CHAPTER 1

Introduction to the Prime Provisioning API

The Cisco Prime Provisioning application program interface (API) allows you to use operations support
system (OSS) client programs to connect to the Prime Provisioning system. The Prime Provisioning
APIs provide a mechanism for inserting, retrieving, updating, and removing data from

Prime Provisioning servers using an eXtensible Markup Language (XML) interface request/response
system. The Prime Provisioning API optionally uses Secure Hypertext Transfer Protocol (HTTPS) for
message encryption, and Cisco role-based access control (RBAC) for user authentication.

The Prime Provisioning APIs use an HTTP/HTTPS/SOAP (Simple Object Access Protocol) interface.
The API requests are executed using a combination of HTTP/HTTPS and SOAP by sending the XML
data to the API server. The server returns an XML response, which is also an encoded SOAP message,
to indicate if the request is successful, or to return data.

The API optionally uses a notification server for database change events. An event is registered and a
notification is sent any time a database object is created, modified, or deleted, or when a scheduled task
begins or ends its execution. Event notifications are sent in the form of an XML response to the client,
or to a specified URL.

You can use the API to perform the some of the operations that are available in the Prime Provisioning
GUI. For more information, see Appendix A, “GUI to API Mapping.”

This guide describes how to use the API to perform operations that are common to all
Prime Provisioning services and provides examples for provisioning MPLS, L2VPN, VPLS, EVC, and
TEM services in your network.

This chapter contains the following sections:
e API Components, page 1-1
e Operations, page 1-9
e XML Schema, page 1-10
e Service Model, page 1-11
e API Error Messages, page 1-14

API Components

The main components of the Prime Provisioning API are:
e Client—The OSS client program.

e HTTP/HTTPS Server—A standard HTTP/HTTPS Tomcat server to process the HTTP/HTTPS
binding information.

Cisco Prime Provisioning 7.2 APl Programmer Guide
| g i

Chapter1 Introduction to the Prime Provisioning APl |

Il API Components

¢ SOAP Plug-In—A standard Apache SOAP plug-in.
e API Server/Servlet—Receives SOAP messages and removes the SOAP encoding.

e API Notification Server—Used for asynchronous notifications for database change events.
Prime Provisioning learns of events that occur using the Tibco Event Bus.

e Processing Servers—The servers that perform the specific processing activities.
e Database—The Prime Provisioning repository.
e XML validation schema(s) and metadata—Validation files for the XML encoded data.

Figure 1-1 shows the main components of the Prime Provisioning API and the process flow for XML

messages.
Figure 1-1 API Components
, Generates APl Request XML Stream
Client(s))< -
Receives API Response HTTP
SOAP
Ops
Payload
HTTP Server 3
(i.e. Tomcat) 2
SOAP a
Ops
Payload
XML
Validation
Schema(s)
Ops
Payload
'< API Servlet
Payload

97725

Database Processing
Servers

These components are described in the following sections.

Client

The client can be any OSS client program. It formulates the XML request messages and receives the
XML responses. Use any language that supports the XML format to generate the API messages.

The client interface:
e Logs in to the Prime Provisioning API system
¢ Generates XML requests
¢ Sends requests to the API server
e Receives responses from the API server

e Parses the XML response data content

Cisco Prime Provisioning 7.2 APl Programmer Guide
[1-2 | I

| Chapter1 Introduction to the Prime Provisioning API

S

Note

API Components

The API client should handle unrecoverable exceptions, that is ConnectionException, by itself to ensure
a successful sequential execution.

HTTP/HTTPS Server

HTTP Transport

Note

HTTP Response

Prime Provisioning uses a Tomcat server to process the HTTP/HTTPS binding information. The default
ports are:

e HTTP—8030
e HTTPS—8443

You can specify a different port during the Prime Provisioning installation. See the Cisco
Prime Provisioning 7.2 Installation Guide for more information.

The API uses standard HTTP/HTTPS for message transport. The payload of an HTTP request or
response is a SOAP message. Each SOAP request is sent to the web server using HTTP POST. The
following are required HTTP headers:

e POST —The first header identifies that this particular POST is intended for the SOAP API. All
HTTP requests that do not include a POST are ignored.

e Content-type: text/xml—The second header confirms that the data being sent is XML. If this header
is not found, an HTTP 415 error is returned.

¢ Content-length: <value in kilobytes>—The third header must be a positive integer and cannot
exceed 40. If the value is greater than 40 kilobytes, an HTTP 413 error is returned.

e The fourth header is the length (in bytes) of the SOAP message.
The following is an example HTTP header for an XML request:

POST /soap/servlet/messagerouter HTTP/1.0
Host: serverl.myhost.com:80

Content-type: text/xml

Content-length: 613

HTTP headers might vary. See the client software included with the Prime Provisioning installation for
the latest HTTP software that shows the HTTPS strings.

If an error is detected in the HTTP protocol, the appropriate HTTP error message is returned in the HTTP
response. The following are examples of HTTP return codes that can be returned for processing a SOAP
request:

e Content length exceeds 40 KB

HTTP/1.1 413 Request Entity Too Large

e Content type is not "text/xml"

HTTP/1.1 415 Unsupported Media Type

Cisco Prime Provisioning 7.2 APl Programmer Guide gy

http://www.cisco.com/c/en/us/td/docs/net_mgmt/prime/provisioning/6-8/installation/guide/installation.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/prime/provisioning/6-8/installation/guide/installation.html

Chapter1 Introduction to the Prime Provisioning APl |

Il API Components

e Request method is any method other than POST

HTTP/1.1 405 Method Not Allowed

During the processing of a SOAP request, you always receive the HTTP return code “HTTP/1.1 200
OK”, whether an error occurs or not. See the following example:

contacting: http://myserver.com:8030/soap/servlet/messagerouter
with: /tmp/tmp.2764

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 597

Date: Fri, 21 Feb 2003 15:43:58 GMT

Server: Apache Tomcat/4.0.1 (HTTP/1.1 Connector)

Set-Cookie: JSESSIONID=C2337537E4C568A7A6228022A3A39521; Path=/soap

HTTP Authentication/Encryption

Note

SOAP Plug-in

Note

HTTP authentication is optional and is controlled through the HTTP basic authentication scheme. You
must deactivate anonymous access to enforce user authentication.

HTTPS (HTTP Secure Socket Layer (SSL)) can be used to encrypt the API message. SSL is not enabled
on the server by default. To use SSL, you must install HTTPS during the Prime Provisioning installation
process. When the SSL certificate is installed on the server, you can send requests using the HTTPS
protocol instead of HTTP.

The Prime Provisioning API supports remote authentication. See the “Remote Authentication” section
on page 5-2 for more information.

Prime Provisioning includes a SOAP plug-in for validating that messages comply with the SOAP
protocol. SOAP is an XML-based protocol that consists of:

e A set of encoding rules for expressing instances of application-defined data types.
e A convention for representing remote procedure calls and responses.
e A framework for describing what is in a message and how to process it.

SOAP provides server-side infrastructure for deploying, managing and running SOAP enabled services.

The Prime Provisioning API supports SOAP formatting through SOAP libraries. However, SOAP
libraries can be disabled if necessary for service provider clients that do not require SOAP library
capabilities. Without this functionality, Prime Provisioning uses normal HTTP/HTTPS socket
mechanisms to send and receive SOAP formatted messages. To disable SOAP libraries, set
nbi.Writer.SoapEncapsulation=false (the default setting) in the Prime Provisioning properties file.
The default setting allows you to run both SOAP-encapsulated and non-SOAP-encapsulated clients. You
can set this attribute to true if you are running a pure SOAP environment.

Cisco Prime Provisioning 7.2 APl Programmer Guide

| Chapter1 Introduction to the Prime Provisioning API

API Components

SOAP Messages

The payload of an HTTP request/response is a SOAP message. A SOAP message includes the envelope,
the header, and the body.

¢ The soapenv-Envelope defines a framework for describing what is in a SOAP message and how to
process it.

e The soapenv-Header defines session data and contains message handling information and
information about the format of the payload data.

¢ The soapenv-Body element contains the child elements (operations, name/value pairs, key
properties), which are the domain specific data.

— The soapenv-Fault element contains error messages that are particular to SOAP. These
messages are returned in the SOAP body.

SOAP Message Envelope

The message envelope is used to declare namespaces. SOAP messages are routed using the XML
namespaces associated with the first element in the message body. The first block of namespaces in the
SOAP Envelope are standard for SOAP and XML encoding. See the following example:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:ns0="http://www.cisco.com/cim-cx/2.0"
xmlns:nsl="http://insmbu.cisco.com/urn:CIM">
<soapenv:Header>
<ns0:message id="87855" timestamp="2002-12-13T14:55:38.8852"
sessiontoken="p36bttjwyl" />
</soapenv:Header>
<soapenv:Body>
<nsl:createInstanceResponse/>
</soapenv:Body>
</soapenv:Envelope>
Responses

For the namespaces indicated in bold:

e xmlns:nsO="http://www.cisco.com/cim-cx/2.0” is used to indicate the message header formatting.

e xmlns:ns1="http://insmbu.cisco.com/urn:CIM" is used to indicate the operations performed and the
data model.

SOAP Message Header

The message header includes information about the message itself. This includes the message 1D, the
timestamp for the message, the session token, and wait flags. The following example shows SOAP
header information:
<soapenv:Header>
<ns0:message id="87855" timestamp="2002-12-13T14:55:38.8852z"
sessiontoken="p36bttjwyl" wait="true" waitTimeout="60" />

</soapenv:Header>
<soapenv :Body>

Table 1-1 describes the details of a SOAP message header.

Cisco Prime Provisioning 7.2 APl Programmer Guide
| "

Chapter1 Introduction to the Prime Provisioning APl |

Il API Components

Table 1-1

Header Definition

Element

Description

Message ID

A correlation ID used for tracking client requests and responses.
Prime Provisioning ignores this ID.

Timestamp

Time when message was sent (in Zulu time). For more information
on the date/time format, see Date/Time Format in API Requests,

page 3-15.

Session Token

Session ID assigned during the login and used to access the system.

Wait Flags

Described in Table 1-2.

Wait flags are specified in the SOAP message header and in certain view operations. Table 1-2 lists the
wait flags that can be returned in an XML response. Wait flags are optional request attributes.

Table 1-2 SOAP Message Wait Flags

Flag Applies to Values Comments

level enumeratelnstance |positive integer | The object depth that is returned in a view.
Suppresses lower level objects if needed.

wait Header true | false Specifies whether the connection should stay
open until the service request completes.
Upon completion, the state of the service
request is returned. Default=false (no wait).

waitTimeout |Header Interval, in Maximum time to wait for a service request

seconds

to complete. You can set the waitTimeout
value in the Prime Provisioning properties
file. The default is 20 minutes.

Note If the wait times out, the service
request returns an error message
indicating that the wait time has been
exceeded. However, the request is
still processed.

2
Tip

“Device Locking” section on page 5-22.

To use the API to lock a device so that Prime Provisioning cannot access it for provisioning, see the

SOAP Message Body

The message body within a SOAP envelope implements a set of operations. The first line of the SOAP
body is the method call, or operation, and the object for this operation is indicated by the className.
Attributes for an object are specified in the properties (name/value pairs) for each class.

In the following XML example for creating a new site, the operation is createInstance and the
className is Site. Properties for Name, Organization, and SiteInfo are included.

<soapenv :Body>
<nsl:createInstance>
<objectPath xsi:type="nsl:CIMObjectPath">

[l Cisco Prime Provisioning 7.2 APl Programmer Guide

| Chapter1 Introduction to the Prime Provisioning API

API Components

<className xsi:type="xsd:string">Site</className>
<properties xsi:type="nsl:CIMPropertyList"
soapenc:arrayType="nsl:CIMProperty[]">
<item xsi:type="nsl:CIMProperty">
<name xsi:type="xsd:string">Name</name>
<value xsi:type="xsd:string">Sitel</value>
</item>
<item xsi:type="nsl:CIMProperty">
<name xsi:type="xsd:string">Organization</name>
<value xsi:type="xsd:string">Customer2</value>
</item>
<item xsi:type="nsl:CIMProperty">
<name Xsi:type="xsd:string">SiteInfo</name>
<value xsi:type="xsd:string">Site comment info</value>
</item>
</properties>
</objectPath>
</nsl:createlInstance>
</soapenv:Body>

See the “Operations” section on page 1-9 for more information on operations implemented in the SOAP
body.

Message Validation/SOAP Faults

If an XML request is not well-formed, or if there is an internal error in the SOAP server, you receive a
SOAP Fault message. See the following example:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:nsO0="http://www.cisco.com/cim-cx/2.0"
xmlns:nsl="http://insmbu.cisco.com/urn:CIM">
<soapenv :Header>
<ns0:message id="87855" timestamp="2002-12-13T14:55:38.8852"
sessiontoken="p36bttjwyl" />
</soapenv:Header>
<soapenv :Body>
< soapenv:Fault>
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring>Client Error</faultstring>
<faultactor/>
</soapenv:Fault>
</soapenv:Body>

Additionally, if the XML request fails the validation, an error is generated.
e Exception messages are shown to the user within the <Exception> XML tags in the XML response.

¢ Frequently seen error messages are translated to reader-understandable text and presented within the
<Message> tag of the XML response.

For Prime Provisioning error reporting, see the “API Error Messages” section on page 1-14.

Cisco Prime Provisioning 7.2 APl Programmer Guide
| g

Chapter1 Introduction to the Prime Provisioning APl |

Il API Components

Message Security

The Prime Provisioning API supports the following security methods for SOAP messages:

e For message security, the API supports encryption at the transport layer. See the “HTTP Response”
section on page 1-3.

e For user security, the API supports Cisco role-based access control (RBAC) to control user sessions.
See the “Tasks” section on page 3-9 for more information.

API Notifications Server

This server is used for asynchronous notifications for database change events. It listens for the specified
database change events and sends a notification across the client connection or to a URL.

S

Note The notification URL is set in the Prime Provisioning properties file and can be specified during
installation.

See the “Event Notifications” section on page 5-1 for more information.

API Server/Serviet

The API server (running as a servlet) receives the SOAP messages and removes the SOAP encoding. The
API server also validates that the message is formatted correctly before initiating processing.

e For requests, the API delegates the request message to the appropriate processing server.
e For responses, the processing server sends the request back to the client.

The API is synchronous for operations, meaning a request is issued and then a response for each request
is issued. An HTTP/HTTPS connection is established for incoming requests and another HTTP/HTTPS
connection is used for receiving outgoing responses. You can disconnect and re-establish these
connections as needed.

Figure 1-2 shows the process flow for an XML request from the client program in the provider system
to the Prime Provisioning repository, and the return path for the XML responses.

Cisco Prime Provisioning 7.2 APl Programmer Guide
[1-8 | I

| Chapter1 Introduction to the Prime Provisioning API

Operations

Figure 1-2 Process Flow Diagram

Database
A I
Response Request [. V]l
A I ! Repository APls !
I
*E I :E -
I]
E Provider System ! | NBI Process !
- o :E o
' XML Parser/ | |
;E el :4 ;E XML Parser/Formatter :4
*: :ﬁ *: :ﬁ
! SOAP Client 1 ' SOAP Server |
L! I i
n 7T §
| HTTP Client | HTTP Server !
|
y 4 1
] 0
P i

Operations

The process servers perform the specific processing activities, or operations. These operations are
executed on Prime Provisioning inventory and service objects. The API repository object model contains
all object relationships, attributes, and operations.

API operations are divided into three categories: general, specialized, and response.

¢ General operations are executed on Prime Provisioning inventory objects.

createInstance—Create an object

— deletelnstance—Remove an object

- modifylnstance—Edit an object

- execQuery—SQL-based queries

— execReport—Canned reports and SLA report queries

— execMethod—Used for device locking.

— enumeratelnstances—Get multiple objects, or view the properties of an object
e Specialized operations are used for accessing the system.

- createSession—Login

- deleteSession—Logout

e FEach API operation has an associated response (except deliverEvent, which is a response itself).
There are four types of responses for each of the operations:

— Response—Response to indicate that a request was successful.

— Data—Response for a request for information.

Cisco Prime Provisioning 7.2 APl Programmer Guide
| g o

Chapter1 Introduction to the Prime Provisioning APl |

Il XML Schema

— Notifications (deliverEvent)—Response to indicate the addition, deletion, or change to a
database object.

- Errors—Response to indicate that an error has occurred.

The operations that can be executed for Prime Provisioning repository objects are listed in Figure 1-3.

Figure 1-3 SOAP Envelope Body Operations

—L n=s1_createlnstance

—L_ ns1_createlnstanceResponse

—Lns1JJerfurmBatch0peratiun

—L_ ns1JJerfnrmBatchOperatinnRes..

—L ns1_deletelnstance

deletes can only be done on 1
instance-alze will emar

—L ns1_deletelnstanceResponse |

—L_ ns1_createSession

—L ns1_createSessionResponse

ops:soapeny_Body [-] = —|,ns1_mndifylns‘tance

—L ns1_modifyinstanceResponse

—L_ ns1_enumeratelnstances

—L ns1 _enumeratelns’tancesﬂespu...

ObjectPath only supparts
keywProperties

—L_ ns1_execQueryResponse

.Ns1_execReport

—L_ ns1_execReportResponse

ns1_deliverEvent

arvis

See the appropriate chapter in this guide for more information on APIs for specific operations.

XML Schema

Prime Provisioning uses an XML schema and metadata to validate that the XML requests passed from
the client are correct. The validation verifies that the className is valid and that the attributes listed in
the XML request are recognized.

The API XML schema is defined by the World Wide Web Consortium (W3C) organization, which
defines a structured way to express data structures. The schema provides constructs for defining data
types and the mapping of those data types to data structures.

Cisco Prime Provisioning 7.2 APl Programmer Guide
[1-10 | I

Introduction to the Prime Provisioning APl

S

Service Model

Note The inventory of XML examples for the Prime Provisioning API is available at: Cisco
Prime Provisioning API 6.8 Programmer Reference.

XML Examples

Prime Provisioning provides example XML requests and responses with the product. Use the XML
examples as a reference to develop your own client code.

The inventory of XML examples for the Prime Provisioning API can be downloaded from here:

Cisco Prime Provisioning API 6.8 Programmer Reference

Table 1-3 describes the different categories for XML examples and where each is described in this guide.

Table 1-3 XML Examples Available with Prime Provisioning

Example XML Category

Described in

Evc Chapter 9, “EVC Provisioning.”

Events Chapter 3, “Common APIs.”

ExecQuery Chapter 3, “Common APIs.”

General Chapter 3, “Common APIs.”

Inventory Chapter 3, “Common APIs.”

L2VPN Chapter 7, “L2VPN Provisioning.”

MPLS Chapter 6, “MPLS Provisioning.”

Pools Chapter 3, “Common APIs”

Reports Chapter 5, “Monitoring APIs”

Session Chapter 3, “Common APIs.”

SLA Chapter 5, “Monitoring APIs”

Task Chapter 3, “Common APIs.”

TEM Chapter 10, “Traffic Engineering Management Provisioning.”
Templates Chapter 4, “Using Templates.”

VPLS Chapter 8, “VPLS Provisioning”

MPLS-TP Chapter 12, “MPLS Transport Profile Provisioning”

RAN Backhaul

Chapter 11, “RAN Backhaul Provisioning”

Service Model

The Prime Provisioning service model uses service orders, service definitions, and service requests in

the provisioning process.

e Service orders allow you to schedule a provisioning process and capture the history of the
provisioning process. Service orders provide a means to group together multiple service requests.
This allows Prime Provisioning to download multiple configuration commands, which might be
targeted to a single PE, in one step, and reduces the number of reconfigurations to a network device.

Cisco Prime Provisioning 7.2 APl Programmer Guide gy

http://www.cisco.com/c/en/us/support/cloud-systems-management/prime-provisioning/products-programming-reference-guides-list.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/prime-provisioning/products-programming-reference-guides-list.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/prime-provisioning/products-programming-reference-guides-list.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/prime-provisioning/products-programming-reference-guides-list.html

Chapter1 Introduction to the Prime Provisioning APl |

M Service Model

e Service requests are implemented through service orders. It is the service request that is provisioned
and activated in the network. The service request defines attributes for the physical links and
specifies the service policy to use. A service policy is defined in service definitions.

e Service definitions define the service policy. When you define a service policy, you can also set an
additional attribute (editable=true) for policy properties. This allows the service request creator to
override certain policy attributes. Service orders and service requests use service definitions to
define common data used during the provisioning process.

Service Orders/Service Requests

Prime Provisioning services can be defined as either end-user services or infrastructure services. An
end-user service is available to an end user (individual or organization) for which a service provider
generates revenue. An infrastructure service is required to be in place before an end-user service can be
offered, and the infrastructure service cannot by itself be offered as an end-user service. The

Prime Provisioning API supports both types of these services using service orders.

A service order allows a service provider to track the creation, modification, or deletion of all service
requests implemented using Prime Provisioning.

Service orders can be created to:
e Specify one or more service requests, for batch operations.
e Modify an existing service request.
e Specify the order of implementation for service requests.

¢ Implement many disjoint operations. One service order can modify an MPLS service request and
perform other operations at the same time.

e Perform related operations. One service order can create an organization, a service definition, and a
Cisco router.

Service Order Life Cycle

The following is the typical life cycle of a service order:
e The service order is created and the service request is specified.
e Prime Provisioning receives the service request.

e The service request is implemented based on the due date. If the service order or any service requests
within the service order has a due date in the future, it is placed in the schedule queue.

e The service request is executed at the appropriate time.

e A response message is generated to indicate if the service request has successfully deployed.

Modifying a Service Request

To make changes to a service request that has already been deployed, you must create a new service order
that modifies the existing service request. The new service order becomes the Active service order. The
previous service order becomes a historical record for the active service. Similarly, to delete a service
request, you must create a new service order to decommission the existing service request.

[l Cisco Prime Provisioning 7.2 APl Programmer Guide

| Chapter1 Introduction to the Prime Provisioning API

Service Model

S

Note When you modify a service request that has templates, or before you can decommission a service request
that has templates, you must first remove the template information from the service request. See the
“Removing Template Configurations” section on page 4-22 for more information.

Service Order Example

A service order XML request has a header with general information and is followed by one or more
service requests and a service definition. Some of the header information can be used across multiple
service requests. The service request contains service specific information, but it can also be used to
override the global parameters defined in the service order header.

The following example shows a service order XML request with header information and the contained
service request.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:nsO0="http://www.cisco.com/cim-cx/2.0"
xmlns:nsl="urn:CIM">
<soapenv :Header>
<!-- WaitTimeout has a default set in system properties.-->
<ns0:message 1d="87855" timestamp="2002-12-13T14:55:38.8852"
Wait="false" WaitTimeout="60" sessiontoken="p36bttjwyl"/>
</soapenv:Header>
<soapenv:Body>
<nsl:performBatchOperation>
<actions xsi:type="nsl:CIMActionList"
soapenc:arrayType="nsl:CIMAction[]">
<action>
<actionName xsi:type="xsd:string">createInstance</actionName>
<objectPath xsi:type="nsl:CIMObjectPath">
<className xsi:type="xsd:string">ServiceOrder</className>
<properties xsi:type="nsl:CIMPropertyList"
soapenc:arrayType="nsl:CIMProperty[]">
<item xsi:type="nsl:CIMProperty">
<name Xsi:type="xsd:string">ServiceName</name>
<value xsi:type="xsd:string">ServiceOrder-ConfigAudit</value>
</item>
<item xsi:type="nsl:CIMProperty">
<name xsi:type="xsd:string">CarrierId</name>
<value xsi:type="xsd:string">5</value>
</item>
<item xsi:type="nsl:CIMProperty">
<name xsi:type="xsd:string">DesiredDueDate</name>
<value xsi:type="xsd:dateTime">2002-12-14T14:55:38.885%Z</value>
</item>
<item xsi:type="nsl:CIMProperty">
<name Xsi:type="xsd:string">NumberOfRequests</name>
<value xsi:type="xsd:string">1l</value>
</item>
</properties>
</objectPath>
</action>
<action>
<actionName xsi:type="xsd:string">createInstance</actionName>
<objectPath xsi:type="nsl:CIMObjectPath">

Cisco Prime Provisioning 7.2 APl Programmer Guide
| g i

Chapter1 Introduction to the Prime Provisioning APl |

I API Error Messages

<className xsi:type="xsd:string">ServiceRequest</className>
<properties xsi:type="nsl:CIMPropertyList"
soapenc:arrayType="nsl:CIMProperty[]">
<item xsi:type="nsl:CIMProperty">
<name xsi:type="xsd:string">RequestName</name>
<value xsi:type="xsd:string">CONFIG-AUDIT-TASK</value>
</item>

Names and Locator IDs
When you create a service order or a service request, you must specify a service name. Use these names
to facilitate queries.
Some example service names are:
e For service orders—AcmeServiceOrderl, L2PN-ATM-SO.
¢ For service requests—MPLSServiceRequest, L2ZVPN-FrameRelaySR.

When you submit a service order XML request, Prime Provisioning returns a LocatorId in the XML
response. This Locator ID is associated with the service order or request Name. The Locator ID is unique
across all service request types. MPLS, or TemplateData are examples of service request types.

)o

Tip Make a record of the Locator ID or service name for all service orders and service requests. The Locator
ID is required to view a service order, to perform a service order task (configuration audit or functional
audit), and for all subsequent requests related to the service order or service request.

Responses to service orders and service requests also contain a TaskLocatorId, which can be used to
retrieve log information for failed service requests. For more information, see the “Viewing Task Logs”
section on page 5-24.

Service Definitions

A service definition defines a service policy and its characteristics. Service definitions can be specified
in a service request, but they are not required. Use service definitions to create configuration parameters
that can be used by multiple services.

Prime Provisioning supports service definitions for each of the service types (MPLS, L2VPN), and for
templates.

See the appropriate chapter on service provisioning for more information. For more information on
template service definitions, see “Template Service Definitions” section on page 4-5.

API Error Messages

The API is a request/response system. The input messages are processed for errors, and any errors are
reported back to the API client as part of the XML response. Errors are formatted into a standard
encoding scheme. The encoding scheme is a set of three attributes as shown by the following schema:

<xs:element name="error">
<xXs:complexType>
<XS:sequence>
<xs:element ref="code"/>
<xs:element ref="description"/>
<xs:element ref="detail"/>

Cisco Prime Provisioning 7.2 APl Programmer Guide
EE I

Chapter1 Introduction to the Prime Provisioning API

API Error Messages WM

</xs:sequence>
</xs:complexType>
</xs:element>

The error defines a fundamental error that prevented a method or operation from executing normally.
e The code attribute contains a numerical status code indicating the nature of the error.
e The description attribute provides a human-readable description of the error.
e The detail attribute, when populated, provides additional clarifications.

An error can be caused by more than one Prime Provisioning component. For example, the code and
description might refer to the API error, and the details might have information regarding an error in
another component.

Prime Provisioning processes error messages according to the context (create, delete, modify) in which
the error was found and the class in which the error was realized. For this reason, the API returns both
the operation and classname in the XML response.

The noteworthy text in the following message is indicated in bold:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmls
oap.org/soap/encoding/" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSche
ma-instance" xmlns:nsO="http://www.cisco.com/cim-cx/2.0" xmlns:nsl="urn:CIM">
<soapenv:Header>
<ns0:message 1d="87855" sessiontoken="040833748184101892B5C1130544B053"
timestamp="2003-10-29T717:30:23.199
z" />
</soapenv:Header>
<soapenv :Body>
<nsl:createInstanceResponse>
<returns xsi:type="nsl:CIMReturnList" soapenc:arrayType="nsl:CIMReturn[]">
<objectPath xsi:type="nsl:CIMObjectPath">
<className xsi:type="xsd:string">VPNServicesModule</className>
<errors xsi:type="nsl:CIMErrorList" soapenc:arrayType="nsl:CIMError[]">
<error xsi:type="nsl:CIMError">
<code xsi:type="xsd:int">1104</code>
<description xsi:type="xsd:string">Unable to find object (Device) with value
(CatIOs). Referenced object does not exist.</description>
<detail xsi:type="xsd:string">For input string: "CatIOS"</detail>
</error>
</errors>
</objectPath>
</returns>
</nsl:createInstanceResponse>
</soapenv:Body>
</soapenv:Envelope>

In this example:
¢ The createInstanceResponse indicates the error is associated with a create operation.
e The class that the create operation is being performed on is VPNServicesModule.

e The error code, 1104, is used to find the message in the error message documentation. The message
is a concatenation of code and description. Hence, it is 1104- Unable to find object (Device) with
value (CatIOS). Referenced object does not exist.

S

Note The block call <errors> are used when there is more than one <error> for one response.

Cisco Prime Provisioning 7.2 APl Programmer Guide gy

Chapter1 Introduction to the Prime Provisioning APl |

I API Error Messages

The following sample API error message shows a createInstanceResponse for a ServiceRequest.

<actionName xsi:type="xsd:string">createInstanceResponse</actionName>
<objectPath xsi:type="nsl:CIMObjectPath">
<className xsi:type="xsd:string">ServiceRequest</className>
<errors xsi:type="nsl:CIMErrorList" soapenc:arrayType="nsl:CIMError[]">
<error xsi:type="nsl:CIMError">
<detail xsi:type="xsd:string">ORA-00060: deadlock detected while waiting
for resource
</detail>
<description xsi:type="xsd:string">22 : SQL Exception while updating
com.cisco.vpnsc.repository.mpls.RepMplsSR</description>
<code xsi:type="xsd:int">22</code>
</error>

In this example:
e The error is a repository error as indicated by the error code 22.
e The description shows an error within the MPLS SR.
e The detail shows it as an ORACLE deadlock.

Error Logs

The API also provides error logs, which can be used for debugging purposes. The following example
shows an NBI log in the tmp directory of the installation.

FINE: getErrorMsgByName (2029)
Oct 29, 2003 12:15:57 PM com.cisco.vpnsc.repository.common.RepVpnscLogger severe
SEVERE: [NbiException.processException:
com.sybase.jdbc2. jdbc.SybSQLException: ASA Error -196: Index 'MGMT_ADDR_CR' for table
'CISCO_ROUTER' would not be unique

at com.sybase.jdbc2.tds.Tds.processEed(Tds.java:2538)

at com.sybase.jdbc2.tds.Tds.nextResult (Tds.java:1922)

at com.sybase.jdbc2.jdbc.ResultGetter.nextResult (ResultGetter.java:69)

at com.sybase.jdbc2.jdbc.SybStatement .nextResult (SybStatement.java:201)

at com.sybase.jdbc2.jdbc.SybStatement .nextResult (SybStatement.java:182)

In this example:
¢ In the call to getErrorMsgByName, with argument 2029; 2029 is the error code.
e The ASA Error (from SYBASE) is shown in the detail field.

The stack trace information can be used to assist the Cisco Technical Assistance Center (TAC).

Cisco Prime Provisioning 7.2 APl Programmer Guide
[116 | I

	Introduction to the Prime Provisioning API
	API Components
	Client
	HTTP/HTTPS Server
	HTTP Transport
	HTTP Response
	HTTP Authentication/Encryption

	SOAP Plug-in
	SOAP Messages
	Message Validation/SOAP Faults
	Message Security

	API Notifications Server
	API Server/Servlet

	Operations
	XML Schema
	XML Examples

	Service Model
	Service Orders/Service Requests
	Service Order Life Cycle
	Modifying a Service Request
	Service Order Example
	Names and Locator IDs

	Service Definitions

	API Error Messages
	Error Logs

