
Using Extension Points

You can write extensions to affect how Cisco Prime Network Registrar handles and responds to DHCP
requests, and to change the behavior of a DHCP server that you cannot normally do using the user interfaces.
This chapter describes the extension points to which you can attach extensions for DHCPv4 and DHCPv6.

• Using Extensions, on page 1
• Language-Independent API, on page 4
• Tcl Extensions, on page 7
• C/C++ Extensions, on page 8
• DHCP Request Processing Using Extensions, on page 11
• Extension Dictionaries, on page 21
• Request and Response Dictionaries, on page 25
• Extension Point Descriptions, on page 27

Using Extensions
You can alter and customize the operation of the Cisco Prime Network Registrar DHCP server by using
extensions, functions that you can write in Tcl or C/C++.

Follow this process to create an extension for use in the DHCP server:

1. Determine the task to perform. What DHCP packet process do I want to modify?
2. Determine the approach to use. How do I want to modify the packet process?
3. Determine the extension point to which to attach the extension.
4. Choose the language (Tcl or C/C++).
5. Write (and possibly compile and link) the extension.
6. Add the extension to the DHCP server configuration.
7. Attach the extension to the extension point.
8. Reload the DHCP server so that it recognizes the extension.
9. Test and debug the results.

While upgrading Cisco Prime Network Registrar, it is recommended to recompile all the DHCP C/C++
extensions (dex extensions).

Note

Using Extension Points
1

Creating, Editing, and Attaching Extensions
You can create, edit, and attach extensions.

You can associate multiple extensions per extension point. Each extension executes in the order specified by
the sequence number used when the attachment was created. In the web UI, the sequence is the order in which
the extensions appear per extension point on the List DHCP Extension Points page. In the CLI, you use the
sequence-number value with the dhcp attachExtension command.

For more on multiple extensions per extension point, see Multiple Extension Considerations, on page 6.

Local Advanced Web UI
To create and attach extensions, do the following:

Step 1 From the Deploy menu, choose Extensions under the DHCP submenu to open the List/Add DHCP Extensions page.
Step 2 Click the Add Extensions icon to open the Add DHCP Server Extension dialog box.
Step 3 After you create an extension, you can attach it to one or more of the extension points on this page. To show the extension

points where you can attach extensions, on the List/Add DHCP Extensions page, click DHCP Extension Points tab.
Step 4 If you attach more than one extension for each extension point, you can change the sequence in which they are processed

by clicking the arrow keys to rearrange the entries. To remove the extension, click the Delete icon.

CLI Command
Use the extension command, which requires this syntax:
nrcmd> extension name create language extension-file entry-point

The entry-point is the name of the entry point in the extension-file. You can also set an optional init-entry
attribute value for the initial entry point each time the DHCP server loads the file (see init-entry, on page 27).
You can call this function from any extension point bound to this module. You can also list the extensions
using extension list.

To attach and detach an extension, use dhcp attachExtension and dhcp detachExtension for the DHCP
server, which require this syntax:
nrcmd> dhcp attachExtension extension-point extension-name [sequence-number]
nrcmd> dhcp detachExtension extension-point [sequence-number]

The sequence-number applies if you attach multiple extensions per extension point, in increasing sequence
order ranging from 1 through 32. If omitted, it defaults to 1.

To view the currently registered extensions, use dhcp listExtensions command.

Determining Tasks
The task to which to apply an extension is usually some modification of the DHCP server processing so that
it better meets the needs of your environment. You can apply an extension at each of these DHCP server
processing points, from receiving a request to responding to the client:

1. Receive and decode the packet.
2. Look up, modify, and process any client-class.

Using Extension Points
2

Using Extension Points
Creating, Editing, and Attaching Extensions

3. Build a response type.
4. Determine the subnet (or link, in the case of DHCPv6).
5. Find any existing leases.
6. Serialize the lease requests.
7. Determine the lease acceptability for the client.
8. Gather and encode the response packet.
9. Update stable storage of the packet.
10. Return the packet.

A more complete list of these steps (along with the extension points to use at each step) appears in DHCP
Request Processing Using Extensions, on page 11.

For example, you might have an unusual routing hub that uses BOOTP configuration. This device issues a
BOOTP request with an Ethernet hardware type (1) and MAC address in the chaddr field. It then sends out
another BOOTP request with the sameMAC address, but with a hardware type of Token Ring (6). Specifying
two different hardware types causes the DHCP server to allocate two IP addresses to the device. The DHCP
server normally distinguishes between aMAC address with hardware type 1 and one with type 6, and considers
them different devices. In this case, you might want to write an extension that prevents the DHCP server from
handing out two different addresses to the same device.

Deciding on Approaches
Many solutions are often available to a single problem. When choosing the type of extension to write, you
should first consider rewriting the input DHCP packet. This is a good approach, because it avoids having to
know the internal processing of the DHCP server.

For the problem described in Determining Tasks, on page 2, you can write an extension to solve it in either
of these ways:

• Drop the Token Ring (6) hardware type packet.
• Change the packet to an Ethernet packet and then switch it back again on exit.

Although the second way involves a more complex extension, the DHCP client could thereby use either reply
from the DHCP server. The second approach involves rewriting the packet, in this case using the
post-packet-encode extension point (see post-packet-encode, on page 38). Other approaches require other
extensions and extension points.

Choosing Extension Languages
You can write extensions in Tcl or C/C++. The capabilities of each language, so far as the DHCP server is
concerned, are similar, although the application programming interface (API) is slightly different to support
the two very different approaches to language design:

• Tcl—Although scripting in Tcl might be somewhat easier than scripting in C/C++, it is interpreted and
single-threaded, and might require more resources. However, you might be less likely than in C/C++ to
introduce a serious bug, and there are fewer chances of a server failure. Cisco Prime Network Registrar
currently supports Tcl version 8.6.

• C/C++—This language provides the maximum possible performance and flexibility, including
communicating with external processes. However, the C/C++ API is more complex than the Tcl API.
Also, the possibility of a bug in the extension causing a server failure is also more likely in C/C++.

Using Extension Points
3

Using Extension Points
Deciding on Approaches

Language-Independent API
The following concepts are independent of whether you write your extensions in Tcl or C/C++.

Routine Signature
You need to define the extension as a routine in a file, which can contain multiple extension functions. You
then attach the extension to one or more of the DHCP server extension points. When the DHCP server reaches
that extension point, it calls the routine that the extension defines. The routine returns with a success or failure.
You can configure the DHCP server to drop a packet on an extension failure.

You can configure one file—Tcl source file or C/C++ .dll or .so file—as multiple extensions to the DHCP
server by specifying a different entry point for each configured extension.

The server calls every routine entry point with at least three arguments, the three dictionaries—request,
response, and environment. Each dictionary contains many data items, each being a key-value pair:

• The extension can retrieve data items from the DHCP server by performing a get method on a dictionary
for a particular data item.

• The extension can alter data items by performing a put or remove operation on many of the same named
data items.

Although you cannot use all dictionaries at every extension point, the calling sequence for all routines is the
same for every extension point. The extension encounters an error if it tries to reference a dictionary that is
not present at a particular extension point. (See Extension Dictionaries, on page 21.)

Dictionaries
You access data in the request, response, and server through a dictionary interface. Extension points include
three types of dictionaries—request, response, and environment:

• Request dictionary—Information associated with the DHCP request, along with all that came in the
request itself. Data is string-, integer-, IP address-, and blob-valued.

• Response dictionary—Information associated with generating a DHCP response packet to return to the
DHCP client. Data is string-, integer-, IP address-, and blob-valued.

• Environment dictionary—Information passed between the DHCP server and extension.

For a description of the dictionaries, see Extension Dictionaries, on page 21.

You can also use the environment dictionary to communicate between an extension attached at different
extension points. When encountering the first extension point at which some extension is configured, the
DHCP server creates an environment dictionary. The environment dictionary is the only one in which the
DHCP server does not fix the names of the allowable data items. You can use the environment dictionary to
insert any string-valued data item.

Every extension point in the flow of control between the request and response for the DHCP client (all extension
points except lease-state-change, depending on the cause of the change) share the same environment dictionary.
Thus, an extension can determine that some condition exists, and place a sentinel in the environment dictionary
so that a subsequent extension can avoid determining the same condition.

In the previous example, the extension at the post-packet-decode extension point determines that the packet
was the interesting one—from a particular manufacturer device, BOOTP, and Token Ring—and then rewrites
the hardware type from Token Ring to Ethernet. It also places a sentinel in the environment dictionary and

Using Extension Points
4

Using Extension Points
Language-Independent API

then, at a very simple extension at the post-packet-encode extension point, rewrites the hardware type back
to Token Ring.

Utility Methods in Dictionaries
Each dictionary has associated utility methods with which you can reset the trace level for an extension and
log values to an output file.

Configuration Errors
Extensions can fail for many reasons. For example:

• The server cannot find the file.
• The entry point or init-entry point does not appear in the file.
• The extension itself can return a failure from an init-entry call.

By itself, an extension failure is not fatal and does not prevent the DHCP server from starting. However, if
you configure that failed extension at any extension point, the server will not start. Therefore, to debug the
configuration process, you can configure the extension at the init-entry point (see init-entry, on page 27)
without attaching it to an extension point. When you complete that process successfully, you can attach your
extension to an extension point.

Communicating with External Servers
You can write extensions that communicate with external servers or databases to affect the client class or
validate incoming DHCP client requests. Writing such extensions is a complex task, requiring considerable
skill and debugging expertise. Such extensions must be multithreaded, and need to communicate very swiftly
with the external server if the DHCP server performance is to remain at an acceptable level.

Performance degradations can result from extensions stalling the threads that are processing requests. A thread
stalls while an extension communicates with an external server. If this interaction takes more than 50 to 100
milliseconds, this severely affects server performance. This might or might not impact you in the particular
environment in which you deploy this extension.

One way to avoid having to communicate with an external server synchronously (that is, stalling the incoming
DHCP client request processing to communicate with the external server) is to avoid performing this
communication while processing the DHCP client request. This sounds obvious, and it also sounds, on the
face of it, impossible. However, due to the nature of the DHCP client-server protocol, there is a way to decouple
the access to the external server from the DHCP client request processing.

To avoid this bottleneck, use a caching mechanism as part of the extension.When the server calls the extension
for a request, have it check a cache (with proper locking to avoid multithreading problems) for the client data.
If the client is:

• In the cache (and did not expire), have the extension accept or reject the request depending on the data
in the cache.

• Not in the cache, have the extension queue a request to the external server (preferably over UDP), and
then drop the DHCP client request. By the time the client retransmits the request, the data should be in
the cache.

This caching mechanism requires the extension to have a receiver thread (started and stopped in the init-entry
extension point). This thread reads the socket and updates the cache with the response. This thread (or a

Using Extension Points
5

Using Extension Points
Utility Methods in Dictionaries

separate one) would also need to time out and remove old items from the cache. Using a single thread, however,
might require setting a larger receive socket buffer size.

These techniques are only necessary if the load on the DHCP server is high and the speed of the external
server is not high enough to support the required performance of the DHCP server load. However, this situation
turns out to be all too common in practice. And, consider what can happen if the external server is unreachable
(when connection timeouts are likely to be for minutes and not seconds).

Recognizing Extensions
The DHCP server only recognizes extensions when it initially configures itself at start or reload time. You
can change an extension or the configuration for extensions in general. However, until you reload or restart
the server, the changes have no effect. Forgetting to reload the DHCP server can be a frequent source of errors
while debugging extensions.

The reason Cisco Prime Network Registrar requires a reload is to ensure minimum processing impact by
preloading extensions and getting them ready at server configuration time. While this approach is useful in
production mode, it might cause some frustration when you debug extensions.

Multiple Extension Considerations
You can register multiple extensions at any extension point. The DHCP server runs all the extensions attached
to an extension point before resuming processing, the conditions being:

• An extension should not explicitly set a data item unless the extension explicitly requires that behavior.
For example (as described for the drop environment dictionary data item in Table 31-5 on page 31-25),
extensions can request dropping the client packet at most extension points.

The server calls the first extension registered at an extension point with drop set to False. One or more
extensions can set this to True or False. If all extensions were to explicitly set drop to either True or
False, then the server would take whatever action the last extension to run requested.

This might not be the desired behavior. Thus, for this data item, it is better for an extension to set drop
to True only if it wants the packet to be dropped. That way, if all extensions play by this rule, the packet
would be dropped if any of the extensions request it.

• An extensionmight want to return immediately if drop is True, as there may not be a need for the extension
to do its processing if another one desires the packet to be discarded.

• If the environment dictionary is used to store items for use in later extension points, those data item
names might want to use a prefix or suffix that is unique to that extension. This reduces the chance for
data item name conflicts.

• At least one environment dictionary data item, the user-defined-data (see Table 5: General Environment
Dictionary Data Items) that you can use to store data with a lease (for DHCPv4) or client (DHCPv6),
requires special attention.

This data item can be difficult for more than one extension to use, unless those extensions take special
care to preserve and recognize each other’s values. Thus, it might not be possible for more than one
extension to assume it can use this data item.

• You must specify whether the extensions should be run first, or last, if such a need exists. For example,
you should run extensions that cause the server to drop certain packets first, because this reduces the
processing burden on the server (assuming the remaining extensions return immediately if drop is true).

Using Extension Points
6

Using Extension Points
Recognizing Extensions

Tcl Extensions
If you choose to write your extensions in Tcl, you should understand the Tcl API, how to handle errors and
Boolean variables, and how to initialize Tcl extensions. Cisco Prime Network Registrar uses Tcl version 8.6.

A single Tcl interpreter is used by the DHCP server. This can have severe performance implications. Tcl
extensions are best used for prototyping more complex logic before reworking it to be a high performance
multi-threaded dex extension or very simple operations that are quick.

Note

Tcl Application Program Interface
Every Tcl extension has the same routine signature:
proc yourentry { request response environ } { # your-code }

To operate on the data items in any dictionary, you must treat these arguments as commands. Thus, to get the
giaddr of the input packet, you would write:
set my_giaddr [$request get giaddr]

This sets the Tcl variable my_giaddr to the string value of the giaddr in the packet; for example, 10.10.1.5 or
0.0.0.0.

You could rewrite the giaddr in the input packet by using this Tcl statement:
$request put giaddr "1.2.3.4"

To configure one routine entry for multiple extension points and to alter its behavior depending on the extension
point from which the server calls it, the DHCP server passes the ASCII name of the extension point in the
environment dictionary under the key extension-point.

For some sample Tcl extensions, see the Cisco Prime Network Registrar directory;
/opt/nwreg2/local/examples/dhcp/tcl by default.

Dealing with Tcl errors
You generate a Tcl error if you:

• Reference a dictionary that is not available.
• Reference a dictionary data item that is not available.
• Request a put operation on an invalid data item, for example, an invalid IP address.

In these cases, the extension immediately fails unless you surround the statement with a catch error statement:
catch { $request put giaddr "1.2.3.a" } error

Configuring Tcl Extensions
To configure a Tcl extension, write it and place it in the following extensions directory:

/var/nwreg2/local/extensions/dhcp/tcl

Using Extension Points
7

Using Extension Points
Tcl Extensions

When the DHCP server configures an extension during startup, it reads the Tcl source file into an interpreter.
Any syntax errors in the source file that would render Tcl interpreter unable to load the file would also fail
the extension. Typically, the DHCP server generates an error traceback in the log file from Tcl to help you to
find the error.

Handling Boolean Variables in Tcl
In the environment dictionary, the Boolean variables are string-valued and have a value of true or false. The
DHCP server expects an extension to set the value to true or false. However, in the request or response
dictionaries, Boolean values are single-byte numeric format, and true is 1 and false is 0. While more efficient
for the C/C++ extensions, this approach does make the Tcl API a bit more complex.

Init-Entry Extension Point in Tcl
Tcl extensions support the init-entry extension point (see init-entry, on page 27), and the arguments supplied
in the init-args parameter to the command line appear in the environment dictionary associated with the key
arguments.

A single Tcl interpreter is used by the DHCP server. This avoids issues with information flow and allows use
of global variables to store information that could be used for a follow on client request, but does have a severe
impact on performance.

Note that all Tcl extensions share the Tcl interpreter. If your Tcl extension initializes global variables or
defines procedures, ensure that these do not conflict with some other Tcl extension global variables or procedure
names.

C/C++ Extensions
All DHCP C/C++ extensions are dex extensions, short for DHCP Extension.

C/C++ API
The routine signature for both the entry and init-entry routines for the C/C++ API is:

typedef int (DEXAPI * DexEntryPointFunction)(
int iExtensionPoint,
dex_AttributeDictionary_t* pRequest,
dex_AttributeDictionary_t* pResponse,
dex_EnvironmentDictionary_t* pEnviron);

Along with pointers to three structures, the integer value of the extension point is one of the parameters of
each routine.

The C/C++ API is specifically constructed so that you do not have to link your shared library with any Cisco
Prime Network Registrar DHCP server files. You configure the entry to your routine when you configure the
extension. The necessary call-back information for the operations to perform on the request, response, and
environment dictionaries is in the structures that comprise the three dictionary parameters passed to your
extension routine.

Using Extension Points
8

Using Extension Points
Handling Boolean Variables in Tcl

The DHCP server returns all binary information in network order, which is not necessarily properly aligned
for the executing architecture.

Using Types in C/C++
Many C/C++ routines are available that use types, for example, getByType(). These routines are designed
for use in performance-sensitive environments. The reasoning behind these routines is that the extension can
acquire pointers to types once, for example, in the init-entry point, and thereafter use the pointers instead of
string-valued names when calling the routines of the C/C++ API. Using types in this manner removes one
hash table lookup from the extension processing flow of execution, which should improve (at least fractionally)
the performance of any extension.

Building C/C++ Extensions
The directory /opt/nwreg2/local/examples/dhcp/dex contains sample C/C++ extension code, as well as a short
makefile designed to build the sample extensions. To build your own extensions, you need to modify this file.
It has sections for Microsoft Visual C++ and GNU C++. Simply move the comment lines to configure the
file for your environment.

Your extension needs to reference the include file dex.h. This file contains the information your program
needs to use the C/C++ API.

After you build the .so file (all dex extensions are shared libraries), you need to move them into the
/var/nwreg2/local/extensions/dhcp/dex directory. You can then configure them.

Using Thread-Safe Extensions in C/C++
The DHCP server is multithreaded, so any C/C++ extensions written for it must be thread-safe. Multiple
threads, and possibly multiple processors, must be capable of calling these extensions simultaneously at the
same entry point. You should have considerable experience writing code for a multithreaded environment
before designing C/C++ extensions for Cisco Prime Network Registrar.

All C/C++ extensions must be thread-safe. If not, the DHCP server will not operate correctly and will fail in
ways that are extremely difficult to diagnose. All libraries and library routines that these extensions use must
also be thread-safe.

Caution

On several operating systems, you must ensure that the runtime functions used are really thread-safe. Check
the documentation for each function. Special thread-safe versions are provided (often functionname _r) on
several operating systems.

Be aware that if any thread makes a non-thread-safe call, it affects any of the threads that make up the safe
or locked version of the call. This can cause memory corruptions, server failures, and so on.

Diagnosing these problems is extremely difficult, because the cause of these failures are rarely apparent. To
cause a server failure, you need very high server loads or multiprocessor machines with many processes. You
might need running times of several days. Often, problems in extension implementation might not appear
until after sustained periods of heavy load.

Because some runtime or third-party libraries might make non-thread-safe calls that you cannot detect, check
your executables as to what externals are being linked (nm on UNIX).

Using Extension Points
9

Using Extension Points
Using Types in C/C++

If the routines of a library call the routines without the _r suffixes, displayed in the following table, the library
is not thread-safe, and you cannot use it. The interfaces to the thread-safe versions of these library routines
can vary based on operating system.

lgamma_rgetrpcbynumber_rgetnetent_rgetgrid_rasctime_r

localtime_rgetrpcent_rgetprotobyname_rgetgrnam_rctermid_r

nis_sperror_rgetservbyname_rgetprotobynumber_rgethostbyaddr_rctime_r

rand_rgetservbyport_rgetprotoent_rgethostbyname_rfgetgrent_r

readdir_rgetservent_rgetpwnam_rgethostent_rfgetpwent_r

strtok_rgetspent_rgetpwent_rgetlogin_rfgetspent_r

tmpnam_rgetspnam_rgetpwuid_rgetnetbyaddr_rgamma_r

ttyname_rgmtime_rgetrpcbyname_rgetnetbyname_rgetgrent_r

Configuring C/C++ Extensions
Because the .dll and .so files are active when the server is running, it is not a good idea to overwrite them.
After you stop the server, you can overwrite the .dll and .so files with newer versions.

Debugging C/C++ Extensions
Because your C/C++ shared library runs in the same address space as the DHCP server, and receives pointers
to information in the DHCP server, any bugs in your C/C++ extension can very easily corrupt the DHCP
server memory, leading to a server failure. For this reason, use extreme care when writing and testing a C/C++
extension. Frequently, you should try the approach to an extension with a Tcl extension and then code the
extension in C/C++ for increased performance.

Pointers into DHCP Server Memory in C/C++
The C/C++ extension interface routines return pointers into DHCP server memory in two formats:

• char* pointer to a series of bytes.
• Pointer to a structure called an abytes_t, which provides a pointer to a series of bytes with an associated
length (defined in dex.h).

In both cases, the pointers into DHCP server memory are valid while the extension runs at that extension
point. They are also valid for the rest of the extension points in the series processing this request. Thus, an
abytes_t pointer returned in the post-packet-decode extension point is still valid in the post-send-packet
extension point.

The pointers are valid for as long as the information placed in the environment dictionary is valid. However,
there is one exception. One C/C++ routine, getType, returns a pointer to an abytes_t that references a type.
These pointers are valid through the entire life of the extension. Typically, the server would call this routine
in the init-entry extension point and save the pointers to the abytes_t structures that define the types in the
static data of the shared library. Pointers to abytes_t structures returned by getType are valid from the init-entry
call for initialization until the call for uninitialization.

Using Extension Points
10

Using Extension Points
Configuring C/C++ Extensions

Init-Entry Entry Point in C/C++
The DHCP server calls the init-entry extension point (see init-entry, on page 27) once when configuring
each extension and once when unconfiguring it. The dex.h file defines two extension point values passed as
the extension points for the configure and unconfigure calls: DEX_INITIALIZE for configure and
DEX_UNINITIALIZE for unconfigure. The environment dictionary value of the extension-point data item
is initialize or uninitialize in each call.

When calling the init-entry extension point for initialize, if the environment dictionary data item persistent
contains the value true, you can save and use the environment dictionary pointer any time before the return
from the uninitialize call. In this way, background threads can use the environment dictionary pointer to log
messages in the server log file. Note that you must interlock all access to the dictionary to ensure that at most
one thread processes a call to the dictionary at a time. You can use the saved dictionary pointer up to when
the extension returns from the uninitialize call. This way, the background threads can log messages during
termination.

DHCP Request Processing Using Extensions
The Cisco Prime Network Registrar DHCP server has extension points to which you can attach your own
extensions. They have descriptive names that indicate where in the processing flow of control to use them.

Because the extension points are tied to the processing of input requests from DHCP clients, it is helpful to
understand how the DHCP server handles requests. Request processing comes in three general stages:

1. Initial request processing (see Table 1: Initial Request Processing Using Extensions)
2. DHCPv4 or DHCPv6 processing (see Table 2: DHCPv4 or DHCPv6Request ProcessingUsing Extensions)
3. Final response processing (see Table 3: Final Response Processing Using Extensions)

Table 1: Initial Request Processing Using Extensions

Extension Point UsedClient Request Processing Stage

pre-packet-decode1. Receive a packet from a DHCP client.

post-packet-decode2. Decode the packet.

3. Determines the client-classes.

post-class-lookup4. Modifies the client-class.

pre-client-lookup post-client-lookup5. Processes the client-classes, looking up clients.

6. Build a response container from the request.

Table 2: DHCPv4 or DHCPv6 Request Processing Using Extensions

Extension Point UsedClient Request Processing Stage

1. In DHCPv4, find a lease already associated with this client, if any, or
locate a new lease for the client.

2. Serialize all requests associated with this client (processing continues
when the request reaches the head of the serialization queue).

Using Extension Points
11

Using Extension Points
Init-Entry Entry Point in C/C++

Extension Point UsedClient Request Processing Stage

generate-lease and
lease-state-change (multiple
calls are possible for both in
DHCPv6)

3. In DHCPv6, process the client request, generating leases if necessary.
The server tries to provide the client with at least one preferred lease for
each usable prefix per binding.

You can generate leases and change lease states multiple times for a client
request, but not for reserved leases.

check-lease-acceptable4. Determine if the lease is (still) acceptable for this client (can occur
multiple times in DHCPv6).

5. Initiate DNS Update operations as necessary (can occur multiple times
in DHCPv6).

Table 3: Final Response Processing Using Extensions

Extension Point UsedClient Response Processing Stage

1. Gather all the data to include in the response packet.

2. Write to the lease database.

pre-packet-encode3. Prepare the response packet for encoding.

post-packet-encode4. Encode the response packet for transmission to the client.

post-send-packet5. Send the packet to the client.

environment-destructor6. Release all context for the client and request.

These steps and additional opportunities for using extensions are explained in the following sections. The
extension points are indicated in bold.

Enabling DHCPv6 Extensions
By default, extensions are assumed to support onlyDHCPv4. Towrite DHCPv6 extensions, youmust implement
an init-entry extension point that must:

1. Set the dhcp-support environment data item to v4 (for DHCPv4 only, the preset value), v6 (for DHCPv6
only), or v4,v6 (for DHCPv4 and DHCPv6). This data item indicates to the server what the extension is
willing to support.

2. Set the extension-extensionapi-version environment data item to 2. (The dhcp-support data item is ignored
unless the extension-extension-api-version is set to 2.)

You might need to write separate extensions for DHCPv4 and DHCPv6, because of the differences in packet
formats, DHCP protocol, and internal server data. However, the fundamentals of both kinds of extensions are
very much the same.

The server calls these extension points at essentially the same places during processing, although it can call
some DHCPv6 extension points multiple times due to the possibility of multiple lease requests per client.

Using Extension Points
12

Using Extension Points
Enabling DHCPv6 Extensions

Receiving Packets
The DHCP server receives DHCPv4 packets on port 67 and DHCPv6 packets on port 547 (the DHCP input
ports) and queues them for processing. It attempts to empty the UDP input queue as quickly as possible and
keeps all of the requests that it receives on an internal list for processing as soon as a free thread is available
to process them. You can configure the length of this queue, and it will not grow beyond its maximum
configured length.

Decoding Packets
When a free thread is available, the DHCP server allocates to it the task of processing an input request. The
first action it takes is to decode the input packet to determine if it is a valid DHCP client packet. As part of
this decoding process, the DHCP server checks all options to see if they are valid—if the lengths of the options
make sense in the overall context of the request packet. It also checks all data in the DHCP request packet,
but takes no action on any data in the packet at this stage.

Use the pre-packet-decode extension point to rewrite the input packet. After the DHCP server passes this
extension point, it stores all information from the packet in several internal data structures to make subsequent
processing more efficient.

Determining Client-Classes
If you configure an expression in the client-class-lookup-id, it is at this stage that the DHCP server evaluates
the expression (see Using Expressions for a description of expressions). The result of the expression is either
<null>, or something converted to a string. The value of the string must be either a client-class name or <none>.
In the case of <none>, the server continues to process the packet in the same way as if there were no
client-class-lookup-id configured. In the case of a <null> response or an error evaluating the
client-class-lookup-id, the server logs an error message and drops the packet (unless an extension configured
at the post-class-lookup extension point specifically instructs the server not to drop the packet). As part of
the process of setting the client-class, the DHCP server evaluates any limitation-id configured for that
client-class and stores it with the request.

Modifying Client-Classes
After the DHCP server evaluates the client-class-lookup-id and sets the client-class, it calls any extension
attached to the post-class-lookup extension point. You can use that extension to change any data that the
client-class caused to become associated with the request, including the limitation-id. The extension also
learns if the evaluation of the client-class-lookup-id dropped the packet. The extension not only finds out if
it needs to drop the packet, it instructs the server not to drop the packet if it wants the server not to do so.

Also, an extension running at the post-class-lookup extension point can set a new client-class for the request,
and uses the data from that client-class instead of the current one. This is the only extension point where
setting the client-class actually uses that client-class for the request.

Processing Client-Classes
If you enabled client-class processing, the DHCP server performs it at this stage.

Use the pre-client-lookup extension point to affect the client to look up, possibly by preventing the lookup
or supplying data that overrides the existing data. After the DHCP server passes the pre-client-lookup

Using Extension Points
13

Using Extension Points
Receiving Packets

DHCP_Guide_chapter11.pdf#nameddest=unique_301

extension point, it looks up the client (unless the extension specifically prevents it) in the local database or in
an LDAP database, if one was configured.

After the server looks up the client, it uses the data in the client entry to fill in additional internal data structures.
The DHCP server uses data in the specified client-class entry to complete any data that the client entry does
not specify. When the DHCP server retrieves all the data stored in the various places in the internal data
structures for additional processing, it runs the next extension point.

Use the post-client-lookup extension point to review the operation of the client-class lookup process, such
as examining the internal server data structures filled in from the client-class processing. You can also use
the extension point to change any data before the DHCP server does additional processing.

Building Response Containers
At this stage, the DHCP server determines the request type and builds an appropriate response container based
on the input. For example, if the request is a DHCPDISCOVER, the server creates a DHCPOFFER response
to perform the processing. If the input request is a BOOTP request, the server creates a BOOTP response to
perform the response processing.

For DHCPv6, a server creates an ADVERTISE or REPLY packet, depending on the request.

Determining Networks and Links
The DHCP server must determine the subnet from which every request originated and map that into a set of
address pools, scopes, prefixes, or links that contain IP addresses.

For DHCPv4, internal to the DHCP server is the concept of a network, which, in this context, refers to a LAN
segment or physical network. In the DHCP server, every scope or prefix belongs to a single network.

Some scopes or prefixes are grouped together on the same network because their network numbers and subnet
masks are identical. Others are grouped because they are related through the primary-scope or prefix pointer.

The Cisco Prime Network Registrar DHCP server determines the network to use to process a DHCP client
request in the following sequence:

1. Determining the source address, either the giaddr or, if the giaddr is zero, the address of the interface on
which the request arrived.

2. Using this address to search for any scope or prefix that was configured in the server that is on the same
subnet as this address. If the server does not find a scope or prefix, it drops the request.

3. After finding the scope or prefix, using its network in subsequent processing.

For DHCPv6 processing, see Determining Links and Prefixes.

Finding Leases
For DHCPv4, now that when the DHCP server establishes the network, it searches the hash table held at the
network level to see if the network already knows the client-id. “Already knows,” in this context, means that
this client previously received an offer or a lease on this network, and the lease was not offered to or leased
by a different client since that time. Thus, a current lease or an available expired lease appears in the network
level hash table. If the DHCP server finds a lease, it proceeds to the next step, which is to serialize all requests
for the same IP address.

If the DHCP server does not find a lease, and if this is a BOOTP or DHCPDISCOVER request, the server
looks for a reserved lease from a scope or prefix in the network.

Using Extension Points
14

Using Extension Points
Building Response Containers

DHCP_Guide_chapter5.pdf#nameddest=unique_13

If it finds a reserved lease, the server checks whether the scope or prefix and lease are both acceptable. The
following must be true regarding the reserved lease and the scope or prefix that contains it:

• The lease must be available (not leased to another DHCP client).
• The scope or prefix must support the request type (BOOTP or DHCP).
• The scope or prefix must not be in a deactivated state.
• The lease must not be in a deactivated state.
• The selection tags must contain all of the client selection-criteria and none of the client

selection-criteria-excluded.
• The scope or prefix must not be in a renew-only state.

If the reserved lease is acceptable, the server proceeds to the next step, which is to serialize all requests for
the IP address. Having failed to find an existing or reserved lease for this client, the server now attempts to
find any available IP addresses for this client.

The general process the DHCP server uses is to scan all of the scopes or prefixes associated with this network
in round-robin order, looking for one that is acceptable for the client and also has available addresses. An
acceptable scope or prefix has the following characteristics:

• If the client has selection-criteria associated with it, the selection tags must contain all of the client
inclusion criteria.

• If the client has selection-criteria-excluded associated with it, the selection tags must contain none of
the client exclusion criteria.

• The scope or prefix must support the client request type—If the client request is a DHCPREQUEST,
you must enable the scope or prefix for DHCP. Likewise, if the request is a BOOTP request, you must
enable the scope or prefix for BOOTP and dynamic BOOTP.

• It must not be in a renew-only state.
• It must not be in deactivated state.
• It must have an available address.

If the server does not find an acceptable scope or prefix, it logs a message and drops the packet.

For DHCPv6 processing, see Determining Links and Prefixes.

Serializing Lease Requests
Because multiple DHCP requests can be in process simultaneously for one client and lease, you must serialize
DHCPv4 requests at the lease level. The server queues them on the lease and processes them in the order of
queueing.

For DHCPv6, the server serializes on the client (per link) and not on the lease.

Determining Lease Acceptability
For DHCPv4, the DHCP server now determines if the lease is (still) acceptable for the client. In the case where
this is a newly acquired lease for a first-time client, it will be acceptable. However, in the case where the
server processes a renewal for an existing lease, the acceptability criteria might have changed since the server
granted the lease, and you need to check its acceptability again.

If the client has a reservation that is different from the current lease, the server first determines if the reserved
lease is acceptable. The criteria for release acceptability are:

• The reserved lease must be available.

Using Extension Points
15

Using Extension Points
Serializing Lease Requests

DHCP_Guide_chapter5.pdf#nameddest=unique_13

• The reserved lease must not be in a deactivated state.
• The scope or prefix must not be in a deactivated state.
• If the request is BOOTP, the scope or prefix must support BOOTP.
• If the request is DHCP, the scope or prefix must support DHCP.
• If the client has any selection-criteria, the selection tags must contain all of the client inclusion criteria.
• If the client has any selection-criteria-excluded, the selection tags must contain none of the client exclusion
criteria.

• If the client previously associated with this lease is not the current client, the scope or prefix must not
be in a renew-only state.

If the reserved lease meets all of these criteria, the DHCP server considers the current lease unacceptable. If
there is no reserved lease for this client, or the reserved lease did not meet the criteria for acceptability, the
DHCP server examines the current lease for acceptability.

The criteria for acceptability are:

• The lease must not be in a deactivated state.
• The scope or prefix must not be in a deactivated state.
• If the request is BOOTP, the scope or prefix must support BOOTP. If the request is DHCP, the scope or
prefix must support DHCP.

• If the client does not have a reservation for this lease, and the request is BOOTP, the scope or prefix
must support dynamic BOOTP.

• If the client does not have a reservation for this lease, no other client can either.
• If the client has any selection-criteria, the selection tags must contain all of the client inclusion criteria.
• If the client has any selection-criteria-excluded, the selection tags must contain none of the client exclusion
criteria.

• If the client previously associated with this lease is not the current client, the scope or prefix must not
be in a renew-only state.

At this point in the DHCP server processing, you can use the check-lease-acceptable extension point. You
can use it to change the results of the acceptability test. Do this only with extreme care.

Tip

Upon determining that a lease is unacceptable, the DHCP server takes different actions, depending on the
particular DHCP request currently being processed.

• DHCPDISCOVER—The DHCP server releases the current lease and attempts to acquire a different,
acceptable lease for this client.

• DHCPREQUEST SELECTING—The DHCP server sends a NACK to the DHCP client because the
lease is invalid. The client should then immediately issue a DISCOVER request to acquire a new
DHCPOFFER.

• DHCPRENEW, DHCPREBIND—The DHCP server sends a NACK to the DHCP client to attempt to
force the DHCP client into the INIT phase (attempt to force the DHCP client into issuing a
DHCPDISCOVER request). The lease is still valid until the client actually issues the request.

• BOOTP—The DHCP server releases the current lease and attempts to acquire a different, acceptable
lease for this client.

Using Extension Points
16

Using Extension Points
Determining Lease Acceptability

Take extreme care with the check-lease-acceptable extension point. If the answer the extension point returns
does not match the acceptability checks in the search for an available lease performed in a DHCPDISCOVER
or dynamic BOOTP request, an infinite server loop can result (either immediately or on the next
DHCPDISCOVERor BOOTP request). In this case, the server would acquire a newly available lease, determine
that it was not acceptable, try to acquire a newly available lease, and determine that it was not acceptable, in
a continuous loop.

Caution

DHCPv6 Leasing
TheDHCP server processes IPv6 lease requests by scanning the client request for IA_NA, IA_TA, and IA_PD
options (see DHCPv6 Bindings). For each of these options, the server considers any leases that the client
explicitly requests. If the lease already exists for the client and binding (IA option and IAID), the server
determines if the lease is still acceptable. For leases that the client requests that do not already exist for the
client, the server tries to give that lease to the client if:

• Another client or binding is not already using the lease.

• The prefix for the lease has the client-request flag set in its allocation-algorithms attribute.

• The lease is usable and on a usable prefix (see the DHCPv6 Prefix Usability, on page 17).

Next, the server tries to assure that clients are using reservations and that a client has a usable lease with a
nonzero preferred lifetime on each usable prefix on the link. Thus, the server processes each of these bindings
as follows:

1. Adds any client reservations (not already in use) to the binding, provided the reservation flag is set in the
prefix allocation-algorithms attribute. The server uses the first binding of the appropriate type for the
reservation; that is, it uses address leases for IA_NA bindings and prefix leases for IA_PD bindings.

2. If the client has no lease with a nonzero preferred lifetime on each prefix that the client can use, the server
tries to allocate a lease to the client. The prefix allocation-algorithms flags control how the server allocates
the lease.

DHCPv6 Prefix Usability
A usable prefix:

• Is not deactivated.
• Did not expire.
• Allows leases of the binding type.
• Matches the client selection criteria, if any.
• Does not match the client selection exclusion criteria, if any.

DHCPv6 Lease Usability
A usable lease is:

• Not unavailable.
• Not revoked.
• Not deactivated.

Using Extension Points
17

Using Extension Points
DHCPv6 Leasing

DHCP_Guide_chapter8.pdf#nameddest=unique_342

• Not reserved for a different client.
• Not subject to inhibit-all-renews or inhibit-renews-at-reboot.
• Renewable if being renewed (IA_TA leases are not renewable).
• Leasable with a nonzero valid lifetime.

DHCPv6 Lease Allocation
When the server needs to allocate a new lease on a prefix, it calls any extensions registered at the generate-lease
extension point if the prefix extension flag is set in the allocation-algorithms attribute. (See generate-lease,
on page 34.) The extensions can supply the address (IA_NA or IA_TA binding) or prefix (IA_PD binding)
to be assigned, request that the server use its normal allocation algorithm (if enabled in allocation-algorithms),
or request the server to skip assigning a lease on this prefix. The server might call the extension again if it
supplied an address or prefix that is not valid or is already in use.

If extensions are not allowed, there are no extensions registered, or the extension requests the normal allocation
algorithm of the server, the server allocates a randomly generated address or finds the first best-fit available
prefix (as controlled by the prefix allocation-algorithms attribute) and creates the lease.

Once the server has a lease and does an acceptability check on it (see DHCPv6 Lease Usability, on page 17),
the server calls any extensions registered at the check-lease-acceptable extension point to allow the extension
to alter the acceptability of the lease. (See check-lease-acceptable, on page 36.) You would typically only
use this extension point to change an acceptable result into a unacceptable one; however, the server allows a
unacceptable result to be changed to an acceptable one, although this is strongly discouraged because of
possibly adverse consequences. If the lease is not acceptable, the server likely tries to allocate another lease;
thus, use care to avoid an infinite loop. In some cases, you might need the check-lease-acceptable and
generate-lease extension points for full control of the leases a client gets: generate-lease can request the
server to skip allocation of the lease.

The server calls the check-lease-acceptable extension point for each client request for each lease.

Gathering Response Packet Data
In this stage of processing, the DHCP server collects all the data to send back in the DHCP response and
determines the address and port to which to send the response. You can use the pre-packet-encode extension
point to change the data sent back to the DHCP client in the response, or to change the address to which to
send the DHCP response. (See pre-packet-encode, on page 38.)

Any packets dropped at the pre-packet-encode extension point, whether they be DHCP or BOOTP packets,
still show the address to be leased in the Cisco Prime Network Registrar lease state database, for as long as
the remaining lease time. Because of this, it is advisable to drop packets at an earlier point.

Caution

Encoding Response Packets
In this stage, the DHCP encodes the information in the response data structure into a network packet. If this
DHCP client requires DNS activity, the DHCP server queues a DNS work request to the DNS processing
subsystem in the DHCP server. That request runs whenever it can, but generally not before sending the packet
to the client. (See pre-packet-encode, on page 38.)

Using Extension Points
18

Using Extension Points
DHCPv6 Lease Allocation

Updating Stable Storage
At this stage, the DHCP server ensures that the on-disk copy of the information is up to date with respect to
the IP address before proceeding. For DHCPv6, this can involve multiple leases.

Sending Packets
Use the post-send-packet extension point (see post-send-packet, on page 38) for any processing that you
want to perform outside of the serious time constraints of the DHCP request-response cycle. After the server
sends the packet to the client, it calls this extension point.

Processing DNS Requests
Here is a simplified view of what the DHCP server does to add names to DNS:

1. Builds up a name to use for the A record—The DHCP server creates the name that it will use in the
forward (A record) DNS request. For DHCPv6, these are AAAA records. The DNS name comes from a
variety of sources including the client-requested-host-name and client-domain-name data items, which
are usually populated from options in the DHCP request, and the DNS update configuration (including
the host-name-generator/v6-host-name-generator expressions).

2. Tries to add the name, asserting that none exists yet—At this stage, the prerequisites for the DNS name
update request indicate that the name should not exist. If it succeeds, the DHCP server proceeds to update
the reverse record.

3. Tries to add the name, asserting that the server should supply it—The server tries to add the hostname,
asserting that the host exists and has the same TXT record (or DHCID record for DHCPv6) as the one
that was sent.

• If this succeeds, the server proceeds to the next step.
• If it fails, the server checks if it exhausted its naming retries, in which case it exits and logs an error.
• If it did not exhaust its naming entries, it returns to the first step, which is to build up a name for the
A record.

For DHCPv6, the server uses DHCID records instead of TXT records. Also, DHCPv6 clients can have
multiple leases and the forward zones can be the same or potentially different.

4. Updates the reverse record—Now that the DHCP server knows which name to associate with the reverse
(PTR) record, it can update the reverse record with no prerequisites, because it can assume it is the owner
of the record. If the update fails, the DHCP server logs an error.

Tracing Lease State Changes
The server calls the lease-state-change extension point whenever (and only when) a lease changes state. The
existing state is in the response dictionary lease-state data item. The new state is in the environment dictionary
under new-state. The new-state never equals the existing state (if it did, the server would not call the extension).
You should consider this extension to be read-only and not make modifications to any dictionary items,
because the server calls it in many different places. Use this extension point only for tracking changes to a
lease state.

Using Extension Points
19

Using Extension Points
Updating Stable Storage

Controlling Active Leasequery Notifications
The server determines whether a lease is queued for active leasequery notifications based on the
leasequery-send-all attribute of dhcp-listener. If this attribute is enabled, the DHCP server always sends a
notification to an active leasequery client. If disabled or unset, the DHCP server only sends notifications which
are necessary to maintain accurate state in the active leasequery client.

To allow customer written extensions to control the sending of a lease (such as only on specific state changes),
a new data item, active-leasequery-control, has been added to both the request and response dictionaries.
These data items have three values:

• 0—unspecified (the server determines whether to send the notification)
• 1—send (the server will send the notification)
• 2—do not send (the server will not send the notification)

The active-leasequery-control data item is initialized as 0, unspecified.

These data items may be written and read, but the value that is read is only the value that might have been
previously written.

Note

These data items can force the DHCP server to take specific actions after being written, but reading them
without previously writing themwill always return 0, unspecified. These data items will not let you determine
the choices that the DHCP server makes when it comes to deciding whether or not to send a message to an
active leasequery client concerning the changes (if any) made to a lease that is being processed. Thus, these
data items are technically read/write, but reading them will only allow you to determine what you may have
previously written into them.

These data items are examined (the response dictionary is examined first, then the request) when the lease is
written to the internal lease state database as that is when the lease is also queued for active leasequery
notification. This occurs after the check-lease-acceptable and lease-state-change extensions points, but prior
to the pre-packet-encode extension point. Therefore, any changes made to these attributes at or after the
pre-packet-encode extension point will be ignored.

Whether a lease is queued for active leasequery notification is determined as follows:

ActionLeasequery-send-allRequest's
active-leasequery-control

Response's
active-leasequery-control

Conditional (see
leasequery-send-all
attribute description)

False or unset0—unspecified0—unspecified

SentTrue0—unspecified0—unspecified

SentIgnored1— send0—unspecified

Not SentIgnored2—don't send0—unspecified

SentIgnoredIgnored1— send

Not SentIgnoredIgnored2—don't send

Using Extension Points
20

Using Extension Points
Controlling Active Leasequery Notifications

The active-leasequery-control of response and request is examined prior to any examination of the
leasequery-send-all attribute.

Note

If either of these dictionary data items has a value other than unspecified, that value will override any value
configured in the leasequery-send-all attribute of the dhcp listener.

You cannot control the sending of active leasequery information by writing a single extension that runs only
at the lease-state-change extension point, because that extension point is only called when there is a change
in state of a lease.

Note

Lease state changes may not occur when you might expect them to. For example, if a lease is leased, and that
same client goes through a DISCOVER/OFFER/REQUEST/ACK cycle, the lease-state-change extension
point is not called since the lease does not actually go through a state change internally and it remains leased
throughout the cycle. Thus, to gain absolute control over the transmission of information to active leasequery
clients, you have to initialize the active-leasequery-control attribute in request processing, and then possibly
alter it or override it by operating on the response dictionary value at the lease-state-change extension point.

Extension Dictionaries
Every extension is a routine with three arguments. These arguments represent the request dictionary, response
dictionary, and environment dictionary. Not every dictionary is available to every extension. The following
table shows the extensions points and the dictionaries that are available to them.

Table 4: Extension Points and Relevant Dictionaries

DictionaryExtension Point

Environmentinit-entry

Request, Environmentpre-packet-decode

Request, Environmentpost-packet-decode

Request, Environmentpre-client-lookup

Request, Environmentpost-client-lookup

Request, Environmentpost-class-lookup

Request, Response, Environmentgenerate-lease

Response, Environmentlease-state-change

Request, Response, Environmentcheck-lease-acceptable

Request, Response, Environmentpre-packet-encode

Request, Response, Environmentpost-packet-encode

Using Extension Points
21

Using Extension Points
Extension Dictionaries

DictionaryExtension Point

Request, Response, Environmentpost-send-packet

Environmentenvironment-destructor

When the server sendsDHCPv6Reconfiguremessages, it can call the pre-packet-encode, post-packet-encode,
and post-send-packet extension points without a request.

Note

For the request and response dictionaries, you can use the isValidmethod to probe if the dictionary is available
for an extension point.

Each of the three dictionaries consists of name-value pairs. The environment dictionary, which is available
to every extension point, is the simplest dictionary. The request and response dictionaries are more complex
and their data is typed. Thus, when you set a value in one of these dictionaries, you need to match the data
type to the value. You can use the dictionaries for getting, putting, and removing values.

Environment Dictionary
The environment dictionary is available at all extension points. It is strictly a set of name-value pairs in which
both the name and the value are strings.

The DHCP server uses the environment dictionary to communicate with extensions in different ways at
different extension points. At some extension points, the server places information in the environment dictionary
for the extension to modify. In others, the extension can place values in the environment dictionary to control
the flow or data after the extension finishes its processing.

The environment dictionary is unique in that an extension can put any name-value pair in it. Although you
do not get an error for using undocumented name-value pairs, the server does not recognize them. These
name-value pairs can be useful for your extension points to communicate data among them.

The DHCP server creates the environment dictionary when a DHCP request arrives and the dictionary remains
with that request through the processing. Thus, an extension that runs at the post-packet-decode extension
point can put data into the environment dictionary, and then an extension run at the pre-packet-encode
extension point might read that data from the dictionary.

The init-entry extension point has a unique environment dictionary.Note

General Environment Dictionary Data Items
The data items in the following table are valid in the environment dictionary at all extension points. (See the
individual extension point sections for environment dictionary data items specific to each one.)

The data items are input, output, or both:

• Input—The DHCP server sets the value and inputs it to the extension.
• Output—The value is output to the DHCP server, which reads it, and acts upon it. Note that as there can
be multiple extensions at an extension point, it is possible that an earlier extension running at an extension
point has set this and hence this can be an “input” to a later extension run at that extension point. When

Using Extension Points
22

Using Extension Points
Environment Dictionary

the table indicates that it is not an “input”, it means that the DHCP server did not explicitly set this before
calling the extension(s) at that extension point.

Table 5: General Environment Dictionary Data Items

DescriptionEnvironment Data Item

If the drop value is equal to the string true when the extension exits, the DHCP
server drops the input packet and logs a message in the log file. Initially set to
false. Available at most extension points, but not all (such as generate-lease).

For recommendations on how to use drop for multiple extensions
per extension point, see Multiple Extension Considerations, on page
6.

Note

drop (input1/output)

Namewith which the extension was configured. You can configure the same piece
of code as several different extensions and at several different extension points.

This allows one piece of code to do different things, depending on how you
configure it. The code can also use this string to find itself in the
extension-name-sequence string, for which it needs to know its own name.

extension-name (input)

Provides a comma-separated string representing the configured extensions for this
extension point. It allows an extension to determine which extensions can run
before and after it. The extension-name data item provides the currently running
extension.

For example, if you configure tclfirst as the first extension and dexscript as the
fifth, the extension-name-sequence would contain "tclfirst,,,,dexscript".

extension-name-sequence
(input)

Name of the extension point. For example, post-packet-decode.extension-point (input)

String that is the sequence number of the extension at the extension point.extension-sequence
(input)

This data item may be set by a pre-packet-decode, post-packet-decode,
pre-client-lookup, post-client-lookup, and post-class-lookup extension to specify
an IPv4 address or scope name to be used in determining the network location of
the client (instead of the giaddr or received interface's address). This is only used
for DHCPv4 requests (ignored for DHCPv6). If a scope name is specified, it is
only used to determine the client's location and does not mean that the client will
necessarily get a lease from that scope.

giaddr-override (output)

This data item may be set by a pre-packet-decode, post-packet-decode,
pre-client-lookup, post-client-lookup, and post-class-lookup extension to specify
an IPv6 address or prefix name to be used in determining the network location of
the client (instead of the Relay-Forw's link-address or received interface's address).
This is only used for DHCPv6 requests (ignored for DHCPv4). If a prefix name
is specified, it is only used to determine the client's location and does not mean
that the client will necessarily get a lease from that prefix. See Determining Links
and Prefixes.

link-address-override
(output)

Using Extension Points
23

Using Extension Points
General Environment Dictionary Data Items

DHCP_Guide_chapter5.pdf#nameddest=unique_13
DHCP_Guide_chapter5.pdf#nameddest=unique_13

DescriptionEnvironment Data Item

If the drop value is equal to the string true, and the log-drop-message value is
equal to the string false when the extension exits, then the DHCP server drops the
input packet, but does not log a message in the log file.

Does not apply to init-entry.

log-drop-message
(output)

For this to be effective, it must be set by an extension called at the
pre-packet-decode, post-packet-decode, pre-client-lookup, post-client-lookup,
or post-class-lookup extension point.

It applies to DHCPRELEASE requests only. If set to true, instructs the server to
release the lease by the IP address if it cannot retrieve the lease by the client-id as
derived from the DHCPRELEASE request.

release-by-ip (output)

Setting this to a number makes that number the current setting of the
extension-trace-level server attribute for all extensions processing this request.

trace-level (output)

Set with the user-defined-data attribute of a lease stored with the lease before
request processing. You can have it written to disk before (but not with) a
pre-packet-encode.

If set to null, the server ignores the user-defined-data from the lease. You cannot
remove a previous value by using a null string value. Appropriate for responses
only.

When the server writes the user-defined-data to a lease, the read-only
client-user-defined-data response dictionary data item assumes its value.

Be careful in using this data item in multiple extensions for an
extension point. See Multiple Extension Considerations, on page 6.

Note

user-defined-data
(output)

1 For all but post-client-lookup and post-class-lookup, drop is only an output. For post-client-lookup
and post-class-lookup, the server sets drop to false if the specified client-class exists; and true if the
client-class does not exist (and hence the server will not continue processing this packet unless the
extension changes drop to false).

Initial Environment Dictionary
You can configure an extension with init-args and init-entry. Alternatively, you can specify configuration
information for an extension to read out of the environment dictionary. You can set the DHCP property
initial-environment-dictionary with a series of attribute-value pairs, and each pair is available in every
environment dictionary. Using this capability, you can specify a variety of configuration and customizing
information. Any extension can simply read this data directly out of the environment dictionary, without
having to store it in some static data area, as is required with the init-args or init-entry approach.

You can read the values defined using the initial-environment-dictionary approach from any environment
dictionary. You can also define new values for any attributes that appear in the initial-environment-dictionary.
These new values are then available for the life of that environment dictionary (usually the life of the request
packet being processed). However, this does not change the contents of any other environment dictionary.
Any new environment dictionary (associated with a different request) sees the attribute-value pairs defined
by the initial-environment-dictionary property of the DHCP server.

Using Extension Points
24

Using Extension Points
Initial Environment Dictionary

In addition, these initial-environment-dictionary attribute-value pairs do not appear in an enumeration of the
values of the environment dictionary. They are only available if you request an attribute value not currently
defined in the environment dictionary. The attribute-value pairs do not actually appear in the environment
dictionary. Thus, if you define a new value for one of the attributes, that new value does appear in the
environment dictionary. If you later delete the value, the original one is again available if you should request
it.

Request and Response Dictionaries
The request and response dictionaries have a fixed set of accessible names. However, you cannot access all
names from every extension point. These dictionaries make internal server data structures available to the
extension for read-write or, in some cases, read-only access. Each data item has a particular data type. If you
omit the correct data type (for C/C++ extensions) on a put operation, or if the DHCP server cannot convert it
to the correct data type (for Tcl extensions), the extension will fail.

The request dictionary is available at the beginning of the processing of a request. After the server creates a
response, both the request and response dictionaries are available. It is an error to access a response dictionary
before it is available.

In general, you cannot use an extension to change information data in the server. In some cases, however,
you can use an extension to change configured data, but only for the duration of the processing for just that
single request.

Appendix B contains details on the options and data items available for the received client request (the Request
Dictionary) and for the response sent (the Response dictionary).

Decoded DHCP Packet Data Items
The DHCP protocol is a request-response UDP-based protocol and, thus, the stimulation for a DHCP server
operation is usually a DHCP request from a client. The result is usually a DHCP response sent back to that
client.

The DHCP extension facility makes the information input in the DHCP request available to extensions at
most of the extension points, and the information to be sent as a response to a DHCP request available at the
pre-packet-encode extension point (see pre-packet-encode, on page 38).

In addition to this DHCP packet-based information, there is additional data that the DHCP server uses when
processing DHCP requests. This data becomes associated with either the DHCP request or the DHCP response
as part of the architecture of the server. Much of this data is also made available to extensions, and much of
it can be both read and written—in many cases altering the processing algorithms of the DHCP server.

The request and response dictionaries, therefore, contain two classes of data in each dictionary. They contain
decoded packet data items as well as other request or response associated data items. The decoded packet data
items are those data items directly contained in or derived from the DHCP request or DHCP response. Access
to the decoded packet data items allows you to read and, in some cases, rewrite the DHCP request and DHCP
response packet. The following figure shows the relationship between the request and the response dictionaries.

Using Extension Points
25

Using Extension Points
Request and Response Dictionaries

DHCP_Guide_appendix2.pdf#nameddest=unique_706

Figure 1: Extensions Request and Response Dictionaries

You can access information from the DHCP request packet, such as the giaddr, ciaddr, and all the incoming
DHCP options by using the decoded packet data items in the request dictionary. Similarly, you can set the
giaddr and ciaddr, and add and remove DHCP options in the outgoing DHCP response by accessing the
decoded packet data items in the response dictionary.

It is important to realize that access to the packet information provided by the decoded packet data items is
not all available to you. The specific data items available to that extension point are listed in the description
of each extension point. Because the decoded packet data items are always accessible as a group, they are
listed as a group.

You access DHCP options by name. If the option is not present, the server returns no data for that option. If
you place an option into the decoded request or decoded response, it replaces any option with the same name
already in the decoded request or decoded response, unless, in the put operation, you want the data specifically
appended to existing data.

Some DHCP options can have multiple values. For example, the routers option can have one or more IP
addresses associated with it. Access to these multiple values is by indexed operations on the option name.

A clear operation on the request or response dictionary removes all the options in the decoded packet.Tip

Using Parameter List Option
There is one option, dhcp-parameter-request-list, that the DHCP server specially handles in twoways, available
as either a:

• Multiple-valued option of bytes under the name dhcp-parameter-request-list.
• Blob (sequence of bytes) option under the name dhcp-parameter-request-list-blob.

You can get or put the option using either name. The DHCP server handles the dhcp-parameter-request-list
(and its -blob variant as well) differently in the response dictionary than in the request dictionary. When you
access this option in the request dictionary, it is just another DHCP option in the request dictionary. In the
response dictionary, however, special processing takes place.

You can use the dhcp-parameter-request-list option in the response dictionary to control the order of the
options returned to the DHCP or BOOTP client. When you put the option in the response dictionary, the
DHCP server reorders the existing options so that the ones listed in the option are first and in the order that
they appear in the list. Then, the remaining options appear in their current order after the last ones that were
in the list. The DHCP server retains the list, and uses it to order any future options that it puts into the response,
until it replaces the list with a new one.

Using Extension Points
26

Using Extension Points
Using Parameter List Option

When an extension does a get operation for the dhcp-parameter-request-list in the response dictionary, it does
not look in the decoded response packet to find an option. Instead, the DHCP server synthesizes one that
contains the list of all options currently in the decoded response packet.

Extension Point Descriptions
The following sections describe each extension point, their actions, and data items. For all the extension points,
you can read the extension-point and set the trace-level data item values in the environment dictionary. For
most extension points, you can also tell the server to drop the packet.

init-entry
The init-entry extension point is an additional one that the DHCP server calls when it configures or
unconfigures the extension, which occurs when starting, stopping, or reloading the server. This entry point
has the same signature as the others for the extension, but you can use only the environment dictionary. You
do not configure the init-entry extension with dhcp attachExtension in the CLI, but you do so implicitly by
defining an init-entry on an already configured extension.

You must supply an init-entry extension point to enable extension points for DHCPv6 (or disable them for
DHCPv4).

Note

In addition to configuring an init-entry with the name of the entry point, you can also configure a string of
arguments that the DHCP server loads in the environment dictionary under the string arguments before calling
the init-entry point. Using arguments, you can create a customized extension by giving it different initialization
arguments and thus not require a change to the code to elicit different behavior.

The order in which the server calls extensions at the init-entry extension point can be different from reload
to reload, or release to release.

Note

An extension, when called to uninitialize, must terminate any threads it creates and clean up after itself before
returning. Once the extension returns, the DHCP server unloads the extension from memory, which could
result in a server failure if a thread an extension created is left running.

Caution

Environment Dictionary for init-entry
See the following table for the environment dictionary data items specific to init-entry.

Using Extension Points
27

Using Extension Points
Extension Point Descriptions

Table 6: init-entry Environment Dictionary Data Items

DescriptionEnvironment Dictionary Data
Item

Version or versions of DHCP for which the server should call the registered
extension points for the extension. Can be v4, v6, or v4,v6.

dhcp-support (input/output)

For an extension attached to the lease-state-change extension point, if
specified, the lease-state-change extension point is called only if the current
state of the lease is the state specified by exiting-state.The extension is only
called when the specified state is exited. If not specified, and the extension
is attached to the lease-state-change extension point, the extension will be
called for all state changes. If specified, the exiting-statemust specify a valid
lease state: available, offered, leased, expired, unavailable, released,
other-available, pending-available, revoked.

Note: There is no strict state transition table. In a failover environment, the
server that receives a binding update message sets the state to whatever its
partner informs it to be, without requiring specific state transitions.

exiting-state (output)

Minimum version of the extension API required by the extension. Set it to
2 as that is the current API version.

extension-extensionapi-version
(output)

Configure arguments by setting init-args on an existing extension point.
These arguments are present for both the configure and unconfigure calls of
the init-entry entry point.

The extension point name for the configure call is initialize, and for the
unconfigure call is uninitialize.

init-args (input)

The server sets this data item to indicate what the server is configured to
support. Can be v4, v6, or v4,v6, depending on the DHCP server dhcp-support
attribute setting (which requires setting expert attribute visibility=3) and
whether any prefixes are configured:

• If dhcp-support =both and prefixes are not configured, then
server-dhcp-support is set to v4.

• If dhcp-support =both and one or more prefixes are configured, then
server-dhcp-support is set to v4,v6.

• If dhcp-support =v4, then server-dhcp-support is set to v4.
• If dhcp-support =v6 and one or more prefixes are configured, then

server-dhcp-support is set to v6.

server-dhcp-support (input)

Version of the server extension API. The value is 2.server-extensionapi-version
(input)

pre-packet-decode
The dictionaries available for pre-packet-decode are request and environment.

This extension point is the first one the DHCP server encounters when a request arrives. The server calls it
after receiving a packet but before it decodes the packet (at the post-packet-decode extension point). An

Using Extension Points
28

Using Extension Points
pre-packet-decode

extension can use this extension point to examine a packet and alter it before the server decodes it, or cause
the server to drop it.

Two key data items in the request dictionary are for use with pre-packet-decode are client-packet and packet.
These can be used to examine the received packet, modify the packet, and write it back.

The request dictionary client-packet and packet data items used for pre-packet-decode are available at any
extension point that has a request dictionary. However, you should not directly alter or replace the packet at
any extension point other than pre-packet-decode, because doing so can have unexpected side effects. For
example, the server might never pick up the changes to the packet, or options data can change unexpectedly
during processing.

Caution

An extension that uses getByteswith client-packet or packet directly alters the bytes of packet by writing into
the returned buffer. However, an extension must use put or putBytes to adjust the length of the packet (and
the operation can fail if the packet is too big). For DHCPv6, adjusting the length of the client portion of the
packet, if relayed, requires updating the lengths in the Relay Message options in the packet.

It is up to an extension to handle parsing the packet to locate what it needs and properly alter the packet, if
that is the intent.

Because the server has not yet decoded the received packet, most request dictionary data items are not available
(as the server normally fills them in from the received packet). Thus, this extension point must extract data
directly from the packet. The extension must also properly handle incorrectly formatted packets.

If you enable incoming-packet-detail logging, the server logs the received packet after calling the extensions
registered at this extension point. If DHCP server debug tracing is configured with V is 3 or more, the server
also logs the packet before calling the extensions registered for this extension point, if at least one extension
is registered.

This extension gets access to the received packet before it has been validated in any way. Therefore, the
extension must be written to handle completely or partially invalid DHCP packets.

Caution

post-packet-decode
The dictionaries available for post-packet-decode are request and environment.

Extension Description
This extension point immediately follows the decoding of the input packet and precedes any processing on
the data in the packet. The primary activity for an extension at this point is to read information from an input
packet and do something with it. For example, you might use it to rewrite the input packet.

The post-packet-decode extension point is one of the easiest extension points to use. If you can express the
change in server behavior as a rewrite of the input DHCP or BOOTP packet, you should use this extension
point. Because the packet was decoded, but not processed in any way, the number of side effects are very
limited.

The post-packet-decode extension point is the only one at which you can modify the decoded input packet
and ensure that the server recognizes all the modifications. You can have the extension drop the packet and
terminate further processing by using the drop data item in the environment dictionary.

Using Extension Points
29

Using Extension Points
post-packet-decode

Overriding Client Identifiers
To override client identifiers (IDs), you can set an expression value for the override-client-id attribute for a
client-class or use the override-client-id data item at the post-packet-decode extension point. The extension
method maps the client to a different identifier than the server.

There is a variant of the extension data item where you can get or put the override client ID as a string:
override-client-id-string. You can also request the data type of the override client ID through the read-only
override-client-id-data-type data item.

Different values are returned based on how you put and get the override-client-id or its override-client-id-string
variant (see the following table for some examples).

Table 7: Puts and Gets of Client ID Overrides

Get ValuePut ValueData Item UsedAction

01:02:03:04override-client-idput

01 02 03 04override-client-idputBytes

01:02:03:04 (blob)override-client-idget

01 02 03 04 (raw bytes)override-client-idgetBytes

01:02:03:04
(blob-as-string)

override-client-id-stringget [Bytes]

bloboverride-client-id-data-typeget [Bytes]

Table 8: Puts and Gets of Client ID Overrides

Get ValuePut ValueData Item UsedAction

01:02:03:04 testoverride-client-id-stringput [Bytes]

01:02:03:04 test (string)override-client-id-stringget [Bytes]

30:31:3a:30:32:3a:30:33:3a:30:34:74:65:73:74
(blob of “01:02:03:04 test”)

override-client-idget [Bytes]

nstroverride-client-id-data-typeget [Bytes]

The equivalent client-override-client-id data items (that you can use in later extension points where the response
dictionary is valid) function the same way, although they are read-only.

When using [v6-]override-client-id expressions, leasequery by client-id requests may need to specify the
override-client-id attribute to correctly retrieve the information on the lease(s) for the client.

Note

Using Extension Points
30

Using Extension Points
Overriding Client Identifiers

This extension is called after the server has parsed the packet syntactically, but before any validation has been
applied. Therefore, the extension must be written to handle potentially invalid packets.

Caution

Environment Dictionary for post-packet-decode
See the following table for the environment dictionary data items specific to post-packet-decode.

Table 9: post-packet-decode Environment Dictionary Data Items

DescriptionEnvironment Dictionary Data Item

Both these data items are for DHCPv4 only. If
cnr-forward-dhcp-request is set to true when the
extension returns, the cnr-request-forward-address-list
must contain the (comma separated) list of IPv4
addresses (and optionally port number) to which the
server should forward the request. Once forwarded,
the server drops the request. Each entry in the comma
separated list may be ipv4-address or
ipv4-address:port-number (if no port number
specified, the default dhcp server port is used). For
more information, see Setting DHCP Forwarding.

cnr-forward-dhcp-request (input)

cnr-request-forward-address-list (output)

post-class-lookup
The dictionaries available for post-class-lookup are request and environment.

The server calls this extension point only if there is a client-class-lookup-id; otherwise, it is similar to a
post-packet-decode. The server calls the post-class-lookup extension point after evaluating the
client-class-lookup-id and setting the client-class data for this client.

On input to this extension point, the environment dictionary has the drop data item set to true or false. You
can change this setting by extension to drop the packet (or not drop it), and the server recognizes the change.
The server also looks at the log-drop-message to decide whether to log the drop.

Environment Dictionary for post-class-lookup
See the following table for the environment dictionary data item specific to post-class-lookup.

Table 10: post-class-lookup Environment Dictionary Data Item

DescriptionEnvironment Dictionary Data Item

Sets the named client-class for the packet, regardless of the previous
client-class. This setting has an effect only if the drop environment
dictionary data item value is false on exiting the extension point.

client-class-name (output)

Using Extension Points
31

Using Extension Points
Environment Dictionary for post-packet-decode

DHCP_Guide_chapter2.pdf#nameddest=unique_55

pre-client-lookup
The dictionaries available for pre-client-lookup are request and environment.

You can use this extension point only if you enabled client-class processing for your DHCP server. This
extension point allows an extension to perform any or all of these actions:

• Modify the client that the server looks up during client-class processing.
• Specify individual data items to override those found from the client entry or client-class it specifies.
• Instruct the server to skip the client lookup altogether. In this case, the only client data used is data that
the extension supplied in the environment dictionary.

Although the request dictionary is available to make decisions about the operation of an extension running at
this extension point, the environment dictionary controls all the operations.

Environment Dictionary for pre-client-lookup
The environment dictionary data items in the table below are the control data items available at
pre-client-lookup for clients and client-classes.

If you set the environment dictionary data items in Table 12: pre-client-lookup Environment Dictionary
Override Data Items, their values override those determined from the client lookup (either in the internal
database or from LDAP). If you do not add anything to the dictionary, the server uses what is available in the
client lookup.

Table 11: pre-client-lookup Environment Dictionary Control Data Items

DescriptionEnvironment Dictionary Data
Item

Name of the client the client-class processing code looks up, in CNRDB or
LDAP. If you change the name at this extension point, the DHCP server looks
up the client you specify.

client-specifier (input/output)

Instructs the server to use the value associated with the
default-client-class-name option as the class-name if:

• The client-specifier data itemwas not specified in the pre-client-lookup
script.

• The server could not locate the specific client entry.

The default-client-class-name data item then assumes precedence over the
class-name associated with the default client.

default-client-class-name
(output)

The value is determined by the server configuration. If set to true, the DHCP
server skips the normal client lookup that it would have performed
immediately upon exit from this extension.

The only data items used to describe this client are those placed in the
environment dictionary (see the table below).

skip-client-lookup
(input/output)

Using Extension Points
32

Using Extension Points
pre-client-lookup

Table 12: pre-client-lookup Environment Dictionary Override Data Items

DescriptionEnvironment Data Item

Convert this string to a number and use the result as the action. The numbers you
can use are 0 (for none) and 1 (for exclude).

action (output)

Absolute time, measured in seconds, from January 1, 1970. Use to indicate the time
at which the client authentication expires.

When the client authentication expires, the DHCP server uses the values in the
client unauthenticated-client-class option instead of its client-class to fill in missing
data items in the client entry.

authenticate-until
(output)

Use the client-class specified by this data item to fill in the missing information in
the client entry. If there is no client-class corresponding to the name specified, the
DHCP server logs a warning and continues processing.

If you specify none, the DHCP server acts as if the client entry did not include the
client-class name.

client-class-name
(output)

Use this domain name for the client DNS operations in preference to the one
specified in the DNS update configuration. The DNS server shown as the primary
server for the domain in the scope or prefix must also be the primary server for the
domain you specified.

If the domain name is not overridden in the client or client-class entry, the DHCP
server uses the domain name from the scope or prefix.

If the client entry or the extension contains the word none, the DHCP server uses
the domain name from the scope or prefix.

domain-name (output)

Use this for the client in preference to the host-name options specified in the input
packet, or any data from the client or client-class entry.

If you set this to none, the DHCP server does not use any information from the
client or client-class entry, but uses the name from the client request.

host-name (output)

Use this policy as the policy specified for the client entry, overriding any policy
specified by that client entry.

policy-name (output)

List of comma-separated strings, each specifying (for this input packet) the selection
criteria for the client. Any scope or prefix the client uses must have all of these
selection tags.

Use this data item to override any criteria specified in the client or client-class entry.
If you do, the DHCP server does not use the client entry selection criteria,
independent of whether they were stored in the local or LDAP database.

If you set this data item to none, the DHCP server does not use selection tags for
the packet.

If you set this to a null string, the DHCP server treats it as if it were not set and
uses the selection criteria from the client or client-class entry.

selection-criteria
(output)

Using Extension Points
33

Using Extension Points
Environment Dictionary for pre-client-lookup

DescriptionEnvironment Data Item

Name of the client-class to use if the server does not authenticate the client. If you
want to indicate without specifying the unauthenticated-client-class-name, use an
invalid client-class name as the value of this data item.

You can use the value none or any name that is not a client-class name. The DHCP
server logs an error that the client-class is not present.

unauthenticated-client-
class-name (output)

post-client-lookup
The dictionaries available for post-client-lookup are request and environment.

You can use this extension point to examine the results of the entire client-class processing operation, and
take an action based on those results. You might want to use it to rewrite some of the results, or to drop the
packet. If you want to override the hostname in the packet returned from the client-class processing from an
extension running at the post-client-lookup extension point, set the hostname to the client-requested-host-name
data item in the request dictionary. This causes Cisco Prime Network Registrar to look to the server as though
the packet came in with whatever string you specified in that data item.

You also can use this extension point to place some data items in the environment dictionary to affect the
processing of an extension running at the pre-packet-encode extension point (see pre-packet-encode, on page
38), where it might load different options into the response packet or take other actions.

Environment Dictionary for post-client-lookup
See the following table for the environment dictionary data items specific to post-client-lookup.

Table 13: post-client-lookup Environment Dictionary Data Items

DescriptionEnvironment Dictionary Data
Item

Name of the client that the client-class processing looked up.client-specifier (input)

The DHCP server sets this attribute to ease recovery from LDAP server
failures so that a post-client-lookup script can respond to an LDAP server
failure.

The DHCP server, after a client lookup, sets this flag to true if the LDAP
query failed because of an LDAP server error. If the server received a
response from the LDAP server, one of two conditions occurs:

• It sets the flag to false.

• The cnr-ldap-query-failed attribute does not appear in the environment
dictionary.

cnr-ldap-query-failed (input)

generate-lease
The dictionaries available for generate-lease are request, response, and environment. This extension point is
available for DHCPv6 only.

Using Extension Points
34

Using Extension Points
post-client-lookup

You can use this extension point to generate a DHCPv6 address or prefix and allow the extension to control
the address or prefix.When the extension returns a generated-address value, the server relaxesmany restrictions
on the address or prefix returned as it assumes the extension is in control for leasing activities. This includes
failover constraints (hence, an odd address can be assigned by the backup, an even address can be assigned
by the main, and a delegated prefix that is in other-available can be assigned). Extensions are thus responsible
for managing the address or prefix delegation space.

The server calls generate-lease only if the prefix is configured to allow extensions to be called during address
allocation or prefix delegation—the extension flag must be set in the allocation-algorithms attribute for the
prefix. When the server calls the generate-lease extension:

• The server sets the prefix context for the response dictionary to the prefix on which the lease is to be
created. (Calling setObject with DEX_PREFIX and DEX_INITIAL will return to this context.)

• No lease context exists, because the server has not yet created a lease. However, lease-binding data items,
in particular lease-binding-type and lease-binding-iaid are available. (Calling setObjectwithDEX_LEASE
and DEX_INITIAL returns to this context and also sets the prefix, because a lease context sets three
contexts: lease, binding, and prefix.)

• The server sets the skip-lease environment dictionary data item to false.
• The server sets the (read-only) attempts environment dictionary data item with the number of times
(starting with 1) it called the extension to create this lease.

• For prefix delegation, the following environment dictionary data items are available:

• prefix-length—Prefix length (requested or default prefix length).
• default-prefix-length—Default prefix length (from policies).
• longest-prefix-length—Longest allowable prefix (from policies).
• shortest-prefix-length—Shortest allowable prefix (from policies).

When the extension returns, it can:

• Request an explicit address (for stateful address assignment) by setting the address on the
generated-address environment dictionary data item. If the address is not available for the client (that
is, if the address is already in use) or is not contained by the prefix, the server might call this extension
again.

• Request an explicit prefix (for prefix delegation assignment) by setting the prefix on the generated-prefix
environment dictionary data item. If the prefix is not available for the client or is not contained by the
prefix, the server might call this extension again. The prefix is not available for the client under the
following conditions:

• if the prefix is already in use
• if it is contained in a shorter prefix that has already been delegated
• if a longer prefix contained in it has already been delegated by the server

The server will not reject the prefix if it is shorter or longer than allowed by the policy.

• Cause the server not to assign a lease for this prefix by setting the skip-lease environment dictionary
data item to true. The server will advance to the next prefix (if any).

• Allow normal address assignment or prefix delegation to occur by not setting any of the above.

The server calls the extension point at most 500 times for each lease (this limit is the same one that currently
applies when the server randomly generates leases). The server calls an extension multiple times only if the
extension supplies an unusable address or delegated prefix (that is not in range for the prefix or already exists).

Using Extension Points
35

Using Extension Points
generate-lease

You cannot request the server to drop the packet at this extension point.Note

Environment Dictionary for generate-lease
See the following table for the environment dictionary data items specific to generate-lease.

Table 14: generate-lease Environment Dictionary Data Items

DescriptionEnvironment Dictionary Data Item

Number of times that the server calls this extension for a single lease.attempts (input)

Specifies the default prefix length to be used for allocating a delegated
prefix. Set to the default-prefix-length (from the policy hierarchy).

default-prefix-length (input)

Address the extension wants the server to use for the lease.generated-address (output)

Delegated DHCPv6 prefix the extension wants the server to use for the
lease.

generated-prefix (output)

Set to true if the server is requesting the extension to limit any generated
prefix to the client’s requested prefix length of prefix-length; false
otherwise. If the client requested a prefix length, the server first calls the
generate-lease extension attempting to get a delegated prefix of that
length. Note that the server bounds the client’s requested length to be
between the shortest-prefix-length and longest-prefix-length.

limit-to-prefix-length (input)

Specifies the longest prefix length to be used for allocating a delegated
prefix. Set to the (expert mode) longest-prefix-length (from the policy
hierarchy) – defaults to default-prefix-length if not configured.

longest-prefix-length (input)

Set to the requested or default prefix length.prefix-length (input)

Specifies the shortest prefix length to be used for allocating a delegated
prefix. Set to the (expert mode) shortest-prefix-length (from the policy
hierarchy) – defaults to default-prefix-length if not configured.

shortest-prefix-length (input)

Set to true if the extension does not want the server to generate the lease.skip-lease (output)

check-lease-acceptable
The dictionaries available for check-lease-acceptable are request, response, and environment.

This extension point comes immediately after the server determines whether the current lease is acceptable
for this client. You can use this extension to examine the results of that operation, and to cause the routine to
return different results. See Determining Lease Acceptability, on page 15.

Environment Dictionary for check-lease-acceptable
See the following table for the environment dictionary data item specific to check-lease-acceptable.

Using Extension Points
36

Using Extension Points
Environment Dictionary for generate-lease

Table 15: check-lease-acceptable Environment Dictionary Data Item

DescriptionEnvironment Dictionary Data
Item

A read/write data item that the DHCP server initializes depending on if the
lease is acceptable for this client. You can read and change this result in an
extension. Setting the acceptable data item to true indicates that it is
acceptable; setting it to false indicates that it is unacceptable.

acceptable (input)

Specifies the default prefix length to be used for allocating a delegated
prefix. Set to the default-prefix-length (from the policy hierarchy).

default-prefix-length (input)

Specifies the longest prefix length to be used for allocating a delegated
prefix. Set to the (expert mode) longest-prefix-length (from the policy
hierarchy) – defaults to default-prefix-length if not configured.

longest-prefix-length (input)

Specifies the client’s requested prefix length if the client provided one or
0 if not.

prefix-length (input)

Specifies the shortest prefix length to be used for allocating a delegated
prefix. Set to the (expert mode) shortest-prefix-length (from the policy
hierarchy) – defaults to default-prefix-length if not configured.

shortest-prefix-length (input)

lease-state-change
The dictionaries available for lease-state-change are response and environment.

The existing state is in the lease-state response dictionary data item. The new state is in the environment
dictionary data item new-state. The server never calls the extension point if the new state matches the existing
one.

Use this extension point mainly for read-only purposes, although you can place data in the environment
dictionary so that other extension points can get it later.

The lease-state-change can also have a different environment dictionary, such as for lease expirations.

Environment Dictionary for lease-state-change
See the following table for the environment dictionary data items specific to lease-state-change.

Table 16: lease-state-change Environment Dictionary Data Items

DescriptionEnvironment Dictionary Data Item

The start time of the new state. The previous state’s start time is in the
lease-start-time-of-state information data item in the response dictionary.

new-start-time-of-state (input)

The state the lease is being changed to. The current state is in the
lease-state lease information data item in the response dictionary.

new-state (input)

Using Extension Points
37

Using Extension Points
lease-state-change

pre-packet-encode
The dictionaries available for pre-packet-encode are request, response, and environment.

For DHCPv6 Reconfigure messages, there is no request dictionary (because Reconfigure is a server-initiated
message). Thus, enabled extensions should check the response msg-type for ADVERTISE or REPLY or use
isValid on the request to ensure that the Reconfigure message exists.

Note

post-packet-encode
The dictionaries available for post-packet-encode are request, response, and environment.

For DHCPv6 Reconfigure messages, there is no request dictionary (because Reconfigure is a server-initiated
message). Thus, enabled extensions should check the response msg-type for ADVERTISE or REPLY or use
isValid on the request to ensure that the request dictionary exists.

Note

The server calls this extension point after encoding a packet, but before sending it to the client. The server
can thereby examine and alter the packet before it sends the packet to the client, or the extension can cause
the server to drop the packet (although the server might have made changes to its internal and on-disk data
that will not be backed out if the packet is dropped).

The client-packet and packet data items were added to the response dictionary with similar behavior as
described for the request dictionary in pre-packet-decode, on page 28. Note that this extension point is the
only one that can request the response client-packet or packet data items, because no packet exists at any other
extension point. Also, the server does not process the changes made to the packet; the server simply sends
the altered packet to the client.

If you enable outgoing-packet-detail logging, the server logs the packet after calling the extensions registered
at this extension point. If DHCP server debug tracing is configured with X>=3, the server also logs the packet
before calling the extensions registered for this extension point, but only if at least one extension is registered.

post-send-packet
Use the post-send-packet extension point for any processing that you want to perform outside of the serious
time constraints of the DHCP request-response cycle. After the server sends the packet to the client, it calls
this extension point.

For DHCPv6 Reconfigure messages, there is no request dictionary (because Reconfigure is a server-initiated
message). Thus, enabled extensions should check the response msg-type for ADVERTISE or REPLY or use
isValid on the request to ensure that the request dictionary exists.

Note

Using Extension Points
38

Using Extension Points
pre-packet-encode

environment-destructor
The environment-destructor extension point allows an extension to clean up any context that it might be
holding. The only dictionary available for this extension point is environment.

The environment dictionary is available for all extension points called for a single client request. Because
some extensions may need to maintain context information between the multiple extension points called for
a single client request, and because the server might drop requests at several places during processing, an
extension cannot reliably release context that it might have created for that request. The environment-destructor
extension point now makes it possible to reliably remove this context when processing of a request has
completed, for whatever reason.

The server calls all extensions attached to the environment-destructor extension point, even if the server
did not call each extension at any other attachment point.

Note

Using Extension Points
39

Using Extension Points
environment-destructor

Using Extension Points
40

Using Extension Points
environment-destructor

	Using Extension Points
	Using Extensions
	Creating, Editing, and Attaching Extensions
	Local Advanced Web UI
	CLI Command

	Determining Tasks
	Deciding on Approaches
	Choosing Extension Languages

	Language-Independent API
	Routine Signature
	Dictionaries
	Utility Methods in Dictionaries
	Configuration Errors
	Communicating with External Servers
	Recognizing Extensions
	Multiple Extension Considerations

	Tcl Extensions
	Tcl Application Program Interface
	Dealing with Tcl errors
	Configuring Tcl Extensions

	Handling Boolean Variables in Tcl
	Init-Entry Extension Point in Tcl

	C/C++ Extensions
	C/C++ API
	Using Types in C/C++
	Building C/C++ Extensions
	Using Thread-Safe Extensions in C/C++
	Configuring C/C++ Extensions
	Debugging C/C++ Extensions
	Pointers into DHCP Server Memory in C/C++
	Init-Entry Entry Point in C/C++

	DHCP Request Processing Using Extensions
	Enabling DHCPv6 Extensions
	Receiving Packets
	Decoding Packets
	Determining Client-Classes
	Modifying Client-Classes
	Processing Client-Classes
	Building Response Containers
	Determining Networks and Links
	Finding Leases
	Serializing Lease Requests
	Determining Lease Acceptability
	DHCPv6 Leasing
	DHCPv6 Prefix Usability
	DHCPv6 Lease Usability
	DHCPv6 Lease Allocation

	Gathering Response Packet Data
	Encoding Response Packets
	Updating Stable Storage
	Sending Packets
	Processing DNS Requests
	Tracing Lease State Changes
	Controlling Active Leasequery Notifications

	Extension Dictionaries
	Environment Dictionary
	General Environment Dictionary Data Items
	Initial Environment Dictionary

	Request and Response Dictionaries
	Decoded DHCP Packet Data Items
	Using Parameter List Option

	Extension Point Descriptions
	init-entry
	Environment Dictionary for init-entry

	pre-packet-decode
	post-packet-decode
	Extension Description
	Overriding Client Identifiers
	Environment Dictionary for post-packet-decode

	post-class-lookup
	Environment Dictionary for post-class-lookup

	pre-client-lookup
	Environment Dictionary for pre-client-lookup

	post-client-lookup
	Environment Dictionary for post-client-lookup

	generate-lease
	Environment Dictionary for generate-lease

	check-lease-acceptable
	Environment Dictionary for check-lease-acceptable

	lease-state-change
	Environment Dictionary for lease-state-change

	pre-packet-encode
	post-packet-encode
	post-send-packet
	environment-destructor

