf file to be
relevant to the device IP address, because these IP addresses should be specified in the configuration file. If
you need more or fewer IP/DNS names, you can add or remove the lines.

This step is applicable to NX-API
only.

Note

The following is an example of the content of the ca.cnf file:

[ca]
default_ca = CA_default

 Cisco Nexus Data Broker Configuration Guide, Release 2.2
2

Managing TLS Certificate, KeyStore, and TrustStore Files
Preparing to Generate the TLS Credentials

[CA_default]
dir = .
serial = $dir/serial
database = $dir/index.txt
new_certs_dir = $dir/newcerts
certs = $dir/certs
certificate = $certs/cacert.pem
private_key = $dir/private/cakey.pem
default_days = 365
default_md = sha1
preserve = no
email_in_dn = no
nameopt = default_ca
certopt = default_ca
policy = policy_match
copy_extensions = copy

[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
default_bits = 2048 # Size of keys
default_keyfile = example.key # name of generated keys
default_md = sha1 # message digest algorithm
string_mask = nombstr # permitted characters
distinguished_name = req_distinguished_name
req_extensions = v3_req
x509_extensions = v3_req

[req_distinguished_name]
Variable name Prompt string
#---------------------- ----------------------------------
0.organizationName = Organization Name (company)
organizationalUnitName = Organizational Unit Name (department, division)
emailAddress = Email Address
emailAddress_max = 40
localityName = Locality Name (city, district)
stateOrProvinceName = State or Province Name (full name)
countryName = Country Name (2 letter code)
countryName_min = 2
countryName_max = 2
commonName = Common Name (hostname, IP, or your name)
commonName_max = 64

Cisco Nexus Data Broker Configuration Guide, Release 2.2
3

Managing TLS Certificate, KeyStore, and TrustStore Files
Preparing to Generate the TLS Credentials

Default values for the above, for consistency and less typing.
Variable name Value
#------------------------------ ------------------------------
commonName_default = www.cisco.com
0.organizationName_default = Cisco
localityName_default = San Jose
stateOrProvinceName_default = CA
countryName_default = US
emailAddress_default = webmaster@cisco.com

[v3_ca]
basicConstraints = CA:TRUE
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer:always

[v3_req]
Extensions to add to a certificate request
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

Some CAs do not yet support subjectAltName in CSRs.
Instead the additional names are form entries on web
pages where one requests the certificate...
subjectAltName = @alt_names

[alt_names]
IP.1 = 1.1.1.1
IP.2 = 2.2.2.2
IP.3 = 3.3.3.3
IP.4 = 4.4.4.4

[server]
Make a cert with nsCertType set to "server"
basicConstraints=CA:FALSE
nsCertType = server
nsComment = "OpenSSL Generated Server Certificate"
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer:always

[client]
Make a cert with nsCertType set to "client"
basicConstraints=CA:FALSE
nsCertType = client
nsComment = "OpenSSL Generated Client Certificate"
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer:always

 Cisco Nexus Data Broker Configuration Guide, Release 2.2
4

Managing TLS Certificate, KeyStore, and TrustStore Files
Preparing to Generate the TLS Credentials

Step 4 Once the directory structure is created and the configuration file (ca.cnf) is saved on your disk, create the TLS
certificate file.

Generate the TLS private key and Certification Authority (CA) files by entering the openssl req -x509 -nodes
-days 3650 -newkey rsa:2048 -out mypersonalca/certs/ca.pem -outform PEM -keyout
mypersonalca/private/ca.key command. This step generates the TLS private key in PEM format with a key
length of 2048 bits and the CA file.

Generate the certificates (server.key and server.crt) file by entering openssl req -new -x509 -days 365
-nodes -out server.crt -keyout server.key -config Example.conf

Step 5 Copy server.key and server.crt into respective devices and install by using the following commands:

configure terminal to enter the configure terminal mode.

nxapi certificate httpskey keyfile bootflash:///server.keywhere bootflash:/// is a file location of server.key.

nxapi certificate httpscrt certfile bootflash:///server.crt where bootflash:/// is a file location of server.crt.

nxapi certificate enable

Step 6 Creating the TLS KeyStore File
The TLSKeyStore file should be placed in the configuration directory of Cisco Nexus Data Broker.Note

Copy server.key to xnc-privatekey.pem. This command copies the server.key file that was generated in
step 5. For example, use the command cp server.key xnc-privatekey.pem.

Copy server.crt to xnc-cert.pem. This command makes a copy of the server.crt file that was generated in
step 5. For example, use the command cp server.crt xnc-cert.pem.

Create the xnc.pem file, that contains the private key and certificate, by entering the cat xnc-privatekey.pem
xnc-cert.pem > xnc.pem command.

Convert the PEM file xnc.pem file to the file xnc.p12 file by entering the openssl pkcs12 -export -out
xnc.p12 -in xnc.pem command. Enter a password at the prompt. This is the Export password. The password
must contain at least 6 characters, for example, cisco123. You must use the same password for this step and
for Step 7. The xnc.pem file is converted to a password-protected .p12 file.

Convert the xnc.p12 to a JavaKeyStore (tlsKeyStore) file by entering the keytool -importkeystore -srckeystore
xnc.p12 -srcstoretype pkcs12 -destkeystore tlsKeyStore -deststoretype jks command. This command
converts the xnc.p12 file to a password-protected tlsKeyStore file. Enter a password at the prompt. Use the
same password that you entered in previous step.

Step 7 Creating the TLS TrustStore File

The TLS TrustStore file should be placed in the application configuration directory.

Copy themypersonalca/certs/ca.pem file to sw-cacert.pem.

Convert the sw-cacert.pem file to a Java TrustStore (tlsTrustStore) file by entering the keytool -import -alias
swca1 -file sw-cacert.pem -keystore tlsTrustStore command.

Enter a password at the prompt. The sw-cacert.pem file is converted into a password-protected Java TrustStore
(tlsTrustStore) file. The password must be at least six characters long, for example, cisco123

Step 8 Starting application with TLS

Copy the tlsKeystore and tlsTruststore files to / configuration folder of NDB. From the console, start Cisco
Nexus Data Broker by entering the ./runxnc.sh -tls -tlskeystore ./configuration/tlsKeyStore -tlstruststore
./configuration/tlsTrustStore command. Now Cisco Nexus Data Broker is started with TLS enabled.

Step 9 Providing the TLS KeyStore and TrustStore Passwords

Cisco Nexus Data Broker Configuration Guide, Release 2.2
5

Managing TLS Certificate, KeyStore, and TrustStore Files
Preparing to Generate the TLS Credentials

The TLS KeyStore and TrustStore passwords are sent to the Cisco Nexus Data Broker so that it can read the
password-protected TLS KeyStore and TrustStore files.

Open a command window where you installed Cisco Nexus Data Broker.

Navigate to the xnc/bin directory.

Provide the TLS KeyStore and TLS TrustStore passwords by entering the ./xnc config-keystore-passwords
[--user {user} --password {password} --url {url} --verbose --prompt --keystore-password
{keystore_password} --truststore-password {truststore_password}] command.

Enter the following information:

• The Cisco Nexus Data Broker username {user}—The user name

• The Cisco Nexus Data Broker password {password}—The password for the user. For example, the
default administrator password is admin.

• The Cisco Nexus Data Broker web URL {url}—The web URL of the application. For example, the
default URL is https://Nexus_Data_Broker_IP:8443.

• The TLS KeyStore password {keystore_password}—The TLS KeyStore password.

• The TLS TrustStore password {truststore_password}—The TLS TrustStore password.

• Example: ./xnc config-keystore-passwords --user admin --password admin --url https://localhost:8443
--verbose --prompt --keystore-password cisco123 --truststore-password cisco123

 Cisco Nexus Data Broker Configuration Guide, Release 2.2
6

Managing TLS Certificate, KeyStore, and TrustStore Files
Preparing to Generate the TLS Credentials

	Managing TLS Certificate, KeyStore, and TrustStore Files
	About the TLS Certificate, KeyStore, and TrustStore Files
	Preparing to Generate the TLS Credentials

