

RSVP-TE Optimization

The RSVP-TE Optimization tool (**Tools** > **RSVP LSP Optimization** > **RSVP-TE Opt**) creates explicitly routed LSP paths to optimize route properties such as distance, TE metrics, utilization, and disjointness. The routing decisions are centralized within the tool, in contrast to traditional RSVP-TE routing, in which routing decisions are distributed across the head-end routers in the network. Although it has fewer parameters, this tool is faster and has a more predictable run-time than the Explicit LSP Optimization tool and is the recommended method for explicit RSVP-TE LSP path optimization.

The primary optimization goal is to minimize path distance (which can be based on interface TE metrics, delay, or user-defined value), while not exceeding a *bandwidth bound* defined for each interface so as to avoid congestion. Unlike RSVP-TE, LSPs are routed even if they cannot avoid exceeding bandwidth bounds for certain interfaces, though these bound violations are minimized. Additionally, you can use this tool for reoptimizing and reconfiguring RSVP-TE LSPs after events, such as network failures and subsequent route reconvergence.

You can specify different treatment for different LSPs: whether the LSPs should be rerouted to shorten the path distance, only as necessary to reduce congestion, or not optimized at all. These three LSP groups are called Opt, Fit, and Fix. Using these input parameters allows for a variety of use cases, such as:

- Global optimization—Minimize the path length of all LSPs subject to specified interface bandwidth constraints.
- New LSP optimization—Minimize the path length of newly created LSPs without exceeding bandwidth bounds specified for the interfaces. Existing LSPs are kept on their current paths, being moved only if necessary to prevent new LSPs from violating bandwidth bound constraints.
- Tactical congestion mitigation—Change the routing of as few LSPs as possible to bring bandwidth on all interfaces below the specified bandwidth bound.

Upon completion, WAE Design generates a new plan file with a suffix, which by default is *RSVPTEOpt*. This suffix is configurable in the "New plan for result" field. As such, the tool is beneficial for offline planning and configuration of an explicitly routed RSVP-TE network. It is also useful for providing routing decisions for a centralized, reactive network control application, such as can be implemented on the WAE platform.

This optimized plan file opens showing the LSPs table filtered to the rerouted LSPs. Saving this plan file then simplifies the process of identifying which LSPs to reconfigure in the network.

Note

RSVP-TE Optimization tool supports both Inter-Area and Inter-AS functionalitites.

This section contains the following topics:

- Optimization Input, on page 2
- Optimization Output, on page 6
- Examples, on page 7
- Workflow, on page 11

Optimization Input

The RSVP-TE Optimization tool uses the LSP and interface input properties listed in Table 1: RSVPTEOpt Input Parameters, on page 2 to execute its optimization calculations. These properties, which are specified in user columns in the LSPs and Interfaces tables, can be created in one of two ways:

• Use the tool to automatically create (initialize) the properties if they do not exist. The selections made in the Specify LSP Groups, LSP Parameters, and Interface Parameters areas populate the input properties.

Example: If you choose LSPs to optimize, to fit, and to fix, the tool creates the RSVPTEOpt::Group column in the LSPs table and sets this property to the appropriate values for each LSP (Opt, Fit, Fix). If the property already exists, it is updated with the new value if it has changed.

Example: If you select to set the interface bandwidth bound based on the Resv BW property, the tool creates the RSVPTEOpt::BWBound column in the Interfaces table and for each interface, copies the Resv BW value to it. If the property already exists, it is updated with the new bandwidth bound value if it has changed.

• Before running the tool, manually create the input properties as user columns in the LSPs and Interfaces tables. When running the tool, you must then select the "Use Existing RSVPTEOpt::property_name>"
option. This is useful if you want to configure specific values rather than using existing properties and values. For information on creating user-defined columns, see User Interface or the Cisco WAE Design
Integration and Development Guide .

Note Because the resulting plan file can potentially reset properties that can be used as input to optimizations, it is a best practice to run the optimization only on plan files or LSPs that have not yet been optimized. For example, by default WAE Design resets the LSP Setup BW property to 0 after optimizing LSPs, and this same property could be used as input to other optimizations.

Table 1: RSVPTEOpt Input Parameters

Table	Input Property	Description and Values Used to Create the Input Property		
LSPs	RSVPTEOpt::Group	LSP optimization group. The input property is derived based on your entries in the Specify LSP Groups area unless you select to use the existing RSVPTEOpt::Group property. Values are Opt, Fit, or Fix. If the value is not defined, it is set to Ignore.		
	RSVPTEOpt::BWReq	The bandwidth required by each LSP that is being optimized. The input property is derived from the Setup BW, Traff Meas, or Traff Sim LSP properties unless you specify to use the existing RSVPTEOpt::BWReq value.		

Table	Input Property	Description and Values Used to Create the Input Property	
Interfaces	RSVPTEOpt::BWBound	Sum total of LSP bandwidth routed over the interface should not exceed this value.	
		The input property is derived from the Resv BW, Capacity, or Capacity Sim interface properties unless you specify to use the existing RSVPTEOpt::BWBound value.	
	RSVPTEOpt::Metric	Metric value used in the shortest path calculations.	
		The input property is derived from either the TE Metric or Delay property of the interface unless you specify to use the existing RSVPTEOpt::Metric value.	

Selecting LSP Groups

To determine how and whether LSPs are optimized, select them from the Specify LSP Groups area. If an LSP is in multiple groups, the first group in which it resides is how the LSP is treated.

 Opt—Explicitly route or reroute these LSPs to minimize their path length, while respecting the bandwidth bounds specified for the interfaces. The RSVP-TE Opt tool changes the LSP path as much as needed to find the optimal route. First, it tries to set the LSP to its shortest path, which is defined by the interface Metric parameter. The LSP is moved away from the shortest path only if needed due to congestion.

Setting all LSPs to this option is useful when trying to achieve global optimization on all LSPs.

• Fit—Reroute these LSPs only as necessary to respect specified bandwidth bounds on the interfaces, while accommodating the Opt group. If there is currently no explicit route or if the route is incomplete, treat like Opt LSPs.

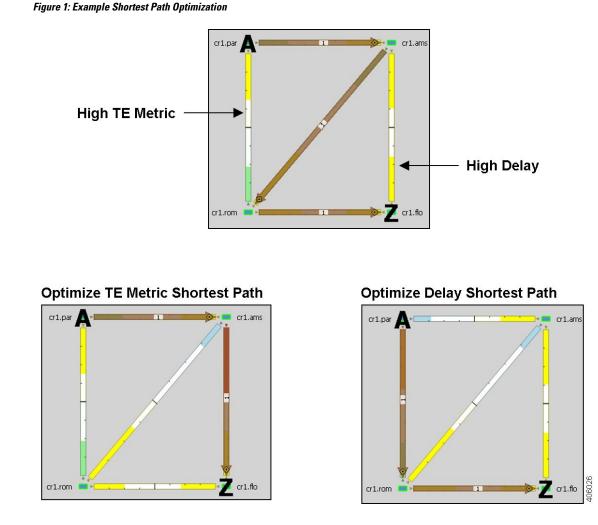
This option is useful when attempting tactical congestion mitigation, where it is desirable to move as few LSPs as possible to remove existing congestion.

A combination of Opt and Fit or a combination of Opt and Fix is useful for targeting the optimization of new LSPs.

• Fix-Do not reroute these LSPs, but consider them in the optimization calculations.

-Specify LSF	' Groups	-				
Set RS	VPTEOpt::Group with selections					
Opt: Selected in table (70/160)						
Fit:	Tag: test (23/160)					
Fix:	All					
Ignore	: Remaining LSPs					
🔘 Use ex	isting RSVPTEOpt::Group entries					

LSPs that are not selected are ignored, and as such, maintain their original configuration and are not considered in the optimization calculations. This can be useful if you have network regions that do not interfere with optimizations. Note, though, that if measured interface traffic is used in the optimizations, traffic contributions from the ignored LSPs to this measured traffic might affect the results. Because you can set each of the "Set RSVPTEOpt::Group" selections to None, All, only selected, or tagged LSPs, you can section off specific LSPs for one optimization treatment or another.


Example: Tag new LSPs and set them to be optimized (Opt LSPs). Select and set existing LSPs to Fit LSPs to optimize their paths only as necessary to accommodate bandwidth bound constraints.

Setting Optimization Parameters

Optimization calculations are based on two sets of parameters that define how much bandwidth the LSPs require, how much bandwidth the interfaces have available for these LSPs, and which metric to use for shortest path. See Table 1: RSVPTEOpt Input Parameters, on page 2 for selection options.

Required B	W Setup BW
Interface Pa	arameters
BW Bound	Resv BW
Matria	TT Makia
Metric	TE Metric
	TE Metric
	Delay

- LSP Required BW—Specify how to determine the bandwidth required for the primary LSP paths.
- Interface parameters:
 - BW Bound—Specify how much bandwidth the interfaces have available to carry LSPs. WAE Design tries to route LSPs without surpassing this bound, but exceeds it if necessary.
 - Metric—Specify which metric to use for shortest path calculations. Figure 1: Example Shortest Path Optimization, on page 5 shows a sample LSP path that is optimized once based on the TE Metric and once based on the Delay.

Setting Disjoint Groups

In the Advanced tab, you can create disjoint paths or use existing disjoint paths as follows. Note that two LSP paths are *disjoint* if they do not route over common objects. These objects are configurable and can be circuits, nodes, sites, SRLGs, or L1 links.

- No disjoint routing—Do not create disjoint secondary paths and do not enforce any disjointness on primary paths.
- Create disjoint secondary paths for LSPs—Create secondary LSP paths that are disjoint from the primary LSP paths.

Additionally, specify whether to include secondary paths in the optimization. If set to Zero, their bandwidths are set to 0 and are not included. Otherwise, their required bandwidths are set to be the same as the primary paths, and they are included in the optimization.

 Create disjoint paths between LSPs in Disjoint Groups—Create disjoint paths between LSPs that are in disjoint groups.

Disjoint Routing	
No disjoint routing	
Oreate disjoint secondary paths for	LSPs
Secondary path BW Zero	•
O Create disjoint paths between LSPs	in Disjoint Groups
Disjoint over: Circuits, SRLGS	Edit

Setting Avoidance Constraints

Avoid Objects section in the Advanced tab lets you to select Nodes, Interfaces, L1 Links, L1 Nodes, SRLGs to be avoided when optimizing LSPs.

- Nodes LSPs are created to route away from the Nodes selected. Default is None.
- Interfaces LSPs are created to route away from the Interfaces selected. Default is None.
- L1 Links LSPs are created to route away from the L1 Links selected. Default is None.
- L1 Nodes LSPs are created to route away from the L1 Nodes selected. Default is None.
- SRLGs LSPs are created to route away from the SRLGs selected. Default is None.

Setting Post-Optimization Parameters

The Post Optimization options identify how to reset the Setup BW for modified LSPs:

- Reset Setup BW to 0.
- Reset Setup BW to be the same as the resulting RSVPTEOpt::BWReq value.
- Keep the Setup BW the same.

Optimization Output

Properties Created

In addition to creating the input parameters, as described in Optimization Input, on page 2, the tool generates the properties listed in Table 2: RSVPTEOpt Parameters Used as Optimization Input, on page 7. These properties provide further insight into the optimizations.

Table	Property	Description				
LSPs	RSVPTEOpt::Action	Identifies whether the LSP's path was updated (optimized).				
	RSVPTEOpt::PathMetric	Sum of interface metrics on the LSP path.				
	RSVPTEOpt::ShortestPath	Identifies whether the LSP is now taking the shortest path.				
	RSVPTEOpt::ShortestPathMetric	Sum of interface metrics on the shortest LSP path.				
Interfaces	RSVPTEOpt::BWTotal	Sum of the bandwidth required for all LSPs routed on the interface.				

Table 2: RSVPTEOpt Parameters Used as Optimization Input

Optimized LSPs Reconfigured

The optimized LSPs are reconfigured with the following parameters:

RSVPTEOpt::BWBoundExceeded | Identifies whether the bandwidth bound of the interface was exceeded.

- Metric Type—Autoroute
- Metric and Hop Limit—na
- Setup BW—0, the same value as the resulting RSVPTEOpt::BWReq, or unchanged, depending on how
 you configured the Post Optimization option in the Advanced tab
- Primary paths Standby—T (true)
- Status—Active
- FRR Enabled—T (true)
- LSP entry in the Actual Paths table is removed

Reports

WAE Design writes a report containing the results of the optimization. To access this information, choose **Window > Reports**.

The report summarizes the results of the optimization, such as how many LSPs there are total compared to how many were optimized, as well as how they were optimized. It also summarizes how disjoint priorities were handled and the number of paths that exceed the interface's bandwidth bound.

Examples

Optimizing New LSPs Example

Figure 2: Non-Optimized LSP Routes, on page 8 shows three LSPs: LSP_A is configured with 4000 Mbps of Setup BW, LSP_B with 5000 Mbps of Setup BW, and LSP_C, which represents a newly added LSP, with

6000 Mbps of Setup BW. Each interface has a Resv BW value of 10,000 Mbps. Without optimization, this newly added LSP_C is using three hops to reach cr1.bos because this is the only path with sufficient bandwidth.

Figure 2: Non-Optimized LSP Routes

Interfaces				~ .			LSPs		
Node	Interface	Resv BW Sim	Remote Node		Name	Source	Destination	Setup BW	
cr1.chi	to_cr1.nyc	10000.00	cr1.nyc		LSP_A	cr1.chi	cr1.bos	4000.00	
cr1.nyc	to_cr1.chi	10000.00	cr1.chi		LSP_B	cr1.chi	cr1.bos	5000.00	
cr1.wsh	to_cr1.bos	10000.00	cr1.bos		LSP_C	cr1.chi	cr1.bos	6000.00	
cr1.bos	to_cr1.wsh	10000.00	cr1.wsh						
cr1.chi	to_cr1.wsh	10000.00	cr1.wsh						
cr1.wsh	to_cr1.chi	10000.00	cr1.chi						
cr1.nyc	to_cr1.wsh	10000.00	cr1.wsh						
cr1.wsh	to_cr1.nyc	10000.00	cr1.nyc						
cr1.nyc	to_cr1.bos	10000.00	cr1.bos						
cr1.bos	to_cr1.nyc	10000.00	cr1.nyc						
_SP_A	1035	cri.nyc		1133		cr1.nyc	r1.chi	Added LSP_C	cr1
cr1.wsh	· · · · · ·	r1.bos	cr1.wsh 💻 🖿	1 : 339	• ••• •	cr1.bos	cr1.wsh		Ž "

Figure 3: Example: No Optimization Improvements When Setting New LSP_C to Opt and All Other LSPs to Fix, on page 9 shows the results of prioritizing the optimization of the new LSP by setting it to Opt, and setting the other two LSPs to route "as is" by setting them to the Fix LSP group. The LSP Required BW parameter is Setup BW, and the interface BW Bound is Resv BW. While a primary path with explicit hops is created for LSP_C, all LSPs remain on the same route. This demonstrates that LSP_C cannot go on a two-hop path without exceeding bandwidth and it cannot alter this behavior by shifting the other two LSPs around because they are set to Fix. The interface bandwidth bound, however, is not exceeded, which is shown in the RSVPTEOpt::BWBoundExceeded column in the Interfaces table. The LSPs table shows that only LSP_C was updated in the RSVPTEOpt::Action column, and that neither LSP_B, nor LSP_C are on their shortest path. Notice also in the LSPs table that the Setup BW values are reset to 0, which is the default behavior, and that the RSVPTEOpt::Group shows how each LSP was considered during the optimization (Fix or Opt).

Figure 4: Example: Improved Global Optimization When Setting All LSPs to Opt, on page 9 shows the results of an alternative optimization where all three LSPs are set to Opt. The resulting plan file shows both LSP_B and LSP_C were optimized to route on shortest paths without exceeding bandwidth bounds.

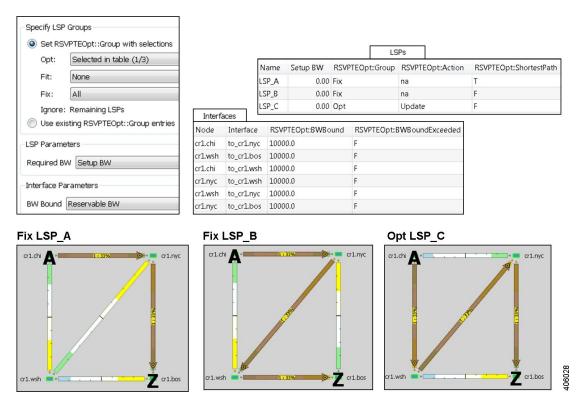
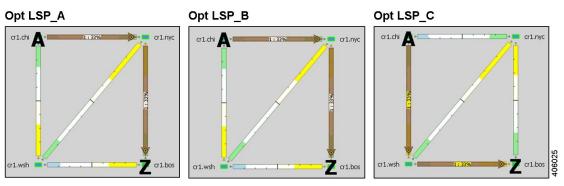
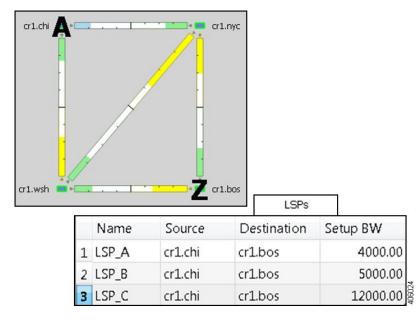



Figure 3: Example: No Optimization Improvements When Setting New LSP_C to Opt and All Other LSPs to Fix

Figure 4: Example: Improved Global Optimization When Setting All LSPs to Opt

Tactical Mitigation Example

Figure 5: Unroutable LSP Due to Insufficient Bandwidth, on page 10 shows three non-optimized LSPs: LSP_A and LSP_B have 4000 Mbps and 5000 Mbps of Setup BW, respectively. They route the same as in Figure 2: Non-Optimized LSP Routes, on page 8. LSP_C has 12,000 Mbps of Setup BW, leaving it unable to route because all interfaces have a Resv BW of 10,000 Mbps.



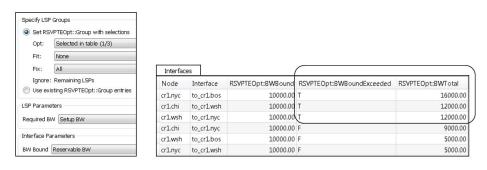

Figure 5: Unroutable LSP Due to Insufficient Bandwidth

Figure 6: Example: Congestion Occurs When Settings LSPs to Fix, on page 11 shows an optimization run to set this high-Setup BW LSP_C to Opt and keep the other LSPs set to Fix. This results in congestion and leaves three interfaces exceeding their bandwidth bound.

An alternative is shown in Figure 7: Example: Tactical Congestion Mitigation Using Fit LSPs, on page 11, where congestion is reduced by running the optimization to set LSP_C to Opt, while setting the other to LSPs to Fit. This lets WAE Design adjust the routes of the other LSPs to achieve the best optimization possible (lowest shortest-path metric with the least congestion). While both LSP_B and LSP_C route on two hops now, two interfaces still exceed their bandwidth bound, though the amount of congestion is significantly less. Note that the same result would be achieved if all three LSPs had been set to Opt.

L

Figure 6: Example: Congestion Occurs When Settings LSPs to Fix

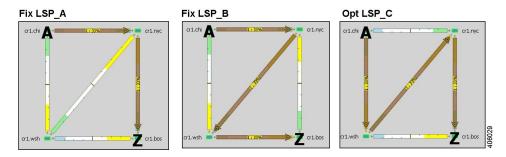
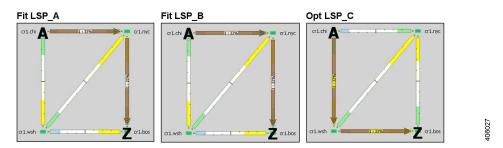



Figure 7: Example: Tactical Congestion Mitigation Using Fit LSPs

		Interfaces				
Specify LSP Groups Set RSVPTEOpt::Group with selections		Node	Interface	RSVPTEOpt::BWBound	RSVPTEOpt::BWBoundExceeded	RSVPTEOpt::BWTotal
-		cr1.wsh	to_cr1.bos	10000.00	т	12000.00
Opt:	Selected in table (1/3)	cr1.chi	to_cr1.wsh	10000.00	J	12000.00
Fit:	All	cr1.chi	to_cr1.nyc	10000.00	F	9000.00
Fix:	None	cr1.nyc	to_cr1.bos	10000.00	F	9000.00

Workflow

Step 1 If this is the first time using the tool and if you want to use your own preconfigured RSVPTEOpt properties, you must manually edit the LSPs and Interfaces tables to create them.

- LSP RSVPTEOpt::Group—Place LSPs into the Opt, Fit, or Fix groups. Any remaining LSPs are placed in the Ignore group.
- LSP RSVPTEOpt::RequiredBW—Define an exact amount for the sum total of LSP bandwidth that is using the interface.

- Interface RSVPTEOpt::BWBound—Define an exact amount of bandwidth that the interface can hold.
- Interface RSVPTEOpt::Metric—Define an exact amount to use in shortest path calculations.
- **Step 2** If creating disjoint paths between LSPs in the same disjoint group, the LSPs must first be added to the disjoint groups in the LSP Properties dialog box. Here, you can also assign priorities to LSPs within these groups. Higher priority LSPs are assigned shorter routes based on the metric being used for shortest path calculations. The higher the number, the lower the priority.

Disjoint Group:	GBD	•
Disjoint Priority:	1	

- **Step 3** If using tagged LSPs, create those tags. For information on how to create tags, see Plan Objects.
- **Step 4** If running the optimization based on selections, select those LSPs.
- **Step 5** Choose **Tools > RSVP LSP Optimization > RSVP-TE Opt**.
- **Step 6** In the Specify LSP Groups area, make selections for optimizing LSPs based on Opt, Fit, or Fix LSP groups, or based on those defined in the RSVPTEOpt::Group property.
- **Step 7** In the Required BW field, set bandwidth requirements for the primary LSP paths.
- **Step 8** In the BW Bound field, set how much bandwidth the interfaces can carry.
- **Step 9** In the Metric field, specify on which property to base the shortest path.
- **Step 10** (Optional) Specify the name of the resulting plan file.
- **Step 11** Click the **Advanced** tab.
- **Step 12** Identify whether to create disjoint LSP paths and if so, how you want them defined.
- **Step 13** Specify any objects you want to avoid (like Nodes, Interfaces, L1 Links, L1 Nodes, and SRLGs) during optimization in the Avoid Objects section.
- **Step 14** Specify whether to reset the LSP bandwidth after the optimization, and if so, how so.
- Step 15 Click OK.