THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Java® is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S. or other countries.

© 2016 Cisco Systems, Inc. All rights reserved.
CHAPTER 5

Configuring Cisco Nexus 9000 Series Switches 29
Guidelines and Limitations 29
Configuring TCAM Hardware Sizing on Cisco Nexus 9000 Series Switches 30
Enabling Cisco NX-API on Cisco Nexus 9000 Series Switches Using CLI 31
Enabling Switch Port Mode as Trunk on the Inter-switch Ports and Port Channels 31

CHAPTER 6

Managing Devices 33
Adding a Node Name 33
Viewing Expanded Nodes Information 35
Viewing the Ports List 35
Adding Devices 35
Editing Devices 36
Removing Devices 37
Adding a Node Group 38
Adding Nodes to a Node Group 38
Removing Nodes from a Node Group 39
Removing a Node Group 40
Adding a Gateway IP Address 40
Removing a Gateway IP Address 41
Adding Ports 41

CHAPTER 7

Configuring Ports and Devices 43
About Cisco Nexus Data Broker Port Types 43
VLAN Tagging 44
Configuring a Port Type 45
Configuring Multiple Ports 45
Removing a Port Type Configuration 46
Configuring a Monitoring Device 47
Removing a Monitoring Device 47
Configuring a Root Node 48
Cisco onePK Agent 48
Connecting to a onePK Agent 49
Symmetric Load Balancing 49
Configuring Symmetric Load Balancing 49
About Flow Programming 91
Adding a Flow Entry 92
Viewing Flow Details 95

CHAPTER 11

Troubleshooting 97
About Troubleshooting 97
Viewing Flow and Port Detail Statistics 98
Viewing Inconsistent Controller Flows or Inconsistent Node Flows 98
Exporting Inconsistent Flow Details 99
Fixing Inconsistent Flows 99
SDN Analyzer 100
Using the SDN Analyzer 100
Changing the Default Values for the SDN Analyzer 101

CHAPTER 12

Managing Slices 103
About Slice Manager 103
Adding a Slice 104
Adding Nodes and Ports to a Slice 104
Adding a Flow Specification 105

CHAPTER 13

Administrative Tasks 107
About AAA Servers 107
Adding an AAA Server 108
Configuring User Authentication for RADIUS Server 108
Viewing an AAA Server 109
Users and Roles 109
Viewing User Information 109
Adding a User 110
Changing the Password for an Existing User 111
Deleting a User 111
Viewing Cluster Management Information 112
Viewing the OSGi Console 113
Viewing the Northbound API Content 113
System Management 114
Downloading the System Log Files 114
Contents

Downloading the System Configuration Files 114
Uploading the System Configuration Files 115
Backing Up or Restoring the Configuration 115
Recovering the Administrative Password 116
Uninstalling the Application Software 117
Cisco Nexus Data Broker Overview

This chapter contains the following sections:

- About Cisco Nexus Data Broker, page 1
- Supported Web Browsers, page 3
- Guidelines and Limitations, page 3
- Prerequisites for Cisco Nexus Series Switches, page 4

About Cisco Nexus Data Broker

Visibility into application traffic has traditionally been important for infrastructure operations to maintain security, troubleshooting, and compliance and perform resource planning. With the technological advances and growth in cloud-based applications, it has become imperative to gain increased visibility into the network traffic. Traditional approaches to gain visibility into network traffic are expensive and rigid, making it difficult for managers of large-scale deployments.

Cisco Nexus Data Broker with Cisco Nexus Switches provides a software-defined, programmable solution to aggregate copies of network traffic using Switched Port Analyzer (SPAN) or network Test Access Point (TAP) for monitoring and visibility. As opposed to traditional network taps and monitoring solutions, this packet-brokering approach offers a simple, scalable and cost-effective solution that is well-suited for customers who need to monitor higher-volume and business-critical traffic for efficient use of security, compliance, and application performance monitoring tools.

With the flexibility to use a variety of Cisco Nexus Switches and the ability to interconnect them to form a scalable topology provides the ability to aggregate traffic from multiple input TAP or SPAN ports, and replicate and forward traffic to multiple monitoring tools which may be connected across different switches. Combining the use of Cisco plugin for OpenFlow and the Cisco NX-API agent to communicate to the switches, Cisco Nexus Data Broker provides advance features for traffic management.

Cisco Nexus Data Broker provides management support for multiple disjointed Cisco Nexus Data Broker networks. You can manage multiple Cisco Nexus Data Broker topologies that may be disjointed using the same application instance. For example, if you have 5 data centers and want to deploy an independent Cisco Nexus Data Broker solution for each data center, you can manage all 5 independent deployments using a single application instance by creating a logical partition (network slice) for each monitoring network.

Cisco Nexus Data Broker provides the following:
• Support for the OpenFlow mode or the NX-API mode of operation.

Note
The OpenFlow mode and the NX-API mode are supported on both Cisco Nexus 3000 Series and Cisco Nexus 9000 Series switches. Cisco Nexus 9500 supports only NX-API mode of deployment. Cisco Nexus 3500 supports only Openflow mode of deployment. You can enable only one mode, either OpenFlow or NX-API mode, at a time.

In order to start or stop the Cisco Nexus Data Broker application in embedded mode, you should activate or de-activate the ofa file. Do not use ./runxnc.sh as it is not the right way to start the application.

You can enable only one mode, either OpenFlow or NX-API mode, at a time.

Note
Starting with Cisco Nexus 3000 Release 7.x, the NX-API configuration is supported on the following Cisco Nexus Series switches:

• Cisco Nexus 3172 switches
• Cisco Nexus 3132 switches
• Cisco Nexus 3164 switches
• Cisco Nexus 31128 switches
• Cisco Nexus 3232 switches
• Cisco Nexus 3264 switches

• Support for Layer-7 filtering for the HTTP traffic using the HTTP methods.
• Support for VLAN and MPLS tag stripping.
• A scalable topology for TAP and SPAN port aggregation.
• Support for Q-in-Q to tag input source TAP and SPAN ports.
• Symmetric load balancing.
• Rules for matching monitoring traffic based on Layer 1 through Layer 4 information.
• The ability to replicate and forward traffic to multiple monitoring tools.
• Time stamping using Precision Time Protocol (PTP).
• Packet truncation beyond a specified number of bytes to discard payload.
• Reaction to changes in the TAP/SPAN aggregation network states.
• Security features, such as role-based access control (RBAC), and integration with an external Active Directory using RADIUS or TACACS for authentication, authorization, and accounting (AAA) functions.
• End-to-end path visibility, including both port and flow level statistics for troubleshooting.
• Robust Representational State Transfer (REST) API and a web-based GUI for performing all functions
• Support for Cisco plugin for Open Flow, version 1.0
Cisco Nexus Data Broker adds NX-API plugin to support Cisco Nexus 9000 Series switches as TAP/SPAN aggregation. The NX-API supports JSON-RPC, XML, and JSON. Cisco Nexus Data Broker interacts with Cisco Nexus 9000 Series using the NX-API in JSON message formats.

With Cisco Nexus Data Broker, you can:

- Classify Switched Port Analyzer (SPAN) and Test Access Point (TAP) ports.
- Integrate with Cisco ACI through Cisco APIC to configure SPAN destinations and SPAN sessions.
- Add monitoring devices to capture traffic.
- Filter which traffic should be monitored.
- Redirect packets from a single or multiple SPAN or TAP ports to multiple monitoring devices through delivery ports.
- Restrict which users can view and modify the monitoring system.
- Configure these additional features, depending upon the type of switch:
 - Enable MPLS Tag stripping.
 - Set VLAN ID on Cisco Nexus 3000 Series switches.
 - Symmetric load balancing on Cisco Nexus 3100 Series switches and Cisco Nexus 9000 Series switches.
 - Timestamp tagging and packet truncation on Cisco Nexus 3500 Series switches.

Supported Web Browsers

The following web browsers are supported for Cisco Nexus Data Broker:

- Firefox 18.x and later versions
- Chrome 24.x and later versions

Guidelines and Limitations

Cisco Nexus Data Broker runs in a Java Virtual Machine (JVM). As a Java-based application, Cisco Nexus Data Broker can run on any x86 server. For best results, we recommend the following:

- One 8-core CPU at 2 GHz or higher.
- A minimum of 16 GB of memory.
• A minimum of 40 GB of free hard disk space must be available on the partition where you will be installing the Cisco Nexus Data Broker application.
• A 64-bit Linux distribution with Java, such as the following:
 ◦ Ubuntu Linux
 ◦ Red Hat Enterprise (RHEL) Linux
 ◦ Fedora Linux
• Java Virtual Machine 1.8.0_45 and higher.
• Python 2.7.3 and a higher version is required for the backup and restore script.
• A $JAVA_HOME environment variable in your profile that is set to the path of the JVM.
• JConsole and VisualVM that are both part of JDK are the recommended (but not required) additions for troubleshooting.

Prerequisites for Cisco Nexus Series Switches

Cisco Nexus Data Broker is supported on Cisco Nexus 3000, 3100, 3200, 3500, and 9000 series switches. Before you deploy the software, you must do the following:

• Ensure that you have administrative rights to log in to the switch.
• Verify that the management interface of the switch (mgmt0) has an IP address configured by running the switch# show running-config interface mgmt0 command.
• Add the VLAN range in the database that is to be used in Cisco Nexus Data Broker for tap aggregation and inline monitoring redirection to support VLAN filtering. For example, the syntax is `vlan <range of VLAN IDs>`. For example, the VLAN range is `<1-3967>`.

For running the OpenFlow and NX-API mode on the Cisco Nexus Series switches, see the following pre-requirements.

<table>
<thead>
<tr>
<th>Device Models</th>
<th>OpenFlow Mode</th>
<th>NX-API Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nexus 3000 Series switches</td>
<td>Enter the # hardware profile openflow command at the prompt.</td>
<td>With Cisco Nexus 3000 Series switches, only Openflow mode is supported.</td>
</tr>
<tr>
<td>Device Models</td>
<td>OpenFlow Mode</td>
<td>NX-API Mode</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nexus 3164Q switches</td>
<td>The OpenFlow mode is not supported on the Nexus 3164Q switches.</td>
<td>Enter the following commands at the prompt:</td>
</tr>
<tr>
<td></td>
<td>• # hardware profile team region qos 0</td>
<td>• # hardware profile team region racl 0</td>
</tr>
<tr>
<td></td>
<td>• # hardware profile team region vacl 0</td>
<td>• # hardware profile team region iqcl 1024 double-wide</td>
</tr>
<tr>
<td></td>
<td>• # hardware profile team region racl-lite 256</td>
<td>• # hardware profile team region iqcl 256 double-wide</td>
</tr>
<tr>
<td></td>
<td>• # hardware access-list team region openflow 256</td>
<td>• # hardware access-list team region e-racl 0</td>
</tr>
<tr>
<td></td>
<td>command at the prompt.</td>
<td>• # hardware access-list team region span 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list team region redirect 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list team region vpc-convergence 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list team region racl-lite 256</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list team region 13qos-intra-lite 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list team region ifacl 256 double-wide</td>
</tr>
<tr>
<td>Nexus 3200 Series switches</td>
<td>Enter the hardware access-list team region openflow 256 command at the prompt.</td>
<td>Enter the following commands at the prompt:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list team region e-racl 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list team region span 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list team region redirect 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list team region vpc-convergence 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list team region racl-lite 256</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list team region 13qos-intra-lite 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list team region ifacl 256 double-wide</td>
</tr>
<tr>
<td>Device Models</td>
<td>OpenFlow Mode</td>
<td>NX-API Mode</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Nexus 9000 Series switches</td>
<td>Enter the hardware access-list tcam region openflow 512 command at the prompt.</td>
<td>Enter the following commands at the prompt:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list tcam region qos 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list tcam region vacl 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list tcam region racl 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list tcam region redirect 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list tcam region vpc-convergence 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list tcam region ifacl 1024 double-wide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # hardware access-list tcam region mac-ifacl 512</td>
</tr>
</tbody>
</table>
Deploying Cisco Nexus Data Broker

This chapter contains the following sections:

- Installing Cisco Nexus Data Broker, page 7

Installing Cisco Nexus Data Broker

Installing or Upgrading the Cisco Nexus Data Broker Software

There is no direct upgrade path from Cisco XNC Monitor Manager Release 1.5 and 1.6 to Cisco Nexus Data Broker Release 2.2. If you have Cisco XNC Monitor Manager Release 1.5 and 1.6 installed and you want to update to the latest Cisco Nexus Data Broker release, you must first upgrade to Cisco Nexus Data Broker 2.0 release. See the Cisco Extensible Network Controller Deployment Guide for the procedure.

- To complete a new installation of Cisco Nexus Data Broker, see Installing the Cisco Nexus Data Broker Software, on page 7.
- To upgrade Cisco XNC Monitor Manager Release 1.5 or Release 1.6 to the Cisco Nexus Data Broker 2.0 and then to 2.2 release, see the upgrading section in Cisco Nexus Data Broker Configuration Guide.

Installing the Cisco Nexus Data Broker Software

Procedure

Step 1 In a web browser, navigate to Cisco.com.
Step 2 Under Support, click All Downloads.
Step 3 In the center pane, click Cloud and Systems Management.
Step 4 If prompted, enter your Cisco.com username and password to log in.
Step 5 In the right pane, click Network Controllers and Applications, and then click Cisco Nexus Data Broker.
The file information for Release 2.2.0 is displayed: Cisco Nexus Data Broker Software Application: ndb1000-sw-app-k9-2.2.0.zip

Step 6 Download the Cisco Nexus Data Broker application bundle.

Step 7 Create a directory in your Linux machine where you plan to install Cisco Nexus Data Broker. For example, in your Home directory, create CiscoNDB.

Step 8 Copy the Cisco Nexus Data Broker zip file into the directory that you created.

Step 9 Unzip the Cisco Nexus Data Broker zip file. The Cisco Nexus Data Broker software is installed in a directory called xnc. The directory contains the following:

- `runxnc.sh` file—The file that you use to launch Cisco Nexus Data Broker.
- `version.properties` file—The Cisco Nexus Data Broker build version.
- `captures` directory—The directory that contains output dump files from analytics run in Cisco Nexus Data Broker.

 Note The `captures` directory is created after you execute the Cisco Nexus Data Broker analytics tool.

- `configuration` directory—The directory that contains the Cisco Nexus Data Broker initialization files.

 This directory also contains the `startup` subdirectory where configurations are saved.

- `bin` directory—The directory that contains the following script:

 - `xnc` file—This script contains the Cisco Nexus Data Broker common CLI.

- `etc` directory—The directory that contains profile information.

- `lib` directory—The directory that contains the Cisco Nexus Data Broker Java libraries.

- `logs` directory—The directory that contains the Cisco Nexus Data Broker logs.

 Note The `logs` directory is created after the Cisco Nexus Data Broker application is started.

- `plugins` directory—The directory that contains the OSGi plugins.

- `work` directory—The webserver working directory.

 Note The `work` directory is created after the Cisco Nexus Data Broker application is started.

Upgrading the Application Software

You can use the `upgrade` command to upgrade a Cisco Nexus Data Broker Release 2.0, Release 2.0.1, or Release 2.1 to Cisco Nexus Data Broker Release 2.2. This upgrade is an in-place upgrade, which means that the product bits are replaced. A backup archive is created to restore your original installation, if necessary.
You can directly upgrade from Cisco Nexus Data Broker Release 2.0, Release 2.0.1, or Release 2.1 to Cisco Nexus Data Broker Release 2.2 by running the upgrade script. If you are upgrading from Cisco XNC Release 1.5 or Release 1.6, you have to first upgrade to Cisco Nexus Data Broker Release 2.0 and then upgrade to Cisco Nexus Data Broker Release 2.2.

When you execute the `upgrade` command, the installation and the configuration are upgraded. However, any changes you made to the shell scripts or configuration files, for example, `runxnc.sh` and `config.ini`, are overwritten. After you complete the upgrade process, you must manually reapply your changes to those files.

Before You Begin

- If you have upgraded from Cisco XNC Monitor Manager Release 1.6 to Cisco Nexus Data Broker 2.0, reset the password, start the controller and save the configuration using the **Save** button at the top of the menu bar in the Cisco XNC Monitor Manager GUI.

- Stop all controller instances that use the Cisco Nexus Data Broker 2.0 installation. This will avoid conflicts with the file system, which is updated during upgrade.

- If you are using high availability clustering, stop all application instances in the cluster to ensure that there are no inconsistencies.

- Back up your `config.ini` and `runxnc.sh` files.

Important

You should manually backup your `config.ini` and `runxnc.sh` files before upgrading, because the backup process does not back them up for you. If you do not backup your files before upgrading, any changes you made will be lost.

Procedure

1. In a web browser, navigate to [Cisco.com](http://www.cisco.com).
2. Under **Support**, click **All Downloads**.
3. In the center pane, click **Cloud and Systems Management**.
4. In the right pane, click **Network Controllers and Applications**, and then click **Cisco Nexus Data Broker**.
5. Download the Cisco Nexus Data Broker Release 2.2 application bundle: Cisco Nexus Data Broker Software Application—ndb1000-sw-app-k9-2.2.0.zip
6. Create a temporary directory in your Linux machine where you plan to upgrade to Cisco Nexus Data Broker. For example, in your Home directory, create `CiscoNDB_Upgrade`.
Step 7 Extract the Cisco Nexus Data Broker Release 2.2 zip file into the temporary directory that you created.
Step 8 Navigate to the xnc directory that was created when you installed the Cisco Nexus Data Broker 2.0 release earlier.
Step 9 Stop running all Cisco Nexus Data Broker 2.0 release processes.
Step 10 Backup your Cisco Nexus Data Broker 2.0 release installation using your standard backup procedures.
Step 11 Navigate to the xnc/bin directory in the temporary directory that you created for the Cisco Nexus Data Broker Release 2.2 upgrade software.
Step 12 Upgrade the application by entering the

```bash
./xnc upgrade --perform --target-home
{xnc_directory_to_be_upgraded} [--verbose] [--backupfile {xnc_backup_location_and_zip_filename}]
```

command.

You can use one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| `--perform --target-home
{xnc_directory_to_be_upgraded}` | Upgrades the Cisco XNC Monitor Manager installation to Cisco Nexus Data Broker. |
| `--perform --target-home
{xnc_directory_to_be_upgraded} --backupfile {xnc_backup_location_and_zip_filename}` | Upgrades the Cisco XNC Monitor Manager installation to Cisco Nexus Data Broker and creates a backup.zip file in the directory path that you set. **Note** You must provide the name of the backup file and the .zip extension. |
| `--rollback --target-home
{xnc_directory_to_be_upgraded}` | Rolls back to the previous Cisco XNC Monitor Manager installation. |
| `--rollback --target-home
{xnc_directory_to_be_upgraded} --backupfile {xnc_backup_location_and_zip_filename}` | Rolls back to the previous Cisco XNC Monitor Manager installation using the backup file in the absolute path that you set. |
| `--verbose` | Displays detailed information to the console. This option can be used with any other option and is disabled by default. |
| `--validate --target-home
{xnc_directory_to_be_upgraded}` | Validates the installation. |
| `./xnc help upgrade` | Displays the options for the upgrade command. |

Step 13 Navigate to the xnc directory where you originally installed Cisco XNC Monitor Manager.
Step 14 Start the application processes that you previously stopped.

Note Press Ctrl–F5, or press the Cmd, Shift, and R keys simultaneously when you access Cisco Nexus Data Broker through a web UI following an upgrade.

Step 15 If you have any upgrade-related issues, perform the following tasks:

a) Stop all application processes.

b) Navigate to the temporary directory that you created in Step 6.
Starting the Application

Procedure

Step 1 (Optional) Change the default password supplied with Cisco Nexus Data Broker by entering the "./xnc reset-admin-password [--wait-seconds {wait_time} --password {password}]" command.

The {password} variable resets the administrator password to the value that you specify by restarting the user manager. The {wait_time} is the number of seconds to wait while the user manager restarts. The minimum {wait_time} value is 5 seconds and the maximum is 60 seconds.

Note
- The password must be from 8 to 256 characters, contain both uppercase and lowercase characters, and have at least one number and one nonalphanumeric character.
- If you leave the password blank, it is reset to the factory default of "admin".
- Each time that you reset the administrative password, make sure that the new password meets these requirements or you will not be able to log in to Cisco Nexus Data Broker.

Step 2 Navigate to the xnc directory and start Cisco Nexus Data Broker by entering the "./runxnc.sh" command. You can use one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no option</td>
<td>Starts Cisco Nexus Data Broker with the -start option.</td>
</tr>
<tr>
<td>-jmx</td>
<td>Enables Java Management Extensions (JMX) remote access on the Cisco Nexus Data Broker JVM, which can be used to troubleshoot performance issues.</td>
</tr>
<tr>
<td>-jmxport port_number</td>
<td>Enables JMX remote access on the specified JVM port.</td>
</tr>
<tr>
<td>-debug</td>
<td>Enables debugging on the Cisco Nexus Data Broker JVM.</td>
</tr>
<tr>
<td>-debugsuspend</td>
<td>Suspends the Cisco Nexus Data Broker startup until a debugger is connected.</td>
</tr>
<tr>
<td>-debugport port_number</td>
<td>Enables debugging on the specified JVM port.</td>
</tr>
<tr>
<td>-start</td>
<td>Starts Cisco Nexus Data Broker and provides Secure Shell (SSH) access on port 2400.</td>
</tr>
</tbody>
</table>

Note The SSH server can be accessed by any Cisco Nexus Data Broker user with the network-administrator role.
Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| `-start port_number` | Starts Cisco Nexus Data Broker and provides SSH access to the controller on the specified port number.
Note The SSH server can be accessed by any Cisco Nexus Data Broker user with the network-administrator role. The valid range of values for `port_num` is 1024 through 65535. |
| `-stop` | Stops Cisco Nexus Data Broker. |
| `-status` | Displays the status of Cisco Nexus Data Broker. |
| `-console` | Starts Cisco Nexus Data Broker with the OSGi console. |
| `-help` | Displays the options for the `/runxnc.sh` command. |
| `-tls` | Enables TLS secure connections between Cisco Nexus Data Broker and OpenFlow or onePK switches.
To enable TLS, start the controller by entering the `/runxnc.sh -tls -tlskeystore keystore_file_location -tlstruststore truststore_file_location` command. |
| `-osgiPasswordSync` | To set the OSGi web console password same as the XNC password if the XNC password is changed.
Note This step is optional. If the application is started without this option, the OSGi console can be accessed through the default credentials. |

Note Use `runxnc.sh` script to start Cisco Nexus Data Broker. You have to set a path variable named JAVA_HOME. It sets the path variables that are used for startup and launches the OSGi framework with the specified options. If a user attempts to start the Cisco Nexus Data Broker application with Java version lower than 1.7, an error message is displayed and the application aborts. To resolve the issue, upgrade your current Java version and restart Cisco Nexus Data Broker. If the current Java Version used is lower than 1.8.0_45, a warning message is issued before the start that Upgrade to 1.8.0_45 or above is recommended.

Verifying That the Application is Running

Procedure

1. **Step 1** Open a command window where you installed Cisco Nexus Data Broker.
2. **Step 2** Navigate to the `xnc` directory that was created when you installed the software.
3. **Step 3** Verify that the application is running by entering the `/runxnc.sh -status` command.
The controller outputs the following, which indicates that the controller is running the Java process with PID 21680:

Controller with PID:21680 -- Running!

Note Nexus Data Broker can be accessed via Web browser at:

https://Nexus_data_broker_ip:8443

What to Do Next

Connect the switches to the controller. For more information, see the configuration guide for your switches.
Managing TLS Certificate, KeyStore, and TrustStore Files

This chapter contains the following sections:

- About the TLS Certificate, KeyStore, and TrustStore Files, page 15
- Preparing to Generate the TLS Credentials, page 16

About the TLS Certificate, KeyStore, and TrustStore Files

To support onePK devices, all connections to Cisco Nexus Data Broker that use onePK or OpenFlow agents require Transport Layer Security (TLS). For NX-API devices, TLS is optional.

Note

When Cisco Nexus Data Broker is started in a normal way, the connection to the device is HTTP. When Cisco Nexus Data Broker is started using the TLS protocol, the connection to the device is in HTTPS.

Enabling the TLS connections between Cisco Nexus Data Broker and the OpenFlow or onePK switches requires TLS KeyStore and TrustStore files. The TLS KeyStore and TLS TrustStore files are password protected.

Cisco Nexus Series switches connecting to Cisco Nexus Data Broker over OpenFlow require additional credentials, including Private Key, Certificate, and Certificate Authority (CA).

- The TLS KeyStore file contains the private key and certificate information used by Cisco Nexus Data Broker.
- The TLS TrustStore file contains the Certification Authority (CA) certificates used to sign the certificates on the connecting switches.

If TLS connections are required in your Cisco Nexus Data Broker implementation, all of the connections in the network must be TLS encrypted, and you must run Cisco Nexus Data Broker with TLS enabled). After
Cisco Nexus Data Broker is started with TLS, you must run the TLS KeyStore password configuration command to provide the passwords for Cisco Nexus Data Broker to unlock the KeyStore files.

Preparing to Generate the TLS Credentials

OpenFlow and Cisco onePK switches require cryptographic configuration to enable TLS.

The NX-API protocol plugin now supports TLS for secure communication to the devices. You can connect to the NX-API protocol plugin on the secure port 443. All configuration, discovery, and statistics collection is done using secure communication. Cisco Nexus Data Broker should be configured with the required certificates and it should be started in the secure mode. When Cisco Nexus Data Broker is started in TLS mode, all devices support the TLS connection. The normal unencrypted connection to the switches is not accepted.

⚠️ **Caution**

Self-signed certificates are appropriate only for testing in small deployments. For additional security and more granular controls over individual certificate use and revocation, you should use certificates generated by your organization's Certificate Authority. In addition, you should never use the keys and certificates generated by this procedure in a production environment.

Before You Begin

Ensure that OpenSSL is installed on the Linux host where these steps will be performed.

Procedure

Step 1
Create a TLS directory using `mkdir -p TLS` command and then navigate to it using `cd TLS` command:

```
mkdir -p TLS
```

```
cd TLS
```

Step 2
Set up the directories for your CA system to function within. Create three directories under `mypersonalca` using `mkdir -p mypersonalca/<directory name>` command. To initialize the `serial` file and the `index.txt` file, enter:

```
echo "01" > mypersonalca/serial
```

```
touch mypersonalca/index.txt
```

The `serial` file and the `index.txt` file are used by the CA to maintain its database of the certificate files.

Step 3
Create the CA configuration file (`ca.cnf`). Before saving the `ca.cnf` file, some changes need to be made that are specific to the devices. One critical change is to change the `[alt_names]` section in the `ca.cnf` file to be relevant to the device IP address, because these IP addresses should be specified in the configuration file. If you need more or fewer IP/DNS names, you can add or remove the lines.

Note
This step is applicable to NX-API only.
The following is an example of the content of the ca.cnf file:

```
[ ca ]
default_ca = CA_default

[ CA_default ]
dir = .
serial = $dir/serial
database = $dir/index.txt
new_certs_dir = $dir/newcerts
certs = $dir/certs
certificate = $certs/cacert.pem
private_key = $dir/private/cakey.pem
default_days = 365
default_md = shal
preserve = no
e-mail_in_dn = no
nameopt = default_ca
certopt = default_ca
policy = policy_match
copy_extensions = copy

[ policy_match ]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
e-mailAddress = optional

[ req ]
default_bits = 2048 # Size of keys
default_keyfile = example.key # name of generated keys
default_md = shal # message digest algorithm
string_mask = nombstr # permitted characters
distinguished_name = req_distinguished_name
req_extensions = v3_req
x509_extensions = v3_req

[ req_distinguished_name ]
# Variable name Prompt string
#---------------------- ----------------------------------
0.organizationName = Organization Name (company)
organizationalUnitName = Organizational Unit Name (department, division)
e-mailAddress = Email Address
e-mailAddress_max = 40
localityName = Locality Name (city, district)
stateOrProvinceName = State or Province Name (full name)
countryName = Country Name (2 letter code)
countryName_min = 2
```
Preparing to Generate the TLS Credentials

<table>
<thead>
<tr>
<th>countryName_max</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>commonName</td>
<td>Common Name (hostname, IP, or your name)</td>
</tr>
<tr>
<td>commonName_max</td>
<td>64</td>
</tr>
</tbody>
</table>

Default values for the above, for consistency and less typing.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>commonName_default</td>
<td>www.cisco.com</td>
</tr>
<tr>
<td>0.organizationName_default</td>
<td>Cisco</td>
</tr>
<tr>
<td>localityName_default</td>
<td>San Jose</td>
</tr>
<tr>
<td>stateOrProvinceName_default</td>
<td>CA</td>
</tr>
<tr>
<td>countryName_default</td>
<td>US</td>
</tr>
<tr>
<td>emailAddress_default</td>
<td>webmaster@cisco.com</td>
</tr>
</tbody>
</table>

```ini
[ v3_ca ]
basicConstraints        = CA:TRUE
subjectKeyIdentifier    = hash
authorityKeyIdentifier  = keyid:always,issuer:always
```

```ini
[ v3_req ]
# Extensions to add to a certificate request
basicConstraints        = CA:FALSE
keyUsage                = nonRepudiation, digitalSignature, keyEncipherment
```

Some CAs do not yet support subjectAltName in CSRs.
Instead the additional names are form entries on web
pages where one requests the certificate...

```ini
[alt_names]
IP.1 = 1.1.1.1
IP.2 = 2.2.2.2
IP.3 = 3.3.3.3
IP.4 = 4.4.4.4
```

```ini
[ server ]
# Make a cert with nsCertType set to "server"
basicConstraints        = CA:FALSE
nsCertType              = server
nsComment               = "OpenSSL Generated Server Certificate"
sObjectKeyIdentifier    = hash
authorityKeyIdentifier  = keyid,issuer:always
```

```ini
[ client ]
# Make a cert with nsCertType set to "client"
basicConstraints        = CA:FALSE
nsCertType              = client
```
Step 4 Once the directory structure is created and the configuration file (ca.cnf) is saved on your disk, create the TLS certificate file.

Generate the TLS private key and Certification Authority (CA) files by entering the `openssl req -x509 -nodes -days 3650 -newkey rsa:2048 -out mypersonalca/certs/ca.pem -outform PEM -keyout mypersonalca/private/ca.key` command. This step generates the TLS private key in PEM format with a key length of 2048 bits and the CA file.

Generate the certificates (server.key and server.crt) file by entering `openssl req -new -x509 -days 365 -nodes -out server.crt -keyout server.key -config Example.conf`.

Step 5 Copy server.key and server.crt into respective devices and install by using the following commands:

 `configure terminal` to enter the configure terminal mode.

 `nxapi certificate httpskey keyfile bootflash:///server.key` where bootflash:/// is a file location of server.key.

 `nxapi certificate https certfile bootflash:///server.crt` where bootflash:/// is a file location of server.crt.

 `nxapi certificate enable`

Step 6 Creating the TLS KeyStore File

 Note The TLS KeyStore file should be placed in the configuration directory of Cisco Nexus Data Broker.

Copy server.key to `xnc-privatekey.pem`. This command copies the server.key file that was generated in step 5. For example, use the command `cp server.key xnc-privatekey.pem`.

Copy server.crt to `xnc-cert.pem`. This command makes a copy of the server.crt file that was generated in step 5. For example, use the command `cp server.crt xnc-cert.pem`.

Create the `xnc.pem` file, that contains the private key and certificate, by entering the `cat xnc-privatekey.pem xnc-cert.pem > xnc.pem` command.

Convert the PEM file `xnc.pem` file to the file `xnc.p12` by entering the `openssl pkcs12 -export -out xnc.p12 -in xnc.pem` command. Enter a password at the prompt. This is the Export password. The password must contain at least 6 characters, for example, cisco123. You must use the same password for this step and for Step 7. The xnc.pem file is converted to a password-protected .p12 file.

Convert the xnc.p12 to a Java KeyStore (tlsKeyStore) file by entering the `keytool-importkeystore -srckeystore xnc.p12 -srckeystoretype pkcs12 -destkeystore tlsKeyStore -deststoretype jks` command. This command converts the xnc.p12 file to a password-protected tlsKeyStore file. Enter a password at the prompt. Use the same password that you entered in previous step.

Step 7 Creating the TLS TrustStore File

The TLS TrustStore file should be placed in the application configuration directory.

Copy the `mypersonalca/certs/ca.pem` file to `sw-ca.cert.pem`.

Convert the `sw-ca.cert.pem` file to a Java TrustStore (tlsTrustStore) file by entering the `keytool-import-alias swca1 -file sw-ca.cert.pem -keystore tlsTrustStore` command.

Enter a password at the prompt. The `sw-ca.cert.pem` file is converted into a password-protected Java TrustStore (tlsTrustStore) file. The password must be at least six characters long, for example, cisco123.

Step 8 Starting application with TLS
Copy the tlsKeystore and tlsTruststore files to /configuration folder of NDB. From the console, start Cisco Nexus Data Broker by entering the

```
./runxnc.sh -tls -tlskeystore ./configuration/tlsKeyStore -tlstruststore ./configuration/tlsTrustStore
```

command. Now Cisco Nexus Data Broker is started with TLS enabled.

Step 9 Providing the TLS KeyStore and TrustStore Passwords

The TLS KeyStore and TrustStore passwords are sent to the Cisco Nexus Data Broker so that it can read the password-protected TLS KeyStore and TrustStore files.

Open a command window where you installed Cisco Nexus Data Broker.

Navigate to the xnc/bin directory.

Provide the TLS KeyStore and TLS TrustStore passwords by entering the

```
./xnc config-keystore-passwords [--user {user} --password {password} --url {url} --verbose --prompt --keystore-password {keystore_password} --truststore-password {truststore_password}]
```

command.

Enter the following information:

- The Cisco Nexus Data Broker username `{user}`—The user name
- The Cisco Nexus Data Broker password `{password}`—The password for the user. For example, the default administrator password is `admin`.
- The Cisco Nexus Data Broker web URL `{url}`—The web URL of the application. For example, the default URL is `https://Nexus_Data_Broker_IP:8443`.
- The TLS KeyStore password `{keystore_password}`—The TLS KeyStore password.
- The TLS TrustStore password `{truststore_password}`—The TLS TrustStore password.

Example:

```
./xnc config-keystore-passwords --user admin --password admin --url https://localhost:8443 --verbose --prompt --keystore-password cisco123 --truststore-password cisco123
```
CHAPTER 4

Logging in and Managing Cisco Nexus Data Broker

This chapter contains the following sections:

- Configuring Cisco Nexus Data Broker, page 21
- Logging in to the Cisco Nexus Data Broker GUI, page 25
- Changing the Controller Access to HTTP, page 25
- Cisco Nexus Data Broker GUI Overview, page 26
- Saving Configuration Changes, page 27

Configuring Cisco Nexus Data Broker

Configuring High Availability Clusters

Cisco Nexus Data Broker supports high availability clustering in active/active mode with up to five controllers. To use high availability clustering with Cisco Nexus Data Broker, you must edit the config.ini file for each instance of Cisco Nexus Data Broker.

Before You Begin

- All IP addresses must be reachable and capable of communicating with each other.
- All switches in the cluster must connect to all of the controllers.
- All controllers must have the same HA clustering configuration information in the config.ini files.
- All controllers must have the same information in the xnc/configuration/startup directory.
- If using cluster passwords, all controllers must have the same password configured in the xncjgroups.xml file. See Password Protecting the High Availability Clusters, on page 22.
Procedure

Step 1	Ensure that Cisco Nexus Data Broker is not running on any of the instances in the cluster.
Step 2	Open a command window on one of the instances in the cluster.
Step 3	Navigate to the xnc/configuration directory that was created when you installed the software.
Step 4	Use any text editor to open the config.ini file.
Step 5	Locate the following text:
	# HA Clustering configuration (colon-separated IP addresses of all controllers that are part of the cluster.)
	supernodes=<ip1>:<ip2>:<ip3>:<ipn>
Step 6	Remove the comments on the # supernodes line, and replace <ip1>:<ip2>:<ip3>:<ipn> with the IP addresses for each instance of Cisco Nexus Data Broker in the cluster. You can enter from two to five IP addresses.
Example:	# HA Clustering configuration (colon-separated IP addresses of all controllers that are part of the cluster.)
	supernodes=10.1.1.1:10.2.1.1:10.3.1.1:10.4.1.1:10.5.1.1
Step 7	Save the file and exit the editor.
Step 8	Repeat Step 3 through Step 7 for each instance of Cisco Nexus Data Broker in the cluster.
Step 9	Restart Cisco Nexus Data Broker.

Password Protecting the High Availability Clusters

You can password protect your HA clusters with the xncjgroups.xml file. This file must be exactly the same for each instance of Cisco Nexus Data Broker.

Procedure

Step 1	Ensure that Cisco Nexus Data Broker is not running on any of the instances in the cluster.
Step 2	Open a command window on one of the instances in the cluster.
Step 3	Navigate to the xnc/configuration directory.
Step 4	Use any text editor to open the xncjgroups.xml file.
Step 5	Locate the following text:
	<!-- <AUTH auth_class="org.jgroups.auth.MD5Token" auth_value="ciscoXNC" token_hash="MD5"></AUTH> -->
Step 6	Remove the comments from the AUTH line.
Example:	<AUTH auth_class="org.jgroups.auth.MD5Token" auth_value="ciscoXNC" token_hash="MD5"></AUTH>
Step 7	(Optional) Change the password in the auth_value attribute.
By default, the cluster is protected with the password "ciscoXNC". You can change this password to whatever value you want, if you make the same change on all machines in the cluster.

Step 8
Save the file and exit the editor.

Step 9
Repeat Step 4 through Step 8 for each instance of Cisco Nexus Data Broker in the cluster.

Step 10
Restart Cisco Nexus Data Broker.

Editing the Configuration Files for Cisco Nexus Switches

Cisco Nexus Data Broker has the ability to periodically rediscover Cisco Nexus switch inventory and the topology so that the topology and inventory is in sync. Cisco Nexus data broker periodically rediscovers the switch inventory and the topology interconnection and status. This information is updated in the GUI depending on the status. You can configure the rediscovery interval and the default value is 60 seconds.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Navigate to the <code>xnc/configuration</code> directory that was created when you installed the software.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Use any text editor to open the <code>config.ini</code> file.</td>
</tr>
</tbody>
</table>
| **Step 3** | Update the following parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Predefined Value in Seconds</th>
<th>Minimum Value in Seconds</th>
<th>Recommended Value in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>of.messageResponseTimer</td>
<td>10</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>of.switchLivenessTimeout</td>
<td>—</td>
<td>60.5</td>
<td>120.5</td>
</tr>
<tr>
<td>of.flowStatsPollInterval</td>
<td>120</td>
<td>10</td>
<td>240</td>
</tr>
<tr>
<td>of.portStatsPollInterval</td>
<td>300</td>
<td>5</td>
<td>240</td>
</tr>
<tr>
<td>of.descStatsPollInterval</td>
<td>—</td>
<td>60</td>
<td>240</td>
</tr>
<tr>
<td>of.barrierMessagePriorCount</td>
<td>50</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>of.discoveryInterval</td>
<td>—</td>
<td>30</td>
<td>300</td>
</tr>
<tr>
<td>of.discoveryTimeoutMultiple</td>
<td>—</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NX-API related system parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nx.connectionDelayTimer</td>
<td>300</td>
<td>—</td>
<td>300</td>
</tr>
<tr>
<td>nx.flowStatsPollInterval</td>
<td>120</td>
<td>—</td>
<td>120</td>
</tr>
<tr>
<td>nx.tableStatsPollInterval</td>
<td>120</td>
<td>—</td>
<td>120</td>
</tr>
<tr>
<td>nx.portStatsPollInterval</td>
<td>120</td>
<td>—</td>
<td>120</td>
</tr>
<tr>
<td>nx.descStatsPollInterval</td>
<td>120</td>
<td>—</td>
<td>120</td>
</tr>
<tr>
<td>nxlldpPollingTimer</td>
<td>10</td>
<td>—</td>
<td>10</td>
</tr>
<tr>
<td>nx.portPollingTimer</td>
<td>20</td>
<td>—</td>
<td>20</td>
</tr>
</tbody>
</table>

Note Predefined values are the values that Cisco includes in the config.ini file that is shipped with Cisco Nexus Data Broker. A em dash ("—") in this column of the table means that unless you explicitly update the value, the minimum value will be used.

Step 4 Save the file and exit the editor.

Step 5 Restart Cisco Nexus Data Broker.

Configuring User Roles for Edge Ports

To manage which edge ports a Cisco Nexus Data Broker application user can use for creating rules for edge ports, you must modify the App-User role settings in the config.ini file to enable role-based access control (RBAC) for application users. After you make your changes and restart Cisco Nexus Data Broker, note these restrictions:

- Cisco Nexus Data Broker App-User role users will be able to create rules only for source ports which are part of the resource group or groups assigned to that role.
- Only Cisco Nexus Data Broker App-Admin role users will be able create rules with no source.

To enable RBAC for the App-User role, follow these steps:
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Open the <code>config.ini</code> file for editing.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Locate the line <code># Enforce restriction on edge/tap ports user can capture (default false)</code>.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Remove the comment character from the following line: <code>monitor.strictAuthorization=true</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Save your work and close the file.</td>
</tr>
<tr>
<td>Step 5</td>
<td>If Cisco Nexus Data Broker is running, restart the application to enable the change.</td>
</tr>
</tbody>
</table>

Logging in to the Cisco Nexus Data Broker GUI

You can log into the Cisco Nexus Data Broker using HTTPS. The default HTTPS web link for the Cisco Nexus Data Broker GUI is `https://Nexus_Data_Broker_IP:8443/monitor`.

Note

You must manually specify the https:// protocol in your web browser. The controller must also be configured for HTTPS.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In your web browser, enter the Cisco Nexus Data Broker web link.</td>
</tr>
</tbody>
</table>
| Step 2 | On the launch page, do the following:
 a) Enter your username and password.
 The default username and password is admin/admin.
 b) Click Log In. |

Changing the Controller Access to HTTP

Starting with Cisco Nexus Data Broker Release 2.1, an unencrypted (HTTP) access to the GUI and the API to the controller access is disabled by default. You cannot access the controller with the URL `http://<host>:8080`.

If you want to change the controller access to HTTP, complete the following steps:
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Remove the comment character from the connector for port 8080 in the tomcat-server.xml file in the configuration directory as displayed in the following example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><Service name="Catalina"></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><!--</td>
</tr>
<tr>
<td></td>
<td><Connector port="8080" protocol="HTTP/1.1"</td>
</tr>
<tr>
<td></td>
<td>connectionTimeout="20000"</td>
</tr>
<tr>
<td></td>
<td>redirectPort="8443" server="Cisco XNC" enableLookups="false"</td>
</tr>
<tr>
<td></td>
<td>--></td>
</tr>
<tr>
<td></td>
<td><Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"</td>
</tr>
<tr>
<td></td>
<td>scheme="https" secure="true"</td>
</tr>
<tr>
<td></td>
<td>clientAuth="false" sslProtocol="TLS"</td>
</tr>
<tr>
<td></td>
<td>keystoreFile="configuration/keystore"</td>
</tr>
<tr>
<td></td>
<td>keystorePass="ciscoxnc" server="Cisco XNC"</td>
</tr>
<tr>
<td></td>
<td>connectionTimeout="60000" enableLookups="false"</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><Service name="Catalina"></td>
<td></td>
</tr>
<tr>
<td></td>
<td><Connector port="8080" protocol="HTTP/1.1"</td>
</tr>
<tr>
<td></td>
<td>connectionTimeout="20000"</td>
</tr>
<tr>
<td></td>
<td>redirectPort="8443" server="Cisco XNC" enableLookups="false"</td>
</tr>
<tr>
<td></td>
<td>--></td>
</tr>
<tr>
<td></td>
<td><Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"</td>
</tr>
<tr>
<td></td>
<td>scheme="https" secure="true"</td>
</tr>
<tr>
<td></td>
<td>clientAuth="false" sslProtocol="TLS"</td>
</tr>
<tr>
<td></td>
<td>keystoreFile="configuration/keystore"</td>
</tr>
<tr>
<td></td>
<td>keystorePass="ciscoxnc" server="Cisco XNC"</td>
</tr>
<tr>
<td></td>
<td>connectionTimeout="60000" enableLookups="false"</td>
</tr>
<tr>
<td>Step 2 Restart the controller.</td>
<td></td>
</tr>
</tbody>
</table>

Cisco Nexus Data Broker GUI Overview

The Cisco Nexus Data Broker GUI contains the following areas and panes:

- A menu bar across the top of the window that provides access to the main categories of information in Cisco Nexus Data Broker.
- A topology map on the right that displays a visual representation of your network.
- Several panes with additional views and information about the selected category.

The menu bar contains the following items:

- The **Online help** button—Provides access to the online help for the current page.
- A **Save** button—Enables you to save any additions or changes you make in Cisco Nexus Data Broker.
You should always click **Save** after making any configuration changes.

- A **Northbound API** button—Enables you to view northbound API content in a new browser tab, and displays the content and calls.
- The administrative management (**Admin**) drop-down list—Provides access to different tasks, as follows:
 - **Management**—Provides access to manage devices, flows, users, slices, Administration, Authorization, and Authentication (AAA) configuration, view the OSGi console, view cluster information, and to troubleshoot your network.
 - **Settings**—Provides access to create user roles and resource groups, and to assign devices to resource groups.
 - **Logout**—Logs you out of Cisco Nexus Data Broker.

Topology Tools

The left side of the topology pane contains a zoom slider that allows you increase or decrease the size of the topology diagram. You can also increase or decrease the size of the topology diagram by scrolling up or down, respectively, with your mouse wheel.

You can move the entire topology diagram, a single topology element, or a node group. To move the diagram, an element, or a node group, click it and drag it.

To view information about a node or an edge port, hover over the node or edge port icon with your mouse. The information displayed depends on the device you choose.

To view information about a path, hover over the path in the topology diagram.

To view information about a filter, hover over the **Name** of the filter in the **Configure Filters** tab.

Pane Resizing

You can resize the panes in the GUI display by clicking the pane resize grippers as follows:

- To increase or decrease the height of either of the left or right bottom pane, click the pane resize grippers at the top of the pane, and then drag up or down with your mouse.
- To collapse either the lower right or lower left pane, hover over the pane resize grippers at the top of the pane until a double-ended arrow is displayed, and then click your mouse once.
- To restore a collapsed pane, hover over the pane resize grippers at the bottom of the pane until a double-ended arrow is displayed, and then click your mouse once.
- To increase or decrease the width of the two left panes at the same time, click the pane resize grippers at the top of the pane, and then drag left or right with your mouse.

Saving Configuration Changes

You should periodically save the configuration changes that you make in Cisco Nexus Data Broker. Any unsaved configuration changes in Cisco Nexus Data Broker will be lost if you stop the application.
Procedure

On the menu bar, click Save.
CHAPTER 5

Configuring Cisco Nexus 9000 Series Switches

This chapter contains the following sections:

- Guidelines and Limitations, page 29
- Configuring TCAM Hardware Sizing on Cisco Nexus 9000 Series Switches, page 30
- Enabling Cisco NX-API on Cisco Nexus 9000 Series Switches Using CLI, page 31
- Enabling Switch Port Mode as Trunk on the Inter-switch Ports and Port Channels, page 31

Guidelines and Limitations

See the following guidelines and limitations for configuring Cisco Nexus 9000 Series switches through Cisco Nexus Data Broker.

- Cisco Nexus Data Broker supports NX-API protocol for Cisco Nexus 9000 series family of devices starting with Release 7.x.
- The NX-API device Edit option is not supported in the current release.
- The devices that are going to provisioned by Cisco Nexus Data Broker are assumed to have LLDP enabled and the LLDP feature should not be disabled during the device association with Cisco Nexus Data Broker. If the LLDP feature is disabled, there might be an inconsistency in Cisco Nexus Data Broker that cannot be fixed without device deletion and re-addition.
- Cisco Nexus Data Broker assumes that the device interfaces configured by the port definitions are L2 switch ports and these interfaces have device configurations as switchport trunk by default.
- Cisco Nexus 9000 series devices do not support VLAN ID for the Edge Port, SPAN and Edge port, and the TAP interfaces.
- If the devices that are added in the Cisco Nexus Data Broker are to be removed, the devices associated the port definitions and the connections should be removed first.
- For Cisco Nexus 9000 Series switches, upgrade the Cisco NX-OS software to Cisco NX-OS Release 7.x or above.
- You can now add a Cisco Nexus 9000 Series switch to the Cisco Nexus Data Broker that can be discovered through NX-API protocol. Once the connection is successful, all the line card information for chassis model 9500 is discovered.
Cisco Nexus Data Broker uses the TAP aggregation feature and the NX-API support for JSON-RPC.

Prior to deploying the Cisco Nexus 9000 Series switches for Tap/SPAN aggregation through Cisco Nexus Data Broker with NX-API mode, the following configurations should be completed:

- Configure the ACL TCAM region size for IPV4 port ACLs or MAC port ACLs using the `hardware access-list tcam region {ifacl | mac-ifacl} 1024 double-wide` command on the switch.
- Enable NX-API with `feature manager` CLI command on the switch.
- Configure `switchport mode trunk` on all the inter-switch ports and the port-channels.

Prior to deploying the Cisco Nexus 9000 Series switches for Tap/SPAN aggregation through Cisco Nexus Data Broker with OpenFlow mode, enter the command `hardware access-list tcam region openflow 512` at the prompt.

Cisco Nexus data broker periodically rediscover the switch inventory, the topology interconnection, and the status. This information is updated in the GUI depending on the status. The rediscovery interval can be configured and the default value for the rediscovery interval is every 10 seconds.

Configuring TCAM Hardware Sizing on Cisco Nexus 9000 Series Switches

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** Use the `hardware access-list tcam region <region> <tcam-size>` command to configure the following TCAM regions: | - IPV4 PACL [ifacl] size = 1024
- IPV6 PACL [ipv6-ifacl] size = 0
- MAC PACL [mac-ifacl] size = 512
- Egress IPV4 RACL [e-racl] size = 256
- Egress IPV6 RACL [e-ipv6-racl] size = 0
- Ingress System size = 256
- Egress System size = 256
- SPAN [span] size = 256
- Ingress COPP [copp] size = 256 |

Enabling Cisco NX-API on Cisco Nexus 9000 Series Switches Using CLI

You can now manage multiple Cisco Nexus 9000 Series switches that are connected in a topology. Cisco Nexus Data Broker plugin can discover the switch interconnections using LLDP and update the topology services within Cisco Nexus Data Broker. The switch interconnections can be a physical link or a port-channel interface. The topology displays only the interconnections between Cisco Nexus 9000 Series switches that are added to the Cisco Nexus Data Broker device list. The topology interconnection is displayed in the GUI.

Complete the following steps for enabling Cisco NX-API on Cisco Nexus 9000 Series switches:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enable the management interface.</td>
<td>Enable the management interface on the switch.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch# conf t</td>
<td>Enter the configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch (config) # feature nxapi</td>
<td>Enable the NX-API feature.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch (config) # nxapi http port 80</td>
<td>Configure the HTTP port.</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch (config) # nxapi https port 443</td>
<td>Configure the HTTPS port.</td>
</tr>
</tbody>
</table>

For the step-by-step configuration information for enabling the NX-API feature on Cisco Nexus 9000 Series switches, see the *Cisco Nexus 9000 Series NX-OS Programmability Guide*.

Enabling Switch Port Mode as Trunk on the Inter-switch Ports and Port Channels

Complete the following steps to enable the switch port mode on the inter-switch ports and port-channels:

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch(config)# config t</td>
<td>Enables the configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface {type slot/port}</td>
<td>Specifies an interface to configure.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config)# config t</td>
<td>Enables the configuration mode.</td>
</tr>
</tbody>
</table>
Enabling Switch Port Mode as Trunk on the Inter-switch Ports and Port Channels

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>`switch(config-if)# switchport mode {access</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>switch(config)# exit</code>
Exits the configuration mode.</td>
</tr>
</tbody>
</table>
Managing Devices

This chapter contains the following sections:

- Adding a Node Name, page 33
- Viewing Expanded Nodes Information, page 35
- Viewing the Ports List, page 35
- Adding Devices, page 35
- Editing Devices, page 36
- Removing Devices, page 37
- Adding a Node Group, page 38
- Adding Nodes to a Node Group, page 38
- Removing Nodes from a Node Group, page 39
- Removing a Node Group, page 40
- Adding a Gateway IP Address, page 40
- Removing a Gateway IP Address, page 41
- Adding Ports, page 41

Adding a Node Name

Adding user-friendly node names helps you to identify nodes in the topology diagram.

Note: This step is applicable only for OpenFlow mode.
Procedure

Step 1 From the Admin drop-down list, choose Management.
Step 2 On the menu bar, choose Devices, and then click the Nodes Learned tab.
Step 3 Click the link for the node that you want to rename in the Node Name column.
Step 4 In the Update Node Information dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node ID field</td>
<td>The unique identifier for a network element, such as an OpenFlow switch.</td>
</tr>
<tr>
<td>Node Name field</td>
<td>The name that you want to assign to the node.</td>
</tr>
<tr>
<td></td>
<td>The name can contain between 1 and 256 alphanumeric characters including the following special characters: underscore ("_"), hyphen ("-"), plus ("+"), equals ("="), open parenthesis ("("), closed parenthesis ")"), vertical bar ("</td>
</tr>
<tr>
<td>Tier drop-down list</td>
<td>Choose the tier property for the network element.</td>
</tr>
<tr>
<td></td>
<td>• Unknown</td>
</tr>
<tr>
<td></td>
<td>• Access</td>
</tr>
<tr>
<td></td>
<td>• Distribution</td>
</tr>
<tr>
<td></td>
<td>• Core</td>
</tr>
<tr>
<td>Operation Mode drop-down list</td>
<td>Choose how the traffic is handled based on the flows.</td>
</tr>
<tr>
<td></td>
<td>• Allow reactive forwarding—No default flows are programmed. How traffic that does not match a flow is treated depends upon the switch implementation.</td>
</tr>
<tr>
<td></td>
<td>• Proactive forwarding only—The following default flows are programmed on the switch:</td>
</tr>
<tr>
<td></td>
<td>◦ Punt Address Resolution Protocol (ARP) packets.</td>
</tr>
<tr>
<td></td>
<td>◦ Punt Link Layer Discovery Protocol (LLDP) packets.</td>
</tr>
<tr>
<td></td>
<td>◦ Drop all other traffic.</td>
</tr>
</tbody>
</table>

Note The Proactive forwarding only mode is not applicable to the NX-API devices.

Step 5 Click Save.
Viewing Expanded Nodes Information

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>From the Admin drop-down list, choose Management.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the menu bar, choose Devices, and then click the Nodes Learned tab.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the icon in the top right corner.</td>
</tr>
<tr>
<td>Step 4</td>
<td>The Nodes Learned dialog box displays these nonconfigurable fields:</td>
</tr>
<tr>
<td></td>
<td>Name</td>
</tr>
<tr>
<td>Node Name field</td>
<td>The name assigned to the node.</td>
</tr>
<tr>
<td>Node ID field</td>
<td>The ID of the node.</td>
</tr>
<tr>
<td>Tier Name field</td>
<td>The tier that you selected for the node.</td>
</tr>
<tr>
<td>MAC Address field</td>
<td>The MAC address of the node.</td>
</tr>
<tr>
<td>Ports field</td>
<td>The ports accessible on the node.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click the X in the upper right corner of the dialog box to close it.</td>
</tr>
</tbody>
</table>

Viewing the Ports List

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>From the Admin drop-down list, choose Management.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the menu bar, choose Devices, and then click the Nodes Learned tab.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the Ports link for a node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>The Ports List dialog box displays all of the ports for the specified node.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click the X in the upper right corner of the dialog box to close it.</td>
</tr>
</tbody>
</table>

Adding Devices

You can now add a NX-API device through GUI so that it is easier to administrate.
Procedure

Step 1 From the Admin drop-down list, choose Management.
Step 2 On the menu bar, choose Devices, and then click the Device Connections tab.
Step 3 Click Add Device.
Step 4 In the Add Device dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Field</td>
<td>The IP address assigned to the device. You can also add devices with a DNS name of the device in addition to the IP address for the NX-API devices.</td>
</tr>
<tr>
<td>Username Field</td>
<td>The name of the user assigned to the device.</td>
</tr>
<tr>
<td>Password Field</td>
<td>The password of the user assigned to the device.</td>
</tr>
<tr>
<td>Note</td>
<td>You can edit the username or password of the device after it has been added.</td>
</tr>
<tr>
<td>Connection Type Field</td>
<td>The connection method (for example, onePK/NX-API).</td>
</tr>
<tr>
<td>Port Type Field</td>
<td>The port number for the NX-API connection. For NX-API HTTPS connection, the port number is 443 by default. If the controller is running in the TLS mode, enter the HTTPS port number of the device.</td>
</tr>
</tbody>
</table>

Step 5 Click Add Device.

The node configuration is added. When a physical device is associated with the address that you entered, a success message is displayed. The address is displayed in blue in the Network Element Address list of the Devices on the Device Connections tab.

When there is no physical device associated with the address that you entered, no connection is made, and a connection timed out error message is displayed. The address is grayed out in the Network Element Address list of the Devices on the Device Connections tab.

Editing Devices

You can now edit a NX-API device through GUI so that it is easier to administrate.
Managing Devices

Procedure

Step 1 From the Admin drop-down list, choose Management.

Step 2 On the menu bar, choose Devices, and then click the Device Connections tab.

Step 3 Click Edit Device.

Step 4 In the Edit Device dialog box, update the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username Field</td>
<td>The name of the user assigned to the device.</td>
</tr>
<tr>
<td>Password Field</td>
<td>The password of the user assigned to the device.</td>
</tr>
<tr>
<td>Note</td>
<td>You can edit the username or password of the device after it has been added.</td>
</tr>
<tr>
<td>Connection Type</td>
<td>The connection method (for example, onePK/NX-API).</td>
</tr>
<tr>
<td>Port Type Field</td>
<td>The port number for the NX-API connection. For NX-API HTTPS connection, the port number is 443 by default. If the controller is running in the TLS mode, enter the HTTPS port number of the device.</td>
</tr>
</tbody>
</table>

Step 5 Click Edit Device.

The node configuration is added. When a physical device is associated with the address that you entered, a success message is displayed. The address is displayed in blue in the Network Element Address list of the Devices on the Device Connections tab.

Removing Devices

Procedure

Step 1 From the Admin drop-down list, choose Management.

Step 2 On the menu bar, choose Devices, and then click the Device Connections tab.

Step 3 In the Devices list, check the check box next to each device that you want to remove, or check the top check box to remove all devices.

Step 4 Click Remove Device.

Step 5 In the Remove Device confirmation dialog box, click Remove Device.
Note Before removing any device, you have to make sure that the port definitions and the connections that are installed in that device are removed. If the port definitions and the connections are not removed, there might be an inconsistency between the device and the controller.

Adding a Node Group

A node group allows you to visually group nodes in the Cisco Nexus Data Broker topology diagram. Node groups do not create links between nodes.

Procedure

Step 1 From the Admin drop-down list, choose Management.

Step 2 On the menu bar, choose Devices, and then click the Device Groups tab.

Step 3 Click Add Group.

Step 4 In the Add Node Group dialog box, complete the following field:

<table>
<thead>
<tr>
<th>Name Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name that you want to give the node group. The name can contain between 1 and 256 alphanumeric characters including the following special characters: underscore ("_"), hyphen ("-"), plus ("+"), equals ("="), open parenthesis ("("), closed parenthesis (")"), vertical bar ("</td>
</tr>
</tbody>
</table>

Step 5 Click Add Group.

The name of the group displays in the list of node groups.

What to Do Next

Add nodes to the node group.

Adding Nodes to a Node Group

Adding nodes to a node group visually associates the nodes with the node group in the topology diagram. Node groups are highlighted in different colors in the diagram.

Note If you add a node that already belongs to a node group to a new node group, it is automatically removed from the first node group and added to the new node group.
Before You Begin
Add a node group.

Procedure

Step 1
From the Admin drop-down list, choose Management.

Step 2
On the menu bar, choose Devices, and then click the Device Groups tab.

Step 3
Click the name of the node group to which to want to add nodes in the Node Groups list.

Step 4
Add nodes to the group by doing one of the following:

- Click one or more nodes in the topology diagram, and then click Add to group <group name> in the topology diagram.

- Click the Nodes in Group tab, and then do the following:
 a) In the Add Nodes to Group - <group name> dialog box, choose one or more nodes from the drop-down list.
 b) Click Add to group.

The nodes display in the Nodes in Group - <group name> list on the Nodes in Group tab, and in the node group in the topology diagram.

Removing Nodes from a Node Group

Before You Begin
Add nodes to a node group.

Procedure

Step 1
From the Admin drop-down list, choose Management.

Step 2
On the menu bar, choose Devices, and then click the Device Groups tab.

Step 3
Click the name of the node group from which to want to remove nodes in the Nodes Groups list.

Step 4
To remove nodes from the group, do one of the following:

- Click a node group in the topology diagram, and then:
 a) Click the node you want to remove from the group.
 b) Click Remove from group – <group-name> in the topology diagram.

- Click the Nodes in Group tab, and then:
 a) Check the check box next to the node or nodes you want to remove in the list of Nodes in Group <group name>, or check the top check box in the list to select all nodes in the group for removal.
Removing a Node Group

Removing a node group disassociates the nodes added to it from the node group, and the node group is no longer displayed in the topology diagram.

Procedure

Step 1 From the Admin drop-down list, choose Management.

Step 2 On the menu bar, choose Devices, and then click the Device Groups tab.

Step 3 In the Node Groups list, check the check box next to the name of the node group you want to remove, or check the top check box to select all node groups for removal.

Step 4 Click Remove Group.

Step 5 In the Remove Group confirmation dialog box, click Remove Group.

The node group is removed and no longer displays in the topology diagram.

Adding a Gateway IP Address

Procedure

Step 1 From the Admin drop-down list, choose Management.

Step 2 On the menu bar, choose Devices, and then click the Subnet Gateway Configuration tab.

Step 3 Click Add Gateway IP Address.

Step 4 In the Add Gateway IP Address dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name that you want to assign to the gateway IP address.</td>
</tr>
<tr>
<td></td>
<td>The name can contain between 1 and 256 alphanumeric characters</td>
</tr>
<tr>
<td></td>
<td>including the following special characters: underscore (“_”), hyphen</td>
</tr>
<tr>
<td></td>
<td>(“-”), plus (“+”), equals (“=”), open parenthesis (“(“), closed parenthesis</td>
</tr>
<tr>
<td></td>
<td>(”)”), vertical bar (“</td>
</tr>
</tbody>
</table>
Removing a Gateway IP Address

Before You Begin
Add one or more gateway IP addresses.

Procedure

Step 1 From the **Admin** drop-down list, choose **Management**.

Step 2 On the menu bar, choose **Devices**, and then click the **Subnet Gateway Configuration** tab.

Step 3 Check the check box next to the name of each gateway IP address you want to remove, or check the top check box to remove all gateway IP address entries.

Step 4 Click **Remove Gateway IPAddress**.

Step 5 In the **Remove Gateway IPAddress** confirmation dialog box, click **Remove Gateway IPAddress**.

Adding Ports

Procedure

Step 1 From the **Admin** drop-down list, choose **Management**.

Step 2 On the menu bar, choose **Devices**, and then click the **Subnet Gateway Configuration** tab.

Step 3 Click **Add Ports**.

Step 4 In the **Add Ports** dialog box, complete the following fields:
Managing Devices

Adding Ports

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway Name drop-down list</td>
<td>The name of the gateway address to which you want to bind the port.</td>
</tr>
<tr>
<td>Node ID drop-down list</td>
<td>The node that contains the port that you want to bind to the gateway address.</td>
</tr>
<tr>
<td>Select Port drop-down list</td>
<td>The port that you want to bind to the gateway address.</td>
</tr>
</tbody>
</table>

Step 5
Click **Save**.
Configuring Ports and Devices

This chapter contains the following sections:

- About Cisco Nexus Data Broker Port Types, page 43
- Configuring a Port Type, page 45
- Configuring Multiple Ports, page 45
- Removing a Port Type Configuration, page 46
- Configuring a Monitoring Device, page 47
- Removing a Monitoring Device, page 47
- Configuring a Root Node, page 48
- Cisco onePK Agent, page 48
- Symmetric Load Balancing, page 49
- Enabling MPLS Tag Stripping, page 50
- Configuring Q-in-Q, page 51
- Configuring Packet Truncation, page 51
- Configuring Timestamp Tagging, page 52

About Cisco Nexus Data Broker Port Types

Cisco Nexus Data Broker enables you to configure different port types. All configured ports are displayed in the Configured Ports table on the Port Types tab.

You can configure a port as an ingress TAP/SPAN port or a monitoring tool port so that it is easier to aggregate and redirect the traffic.
If the software version is earlier than 7.x, an error message is displayed that the TAP aggregation is not supported in the current version of the NX-OS and you have to upgrade to the specified release or above. The 7.0 software version details are applicable for NX-API only.

You can select a port and define if the port is an ingress source port or an egress re-direction port. The ingress source port in Cisco Nexus Data Broker is mapped to the Edge-SPAN or the Edge-Tap port and the egress redirect port is mapped to the monitoring tool port. The switch interconnection ports are not displayed for the selection.

The color coding for the port name indicates the status of the port itself. Green means that the port is up, orange means that the port is down, and red means that the port is administratively down.

Edge Ports

Edge ports are the ingress ports where traffic enters the monitor network. Cisco Nexus Data Broker supports the following edge ports:

- TAP ports—For incoming traffic connected to a physical tap wire.
- SPAN ports—For incoming traffic connected to an upstream switch that is configured as a SPAN destination.

Configuring an edge port is optional.

Delivery Ports

Delivery ports are the egress ports where the traffic exits the monitor network. These outgoing ports are connected to external monitoring devices. When you configure a monitoring device in Cisco Nexus Data Broker, you can associate a name and an icon to the monitoring device.

Configured devices are displayed in the **Monitor Devices** table on the **Devices** tab. The icon appears in the topology diagram with a line that connects it to the node.

VLAN Tagging

Cisco Nexus Data Broker enables you to configure a switch port as an edge port and specify a VLAN for that port. When you configure the VLAN ID, and the connection to the Cisco onePK agent is up, Cisco Nexus Data Broker programs the Cisco Nexus 3000 Series switches, 3100 Series switches, and Cisco Nexus 9000 Series switches so that all packets received in that port are VLAN tagged, and the VLAN ID is the one configured on the edge port. If the packets received in that port are already VLAN-tagged frames, they get double-tagged, and the outermost VLAN tag contains the VLAN ID that is associated with the configured edge port.
VLAN tagging with NX-API mode is now supported and it can be enabled from Cisco Nexus Data Broker UI.

Configuring a Port Type

Procedure

Step 1
In the topology diagram, click the node for which you want to configure a port. The **Ports** area of the sidebar displays the list of ports available to configure for that node.

Step 2
In the list of ports for the node, click **Click to configure** under the port identifier of the port that you want to configure.

Step 3
From the **Select a port type** drop-down list, choose one of the following:

- **Add Monitoring Device**
- **Edge Port-SPAN**
- **Edge Port-TAP**
- **Production Port**

Monitoring Device—Creates a monitoring device for capturing traffic and configures the corresponding delivery port.

Edge Port-SPAN—Creates an edge port for incoming traffic connected to an upstream switch that is configured as a SPAN destination.

Edge Port-TAP—Creates an edge port for incoming traffic connected to a physical TAP port.

Production Port—Creates a production port for the ingress and egress traffic.

Step 4
(Optional) In the **Port Description** field, enter a port description. The port description can contain between 1 and 256 alphanumeric characters, including the following special characters: underscore ("_"), hyphen ("-"), plus ("+"), equals ("="), open parenthesis ("("), closed parenthesis (")"), vertical bar ("|"), period ("."), or at sign ("@").

Step 5
Enter a VLAN ID.
The port is configured as dot1q to preserve any production VLAN information. The VLAN ID is used to identify the port that the traffic is coming from.

Step 6
In the **Enable Packet Truncation** field, enter the packet length.

Step 7
Click **Submit**.

Configuring Multiple Ports

You can now configure multiple ports or a range or ports for port definition.
Procedure

Step 1 Click **Configure Multiple Ports** in the sidebar of the GUI.

Step 2 In the **Select Ports** drop-down list field, select the ports that you want to assign. You can select multiple ports using ctrl or shift that you want to assign for redirection.

Step 3 In the **Select Port Type** drop-down list field, select the port type that you want to assign:

- Edge port-SPAN
- Edge port-TAP
- Production Port

Step 4 Click **Submit**.

Removing a Port Type Configuration

Before You Begin

- At least one port type must be configured.
- The port type configuration that you want to remove must not be used in a rule. If it is, you must either modify or remove the rule before you can remove the port type configuration.

Note

If the configured port is of SPAN or Edge ports and if any connections are created based on these ports, you will not be able to delete those connections. Only after removal of the connections, the port definition of the SPAN/Edge ports can be deleted.

Procedure

Step 1 From the **Port Types** tab, choose one of the following:

- The top checkbox to select all **Configured Ports** for removal.
- The check box next to the name of only the configured port or ports that you want to remove.

Step 2 Above the list of **Configured Ports**, click **Remove Port Configuration**.

Step 3 In the **Remove Port Configuration** confirmation dialog box, click **Remove Port Configuration**. The port configurations are removed.
Configuring a Monitoring Device

Procedure

Step 1 In the topology diagram, click the node for which you want to configure a monitoring device. The **Port Types** tab displays the list of ports available to configure for that node.

Step 2 In the list of ports for the node, click **Click to configure** under the port identifier of the port that you want to configure.

Step 3 From the **Select a port type** drop-down list, click **Add Monitoring Device**.

Step 4 In the **Add Device** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name field</td>
<td>The name that you want to use for the monitoring device. The name can contain between 1 and 256 alphanumeric characters including the following special characters: underscore ("_"), hyphen ("-"), plus ("+"), equals ("="), open parenthesis ("("), closed parenthesis (")"), vertical bar ("</td>
</tr>
<tr>
<td>Icons selection</td>
<td>The choice of icons, with the first one selected by default. Choose any icon to use for the monitoring device. Note You can change the icon for the monitoring device after it has been added.</td>
</tr>
</tbody>
</table>

Step 5 Click **Submit**.

Removing a Monitoring Device

Note If the monitor device is part of a connection, Cisco Nexus Data Broker does not allow the user to delete the monitor device.

Before You Begin

- At least one monitoring device must be configured for the port.
The monitoring device that you want to remove must not be used in a rule. If it is, you must either modify or remove the rule before you can remove the monitoring device.

Procedure

Step 1 Click the Devices tab.

Step 2 In the Device Name list, choose one of the following:
- The top checkbox to select all monitoring devices for removal.
- The checkbox next to the name of only the monitoring device or devices you want to remove.

Step 3 Above the Device Name list, click Remove Monitoring Devices.

Step 4 In the Remove Monitoring Devices confirmation dialog box, click Remove Devices.

Cisco onePK Agent

The Cisco onePK plug-in for Cisco Nexus Data Broker communicates with onePK devices through a onePK agent on the device. To support onePK device functions in Cisco Nexus Data Broker, the application must be connected to the onePK agent. The agent is the mediator between Cisco Nexus Data Broker and onePK-enabled devices that are configured in Cisco Nexus Data Broker.
To secure communication between Cisco Nexus Data Broker onePK-enabled devices, you must configure Transport Layer Security (TLS) in Cisco Nexus Data Broker. See the *Cisco Nexus Data Broker Configuration Guide* for detailed procedures.

Connecting to a onePK Agent

You must connect to a onePK agent to support additional functionality in Cisco Nexus Data Broker, including symmetric load balancing, Q-in-Q, timestamp tagging, and packet truncation.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>From the Admin drop-down list, choose Management.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the menu bar, choose Devices, and then click the Device Connections tab.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click Add Device.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Add Device dialog box, choose Connection Type field as onePK.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click Add Device.</td>
</tr>
</tbody>
</table>

Symmetric Load Balancing

Cisco Nexus Data Broker enables you to configure symmetric load balancing settings on the egress port channels. Load balancing settings are based on Layer 2 source MAC and destination IP addresses, or Layer 2, Layer 3, or Layer 4 source and destination ports. When you configure symmetric load balancing for all the port-channel interfaces on the switch, all the traffic from specific sources and destinations in both directions always flows on the same port-channel member link.

Note

Symmetric load balancing in Cisco Nexus Data Broker is available for Cisco Nexus 3100 Series switches and Cisco 9000 Series switches.

Configuring Symmetric Load Balancing

Before You Begin

- Configure and provision TLS on the switches.
- Add device to Cisco Nexus Data Broker using NX-API or onePK connection.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the topology diagram, click the node for which you wish to configure symmetric load balancing.</td>
</tr>
<tr>
<td>Step 2</td>
<td>In the side bar, from the Symmetric Load Balancing drop-down list, choose one of the following:</td>
</tr>
</tbody>
</table>
Enabling MPLS Tag Stripping

From the Cisco Nexus Data Broker GUI and the REST API interfaces, you can now enable MPLS tag stripping on the Cisco Nexus 3000 Series and Cisco Nexus 9000 Series switches using NX-API as the configuration mode.

Configuring MPLS Tag Stripping

Before You Begin
Add device to Cisco Nexus Data Broker using NX-API or onePK connection.

Procedure

Step 1 In the topology diagram, click the node for which you wish to configure MPLS tag stripping.

Step 2 In the side bar, from the **MPLS Strip Configuration** drop-down list, choose one of the following:
- Enable MPLS Strip.
- Disable MPLS Strip.

Step 3 In the side bar, from the Label Age field, enter a value for the MPLS strip label age. The range for MPLS strip label age configuration is 61-31622400.

Step 4 Click **Submit**.
Configuring Q-in-Q

The ability to configure Q-in-Q is available for Cisco Nexus 3000 and 3100 Series switches and on Nexus 9000 switches in NX-API mode. Q-in-Q is automatically enabled when you configure a VLAN ID for an edge port, if the VLAN ID is maintained on the edge port.

Procedure

1. In the topology diagram, click the node for which you wish to configure Q-in-Q.
2. In the side bar, configure an edge port and set a VLAN ID on that edge port.
3. Click Enable QinQ.
4. In the Connect to onePK Agent dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address field</td>
<td>The IP address assigned to the Cisco onePK device.</td>
</tr>
<tr>
<td>Username field</td>
<td>The username of the user that you want to assign to the device.</td>
</tr>
<tr>
<td>Password field</td>
<td>The password of the user that you want to assign to the device.</td>
</tr>
</tbody>
</table>

5. Click Submit.

Configuring Packet Truncation

Packet truncation can only be configured on Cisco Nexus 3500 Series switches.

Before You Begin

- Configure a onePK device.
- Connect to the onePK agent.

Procedure

1. In the topology diagram, click the node for which you wish to configure packet truncation.
2. In the side bar, click the port for which you want to configure packet truncation.
3. From the Select a port type drop-down list, choose one of the following:
• Edge Port-SPAN

• Edge Port-TAP

Step 4 (Optional) In the Port Description field, enter a port description. The port description can contain between 1 and 256 alphanumeric characters, including the following special characters: underscore ("_"), hyphen ("-"), plus ("+"), equals ("="), open parenthesis ("("), closed parenthesis (")"), vertical bar ("|"), period ("."), or at sign ("@").

Step 5 (Optional) Enter a VLAN ID. The port is configured as dot1q to preserve any production VLAN information.

Step 6 In the Enable Packet Truncation field, enter the truncated packet length that you want, in bytes.

Note It is recommended that you enter a minimum of 64 bytes, in multiples of 4.

Step 7 Click Submit. The port configuration is saved, and the number of bytes for truncated packets is displayed in the label TRUNC=<bytes> beside the port name.

Configuring Timestamp Tagging

With Cisco Nexus 3500 platform switches, you can:

• Truncate the packets after a user-defined threshold at ingress.

• Time-stamp the packets using Precision Time Protocol (PTP) with nanosecond accuracy.

With PTP, the IEEE 1588 packet is time-stamped at the ingress port to record the event message arrival time in the hardware at the parser level. The time stamp points to the first bit of the packet (following the start frame delimiter [SFD]). Next, the packet is copied to the CPU with the time stamp and the destination port number. The packet next traverses the PTP stack. The advanced PTP clock algorithm in the Cisco Nexus 3548 Series switches keeps a track of all the timing and the frequency information and it makes the necessary adjustments to help ensure accurate time.

Finally, the packet is internally marked as a high-priority packet to ensure priority egress out of the switch and it is sent out at the egress port. The corresponding time stamp for the transmitted packet is available from the First In, First Out (FIFO) transmission time stamp.

The timestamp tagging feature is used to provide precision time information to monitor the devices remotely and to track the real time when the packets arrive at the Cisco Nexus 3500 Series switches. The timestamp tagging feature configures the ttag command on the egress interface.

The ether-type <type> option sets the Ethertype field of the ethernet frame. The Ethertype is used to indicate which protocol is encapsulated in the payload. Ethertype 1 (type 0x88B5) is used for this purpose.

Note Timestamp tagging can only be configured on Cisco Nexus 3500 Series switches.
Before You Begin

- Configure a delivery device on the node.
- Configure a onePK device.

Procedure

Step 1 In the topology diagram, click the node for which you wish to configure timestamp tagging.
Step 2 In the sidebar, configure a delivery device.
Step 3 In sidebar, click Click to enable additional functionality.
Step 4 In the Connect to onePK Agent dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address field</td>
<td>The IP address assigned to the Cisco onePK device.</td>
</tr>
<tr>
<td>Username field</td>
<td>The username of the user that you want to assign to the device.</td>
</tr>
<tr>
<td>Password field</td>
<td>The password of the user that you want to assign to the device.</td>
</tr>
</tbody>
</table>

Step 5 Check the check box next to Enable Timestamp Tagging.
Step 6 Click Submit.

The port is displayed in the Port list with the label TS-Tag.
Configuring Timestamp Tagging
Filtering Flows

This chapter contains the following sections:

- About Cisco Nexus Data Broker Networks, page 55
- About Forwarding Path Options, page 56
- About Filters and Connections, page 56
- About Redirection and Service Nodes, page 57
- Adding a Filter, page 57
- Editing a Filter, page 63
- Deleting a Filter, page 69
- Adding a Connection, page 70
- Modifying a Connection, page 73
- Cloning a Connection, page 74
- Removing a Connection, page 76
- Adding a Service Node, page 77
- Adding Redirection, page 77
- Modifying Redirection, page 80
- Removing a Redirection, page 83

About Cisco Nexus Data Broker Networks

A Cisco Nexus Data Broker network consists of one or more Cisco Nexus 3000, 3100, or 3500 Series switches and Cisco Nexus 9000 Series switches with Cisco Plug-in for OpenFlow and for NX-API dedicated for connecting multiple spanned ports and network taps from the production network infrastructure. Cisco Nexus Data Broker programs the switches using the OpenFlow protocol. Cisco Nexus Data Broker filters the packets that travel the network and delivers them to a pool of connected monitoring devices.
About Forwarding Path Options

Cisco Nexus Data Broker supports the following forwarding path options:

- **Multipoint-to-Multipoint**—With the Multipoint-to-Multipoint (MP2MP) forwarding path option, both the ingress edge port where SPAN or TAP traffic is coming into the monitor network and the egress delivery ports are defined. Cisco Nexus Data Broker uses the delivery ports to direct traffic from those ingress ports to one or more devices.

- **Any-to-Multipoint**—With the Any-to-Multipoint (A2MP) forwarding path option, the ingress edge port of the monitor network is not known, but the egress delivery ports are defined. Cisco Nexus Data Broker automatically calculates a loop-free forwarding path from the root node to all other nodes using the Single Source Shortest Path (SSSP) algorithm.

About Filters and Connections

Filters

In Cisco Nexus Data Broker, you can use a filter to define the Layer 2 (L2), Layer 3 (L3), Layer 4 (L4), and Layer 7 (L7) filtering for HTTP traffic criteria used to filter traffic. Traffic that matches the criteria in the filter is routed to the delivery ports and from there to the attached monitor devices.

Connections

You can use connections to associate filters to configured monitor devices. You can configure connections with or without a source. Connections with a source node and port use the Multipoint-to-Multipoint forwarding path option. Connections without a source port on a node use the loop-free Any-to-Multipoint forwarding path option.

When a rule is configured with the Deny option, the ingress edge ports may or may not be defined. Cisco Nexus Data Broker drops traffic on the specified ingress edge port(s) or on all nodes if no ingress edge ports are defined.

Each rule has a priority that can be configured. Connections with a higher priority are given precedence over those with a lower priority.

Connections can be created and saved without installing them. After they are saved, installation can be toggled on and off in the Cisco Nexus Data Broker GUI.

Note

After the connections are installed or uninstalled using the Toggle functionality in Cisco Nexus Data Broker, the device should not be rebooted for 120 secs. Otherwise, the configured parameters by Cisco Nexus Data Broker are not saved and you might see an inconsistency between Cisco Nexus Data Broker and the device.

Default Filter

Cisco Nexus Data Broker is pre-installed with a default filter to match all traffic. The default filter is created using All Ethertype as the match selection. The name of the default filter is default-match-all. This filter is available out-of-the-box when Cisco Nexus Data Broker starts up from scratch.
About Redirection and Service Nodes

You can now redirect some of the traffic from the firewall or the switches to a service node, for example, SourceFire IPS, through an inline redirection Cisco Nexus 3000 or Cisco Nexus 9300 switch with Cisco Nexus Data broker enabled on it. The traffic is redirected from the production ingress port through the tap aggregation switch into the service node via the service ingress and egress ports. Finally, it is redirected from the service node to the production egress port.

Redirection Setup Using the Service Nodes

You can now clone the traffic between the two ports of the Cisco Nexus 3000 and Cisco Nexus 9000 Series switch. One port is the source port and other port is the destination port. This configuration allows you to quickly copy the traffic between the interfaces.

You can also copy the traffic to a service node, for example, QRadar and compare the traffic with the traffic that is redirected on the switch. You can copy the traffic to the external monitoring tools as the traffic is redirected. As part of the redirection rule, you can specify the destination port to which the redirected traffic should be copied. A copy of the traffic is sent from all the service node egress ports (traffic entering the switch). The port to which the traffic is copied can be a physical port or a logical port-channel. When you are using OpenFlow, you can implement the ability to support * for the Ethertype value.

There is always a 1:1 mapping between the ingress and the egress production ports. Since the switch is situated between the production and the service ports instead of a direct connection between the links, it is important to shutdown the port when either an ingress or an egress port goes operationally down. If an ingress port is down, the egress port is automatically shutdown. If an egress port goes down, the ingress port is shutdown automatically.

When an ingress or egress port connecting to a service node goes down, that service node is automatically bypassed. All the redirection associated with that service node is updated to bypass the service node.

If the traffic is not handled by the service nodes, there is a backup flow and the traffic is sent back to production ingress ports.

You can also edit the details of a service node by selecting the ingress port and by updating the details of the node. Click Edit to edit the details. To delete the service node, click Remove Service Node in the Service Nodes display area on the sidebar.

Note

Maximum of 4 service nodes are supported per redirection.

Adding a Filter

Procedure

Step 1

On the Filters tab, click Add Filter.

Step 2

In the **Filter Description** section of the **Add Filter** dialog box, complete the following fields:
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the filter. The name can contain between 1 and 256 alphanumeric characters including the following special characters: underscore ("_"), hyphen ("-"), plus (" +"), equals (" = "), open parenthesis ("("), closed parenthesis (")"), vertical bar ("</td>
</tr>
<tr>
<td>Bidirectional check box</td>
<td>Check this box if you want the filter to capture traffic information from a source IP, source port, or source MAC address to a destination IP, destination port, or destination MAC address, and from a destination IP, destination port, or destination MAC to a source IP, source port, or source MAC address.</td>
</tr>
</tbody>
</table>

Step 3 In the **Layer 2** section of the **Add Filter** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Ethernet Type field</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Ethernet Type field** | Required. The Ethernet type of the Layer 2 traffic. The default value displayed is IPv4, or you can choose one of the following:
 • IPv6
 • ARP
 • LLDP
 • Predefined EtherTypes
 • All EtherTypes
 • Enter Ethernet Type—If you choose Enter Ethernet Type as the type, enter the Ethernet type in hexadecimal format. If you choose Predefined EtherTypes, all predefined Ethernet types contained in the config.in file are associated with the rule, and you should not configure any other parameters.
 Note You can now configure more than 1 user-defined Ethernet type per filter. You can apply an arbitrary number of Ethernet types that are separated by "," so that a single filter can be setup for the different traffic types. |
VLAN Identification Number field
The VLAN ID for the Layer 2 traffic. You can enter a single VLAN ID, a range of VLAN ID values, or comma-separated VLAN ID values and VLAN ID ranges, for example, 1-4,6,8,9-12.

Note
For NX-API, a VLAN ID with Layer 3 address is not supported. If a VLAN ID with Layer 3 address is configured, it results in the inconsistent flows. You have to troubleshoot and fix the flows.

VLAN Priority field
The VLAN priority for the Layer 2 traffic.

Source MAC Address field
The source MAC address of the Layer 2 traffic.

Destination MAC Address field
The destination MAC address of the Layer 2 traffic.

Step 4
In the **Layer 3** section of the **Add Filter** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP Address field</td>
<td>The source IP address of the Layer 3 traffic. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• The host IP address, for example, 10.10.10.10</td>
</tr>
<tr>
<td></td>
<td>• Discontiguous source IP address, for example, 10.10.10.10, 10.10.10.11, 10.10.10.12</td>
</tr>
<tr>
<td></td>
<td>• An IPv4 address range, for example, 10.10.10.10-10.10.10.15</td>
</tr>
<tr>
<td></td>
<td>• An IPv4 subnet, for example, 10.1.1.0/24</td>
</tr>
<tr>
<td></td>
<td>• The host IP address in IPv6 format, for example, 2001::0</td>
</tr>
</tbody>
</table>

Note
- You cannot enter a range of IPv6 addresses in the **Source IP Address** field.
- If you configure a range of Layer 3 source IP addresses, you cannot configure ranges of Layer 4 source or destination ports.
- If you configure a range of Layer 3 source IP addresses, you cannot configure ranges of Layer 2 VLAN identifiers.
### Name	Description
Destination IP Address field | The destination IP address of the Layer 3 traffic. This can be one of the following:
- The host IP address, for example, 10.10.10.11
- An IPv4 address range, for example, 10.10.10.11-10.10.10.18
- An IPv4 subnet, for example, 10.1.1.0/24
- The host IP address in IPv6 format, for example, 2001::4
- The subnet, for example, 10.0.0.0/25

Note | • You cannot enter a range of IPv6 addresses in the Destination IP Address field.
• If you configure a range of Layer 3 source IP addresses, you cannot configure ranges of Layer 4 source or destination ports.
• If you configure a range of Layer 3 source IP addresses, you cannot configure ranges of Layer 2 VLAN identifiers.

Protocol drop-down list | Choose the Internet protocol of the Layer 3 traffic. This can be one of the following:
- ICMP
- TCP
- UDP
- Enter Protocol

If you choose Enter Protocol as the type, enter the protocol number in decimal format.

ToS Bits field | The Type of Service (ToS) bits in the IP header of the Layer 3 traffic. Only the Differentiated Services Code Point (DSCP) values are used.

Step 5
In the Layer 4 section of the Add Filter dialog box, complete the following fields:
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Port drop-down list</td>
<td>Choose the source port of the Layer 4 traffic. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• FTP (Data)</td>
</tr>
<tr>
<td></td>
<td>• FTP (Control)</td>
</tr>
<tr>
<td></td>
<td>• SSH</td>
</tr>
<tr>
<td></td>
<td>• TELNET</td>
</tr>
<tr>
<td></td>
<td>• HTTP</td>
</tr>
<tr>
<td></td>
<td>• HTTPS</td>
</tr>
<tr>
<td></td>
<td>• Enter Source Port</td>
</tr>
<tr>
<td></td>
<td>If you choose Enter Source Port, enter either a single port number or a range of source port numbers.</td>
</tr>
<tr>
<td>Note</td>
<td>• If you configure a range of Layer 4 source ports, you cannot configure ranges of Layer 3 IP source or destination addresses.</td>
</tr>
<tr>
<td></td>
<td>• If you configure a range of Layer 4 source ports, you cannot configure ranges of Layer 2 VLAN identifiers.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Destination Port** drop-down list | Choose the destination port of the Layer 4 traffic. This can be one of the following:
 • FTP (Data)
 • FTP (Control)
 • SSH
 • TELNET
 • HTTP
 • HTTPS

 Enter Destination Port
 If you choose **Enter Destination Port**, enter either a single port number or a range of destination port numbers. |

Note
• If you configure a range of Layer 4 destination ports, you cannot configure ranges of Layer 3 IP source or destination addresses.
• If you configure a range of Layer 4 destination ports, you cannot configure ranges of Layer 2 VLAN identifiers.

Step 6
In the **Layer 7** section of the **Add Filter** dialog box, complete the following fields:
HTTP Method field

You can configure matching on the HTTP methods and redirect the traffic based on that method. Select one or more methods to match within a single filter. This option is available only when the destination port is HTTP or HTTPS.

- Connect
- Delete
- Get
- Head
- Post
- Put
- Trace

Note
Layer 7 match is supported only with the NX-API mode only and it is not supported in OpenFlow.

Note
The TCP option length is enabled when you select any one of the methods from Layer 7 traffic.

TCP Option Length field

You can extend the filter configuration to specify the TCP option length in the text box. The default value on the text box is 0. All methods within the filter have the same option length.

Enter the TCP option length in a decimal format.

Note
The value on the text box should be in the multiples of 4 and it can range from 0-40.

Step 7
Click **Add Filter**.

Editing a Filter

Procedure

Step 1
On the **Configure Filters** tab, click the **Edit** button next to the **Name** of the filter that you want to edit.

Step 2
In the **Edit Filter** dialog box, edit the following fields:
Name field

The name of the filter. The name can contain between 1 and 256 alphanumeric characters including the following special characters: underscore ("_"), hyphen ("-"), plus ("+"), equals ("="), open parenthesis ("("), closed parenthesis (")"), vertical bar ("|"), period ("."), or at sign ("@").

Note The name cannot be changed once you have saved it.

Bidirectional check box

Check this box if you want the filter to capture traffic information from a source IP, source port, or source MAC address to a destination IP, destination port, or destination MAC address, and from a destination IP, destination port, or destination MAC to a source IP, source port, or source MAC address.

Step 3

In the **Layer 2** section of the **Edit Filter** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Ethernet Type field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required. The Ethernet type of the Layer 2 traffic. The default value displayed is IPv4, or you can choose one of the following:</td>
<td></td>
</tr>
<tr>
<td>• IPv6</td>
<td></td>
</tr>
<tr>
<td>• ARP</td>
<td></td>
</tr>
<tr>
<td>• LLDP</td>
<td></td>
</tr>
<tr>
<td>• Predefined EtherTypes</td>
<td></td>
</tr>
<tr>
<td>• All EtherTypes</td>
<td></td>
</tr>
<tr>
<td>• Enter Ethernet Type—If you choose Enter Ethernet Type as the type, enter the Ethernet type in hexadecimal format. If you choose Predefined EtherTypes, all predefined Ethernet types contained in the config.in file are associated with the rule, and you should not configure any other parameters.</td>
<td></td>
</tr>
</tbody>
</table>

Note You can now configure more than 1 user-defined Ethernet type per filter. You can apply an arbitrary number of Ethernet types that are separated by "," so that a single filter can be setup for the different traffic types.
The VLAN ID for the Layer 2 traffic. You can enter a single VLAN ID, a range of VLAN ID values, or comma-separated VLAN ID values and VLAN ID ranges, for example, 1-4,6,8,9-12.

Note For NX-API, a VLAN ID with Layer 3 address is not supported. If a VLAN ID with Layer 3 address is configured, it results in the inconsistent flows. You have to troubleshoot and fix the flows.

The VLAN priority for the Layer 2 traffic.

The source MAC address of the Layer 2 traffic.

The destination MAC address of the Layer 2 traffic.

Step 4 In the Layer 3 section of the *Edit Filter* dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP Address</td>
<td>The source IP address of the Layer 3 traffic. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• The host IP address, for example, 10.10.10.10</td>
</tr>
<tr>
<td></td>
<td>• Discontiguous source IP address, for example, 10.10.10.10, 10.10.10.11, 10.10.10.12</td>
</tr>
<tr>
<td></td>
<td>• An IPv4 address range, for example, 10.10.10-10.10.10.15</td>
</tr>
<tr>
<td></td>
<td>• An IPv4 subnet, for example, 10.1.1.0/24</td>
</tr>
<tr>
<td></td>
<td>• The host IP address in IPv6 format, for example, 2001::0</td>
</tr>
</tbody>
</table>

Note

- You cannot enter a range of IPv6 addresses in the Source IP Address field.
- If you configure a range of Layer 3 source IP addresses, you cannot configure ranges of Layer 4 source or destination ports.
- If you configure a range of Layer 3 source IP addresses, you cannot configure ranges of Layer 2 VLAN identifiers.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination IP Address field</td>
<td>The destination IP address of the Layer 3 traffic. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• The host IP address, for example, 10.10.10.11</td>
</tr>
<tr>
<td></td>
<td>• An IPv4 address range, for example, 10.10.10.11-10.10.10.18</td>
</tr>
<tr>
<td></td>
<td>• An IPv4 subnet, for example, 10.1.1.0/24</td>
</tr>
<tr>
<td></td>
<td>• The host IP address in IPv6 format, for example, 2001::4</td>
</tr>
<tr>
<td></td>
<td>• The subnet, for example, 10.0.0.0/25</td>
</tr>
<tr>
<td>Note</td>
<td>• You cannot enter a range of IPv6 addresses in the Destination IP Address field.</td>
</tr>
<tr>
<td></td>
<td>• If you configure a range of Layer 3 source IP addresses, you cannot configure ranges of Layer 4 source or destination ports.</td>
</tr>
<tr>
<td></td>
<td>• If you configure a range of Layer 3 source IP addresses, you cannot configure ranges of Layer 2 VLAN identifiers.</td>
</tr>
<tr>
<td>Protocol drop-down list</td>
<td>Choose the Internet protocol of the Layer 3 traffic. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• ICMP</td>
</tr>
<tr>
<td></td>
<td>• TCP</td>
</tr>
<tr>
<td></td>
<td>• UDP</td>
</tr>
<tr>
<td></td>
<td>• Enter Protocol**********</td>
</tr>
<tr>
<td></td>
<td>If you choose Enter Protocol as the type, enter the protocol number in decimal format.</td>
</tr>
<tr>
<td>ToS Bits field</td>
<td>The Type of Service (ToS) bits in the IP header of the Layer 3 traffic. Only the Differentiated Services Code Point (DSCP) values are used.</td>
</tr>
</tbody>
</table>

Step 5 In the **Layer 4** section of the **Edit Filter** dialog box, complete the following fields:
Choose the source port of the Layer 4 traffic. This can be one of the following:

- FTP (Data)
- FTP (Control)
- SSH
- TELNET
- HTTP
- HTTPS

Entersource port

If you choose **Enter source port**, enter either a single port number or a range of source port numbers.

Note

- If you configure a range of Layer 4 source ports, you cannot configure ranges of Layer 3 IP source or destination addresses.
- If you configure a range of Layer 4 source ports, you cannot configure ranges of Layer 2 VLAN identifiers.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Destination Port** drop-down list | Choose the destination port of the Layer 4 traffic. This can be one of the following:
 • FTP (Data)
 • FTP (Control)
 • SSH
 • TELNET
 • HTTP
 • HTTPS
 • **Enter Destination Port**
 If you choose Enter Destination Port, enter either a single port number or a range of destination port numbers. |

Note
• If you configure a range of Layer 4 destination ports, you cannot configure ranges of Layer 3 IP source or destination addresses.
• If you configure a range of Layer 4 destination ports, you cannot configure ranges of Layer 2 VLAN identifiers.

Step 6 In the **Layer 7** section of the **Edit Filter** dialog box, complete the following fields:
You can configure matching on the HTTP methods and redirect the traffic based on that method. Select one or more methods to match within a single filter. This option is available only when the destination port is HTTP or HTTPS.

- Connect
- Delete
- Get
- Head
- Post
- Put
- Trace

Note The TCP option length is enabled when you select any one of the methods from Layer 7 traffic.

You can extend the filter configuration to specify the TCP option length in the text box. The default value on the text box is 0. All methods within the filter have the same option length. Enter the TCP option length in a decimal format.

Note The value on the text box should be in the multiples of 4 and it can range from 0-40.

Step 7
Click **Edit Filter**.

Deleting a Filter

You can delete a filter that has associated rules, resulting in removal of all the rules at the same time.

Procedure

1. **Step 1** On the **Configure Filters** tab, check the check box next to filter or filters that you want to delete, and then click **Remove Filters**. When filters have rules associated with them, this information is displayed in the **Remove Filters** dialog box.

2. **Step 2** In the **Remove Filters** dialog box, click **Remove Filters**.
Adding a Connection

Before You Begin

- Add a filter to be assigned to the connection.
- Configure a monitoring device (optional).
- Configure an edge port or multiple edge ports (optional).

Procedure

Step 1
On the Connections tab, click Add Connection.

Step 2
In the Add Connection dialog box, you can add the Connection Name and the Priority of the connection in the Connection Details area:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Name</td>
<td>The name of the connection. The name can contain between 1 and 256 alphanumeric characters including the following special characters: underscore ("_"), hyphen ("-"), plus ("+"), equals ("="), open parenthesis ("("), closed parenthesis (")"), vertical bar ("</td>
</tr>
<tr>
<td>Description</td>
<td>Enter the description when creating a new connection.</td>
</tr>
<tr>
<td>Priority</td>
<td>The priority that you want to set for the connection. The default is 100, and the valid range of values is 0 through 10000.</td>
</tr>
</tbody>
</table>

Step 3
In the Allow Matching Traffic area, modify the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow Filters drop-down list</td>
<td>Choose a filter to use to allow matching traffic. Note You cannot choose the same filter for Allow Filters that you choose for Traffic Drop Filters.</td>
</tr>
<tr>
<td>Set VLAN field</td>
<td>The VLAN ID that you want to set for the connection.</td>
</tr>
</tbody>
</table>
Step 4 In the **Drop Matching Traffic** area, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Drop Filters</td>
<td>Choose the default filter Default-Match-all or use other filters to drop the matching traffic.</td>
</tr>
<tr>
<td>Note</td>
<td>You cannot choose the same filter for Traffic Drop Filters that you choose for Allow Filters.</td>
</tr>
</tbody>
</table>

Step 5 In the **Source Ports (Optional)** area, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Source Node drop-down list</td>
<td>Choose the source node that you want to assign.</td>
</tr>
<tr>
<td>Note</td>
<td>If you do not choose a source node, the any-to-multipoint loop-free forwarding path option is used, and traffic from all nondelivery ports is evaluated against the filter.</td>
</tr>
<tr>
<td>Note</td>
<td>When setting up a new redirection, you can see the number of flows that are part of each input port. When you click the port number, the flow details are displayed.</td>
</tr>
</tbody>
</table>
Field | **Description**
--- | ---
Select Source Port drop-down list | Choose the port on the source node that you want to assign.

Note | Only edge ports can be used as source ports.

Note | If you do not select a source port while adding a new connection, the following warning message is displayed: No source port is selected. Connection will be setup from all configured Edge-SPAN and Edge-TAP ports. Click OK to continue with the connection installation/creation. It ensures that you do not install any to multi point connection and disrupt any existing traffic. Click Cancel to take you to the connection setup page.

Step 6

Do one of the following:

- Click **Save Connection** to save the connection, but not to install it until later.
- Click **Install Connection** to save the connection and install it at the same time.
- Click **Close** to exit the connection without saving it.

The following fields are displayed on the Connection Setup screen.

- Name
- Allow Filters
- Deny Filters
- Source Ports
- Devices
- Priority
- Last Modified By
- Description
Modifying a Connection

Before You Begin
You must add a connection before you can modify it.

Procedure

| Step 1 | On the **Connection Setup** tab, click the **Edit** button next to the **Name** of the connection that you want to modify. |
| Step 2 | In the **Modify Connection** dialog box, you can modify the **Connection Name** and the **Priority** of the connection in the **Connection Details** area: |

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Name</td>
<td>The name of the connection. The name can contain between 1 and 256 alphanumeric characters including the following special characters: underscore ("_"), hyphen ("-"), plus ("+"), equals ("="), open parenthesis ("("), closed parenthesis (")"), vertical bar ("</td>
</tr>
<tr>
<td>Description</td>
<td>Enter the description when creating a new connection.</td>
</tr>
<tr>
<td>Priority</td>
<td>The priority that you want to set for the connection. The default is 100, and the valid range of values is 0 through 10000.</td>
</tr>
</tbody>
</table>

| Step 3 | In the **Allow Matching Traffic** area, modify the following fields: |

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow Filters drop-down list</td>
<td>Choose a filter to use to allow matching traffic. Note You cannot choose the same filter for Allow Filters that you choose for Traffic Drop Filters.</td>
</tr>
<tr>
<td>Set VLAN field</td>
<td>The VLAN ID that you want to set for the connection.</td>
</tr>
<tr>
<td>Strip VLAN at delivery port check box</td>
<td>Check this box to strip the VLAN tag from the packet before it reaches the delivery port. Note The Strip VLAN at delivery port action is only valid for connections with a single edge port and one or more delivery devices for a single, separate node.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Destination Devices list</td>
<td>The monitoring devices that you want to associate with the filter. You can choose one or more devices by checking the boxes next to their names.</td>
</tr>
<tr>
<td>Traffic Drop Filters drop-down list</td>
<td>Note</td>
</tr>
</tbody>
</table>

Step 4

In the Drop Matching Traffic area, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Drop Filters</td>
<td>Choose the default filter Default-Match-all or use other filters to drop the matching traffic.</td>
</tr>
<tr>
<td>Note</td>
<td>You cannot choose the same filter for Traffic Drop Filters that you choose for Allow Filters.</td>
</tr>
</tbody>
</table>

Step 5

In the Source Ports (Optional) area, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Source Node drop-down list</td>
<td>Choose the source node that you want to assign.</td>
</tr>
<tr>
<td>Note</td>
<td>If you do not choose a source node, the any-to-multipoint loop-free forwarding path option is used, and traffic from all non-delivery ports is evaluated against the filter.</td>
</tr>
<tr>
<td>Select Source Port drop-down list</td>
<td>Choose the port on the source node that you want to assign.</td>
</tr>
<tr>
<td>Note</td>
<td>Only edge ports can be used as source ports.</td>
</tr>
</tbody>
</table>

Step 6

Click Submit or Close.

Cloning a Connection

Before You Begin

You must add a connection before you can modify it.
Procedure

Step 1
On the **Connection Setup** tab, click the **Clone** next to the **Name** of the connection that you want to clone.

Step 2
In the **Clone Connection** dialog box, you can modify the **Connection Name** and the **Priority** of the connection in the **Connection Details** area:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Name</td>
<td>The name of the connection.</td>
</tr>
<tr>
<td></td>
<td>The name can contain between 1 and 256 alphanumeric characters including the following special characters: underscore (_), hyphen (-), plus (+), equals (=), open parenthesis ("("), closed parenthesis (")"), vertical bar ("</td>
</tr>
<tr>
<td>Description</td>
<td>Enter the description when creating a new connection.</td>
</tr>
<tr>
<td>Priority</td>
<td>The priority that you want to set for the connection.</td>
</tr>
<tr>
<td></td>
<td>The default is 100, and the valid range of values is 0 through 10000.</td>
</tr>
</tbody>
</table>

Step 3
In the **Allow Matching Traffic** area, modify the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow Filters drop-down list</td>
<td>Choose a filter to use to allow matching traffic.</td>
</tr>
<tr>
<td></td>
<td>Note You cannot choose the same filter for Allow Filters that you choose for Traffic Drop Filters.</td>
</tr>
<tr>
<td>Set VLAN field</td>
<td>The VLAN ID that you want to set for the connection.</td>
</tr>
<tr>
<td>Strip VLAN at delivery port check box</td>
<td>Check this box to strip the VLAN tag from the packet before it reaches the delivery port.</td>
</tr>
<tr>
<td></td>
<td>Note The Strip VLAN at delivery port action is only valid for connections with a single edge port and one or more delivery devices for a single, separate node.</td>
</tr>
<tr>
<td>Destination Devices list</td>
<td>The monitoring devices that you want to associate with the filter. You can choose one or more devices by checking the boxes next to their names.</td>
</tr>
<tr>
<td>Traffic Drop Filters drop-down list</td>
<td>Note</td>
</tr>
</tbody>
</table>

Step 4
In the **Drop Matching Traffic** area, complete the following fields:
Traffic Drop Filters

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Drop Filters</td>
<td>Choose the default filter Default-Match-all or use other filters to drop the matching traffic.</td>
</tr>
<tr>
<td>Note</td>
<td>You cannot choose the same filter for Traffic Drop Filters that you choose for Allow Filters.</td>
</tr>
</tbody>
</table>

Step 5

In the **Source Ports (Optional)** area, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Source Node drop-down list</td>
<td>Choose the source node that you want to assign.</td>
</tr>
<tr>
<td>Note</td>
<td>If you do not choose a source node, the any-to-multipoint loop-free forwarding path option is used, and traffic from all nondelivery ports is evaluated against the filter.</td>
</tr>
<tr>
<td>Select Source Port drop-down list</td>
<td>Choose the port on the source node that you want to assign.</td>
</tr>
<tr>
<td>Note</td>
<td>Only edge ports can be used as source ports.</td>
</tr>
</tbody>
</table>

Step 6

Do one of the following:

- Click **Save Cloned Connection** to save the connection, but not to install it until later.
- Click **Install Cloned Connection** to save the connection and install it at the same time.
- Click **Close** to exit the connection without saving it.

Removing a Connection

Procedure

Step 1 Navigate to the **Connection Setup** tab.

Step 2 Check the check box for the connection or connections that you want to delete.

Step 3 Click **Remove Connections**.
Adding a Service Node

Procedure

Step 1 In the topology diagram, click the node.
Step 2 In the side bar, click Add Service Node. The Add Service Node window is displayed.
Step 3 Enter the name of the service node in the Service Node Name window.
Step 4 Select the ingress port for the service node in the Service Node Ingress Port window.
Step 5 Select the egress port for the service node in the Service Node Egress Port window.
Step 6 Select a service node icon.
Step 7 Click Submit.

Adding Redirection

Note

The redirection setup feature is supported on Cisco Nexus 3000 Series switches running Release 6.0(2)U5(2)
and later releases only. This feature is supported on Cisco Nexus 9300 switches starting with Release 7.x
and OpenFlow.

Before You Begin

• Add a filter to be assigned to the redirection.
• Configure a monitoring device (optional).
• Configure an edge port or multiple edge ports (optional).
• The production ingress port, the production egress port, and the service node should be on the same
 redirection switch.

Procedure

Step 1 On the Redirections tab, click Add Redirection.
Step 2 In the Add Redirection dialog box, you can add the Redirection Name and the Priority of the redirection
 in the Redirection Details area:
Adding Redirection

Step 3
In the **Matching Traffic** area, modify the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Filters drop-down list | Choose a filter to use to allow matching traffic.
Note: You cannot choose the same redirection for the filter. |

Step 4
In the **Redirection Switch** area, modify the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Redirection Switch drop-down list</td>
<td>Select the redirection switch that you want to assign.</td>
</tr>
</tbody>
</table>

Note: You can have only one ingress port and one egress port per one redirection switch.

Step 5
In the **Service Nodes (OPTIONAL)** area, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Service Node drop-down list</td>
<td>Select the redirection service node that you want to assign and click Add Service Node.</td>
</tr>
</tbody>
</table>
If you want to add multiple service nodes, you should add them in an order in which you want the packets to travel.

Step 6

In the **Production Ports** area, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Production Ingress Port drop-down list</td>
<td>Select the production ingress port that you want to assign.</td>
</tr>
<tr>
<td></td>
<td>Note You can select only one ingress port. Multiple ingress ports are not allowed. You cannot use the same ports as the ingress and the egress ports.</td>
</tr>
<tr>
<td></td>
<td>Note When setting up a new redirection, you can see the number of flows that are part of each input port. When you click the port number, the flow details are displayed.</td>
</tr>
<tr>
<td>Select Production Egress Port drop-down list</td>
<td>Select the production egress port that you want to assign.</td>
</tr>
<tr>
<td></td>
<td>Note You can select only one ingress port. Multiple ingress ports are not allowed. You cannot use the same ports as the ingress and the egress ports.</td>
</tr>
</tbody>
</table>

Step 7

In the **Delivery Devices to copy traffic (OPTIONAL)** area, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Device drop-down list</td>
<td>Select a device, for example, a switch from the drop-down list, that you want to assign and click Add Device.</td>
</tr>
<tr>
<td></td>
<td>Note You can select multiple delivery devices for the redirection.</td>
</tr>
</tbody>
</table>

Step 8

Do one of the following:

- Click **Save Redirection** to save the redirection, but not to install it until later.
- Click **Install Redirection** to save the redirection and install it at the same time.
- Click **Close** to exit the redirection without saving it.

Step 9

When you click **Install Redirection** to save the redirection and install it at the same time, the redirection path on the redirection switch is displayed on the production ingress ports, service nodes, and the production egress ports.

Step 10

Click **Flow Statistics** to view the flow statistics for the redirection switch. The following fields provide information on the flow statistics:

- In Port field—The Input port(s) from which the traffic is matched. An asterisk ("*") indicates any input port.
• DL Drc field—The source MAC address to be matched for the incoming traffic. An asterisk (*) indicates any source MAC address.

• DL Dst field—The destination MAC address to be matched for the incoming traffic. An asterisk (*) indicates any destination MAC address.

• DL Type field—The Ethertype to be matched for the incoming traffic. For example, "IPv4" or "IPv6" is used for all IP traffic types.

• DL VLAN field—The VLAN ID to be matched for the incoming traffic. An asterisk (*) indicates any VLAN ID.

• VLAN PCP field—The VLAN priority to be matched for the incoming traffic. An asterisk (*) is almost always displayed in this field.

• NW Src field—The IPv4 or IPv6 source address for the incoming traffic. An asterisk (*) indicates any source address based on IPv4 or IPv6 Ethertypes.

• NW Dst field—The IPv4 or IPv6 destination address for the incoming traffic. An asterisk (*) indicates any destination address based on IPv4 or IPv6 Ethertypes.

• NW Proto field—The network protocol to be matched for the incoming traffic. For example, "6" indicates the TCP protocol.

• TP Src field—The source port associated with the network protocol to be matched for the incoming traffic. An asterisk (*) indicates any port value.

• TP Dst field—The destination port associated with the network protocol to be matched for the incoming traffic. An asterisk (*) indicates any port value.

• Actions field—The output action to be performed for the traffic matching the criteria specified, for example, "OUTPUT = OF|2".

• Byte Count field—The aggregate traffic volume shown in bytes that match the specified flow connection.

• Packet Count field—The aggregate traffic volume shown in packets that match the specified flow connection.

• Duration Seconds field—The amount of time, in milliseconds, that the specific flow connection has been installed in the switch.

• Idle Timeout field—The amount of time, in milliseconds, that the flow can be idle before it is removed from the flow table.

• Priority field—The priority assigned to the flow. The flows with higher priority numbers take precedence.

Step 11 Click Close to close the flow statistics display window.

Modifying Redirection

Before You Begin
You must add a redirection before you can modify it.
Procedure

Step 1
On the Redirection Setup tab, click the Edit button next to the Name of the connection that you want to modify.

Step 2
In the Modify Redirection dialog box, you can modify the Redirection Name and the Priority of the redirection in the Redirection Details area:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redirection Name</td>
<td>The name of the redirection. The name can contain between 1 and 256 alphanumeric characters including the following special characters: underscore ("_"), hyphen ("-"), plus ("+"), equals ("="), open parenthesis ("("), closed parenthesis ")"), vertical bar (""), period ("."), or at sign ("@"). Note: The name of the redirection cannot be changed once you have saved it.</td>
</tr>
<tr>
<td>Description</td>
<td>Enter the description when creating a new redirection.</td>
</tr>
<tr>
<td>Set auto priority checkbox</td>
<td>Check this option to enable the auto priority for the redirection. The priority of the redirection is set based on the existing redirections that are installed on the selected ingress ports.</td>
</tr>
<tr>
<td>Priority</td>
<td>The priority that you want to set for the redirection. The valid range of the values is 0–10000. The default is 100.</td>
</tr>
<tr>
<td>Automatic Fail-safe checkbox</td>
<td>Check this option to enable the fail-safe feature of redirection. When you enable this feature, the direct flow from the production ingress port and the egress port is created that matches all ethertype traffic of low priority.</td>
</tr>
</tbody>
</table>

Step 3
In the Matching Traffic area, modify the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filters drop-down list</td>
<td>Choose a filter to use to allow matching traffic. Note: You cannot choose the same redirection for the filter.</td>
</tr>
</tbody>
</table>

Step 4
In the Redirection Switch area, modify the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Redirection Switch</td>
<td>Select the redirection switch that you want to assign. Note: You cannot choose the same redirection switch for the filter.</td>
</tr>
</tbody>
</table>

Step 5
In the Service Nodes (OPTIONAL) area, complete the following fields:
Select the redirection service node that you want to assign and click **Add Service Node**.

Step 6
In the **Production Ports** area, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Service Node drop-down list</td>
<td>Select the redirection service node that you want to assign and click Add Service Node.</td>
</tr>
</tbody>
</table>

Note
You can select only one service node. Multiple service nodes are not allowed. You cannot use the same service node as the ingress and the egress.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Production Ingress Port drop-down list</td>
<td>Select the production ingress port that you want to assign.</td>
</tr>
<tr>
<td>Select Production Egress Port drop-down list</td>
<td>Select the production egress port that you want to assign.</td>
</tr>
</tbody>
</table>

Note
You can select only one ingress port. Multiple ingress ports are not allowed. You cannot use the same ports as the ingress and the egress.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Production Ingress Port drop-down list</td>
<td>Select the production ingress port that you want to assign.</td>
</tr>
<tr>
<td>Select Production Egress Port drop-down list</td>
<td>Select the production egress port that you want to assign.</td>
</tr>
</tbody>
</table>

Note
You can select only one ingress port. Multiple ingress ports are not allowed. You cannot use the same ports as the ingress and the egress.

Step 7
In the **Delivery Devices to copy traffic (OPTIONAL)** area, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Device drop-down list</td>
<td>Select a device, for example, a switch from the drop-down list, that you want to assign and click Add Device.</td>
</tr>
</tbody>
</table>

Note
You can select multiple delivery devices for the redirection.

Step 8
Do one of the following:

- Click **Save Redirection** to save the redirection, but not to install it until later.
- Click **Install Redirection** to save the redirection and install it at the same time.
- Click **Close** to exit the redirection without saving it.
Removing a Redirection

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Navigate to the Redirection Setup tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Check the check box for the redirection or redirections that you want to delete.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click Remove Redirections.</td>
</tr>
</tbody>
</table>
CHAPTER 9

Managing Roles and Resources

This chapter contains the following sections:

- About Cisco Data Broker Users, page 85
- Creating a Role, page 86
- Configuring a Role to Access Multiple Disjoint Networks, page 86
- Removing a Role, page 87
- Creating a Resource Group, page 88
- Adding Resources to a Resource Group, page 88
- Assigning a Group to a Role, page 89
- Unassigning a Group, page 89
- Removing a Group, page 90

About Cisco Data Broker Users

Cisco Nexus Data Broker uses roles and levels to manage user access. One of the following levels can be assigned to each role that you create:

- **App-Administrator**—Has full access to all Cisco Nexus Data Broker resources.

- **App-User**—Has full access to resources that are assigned to his resource group and resources that are created by another user who has similar permissions.

Each role is assigned to one or more groups, which are collections of resources. Group resources are non-Inter Switch Link (ISL) ports that are specifically assigned to that group. After you have created a group, you can assign that group to a role.
Creating a Role

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the menu bar, click the Admin drop-down list, and choose Settings.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Roles tab, click Add Role.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the Add Role dialog box, complete the following fields:</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Name field</td>
<td>The name of the role. The name can contain between 1 and 256 alphanumeric characters including the following special characters: underscore ("_"), hyphen ("-"), plus ("+"), equals ("="), open parenthesis ("("), closed parenthesis (")"), vertical bar ("</td>
</tr>
<tr>
<td>Level drop-down list</td>
<td>Choose the level that you want to assign to the role. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• App-Administrator—Has full access to all Cisco Nexus Data Broker resources.</td>
</tr>
<tr>
<td></td>
<td>• App-User—Has full access to resources that are assigned to his resource group and resources that are created by another user who has similar permissions.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Click Submit.</td>
</tr>
</tbody>
</table>

Configuring a Role to Access Multiple Disjoint Networks

Multiple disjoint networks are the virtual networks that you create when you create network slices in the Cisco Nexus Data Broker application. Roles can be configured to permit role-based access to multiple Cisco Nexus Data Broker disjoint networks.

For example, if you have two networks, the first named dev and the second named prod, the network administrator can create a user that has access to both networks but with difference privileges for each network. The access level for network dev can be assigned as **App-Admin**, and the access level for network prod can be assigned as **App-User**.

The App-Admin privilege provides the ability to create, edit, and delete his or other roles' rules and filters on the assigned network, in this case, dev. The App-User privilege provides the ability to create, edit, and delete rules and filters owned by this role only on the assigned network, in this case, prod. The application user role...
can create, edit, or delete rules and filters only for the disjoint network or networks to which the role has been assigned. In addition, the application user role can view and apply filters created by the application administrator, but cannot edit or delete them.

Procedure

Step 1 Log in to the Cisco Nexus Data Broker network with the Network-Admin role username and password.

Step 2 Ensure that you are in the dev network.

Step 3 On the menu bar, choose Settings from the Admin drop-down list.

Step 4 Click Add Role.

Step 5 In the **Name** field of the **Add Role** dialog box, enter the name for the role, for example, NDB-role-dev. The name can contain between 1 and 256 alphanumeric characters including the following special characters: underscore ("_"), hyphen ("-"), plus ("+"), equals ("="), open parenthesis ("("), closed parenthesis (")"), vertical bar ("|"), period ("."), or at sign ("@").

Step 6 From the **Level** drop-down list, choose App-Administrator.

Step 7 Click Submit.

Step 8 On the menu bar, choose the prod network from the network drop-down list.

Step 9 Repeat Steps 3 and 4 for the prod network.

Step 10 In the **Name** field of the **Add Role** dialog box, enter NDB-role-prod.

Step 11 From the **Level** drop-down list, choose App-User.

Step 12 Click Submit.

Step 13 Assign allPorts to role MM-role-prod under the Assign tab.

You can now create a user that has both of these application roles.

Note Press Ctrl+F5, or Cmd+Shift+R, simultaneously, when switching between networks with different access levels.

Removing a Role

Procedure

Step 1 From the Admin drop-down list, choose Settings.

Step 2 In the **Roles** table on the **Roles** tab, click the role that you want to remove.

Step 3 In the **Remove Roles** confirmation dialog box, click **Remove**.
Creating a Resource Group

Procedure

Step 1 From the Admin drop-down list, choose Settings.
Step 2 On the Groups tab, click Add Group.
Step 3 In the Add Resource Group dialog box, enter the name that you want to use for the resource group. The name can contain between 1 and 256 alphanumeric characters including the following special characters: underscore ("_"), hyphen ("-"), plus ("+") , equals ("="), open parenthesis ("("), closed parenthesis (")"), vertical bar ("|"), period ("."), or at sign ("@").
Step 4 Click Submit.

What to Do Next
Add resources to the group.

Adding Resources to a Resource Group

Before You Begin
Create a resource group.

Procedure

Step 1 From the Admin drop-down list, choose Settings.
Step 2 On the Groups tab, choose the group to which you want to add resources.
Step 3 Choose a node in the topology diagram.
Step 4 In the Add Ports to Group dialog box, choose the ports that you want to add to the group.
Step 5 Click Submit.
Step 6 Repeat Step 3 through Step 5 for all of the ports that you want to add.
Step 7 Remove a resource, or multiple resources, by choosing one or more ports in the Group Detail table, and then clicking Remove Ports.
Step 8 In the Remove Ports dialog box, click Remove.

What to Do Next
Assign the resource group to a role.
Assigning a Group to a Role

Before You Begin

• Create a role.
• Create a resource group.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>From the Admin drop-down list, choose Settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Click the Assign tab.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click Assign next to the role for which you want to assign a group.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Configure Role dialog box, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign Group</td>
<td>The groups that you want to assign to the role. You can choose one or more groups to assign.</td>
</tr>
<tr>
<td>Note</td>
<td>You cannot assign a group to a role with the App-Administrator level.</td>
</tr>
<tr>
<td>Unassign Group</td>
<td>The groups that you want to unassign from the role. You can choose one or more groups to unassign.</td>
</tr>
<tr>
<td>Note</td>
<td>You cannot unassign the allPorts group from a role with the App-Administrator level.</td>
</tr>
</tbody>
</table>

| Step 5 | Click Apply. |

Unassigning a Group

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>From the Admin drop-down list, choose Settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Click the Assign tab.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click Assign next to the role for which you want to unassign a group.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Configure Role dialog box, choose a port in the Unassign Group drop-down list.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click Apply.</td>
</tr>
</tbody>
</table>
Removing a Group

The following groups cannot be removed:

- The default allPorts group
- Any group that has been assigned to a role.

Procedure

Step 1 From the Admin drop-down list, choose Settings.
Step 2 On the Groups tab, choose the group or groups that you want to remove.
Step 3 Click Remove Groups.
Step 4 In the Remove Resource Groups confirmation dialog box, click Remove.
Managing Flows

This chapter contains the following sections:

- About Flow Programming, page 91
- Adding a Flow Entry, page 92
- Viewing Flow Details, page 95

About Flow Programming

With Cisco Nexus Data Broker, you can configure individual flows in each network device. Flows are identified based on Layer 1 through Layer 4 criteria. After the flow is identified, you can specify the actions to be performed on the packets that match the flow specification. This is applicable only for OpenFlow switches.

The criteria for matching and actions varies depending upon the switch. Possible actions are as follows:

- Dropping or forwarding the packet to one or more interfaces.
- Setting the VLAN ID and priority of the packets.
- Modifying the source and destination MAC addresses of the packets.
- Modifying the source and destination IP addresses of the packets.

All flows that you create are listed in the Flow Entries table on the Flows tab. Flows become active when you install them in the device.
Adding a Flow Entry

Procedure

Step 1 From the Admin drop-down list, choose Management.
Step 2 On the menu bar, choose Flows, and then click the Flow Entries tab.
Step 3 Click Add Flow Entry.
Step 4 In the Flow Description area of the Add Flow Entry dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name that you want to assign to the flow. The name can contain between 1 and 256 alphanumeric characters including the following special characters: underscore ("_"), hyphen ("-"), plus ("+") equals ("="), open parenthesis ("(") closed parenthesis (")"), vertical bar ("</td>
</tr>
<tr>
<td>Node drop-down list</td>
<td>Choose the ID or node name for the device. Note The node you choose cannot be changed once you save the flow entry.</td>
</tr>
<tr>
<td>Input Port drop-down list</td>
<td>Choose the port on the node where traffic enters the flow.</td>
</tr>
<tr>
<td>Priority field</td>
<td>The priority that you want to apply to the flow. The default priority is 500. Flows with a higher priority are given precedence over flows with a lower priority. Note The priority is considered only when all of the Layer 2, Layer 3, and Layer 4 match fields are equal.</td>
</tr>
<tr>
<td>Hard Timeout field</td>
<td>The amount of time in milliseconds for the flow to be installed before it is removed from the flow table.</td>
</tr>
<tr>
<td>Idle Timeout field</td>
<td>The amount of time in milliseconds that the flow can be idle before it is removed from the flow table.</td>
</tr>
<tr>
<td>Cookie field</td>
<td>An identifier added to the flow. Cookies are specified by the controller when the flow is installed and are returned as part of each flow status and flow expired message.</td>
</tr>
</tbody>
</table>

Step 5 In the Layer 2 area, complete the following fields:
Ethernet Type field
The Ethernet type for the Layer 2 traffic. The Ethernet type for IPv4, in hexadecimal format, is displayed by default. Either accept the default value, or enter one of the following, in hexadecimal format:
- IPv6
- ARP
- LLDP

VLAN Identification Number field
The VLAN ID for the Layer 2 traffic.

VLAN Priority field
The VLAN priority for the Layer 2 traffic.

Source MAC Address field
The source MAC address for the Layer 2 traffic.

Destination MAC Address field
The destination MAC address for the Layer 2 traffic.

Step 6
In the **Layer 3** area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP Address field</td>
<td>The source IP address of the Layer 3 traffic.</td>
</tr>
<tr>
<td>Note</td>
<td>The format of the source IP address must match the Ethernet type that you entered in the Ethernet Type field for Layer 2.</td>
</tr>
<tr>
<td>Destination IP Address field</td>
<td>The destination IP address of the Layer 3 traffic.</td>
</tr>
<tr>
<td>Note</td>
<td>The format of the destination IP address must match the Ethernet type that you entered in the Ethernet Type field for Layer 2.</td>
</tr>
<tr>
<td>ToS Bits field</td>
<td>The Type of Service (ToS) bits in the IP header of the Layer 3 traffic.</td>
</tr>
<tr>
<td>Note</td>
<td>Only the DSCP bits are supported on Cisco Nexus 3000 Series switches.</td>
</tr>
</tbody>
</table>

Step 7
In the **Layer 4** area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Port field</td>
<td>The source port of the Layer 4 traffic.</td>
</tr>
<tr>
<td>Destination Port field</td>
<td>The destination port of the Layer 4 traffic.</td>
</tr>
<tr>
<td>Protocol field</td>
<td>The Internet protocol number of the Layer 4 traffic. Enter the IP protocol number in decimal, hexadecimal, or octal format.</td>
</tr>
</tbody>
</table>
Step 8 In the Actions area, select one or more actions:

- Drop
- Loopback
- Flood
- Software Path
- Hardware Path
- Controller
- Add Output Ports
- Set VLAN ID
- Set VLAN Priority
- Strip VLAN Header
- Modify Datalayer Source Address
- Modify Datalayer Destination Address
- Modify Network Source Address
- Modify Network Destination Address
- Modify ToS Bits
- Modify Transport Source Port
- Modify Transport Destination Port
- Flood All
- Enqueue
- Set VLAN CFI
- Push VLAN
- Set EtherType

Step 9 Do one of the following:

- Click **Install Flow** to install the flow into the device.
- Click **Save Flow** to save the flow to the **Flow Entries** table but not install the flow in the flow table of the device.
Viewing Flow Details

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>From the Admin drop-down list, choose Management.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the menu bar, choose Flows, and then click the Flow Entries tab.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Locate the flow that you want to view. Enter a value in the Search combo box and click the search icon to limit the number of entries that appear.</td>
</tr>
</tbody>
</table>
| **Step 4** | In the **Flow Overview** area of the **Flow Detail** tab, perform one of the following tasks:
 • Click **Remove Flow** to remove the flow from the **Flow Entries** table.
 • Click **Edit Flow** to edit the flow in the flow table of the device.
 • Click **Uninstall Flow** to remove the flow from the flow table of the device. |
Chapter 11

Troubleshooting

This chapter contains the following sections:

• About Troubleshooting, page 97
• Viewing Flow and Port Detail Statistics, page 98
• Viewing Inconsistent Controller Flows or Inconsistent Node Flows, page 98
• Exporting Inconsistent Flow Details, page 99
• Fixing Inconsistent Flows, page 99
• SDN Analyzer, page 100
• Using the SDN Analyzer, page 100
• Changing the Default Values for the SDN Analyzer, page 101

About Troubleshooting

Cisco Nexus Data Broker includes a variety of tools that you can use to troubleshoot your network connections. From the Troubleshoot tab, you can do the following:

• View all of the nodes in the network.
• View detailed information about the ports for each node in the network.
• View detailed information about the flows for each node in the network.
• View when the nodes were discovered by in the Uptime tab.
• View detailed information about TIF policies in the Policy Analyzer tab.
• Run analytics on selected flows and TIF policies.
Viewing Flow and Port Detail Statistics

Procedure

Step 1 From the Admin drop-down list, choose Management.
Step 2 On the menu bar, choose Troubleshoot, and then click the Flow Check tab.
Step 3 In the Existing Nodes tab, locate the node for which you want to view statistics. Enter a value in the Search combo box and click the search icon to limit the number of entries that appear.
Step 4 Perform one of the following tasks:
 - Click Flows to view detailed information about all flows programmed on the node.
 - Click Ports to view detailed information about all ports of the node.

Note The statistics are updated every 120 seconds.

Viewing Inconsistent Controller Flows or Inconsistent Node Flows

Procedure

Step 1 From the Admin drop-down list, choose Management.
Step 2 In the menu bar, choose Troubleshoot, and then click the Flow Check tab.
Step 3 From the Select a node drop-down list, choose a node. The node is displayed, with the number of Inconsistent Controller Flows and Inconsistent Node Flows, if any, next to each type.
Step 4 Click either Inconsistent Controller Flows or Inconsistent Node Flows to view details for any inconsistent flows. Details are displayed in the Statistics tab.

What to Do Next
Fix inconsistent controller flows or inconsistent node flows.
Exporting Inconsistent Flow Details

In order to view and save inconsistent controller or inconsistent node flow details for reference, you can export them to a comma-delimited file.

Procedure

Step 1 From the Admin drop-down list, choose Management.

Step 2 In the menu bar, choose Troubleshoot, and then click the Flow Check tab.

Step 3 Choose a node from the Select a node drop-down list.
The node is displayed, with the number of Inconsistent Controller Flows and Inconsistent Node Flows next to each type.

Step 4 Choose either Inconsistent Controller Flows or Inconsistent Node Flows.
The list of Inconsistent Controller Flows or Inconsistent Node Flows is displayed in the Statistics tab.

Step 5 Check the check box next to one or more inconsistent flows, or check the check box at the top of the list to choose all flows in the list.

Step 6 Click Export All, and then click Export Flow Details.

Step 7 Save the inconsistent flow detail information as a .csv file that you can open later for analysis.

Fixing Inconsistent Flows

Note When you fix an inconsistent controller flow, the flow is installed on the switch. When you fix an inconsistent node flow, the flow is removed from the switch, because the controller is the authoritative source of flow information.

Procedure

Step 1 From the Admin drop-down list, choose Management.

Step 2 In the menu bar, choose Troubleshoot, and then click the Flow Check tab.

Step 3 Choose a node from the Select a node drop-down list.
The node is displayed, with the number of Inconsistent Controller Flows and Inconsistent Node Flows next to each type.

Step 4 Click either Inconsistent Controller Flows or Inconsistent Node Flows.
The list of Inconsistent Controller Flows or Inconsistent Node Flows is displayed in the Statistics tab.
Step 5 Check the check box next to one or more inconsistent flows, or check the check box at the top of the list to choose all flows in the list.

Step 6 Click **Fix Inconsistent Flows**.

Step 7 In the **Fix Flows** confirmation dialog box, click **Fix Inconsistent Flows**.

The **Flow Check** tab redisplay **Inconsistent Controller Flows** and **Inconsistent Node Flows** with the updated number of each type.

Note If you chose all inconsistent flows in Step 4, the number displayed is 0.

SDN Analyzer

Note The SDN Analyzer is not applicable to NX-API controlled interfaces.

The SDN Analyzer downloads packet capture (pcap) files for the interface that you select. The individual pcap files are consolidated into one zip file.

By default, the SDN Analyzer captures 5 pcap files with 100 MB of network data each. If more than the set amount of data is captured, the earlier data is overwritten. You can change the amount of data collected in the `config.ini` file.

Using the SDN Analyzer

The SDN Analyzer captures packets that come to Cisco Nexus Data Broker and outputs the results to a zip file. The location of the zip file depends upon your browser settings.

Before You Begin

You must have root privileges on the server that is running Cisco Nexus Data Broker to run the SDN Analyzer.

Procedure

Step 1 From the Admin drop-down list, choose **Management**.

Step 2 On the menu bar, click **Troubleshoot**, and then click the SDN Analyzer tab.

Step 3 Click the interface that you want to view, and then click **Start Analyzer**.

Step 4 When you have finished collecting data, click **Stop Analyzer**.
Changing the Default Values for the SDN Analyzer

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Navigate to the <code>xnc/configuration</code> directory that was created when you installed the software.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Use any text editor to open the <code>config.ini</code> file.</td>
</tr>
</tbody>
</table>
| Step 3 | Locate the following parameters:
 • `troubleshoot.fileSize = 100`
 • `troubleshoot.number = 5` |
| Step 4 | Change the files as appropriate. We recommend that you use a file size of no more than 100mb, and increase the number of pcap files. |
| Step 5 | Save the file and exit the editor. |
| Step 6 | Restart Cisco Nexus Data Broker. |
Managing Slices

This chapter contains the following sections:

- About Slice Manager, page 103
- Adding a Slice, page 104
- Adding Nodes and Ports to a Slice, page 104
- Adding a Flow Specification, page 105

About Slice Manager

The Slice Manager provides a way for you, as a network administrator, to partition networks into many logical networks. This feature allows you to create multiple disjoint networks and assign different roles and access levels to each one. Each logical network can be assigned to departments, groups of individuals, or applications. Multiple disjoint networks can be managed using the Cisco Nexus Data Broker application.

The Slice Manager creates slices based on the following criteria:

- Network devices—The devices that can be used in the slice. Network devices can be shared between slices.
- Network device interfaces—The device interfaces that can be used in the slice. Network device interfaces can be shared between slices.
- Flow Specification—A combination of source and destination IP, protocol, and source and destination transport ports used to identify the traffic that belongs to the slice. Flow specifications can be assigned to different slices if the associated network devices and interfaces are disjointed.

Note

You can also use VLAN IDs to segregate the slice traffic.

Slices must be created by a Cisco Nexus Data Broker user with the Network Administrator role. After creation, the slices can be managed by a user with the Slice Administrator role.
Slices can overlap if each slice has at least one unique attribute. For example, a slice can share the same physical switches and ports, but be differentiated by the type of traffic it receives.

Adding a Slice

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>From the Admin drop-down list, choose Management.</td>
</tr>
<tr>
<td>Step 2</td>
<td>From the management Admin drop-down list, choose Slices.</td>
</tr>
<tr>
<td>Step 3</td>
<td>From the Admin drop-down list, choose Slices.</td>
</tr>
<tr>
<td>Step 4</td>
<td>On the Slices tab, click Add Slice.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Add Slice dialog box, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slice Name field</td>
<td>The name that you want to assign to the slice.</td>
</tr>
<tr>
<td></td>
<td>The name may contain between 1 and 256 alphanumeric characters including the following special characters: underscore (_), hyphen (-), plus (+), equals (=), vertical bar (!), or at sign (@).</td>
</tr>
<tr>
<td></td>
<td>Note The slice name cannot be changed once it is saved.</td>
</tr>
<tr>
<td>Static VLAN field</td>
<td>The static VLAN that you want to assign to the slice.</td>
</tr>
</tbody>
</table>

Step 6 Click **Add Slice**.

Adding Nodes and Ports to a Slice

Before You Begin

You must have created a slice before you can add nodes and ports.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>From the Admin drop-down list, choose Management.</td>
</tr>
<tr>
<td>Step 2</td>
<td>From the management Admin drop-down list, choose Slices.</td>
</tr>
<tr>
<td>Step 3</td>
<td>From the Admin drop-down list, choose Slices.</td>
</tr>
<tr>
<td>Step 4</td>
<td>On the Slices tab, choose the slice for which you want to add entries.</td>
</tr>
<tr>
<td></td>
<td>Enter a value in the Search combo box and click the search icon to limit the number of entries that appear.</td>
</tr>
</tbody>
</table>
Step 5
In the topology diagram, click a node that you want to add to the slice.

Step 6
In the **Add Slice Entry** dialog box, choose the port or ports that you want to add to the slice.

Step 7
Click **Add Entry**.

Step 8
Repeat Step 3 through Step 5 for each node and port that you want to add to the slice.

Adding a Flow Specification

Before You Begin

Create a slice before you add a flow specification.

Note
Be default, a flow specification is bidirectional.

Procedure

Step 1
From the **Admin** drop-down list, choose **Management**.

Step 2
From the management **Admin** drop-down list, choose **Slices**.

Step 3
From the **Admin** drop-down list, choose **Slices**.

Step 4
On the **Flow Spec** tab, choose the slice for which you want to add a flow specification. Enter a value in the **Search** combo box and click the search icon to limit the number of entries that appear.

Step 5
On the **Detail** tab, click **Add Flow Spec**.

Step 6
In the **Add Flow Spec** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name that you want to use for the flow specification. The name can contain between 1 and 256 alphanumeric characters including the following special characters: underscore ("_"), hyphen ("-"), plus ("+"), equals ("="), open parenthesis ("("), closed parenthesis ("")", vertical bar (""), period ("."), or at sign ("@").</td>
</tr>
<tr>
<td>VLAN field</td>
<td>The VLAN ID or the range of VLAN IDs that you want to use for the flow specification.</td>
</tr>
<tr>
<td>Source IP field</td>
<td>The source IP address that you want to use for the flow specification.</td>
</tr>
<tr>
<td>Destination IP field</td>
<td>The destination IP address that you want to use for the flow specification.</td>
</tr>
<tr>
<td>Protocol field</td>
<td>The IP protocol number in decimal format that you want to use for the flow specification.</td>
</tr>
<tr>
<td>Source Port field</td>
<td>The source port that you want to use for the flow specification.</td>
</tr>
</tbody>
</table>
Adding a Flow Specification

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Port field</td>
<td>The destination port that you want to use for the flow specification.</td>
</tr>
</tbody>
</table>

Step 7 Click **Add Flow Spec.**
Administrative Tasks

This chapter contains the following sections:

- About AAA Servers, page 107
- Users and Roles, page 109
- Viewing Cluster Management Information, page 112
- Viewing the OSGi Console, page 113
- Viewing the Northbound API Content, page 113
- System Management, page 114
- Backing Up or Restoring the Configuration, page 115
- Recovering the Administrative Password, page 116
- Uninstalling the Application Software, page 117

About AAA Servers

AAA enables the security appliance to determine who the user is (authentication), what the user can do (authorization), and what the user did (accounting). Cisco Nexus Data Broker uses Remote Authentication Dial-In User Service (RADIUS) or Terminal Access Controller Access-Control System Plus (TACACS+) to communicate with an AAA server.

Remote authentication and authorization is supported using the AAA server. To authenticate each user, Cisco Nexus Data Broker uses both the login credentials and an attribute-value (AV) pair that assigns the authorized role for the user as part of the user administration. After successful authentication, the Cisco AV pair is returned to Cisco Nexus Data Broker for resource access authorization.
Adding an AAA Server

When the configured AAA server(s) are not reachable, the user request is authenticated locally. If the AAA server is reachable and the user authentication fails, the user request is not authenticated locally.

Procedure

Step 1 From the Admin drop-down list, choose Management.
Step 2 From management Admin drop-down list, choose AAA.
Step 3 From the Admin drop-down list, choose AAA.
Step 4 In the AAA Configuration dialog box, click Add Server.
Step 5 In the Add AAA Server dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Address</td>
<td>The IP address of the AAA server.</td>
</tr>
<tr>
<td>Server Secret</td>
<td>The shared secret configured on the AAA server.</td>
</tr>
<tr>
<td>Protocol drop-down</td>
<td>Choose the protocol for the AAA server. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Radius+</td>
</tr>
<tr>
<td></td>
<td>• TACACS+</td>
</tr>
</tbody>
</table>

Step 6 Click Save.

What to Do Next

If you chose RADIUS as the protocol for the AAA server, you need to configure user authentication for RADIUS.

Configuring User Authentication for RADIUS Server

User authorization on a RADIUS server must conform to the Cisco Attribute-Value (av-pair) format.

Procedure

In the RADIUS server, configure the Cisco av-pair attribute for a user as follows:

`shell:roles="Network-Admin Slice-Admin"`
Viewing an AAA Server

Procedure

1. From the Admin drop-down list, choose Management.
2. From management Admin drop-down list, choose AAA.
3. From the Admin drop-down list, choose AAA.
4. In the AAA Configuration dialog box, click a server address.
5. After viewing the server information in the Remove AAA Configuration dialog box, click Close.
6. In the AAA Configuration dialog box, click Close.

Users and Roles

Cisco Nexus Data Broker uses users and roles to manage user access. You can assign more than one role to a user. This can be one of the following:

- **Network Administrator**—Provides full administrative privileges to all applications.
- **Network Operator**—Provides read-only privileges to all applications.
- **Application User**—Provides privileges that are defined in the specified application.
- **Slice User**—Provides access to a specified slice.

Each user is assigned a role, which determines the permissions that they have. Slice users are assigned to both a role and a slice. The Admin user with the Network Administrator role is created by default when you install Cisco Nexus Data Broker.

Viewing User Information

Procedure

1. From the Admin drop-down list, choose Management.
2. From management Admin drop-down list, choose Users.
3. From the Admin drop-down list, choose Users.
4. In the User Management dialog box, you can do the following:
 - View a list of usernames and the roles assigned to each user.
 - Click an existing user to delete the user or change the password for the user.
 - Click Add User to create a new user.
Adding a User

After creating a user, you can change the password, but you cannot change the roles assigned to the user.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>From the Admin drop-down list, choose Management.</td>
</tr>
<tr>
<td>Step 2</td>
<td>From management Admin drop-down list, choose Users.</td>
</tr>
<tr>
<td>Step 3</td>
<td>From the Admin drop-down list, choose Users.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the User Management dialog box, click Add User.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Add User dialog box, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username field</td>
<td>The name that you want to assign to the user. A username can be between 1 and 32 alphanumeric characters and contain any special character except a period ("."), forward slash ("/"), pound sign ("#"), percent sign ("%"), semicolon (";"), question mark ("?"), or backslash ("").</td>
</tr>
<tr>
<td>Password field</td>
<td>The password for the user. Passwords must be between 8 and 256 characters long, contain uppercase and lowercase characters, have at least one numeric character, and have at least one nonalphanumeric character.</td>
</tr>
<tr>
<td>Choose Role(s)</td>
<td>Choose the role that you want to assign to the user. You can assign more than one role. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Network Administrator—Provides full administrative privileges to all applications.</td>
</tr>
<tr>
<td></td>
<td>• Network Operator—Provides read-only privileges to all applications.</td>
</tr>
<tr>
<td></td>
<td>• Application User—Provides privileges that are defined in the specified application.</td>
</tr>
<tr>
<td></td>
<td>• Slice User—Provides access to a specified slice.</td>
</tr>
<tr>
<td>Role Name field</td>
<td>If you chose Application User, enter the name that you want to assign to the role.</td>
</tr>
<tr>
<td>Slices drop-down list</td>
<td>If you chose Slice User, choose the slice that you want to assign to the user.</td>
</tr>
</tbody>
</table>

Step 5 When you are finished, click Close.
Changing the Password for an Existing User

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>From the Admin drop-down list, choose Management.</td>
</tr>
<tr>
<td>Step 2</td>
<td>From management Admin drop-down list, choose AAA.</td>
</tr>
<tr>
<td>Step 3</td>
<td>From the Admin drop-down list, choose Users.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the User Management dialog box, click the user that you want to modify.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Manage User dialog box, click Change Password.</td>
</tr>
<tr>
<td>Step 6</td>
<td>In the Change Password dialog box, enter the new password in the New Password and in the Verify New Password fields.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Click Submit.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Click Close in the Manage User dialog box.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Click Close in the User Management dialog box.</td>
</tr>
</tbody>
</table>

Deleting a User

If you are signed in as a particular user, you cannot delete that user.
Procedure

Step 1 From the Admin drop-down list, choose Management.
Step 2 From management Admin drop-down list, choose Users.
Step 3 From the Admin drop-down list, choose Users.
Step 4 In the User Management dialog box, click the user that you want to modify.
Step 5 In the Edit User dialog box, click Remove User.
Step 6 In the User Management dialog box, click Close.

Viewing Cluster Management Information

Note The cluster management dialog boxes are read-only.

Note To save configurations that are related to the users, choose Management and click Save.

Before You Begin

You must have configured high availability clustering in order to view the cluster management information. See Configuring High Availability Clusters, on page 21.

Procedure

Step 1 From the Admin drop-down list, choose Management.
Step 2 From management Admin drop-down list, choose AAA.
Step 3 From the Admin drop-down list, choose Clusters.
The Cluster Management dialog box lists the IP addresses of all of the Cisco Nexus Data Broker instances in the cluster. Clusters can be denoted by one of the following icons:
- The * icon indicates the cluster node that is currently being viewed.
- The C icon indicates that the cluster node is the coordinator.

Step 4 In the Cluster Management dialog box, choose a cluster. The Connected Nodes dialog box lists all of the nodes in the selected cluster.
Step 5 In the Connected Nodes dialog box, click Close.
Step 6 In the Cluster Management dialog box, click Close.
Viewing the OSGi Console

You can view all of Cisco Nexus Data Broker bundles that comprise the application by viewing the OSGi Web Console.

Note
This procedure does not provide a step-by-step guide to everything you can do in the OSGi Web Console for Cisco XNC Bundles list. It guides you in opening the OSGi Web Console and viewing bundle information.

Procedure

Step 1 From the Admin drop-down list, choose Management.
Step 2 From management Admin drop-down list, choose OSGi.
Step 3 From the Admin drop-down list, choose OSGi.
 A new browser tab opens.
Step 4 Enter your username and password, and then press Enter.
 The Cisco – XNC Bundles list is displayed. In this page you can view all of the active packages, filter on the package name to specify bundle names, and complete other tasks.
Step 5 When you are finished viewing the list, close the Cisco – XNC Bundles browser tab.

Viewing the Northbound API Content

You can view all of Cisco Nexus Data Broker northbound API content for the application by opening a browser tab using the Northbound API tool (book icon) in the menu bar.

Procedure

Step 1 From the menu bar, click the Northbound API button.
 A new browser tab (Swagger UI) is opened and the complete list of northbound API content used in Cisco Nexus Data Broker is displayed.
 From this tab, you can do the following:
 • Show or hide the operations for an API.
 • List the operations for an API.
 • Expand the operations for an API.
Step 2 When you are finished viewing northbound API content, close the browser tab.
System Management

The system management features in Cisco Nexus Data Broker enable you to download and save the configuration files for your system, or upload and restore the configuration files for your system. You can also download log files.

Downloading the System Log Files

You can download log files for Cisco Nexus Data Broker to use for analysis. Log files are saved as a .zip archive.

Procedure

Step 1 From the Admin drop-down list, choose Management.
Step 2 From the management Admin drop-down list, choose System.
 The System Administration dialog box is displayed.
Step 3 Click Download Logs.
 A dialog box opens in the browser prompting you to either open or save the .zip file.
Step 4 Do one of the following:
 • Save the archive to a location of your choosing, for example, home/ndbconfig.
 • Open the archive to view the contents, and then save it.

Downloading the System Configuration Files

You can download the system configuration files for Cisco Nexus Data Broker to save them in case you need to restore the system after an upgrade or other change. System configuration files are saved in a zipped archive.

Procedure

Step 1 From the Admin drop-down list, choose Management.
Step 2 From the management Admin drop-down list, choose System.
 The System Administration dialog box is displayed.
Step 3 Click Download Configuration.
 A dialog box opens in the browser prompting you to either open or save the file.
Step 4 Do one of the following:
 • Save the archive to a location of your choosing, for example, home/ndbconfig.
• Open the archive to view the contents, and then save it.

Uploading the System Configuration Files

You can upload the saved system configuration files for Cisco Nexus Data Broker to restore the Cisco Nexus Data Broker application in the case of a failure or other event. After restoring you configuration, you will need to restart Cisco Nexus Data Broker.

Before You Begin

You must download the system configuration files and save them in a zipped archive.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>From the Admin drop-down list, choose Management.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>From the management Admin drop-down list, choose System. The System Administration dialog box is displayed.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click Upload Configuration.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Navigate to the location of the file <code>configuration_startup.zip</code>.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click on the archive file. The system configuration is uploaded and the browser displays a message informing you that you need to restart the server.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Restart the server, and then log back in to the Cisco Nexus Data Broker GUI.</td>
</tr>
</tbody>
</table>

Backing Up or Restoring the Configuration

The backup and restore commands allow you to back up your Cisco Nexus Data Broker configurations and restore them.

Note

In XNC, you can save the configuration related to ODL, for example, password change or new users etc, from the Device Management page.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Open a command window where you installed Cisco Nexus Data Broker.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Navigate to the <code>xnc/bin</code> directory that was created when you installed the software.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Back up the configuration by entering the <code>./xnc config --backup</code> command.</td>
</tr>
</tbody>
</table>
The `--backup` option creates a backup archive (in .zip format) of the startup configuration in the current `xnc` distribution. The backup archive is stored in `{xncHome}/backup/`. A new archive is created each time that the backup command is entered using a filename with the current timestamp.

Step 4
Restore the configuration by entering the `/xnc config --restore --backupfile {zip_filename}` command. The `--restore` option restores the startup configuration of the current `xnc` distribution from an existing backup archive. The restore action requires the absolute path of the backup archive.

Step 5
If you are restoring a configuration, stop and restart Cisco Nexus Data Broker for the restored configuration to take effect.

Recovering the Administrative Password

The Cisco Nexus Data Broker network administrator user can return the administrative password to the factory default.

Note
The software may or may not be running when this command is used. If it is not running, the password reset takes effect the next time that it is run.

Procedure

Step 1
Open a command window where you installed Cisco Nexus Data Broker.

Step 2
Navigate to the `xnc/bin` directory that was created when you installed the software.

Step 3
Reset the administrative password by entering the `/xnc reset-admin-password [--wait-seconds {wait_time} --password {password}]` command.
 Resets the admin password to the default or specified password by restarting the user manager.

- The `wait-seconds` is the length of time, in seconds, to wait for the user manager to restart. The minimum is 5 seconds and the maximum is 60 seconds.

- The `password` is the administrative password.

Note

- The password must be from 8 to 256 characters, contain both uppercase and lowercase characters, and have at least one number and one nonalphanumeric character.

- If you leave the password blank, it is reset to the factory default of "admin".

- Each time that you reset the administrative password, make sure that the new password meets these requirements or you will not be able to log in to Cisco Nexus Data Broker.
Uninstalling the Application Software

Before You Begin
Ensure that your Cisco Nexus Data Broker application is stopped before proceeding.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Navigate to the directory where you created the Cisco Nexus Data Broker installation. For example, if you installed the software in <code>Home/CiscoNDB</code>, navigate to the <code>Home</code> directory.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Delete the <code>CiscoNDB</code> directory.</td>
</tr>
</tbody>
</table>
Administrative Tasks

Uninstalling the Application Software