
Cisco

A

P P E N D I X A

Cisco Prime Access Registrar Tcl, REX, and Java
Dictionaries

This appendix describes the Tcl and REX dictionaries that are used when writing Incoming or Outgoing
scripts.

A dictionary is a data structure that contains key/value pairs. Two types of dictionaries exist: the
Attribute dictionaries (used by the Request and Response dictionaries), and the Environment dictionary.

This section contains the dictionaries you reference when writing a Tcl script and the dictionaries you
reference when you write a script using the shared libraries (REX—RADIUS EXtension).

This appendix section also describes the following Java attribute dictionary:

• Tcl Attribute Dictionaries

• REX Attribute Dictionary

• Java Attribute Dictionary

Tcl Attribute Dictionaries
An Attribute dictionary is a dictionary in which the keys are constrained to be the names of attributes as
defined in the Prime Access Registrar server configuration, and the values are the string representation
of the legal values for that particular attribute. For example, IP addresses are specified by the
dotted-decimal string representation of the address, and enumerated values are specified by the name of
the enumeration. This means numbers are specified by the string representation of the number.

Attribute dictionaries have the unusual feature that there can be more than one instance of a particular
key in the dictionary. These instances are ordered, with the first instance at index zero. Some of the
methods of an Attribute dictionary allow an index to be specified to indicate a particular instance or
position in the list of instances to be referenced. This section contains the following topics:

• Attribute Dictionary Methods

• Tcl Environment Dictionary

Attribute Dictionary Methods
Attribute dictionaries use active commands, called methods, that allow you to change and access the
values in the dictionaries. Table A-1 lists of all of the methods you can use with the Request and
Response dictionaries.
A-1
 Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Tcl Attribute Dictionaries
Table A-1 Tcl Attribute Dictionary Methods

Name Syntax Description

addProfile $dict addProfile <profile>
[<mode>]

Copies all of the attributes in the profile
<profile> into the dictionary. Note, <profile>
must be the name of one of the profiles listed
in the server configuration. When <mode> is
not provided or when <mode> equals the
special value REPLACE, any duplicate
instances of the attributes in the dictionary are
replaced with the attribute from <profile>.
When <mode> is provided and equals the
special value APPEND, new instances of the
attributes are appended to the attributes
already in the dictionary. When <mode> is
provided and equals the special value
AUGMENT, only add the attribute when it
does not already exist.

clear $dict clear Removes all entries from the dictionary.

containsKey $dict containsKey <attribute> Returns 1 when the dictionary contains the
attribute <attribute>, otherwise returns 0.

firstKey $dict firstKey Returns the name of the first attribute in the
dictionary. Note, the attributes are not stored
in a sorted order of name.

get $dict get <attribute> [<index>
[bMore]]

Returns the value of the <attribute> attribute
from the dictionary, represented as a string.
When the dictionary does not contain the
<attribute>, an empty string is returned.

When <index> is provided, return the
<index>’th instance of the attribute. Some
attributes can appear more than once in the
request (or response) packet. The <index>
argument is used to select which instance to
return.

When bMore is provided, the get method sets
bMore to 1 when more attributes exist after
the one returned, and to 0 otherwise. You can
use this to determine whether another call to
get should be made to retrieve other instances
of the attribute.

isEmpty $dict isEmpty Returns 1 when the dictionary has no entries,
otherwise returns 0.

log $dict log <level> <message> … Outputs a message into the RADIUS server’s
logging system. The <level> should be either
LOG_ERROR, LOG_WARNING, or
LOG_INFO. The remaining arguments are
concatenated together and sent to the logging
system at the specified level.
A-2
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Tcl Attribute Dictionaries
nextKey $dict nextKey Returns the name of the next attribute in the
dictionary that follows the attribute returned
in the last call to firstKey or nextKey.

put $dict put <attribute> <value>
[<index>]

Associates <value> with the attribute
<attribute> in the dictionary. When <index>
is not provided or when <index> equals the
special value REPLACE, any existing
instances of <attribute> are replaced with the
single value. When <index> is provided and
equals the special value APPEND, a new
instance of <attribute> is appended to the end
of the list of instances of the <attribute>.
When <index> is provided and is a number, a
new instance of <attribute> is inserted at the
position indicated. When <index> is provided
and equals the special value AUGMENT,
only put the attribute when it does not already
exist.

remove $dict remove <attribute> [<index>] Removes the <attribute> attribute from the
dictionary. When <index> is not provided or
when <index> equals the special value
REMOVE_ALL, remove any existing
instances of <attribute>. When <index> is
provided and is a number, remove the instance
of <attribute> at the position indicated.

Always returns 1, even when the dictionary
did not contain the <attribute> at that
<index>.

size $dict size Returns the number of entries in the
dictionary.

trace $dict trace <level> <message> ... Outputs a message into the packet tracing
system used by the RADIUS server. At level 0,
no tracing occurs. At level 1, only an
indication the server received the packet and
sent a reply is output. As the number gets
higher, the amount of information output
increases, until at level 4, where everything is
traced as output. The remaining arguments are
concatenated and sent to the tracing system at
the specified level.

Table A-1 Tcl Attribute Dictionary Methods (continued)

Name Syntax Description
A-3
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Tcl Attribute Dictionaries
Tcl Environment Dictionary
A dictionary is a data structure that contains key/value pairs. An Environment dictionary is a dictionary
in which the keys and values are constrained to be strings. The Tcl Environment dictionary is used to
communicate information from the script to the server and from script to script within the processing of
a particular request. Note, there can be only one instance of a key in the Environment dictionary.

Table A-2 lists of all the methods you can use with the Request and Response dictionaries.

Table A-2 Tcl Environment Dictionary Methods

Name Syntax Description

clear $dict clear Removes all entries from the dictionary.

containsKey $dict containsKey <key> Returns 1 when the dictionary contains the <key>
key, otherwise returns 0.

firstKey $dict firstKey Returns the name of the first key in the dictionary.
Note, the keys are not stored sorted by name.

get $dict get <key> Returns the value of <key> from the dictionary.
When the dictionary does not contain the <key>,
an empty string is returned.

isEmpty $dict isEmpty Returns 1 when the dictionary has no entries,
otherwise returns 0.

log $dict log <level> <message> … Outputs a message into the logging system used
by the RADIUS server. <level> should be one of
LOG_ERROR, LOG_WARNING, or
LOG_INFO. The remaining arguments are
concatenated together and sent to the logging
system at the specified level.

nextKey $dict nextKey Returns the name of the next key in the dictionary
that follows the key returned in the last call to
firstKey or nextKey.

put $dict put <key> <value> Associates <value> with the <key> key in the
dictionary, replacing an existing instance of
<key> with the new value.

remove $dict remove <key> Removes the <key> key from the dictionary.
Always returns 1, even when the dictionary did
not contain the <key>.

size $dict size Returns the number of entries in the dictionary.

trace $dict <level> <message> … Outputs a message into the packet tracing system
used by the RADIUS server. At level 0, no tracing
occurs. At level 1, only an indication the server
received the packet and sent a reply is output. As
the number gets higher, the amount of information
output is greater, until at level 4, where everything
the is traced as output. The remaining arguments
are concatenated together and sent to the tracing
system at the specified level.
A-4
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 REX Attribute Dictionary
REX Attribute Dictionary
A dictionary is a data structure that contains key/value pairs. An Attribute dictionary is a dictionary in
which the keys are constrained to be the attributes as defined in the RADIUS server configuration and
the values are constrained to be legal values for that particular attribute. Attribute dictionaries have the
unusual feature that there can be more than one instance of a particular key in the dictionary. These
instances are ordered, with the first instance at index 0. Some of the methods of an Attribute dictionary
allow an index to be specified to indicate a particular instance or position in the list of instances to be
referenced.

When writing REX scripts, you can specify keys as the string representation of the name of the attribute
or by type, which is a byte sequence defining the attribute. The values can also be specified as the string
representation of the value or as the byte sequence, which is the attribute. These options mean some of
these access methods have four different variations that are the combinations of string or type for the
key, and string or bytes for the value. This section contains the following topics:

• Attribute Dictionary Methods

• REX Environment Dictionary

Attribute Dictionary Methods
Attribute dictionaries use active commands, called methods, that allow you to change and access the
values in the dictionaries.

 Table A-3 lists all of the methods you can use with the Request and Response dictionaries.

Table A-3 REX Attribute Dictionary Methods

Name Syntax Description

addProfile abool_t
pDict->addProfile(rex_AttributeDi
ctionary_t* pDict, const char*
<pszProfile>, int <iMode>)

Copies all of the attributes in the
<pszProfile> profile into the dictionary.
Note, <pszProfile> must be the name of
one of the profiles listed in the server
configuration. When <iMode> equals the
special value REX_REPLACE, it
replaces any duplicate instances of the
attributes in the dictionary with the
attribute from the profile. When
<iMode> equals the special value
REX_APPEND, it appends a new
instance of the attributes to any attributes
already in the dictionary. When <iMode>
equals the special value.

When the mode is REX_AUGMENT, it
adds the attribute in the dictionary, if it
does not already exist in the dictionary.

allocateMemory void*
pDict->allocateMemory(rex_Attrib
uteDictionary_t* pDict, unsigned
int <iSize>)

Allocates memory for use in scripts that
persist only for the lifetime of this
request. This memory is released when
processing for this request is complete.
A-5
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 REX Attribute Dictionary
clear void
pDict->clear(rex_AttributeDiction
ary_t* pDict)

Removes all entries from the dictionary.

containsKey abool_t
pDict->containsKey(rex_Attribute
Dictionary_t* pDict, const char*
<pszAttribute>)

Returns TRUE when the dictionary
contains <pszAttribute>, otherwise
returns FALSE.

containsKeyBy
Type

abool_t
pDict->containsKeyByType(rex_At
tributeDictionary_t* pDict, const
abytes_t* <pAttribute>)

Returns TRUE when the dictionary
contains <pAttribute>, otherwise returns
FALSE.

firstKey const char*
pDict->firstKey(rex_AttributeDicti
onary_t* pDict)

Returns the name of the first attribute in
the dictionary. Note, the attributes are not
stored in a sorted order of name.

firstKeyByType const abytes_t*
pDict->firstKeyByType
(rex_AttributeDictionary_t* pDict)

Returns a pointer to the byte sequence
defining the first attribute in the
dictionary. Note, attributes are not stored
sorted by name.

get const char*
pDict->get(rex_AttributeDictionar
y_t* pDict, const char*
pszAttribute, int <iIndex>, abool_t*
<pbMore>)

Returns the value of the <iIndex>'d
instance of the attribute from the
dictionary, represented as a string. When
the dictionary does not contain the
attribute (or that many instances of the
attribute), an empty string is returned.

When <pbMore> is non-zero, the get
method sets <pbMore> to TRUE when
more instances of the attribute exist after
the one returned, and to FALSE
otherwise. This can be used to determine
whether another call to get should be
made to retrieve other instances of the
attribute.

Table A-3 REX Attribute Dictionary Methods (continued)

Name Syntax Description
A-6
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 REX Attribute Dictionary
getBytes const abytes_t*
pDict->getBytes(rex_AttributeDict
ionary_t* pDict, const char*
pszAttribute, int <iIndex>, abool_t*
<pbMore>)

Returns the value of the <iIndex>'d
instance of the attribute from the
dictionary, as a sequence of bytes. When
the dictionary does not contain the
attribute (or that many instances of the
attribute), 0 is returned.

When <pbMore> is non-zero, the
getBytes method sets <pbMore> to
TRUE when more instances of the
attribute exist after the one returned, and
to FALSE otherwise. This can be used to
determine whether another call to
getBytes should be made to retrieve other
instances of the attribute.

getBytesByType const abytes_t*
pDict->getBytesByType
(rex_AttributeDictionary_t* pDict,
const abytes_t* pAttribute, int
<iIndex>, abool_t* <pbMore>)

Returns the value of the <iIndex>'d
instance of the attribute from the
dictionary, as a sequence of bytes. When
the dictionary does not contain the
attribute (or that many instances of the
attribute), 0 is returned instead.

When <pbMore> is non-zero, sets the
variable pointed to TRUE when more
instances of the attribute exist after the
one returned, and to FALSE otherwise.
This can be used to determine whether
another call to get should be made to
retrieve other instances of the attribute.

getByType const char*
pDict->get(rex_AttributeDictionar
y_t* pDict, const abytes_t*
<pszAttribute>, int <iIndex>,
abool_t* <pbMore>)

Returns the value of the <iIndex>'d
instance of the attribute from the
dictionary, as represented as a string.
When the dictionary does not contain the
attribute (or that many instances of the
attribute), returns an empty string.

When <pbMore> is non-zero, the
getByType method sets <pbMore> to
TRUE when more instances of the
attribute exist after the one returned, and
to FALSE otherwise. This can be used to
determine whether another call to
getByType should be made to retrieve
other instances of the attribute.

getType const char*
pDict->getByType(rex_AttributeDi
ctionary_t* pDict, const abytes_t*
<pAttribute>)

Returns a pointer to the byte sequence
defining the attribute, when the attribute
name matches a configured attribute, zero
otherwise.

Table A-3 REX Attribute Dictionary Methods (continued)

Name Syntax Description
A-7
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 REX Attribute Dictionary
isEmpty abool_t
pDict->isEmpty(rex_AttributeDicti
onary_t* pDict)

Returns TRUE when the dictionary has 0
entries, FALSE otherwise.

log abool_t
pDict->log(rex_AttributeDictionar
y_t* pDict, int <iLevel>, const
char* <pszFormat>, ...)

Outputs a message into the logging
system used by the RADIUS server.
<iLevel> should be one of
REX_LOG_ERROR,
REX_LOG_WARNING, or
REX_LOG_INFO. The pszFormat
argument is treated as a printf-style
format string, and it, along with the
remaining arguments, are formatted and
sent to the logging system at the specified
level.

nextKey const char*
pDict->nextKey(rex_AttributeDicti
onary_t* pDict)

Returns the name of the next attribute in
the dictionary that follows the attribute
returned in the last call to firstKey or
nextKey.

nextKeyByType const abytes_t* pDict->

nextKeyByType(rex_AttributeDicti
onary_t* pDict)

Returns a pointer to the byte sequence
defining the next attribute in the
dictionary that follows the attribute
returned in the last call to
firstKeyByType or nextKeyByType.

put abool_t
pDict->put(rex_AttributeDictionar
y_t* pDict, const char*
<pszAttribute>, const char*
<pszValue>, int <iIndex>)

Converts <pszValue> to a sequence of
bytes, according to the definition of
<pszAttribute> in the server
configuration. Associates that sequence
of bytes with <pszAttribute> in the
dictionary. When <iIndex> equals the
special value REX_REPLACE, it
replaces any existing instances of
<pszAttribute> with a single value. When
<iIndex> equals the special value
REX_APPEND, it appends a new
instance of <pszAttribute> to the end of
the list of existing instances of
<pszAttribute>. Otherwise, a new
instance of <pszAttribute> is inserted at
the position indicated. This method
returns TRUE unless <pszAttribute>
does not match any configured attributes
or the value could not be converted to a
legal value. When <iIndex> equals the
special value REX_AUGMENT, only
put <pszAttribute> when it does not
already exist.

Table A-3 REX Attribute Dictionary Methods (continued)

Name Syntax Description
A-8
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 REX Attribute Dictionary
putBytes abool_t
pDict->putBytes(rex_AttributeDict
ionary_t* pDict, const char*
<pszAttribute>, const abytes_t*
<pValue>, int <iIndex>)

Associates <pValue> with the attribute
<pszAttribute> in the dictionary. When
<iIndex> equals the special value
REX_REPLACE, it replaces any
existing instances of the <pszAttribute>
with a single new value. When <iIndex>
equals the special value REX_APPEND,
it appends a new instance of
<pszAttribute> to the end of the list of
existing instances of <pszAttribute>.
When <iIndex> equals the special value
REX_AUGMENT, only put the
<pszAttribute> when it does not already
exist. Otherwise, a new instance of
<pszAttribute> is inserted at the position
indicated.

This method returns TRUE unless the
attribute name does not match any
configured attributes.

putBytesByType abool_t
pDict->putBytesByType(rex_Attri
buteDictionary_t* pDict, const
abytes_t* <pAttribute>, const
abytes_t* <pValue>, int <iIndex>)

Associates <pValue> with the attribute
<pAttribute> in the dictionary. When
<iIndex> equals the special value
REX_REPLACE, it replaces any
existing instances of <pAttribute> with
the new value. When <iIndex> equals the
special value REX_APPEND, it appends
a new instance of <pAttribute> to the end
of the list of existing instances of
<pAttribute>. When <iIndex> equals the
special value REX_AUGMENT, only
put <pAttribute> when it does not
already exist. Otherwise, insert a new
instance of <pAttribute> at the position
indicated.

This method returns TRUE unless the
attribute name does not match any
configured attributes.

Table A-3 REX Attribute Dictionary Methods (continued)

Name Syntax Description
A-9
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 REX Attribute Dictionary
putByType abool_t
pDict->putByType(rex_AttributeD
ictionary_t* pDict, const abytes_t*
<pszAttribute>, const char*
<pszValue>, int <iIndex>)

Converts <pszValue> to a sequence of
bytes, according to the definition of
<pszAttribute> in the server
configuration. Associates that sequence
of bytes with <pszAttribute> in the
dictionary. When <iIndex> equals the
special value REX_REPLACE, it
replaces any existing instances of
<pszAttribute> with a single new value.
When <iIndex> equals the special value
REX_APPEND, it appends a new
instance of <pszAttribute> to the end of
the list of existing instances of
<pszAttribute>. Otherwise, it inserts a
new instance of <pszAttribute> at the
position indicated. This method returns
TRUE unless <pszAttribute> does not
match any configured attributes, or the
value could not be converted to a legal
value.

remove abool_t
pDict->remove(rex_AttributeDicti
onary_t* pDict, const char*
<pszAttribute>, int <iIndex>)

Removes the <pszAttribute> from the
dictionary. When <iIndex> equals the
special value REX_REMOVE_ALL,
removes any existing instances of
<pszAttribute>. Otherwise, it removes
the instance of <pszAttribute> at the
position indicated. Returns TRUE, even
when the dictionary did not contain
<pszAttribute> at the <iIndex>, unless
<pszAttribute> does not match any
configured attribute.

removeByType abool_t
pDict->removeByType(rex_Attribu
teDictionary_t* pDict, const
abytes_t* <pAttribute>, int
<iIndex>)

Removes the <pAttribute> from the
dictionary. When <iIndex> equals the
special value REX_REMOVE_ALL, it
removes any existing instances of
<pszAttribute>. Otherwise, the instance
of <pAttribute> at the position indicated
is removed. Always returns TRUE, even
when the dictionary did not contain
<pAttribute> at the <iIndex>.

reschedule abool_t
pDict->reschedule(rex_AttributeDi
ctionary_t* pDict)

Enables control over asynchronous
activities. It enables you to collect similar
activities and mark them as pending. You
can then process them and reschedule
them. You can only use this attribute with
multithreaded services. Use caution when
employing this method.

Table A-3 REX Attribute Dictionary Methods (continued)

Name Syntax Description
A-10
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 REX Attribute Dictionary
REX Environment Dictionary
A dictionary is a data structure that contains key/value pairs. An Environment dictionary is a dictionary
in which the keys and values are constrained to be strings. The REX Environment dictionary is used to
communicate information from the script to the server and from script to script within the processing of
a particular request. Note, there can be only one instance of a key in the Environment dictionary.

REX Environment Dictionary Methods

The Environment dictionary uses active commands, called methods, to allow you to change and access
the values in the dictionary. Table A-4 lists all of the methods you can use with the REX Environment
dictionary.

size int
pDict->size(rex_AttributeDictionar
y_t* pDict)

Returns the number of entries in the
dictionary.

trace abool_t
pDict->trace(rex_AttributeDiction
ary_t* pDict, int <iLevel>, const
char* <pszFormat>, ...)

Outputs a message into the packet tracing
system used by the RADIUS server. At
level 0, no tracing occurs. At level 1, only
an indication the packet was received and
a reply was sent is output. As the number
gets higher, the amount of information
output is greater, until at level 4, where
everything traceable is output. The
remaining arguments are formatted and
sent to the tracing system at the specified
level.

Table A-3 REX Attribute Dictionary Methods (continued)

Name Syntax Description

Table A-4 REX Environment Dictionary Methods

Name Syntax Description

allocateMemory void*
pDict->allocateMemory(rex_Environ
mentDictionary_t* pDict, unsigned int
<iSize>)

Allocate memory for use in scripts
that persist only for the lifetime of this
request. This memory is released
when processing for this request is
complete.

clear void
pDict->clear(rex_EnvironmentDiction
ary_t* pDict)

Removes all entries from the
dictionary.

containsKey abool_t
pDict->containsKey(rex_Environment
Dictionary_t* pDict, const char*
<pszKey>)

Returns TRUE when the dictionary
contains <pszKey>, otherwise returns
FALSE.

firstKey const char*
pDict->firstKey(rex_EnvironmentDict
ionary_t* pDict)

Returns the name of the first key in the
dictionary. Note, the keys are not
stored sorted by name.
A-11
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 REX Attribute Dictionary
get const char*
pDict->get(rex_EnvironmentDictiona
ry_t* pDict, const char* <pszKey>)

Returns the value associated with
<pszKey> from the dictionary. When
the dictionary does not contain
<pszKey>, an empty string is
returned.

isEmpty abool_t
pDict->isEmpty(rex_EnvironmentDict
ionary_t* pDict)

Returns TRUE when the dictionary
has 0 entries, FALSE otherwise.

log abool_t
pDict->log(rex_EnvironmentDictiona
ry_t* pDict, int <iLevel>, const char*
<pszFormat>, ...)

Outputs a message into the logging
system used by the RADIUS server.
<iLevel> should be one of
REX_LOG_ERROR,
REX_LOG_WARNING, or
REX_LOG_INFO. The
<pszFormat> argument is treated as a
printf-style format string, and it,
along with the remaining arguments,
are formatted and sent to the logging
system at the specified level.

nextKey const char*
pDict->nextKey(rex_EnvironmentDict
ionary_t* pDict)

Returns the name of the next key in
the dictionary that follows the key
returned in the last call to firstKey or
nextKey.

put abool_t
pDict->put(rex_EnvironmentDictiona
ry_t* pDict, const char* <pszValue>,
const char* <pszKey>)

Associates the value with <pszKey>
in the dictionary, replacing any
existing instance of <pszKey> with
the new <pszValue>.

remove abool_t
pDict->remove(rex_EnvironmentDicti
onary_t* pDict, const char* <pszKey>)

Removes <pszKey> and the
associated value from the dictionary.
Always returns TRUE, even when the
dictionary did not contain <pszKey>

reschedule abool_t
pDict->reschedule(rex_AttributeDicti
onary_t* pDict)

Enables control over asynchronous
activities. It enables you to collect
similar activities and mark them as
pending. You can then process them
and reschedule them. You can only
use this attribute with multithreaded
services. Use caution when employing
this method.

Table A-4 REX Environment Dictionary Methods (continued)

Name Syntax Description
A-12
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Java Attribute Dictionary
Java Attribute Dictionary
The AttributeDictionary is a dictionary of attributes, where the keys are the attribute types and the values
are the data fields in the attribute. Both keys and values must conform to the definition of attributes in
the server's Attribute Dictionary. Keys (types) can be either strings or byte arrays. If strings, they are the
names of attributes. If byte arrays, they are the binary type. The type associated with a name can be
retrieved by calling the static method getType(java.lang.String). Using byte arrays is slightly more
efficient - methods that take String keys must do the mapping from String to byte array in the course of
executing the method. Similarly, values can be strings or byte arrays. Again, string values are converted
to the appropriate binary representation when stored in an AttributeDictionary and back again when
retrieved into a string variable.

Keys in an AttributeDictionary can be associated with multiple values. Each of the values associated
with a key is ordered with an integer index denoting its position in the list of values. Given an
AttributeDictionary, a key and an index, each value associated with a key can be looked up. This section
contains the following topics:

• Java Environment Dictionary Methods

• Interface Extension Methods

• Interface Extensionforsession Methods

• Interface Extensionwithinitialization Methods

• Interface Extensionforsessionwithinitialization Methods

• Variables in the Marker Extension Interface

• Session Record Methods

Java Attribute Dictionary Methods
Attribute dictionaries use active commands called methods, that allow you to change and access the
values in the dictionaries.

size int
pDict->size(rex_EnvironmentDictiona
ry_t* pDict)

Returns the number of entries in the
dictionary.

trace abool_t
pDict->trace(rex_EnvironmentDiction
ary_t* pDict, int <iLevel>, const char*
<pszFormat>, ...)

Outputs a message into the packet
tracing system used by the RADIUS
server. At level 0, no tracing occurs.
At level 1, only an indication the
packet was received and a reply was
sent is output. As the number gets
higher, the amount of information
output is greater, until at level 4,
where everything traceable is output.
The remaining arguments are
formatted and sent to the tracing
system at the specified level.

Table A-4 REX Environment Dictionary Methods (continued)

Name Syntax Description
A-13
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Java Attribute Dictionary
Table A-5 lists all of the methods you can use with the Request and Response dictionaries.

Table A-5 Java Attribute Dictionary Methods

Name Syntax Description

size public int size() Returns the number of distinct keys in the
dictionary.

isEmpty public boolean isEmpty() Tests if the dictionary contains any entries.

clear public void clear() Removes all entries from the dictionary.

containsKey public boolean
containsKey(java.lang.String
key)

Returns true if an entry exists for key.

get public java.lang.String
get(java.lang.String key)

Returns the first value associated with the key.

get public java.lang.String
get(java.lang.String key, int
index)

Returns the value at position index associated
with the key.

put public boolean
put(java.lang.String key,
java.lang.String value)

Associates key with a value. Any existing values
associated with the key are removed before
adding this association.

put public boolean
put(java.lang.String key,
java.lang.String value, int index)

Associates key with a value depending on the
value of index.

If index equals Extension.EXT_REPLACE,
any existing values are removed before adding
this new association. If index equals
Extension.EXT_APPEND, a new value is
added at the end of the list of existing values. If
index equals Extension.EXT_AUGMENT, the
new association is only made if the dictionary
does not already have an entry for key. If index is
a number greater than or equal to 0 and less than
the number of entries in the list, the value is
inserted at that position in the list. Otherwise, the
value is appended at the end of the list.

getBytes public byte[]
getBytes(java.lang.String key)

Returns the first value associated with the key.

getBytes public byte[]
getBytes(java.lang.String key,
int index)

Returns the value at position index associated
with key.

putBytes public boolean
putBytes(java.lang.String key,
byte[] value)

Associates key with value. Any existing values
associated with key are removed before adding
this association.
A-14
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Java Attribute Dictionary
putBytes public boolean
putBytes(java.lang.String key,
byte[] value, int index)

Associates key with a value depending on the
value of index.

If index equals Extension.EXT_REPLACE,
any existing values are removed before adding
this new association. If index equals
Extension.EXT_APPEND, a new value is
added at the end of the list of existing values. If
index equals Extension.EXT_AUGMENT, the
new association is only made if the dictionary
does not already have an entry for key. If index is
a number greater than or equal to 0 and less than
the number of entries in the list, the value is
inserted at that position in the list. Otherwise, the
value is appended at the end of the list.

remove public void
remove(java.lang.String key)

Removes key (and all corresponding values)
from the dictionary. This method does nothing if
key is not in the dictionary.

remove public void
remove(java.lang.String key, int
index)

Removes value at the position index that is
associated with key. If the index equals
Extension.EXT_REMOVE_ALL or if the
value being removed is the last value associated
with key, the key is removed from the dictionary.
This method does nothing if key is not in the
dictionary.

addProfile public boolean
addProfile(java.lang.String
profileName)

Adds all the attributes contained in the specified
profile into the dictionary. Any existing
attributes that have the same keys as attributes in
the profile are removed before adding the new
attributes.

Addprofile boolean
addProfile(java.lang.String
profileName, int mode)

Adds all the attributes contained in the specified
profile into the dictionary. Any existing
attributes that have the same keys as attributes in
the Profile will be treated depending on the mode
value. For each attribute in the Profile, if mode
equals Extension.EXT_REPLACE, any values
associated with the attribute in the dictionary are
removed before adding the attribute. If index
equals Extension.EXT_APPEND, a new value
is added at the end of the list of existing values.
If index equals Extension.EXT_AUGMENT, a
new value is added only if the dictionary does not
already have an entry for the given key.

getType public static byte[]
getType(java.lang.String key)

Takes the name of the attribute (as a string) and
returns the binary form of key.

Table A-5 Java Attribute Dictionary Methods (continued)

Name Syntax Description
A-15
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Java Attribute Dictionary
Java Environment Dictionary
The Environment Dictionary can be used to store information between Extensions invoked subsequently
on a given request or can be used to pass information between the Extension and the server properly.

The Environment Dictionary maps keys to values, where the keys and values are strings. In any one
instance of the Environment Dictionary, every key is associated with at most one value. Given an
Environment Dictionary and a key, the associated value can be looked up. Any non-null string can be
used as a key and value.

Java Environment Dictionary Methods

The Environment dictionary uses active commands called methods, to allow you to change and access
the values in the dictionary. Table A-6 lists all of the methods you can use with the java Environment
dictionary.

keys public java.util.Enumeration
keys()

Returns an enumeration of the keys in the
dictionary. The general contract for the keys
method is that an Enumeration object is returned
that will generate all the keys for which the
dictionary contains entries.

elements public java.util.Enumeration
elements()

Returns an enumeration of the entries in the
dictionary. The general contract for the elements
method is that an Enumeration object is returned
that will generate all the elements contained in
entries in the dictionary. Keys with multiple
values will result in multiple elements being
returned.

keysByType public java.util.Enumeration
keysByType()

Returns an enumeration of the keys in the
dictionary. The general contract for the keys
method is that an Enumeration object is returned
that will generate all the keys for which the
dictionary contains entries.

Table A-5 Java Attribute Dictionary Methods (continued)

Name Syntax Description

Table A-6 Java Environment Dictionary Methods

Name Syntax Description

size public int size() Returns the number of entries (distinct
keys) in the dictionary.

isEmpty public boolean isEmpty() Tests if the dictionary contains no entries.

clear public void clear() Removes all entries from the dictionary.

containsKey public boolean
containsKey(java.lang.String key)

Returns true if the dictionary contains an
entry for key.

get public java.lang.String
get(java.lang.String key)

Returns the value associated with key in the
dictionary.
A-16
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Java Attribute Dictionary
Interface Extension
Classes that are going to be used as scripts or services from Access Registrar must implement the
Extension interface. When a Java scripting point or service is encountered during the processing of a
request, the server will call the runExtension method defined in this interface and implemented by the
appropriate class.

put public boolean put(java.lang.String
key, java.lang.String value)

Associates key with value.

remove public void remove(java.lang.String
key)

Removes key (and its corresponding value)
from this dictionary. This method does
nothing if key is not in the dictionary.

keys public java.util.Enumeration keys() Returns an enumeration of the keys in the
dictionary. The general contract for the
keys method is that an Enumeration object
is returned that will generate all the keys
for which the dictionary contains entries.

elements public java.util.Enumeration
elements()

Returns an enumeration of the entries in the
dictionary. The general contract for the
elements method is that an Enumeration
object is returned that will generate all the
elements contained in entries in the
dictionary.

log public static void log(int
level,java.lang.String message)

Prints a message in the server log at the
specified level.

trace public void trace(int level,
java.lang.String message)

Prints a message in the server trace file at
the specified level.

reschedule public void reschedule() Informs the server that it should take back
ownership of the request associated with
the dictionary and continue processing it.

Table A-6 Java Environment Dictionary Methods (continued)

Name Syntax Description
A-17
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Java Attribute Dictionary
Interface Extension Methods

Table A-7 lists the methods you can use for interface extension

Interface ExtensionforSession
Classes that are going to be used as scripts at Session Manager level from Cisco Prime Access Registrar
must implement the ExtensionForSession interface. When a Java scripting point or service is
encountered during the processing of a request, the server will call the runExtension method defined in
this interface and implemented by the appropriate class.

Table A-7 Interface Extension Methods

Name Syntax Description

runExtension int
runExtension(int
iExtensionPoint,
AttributeDictiona
ry request,
AttributeDictiona
ry
response,Environ
mentDictionary
environment)

This method is called whenever a Java scripting point or service
is encountered during the processing of a request.

When runExtension is used as a script, it should process
requests as quickly as possible, without blocking. This is
because the server has a limited number of threads that it is
using to process requests and if any one extension takes too
long to run, it is likely that many requests will be delayed as
each one calls the extension. runExtension must return either
EXT_OK to indicate that processing of this request should
continue or EXT_ERROR to indicate that an error occurred
while processing this request and that the request should be
dropped. Extensions should always log an error before
returning EXT_ERROR so that the administrator has a way to
determine the problem that was encountered.

When runExtension is used as a service, it will be called once
before requests start coming in (with the iExtensionPoint
parameter set to EXT_START_SERVICE) to give the
extension the opportunity to initialize resources needed to
process requests, and once after the last request has been
received (with the iExtensionPoint parameter set to
EXT_STOP_SERVICE) to give the extension the opportunity
to release those resources before stopping. runExtension must
return one of the following values: EXT_OK, EXT_ERROR
or EXT_PENDING. EXT_PENDING should be returned to
inform the server that the extension has taken ownership of the
request, will process the request on a background thread, and
will inform the server when it is time to continue processing the
request by calling reschedule() on one of the request's
dictionaries.
A-18
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Java Attribute Dictionary
Interface Extensionforsession Methods

Table A-8 lists the methods you can use for interface extensionforsession

Interface Extensionwithinitialization
Classes that are going to be used as scripts or services from Access Registrar implements the
ExtensionWithInitialization interface. ExtensionWithInitialization extends the Extension interface with
methods to initialize and destroy the extension. initialize(java.lang.String) is called when the extension
is first loaded, with the string argument being set from the InitializeArg property that was defined in the
server configuration when the extension was defined (either as a Script or a Service). Destroy() is called
before the extension is unloaded.

Table A-8 Interface Extensionforsession Methods

Name Syntax Description

runExtension int
runExtension(int
iExtensionPoint,
AttributeDictionar
y request,
AttributeDictionar
y response,
EnvironmentDictio
nary environment,
SessionRecord
session)

This method is called whenever a Java scripting point or
service is encountered during the processing of a request.

When runExtension is used as a script, it should process
requests as quickly as possible, without blocking. This is
because the server has a limited number of threads that it is
using to process requests and if any one extension takes too
long to run, it is likely that many requests will be delayed
as each one calls the extension. runExtension must return
either EXT_OK to indicate that processing of this request
should continue or EXT_ERROR to indicate that an error
occurred while processing this request and that the request
should be dropped. Extensions should always log an error
before returning EXT_ERROR so that the administrator
has a way to determine the problem that was encountered.

When runExtension is used as a service, it will be called
once before requests start coming in (with the
iExtensionPoint parameter set to
EXT_START_SERVICE) to give the extension the
opportunity to initialize resources needed to process
requests, and once after the last request has been received
(with the iExtensionPoint parameter set to
EXT_STOP_SERVICE) to give the extension the
opportunity to release those resources before stopping.
runExtension must return one of the following values:
EXT_OK, EXT_ERROR or EXT_PENDING.
EXT_PENDING should be returned to inform the server
that the extension has taken ownership of the request, will
process the request on a background thread, and will
inform the server when it is time to continue processing the
request by calling reschedule() on one of the request's
dictionaries.
A-19
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Java Attribute Dictionary
Interface Extensionwithinitialization Methods

Table A-9 lists the methods you can use for Interface Extensionwithinitialization.

Interface ExtensionforSessionwithinitialization
Classes that are going to be used as scripts from Access Registrar at Session Manager level implement
the ExtensionForSessionWithInitialization interface. ExtensionForSessionWithInitialization extends the
ExtensionForSession interface with methods to initialize and destroy the extension.
initialize(java.lang.String) is called when the extension is first loaded, with the string argument being set
from the InitializeArg property that was defined in the server configuration when the extension was
defined (either as a script or a service). Destroy () is called before the extension is unloaded.

Interface Extensionforsessionwithinitialization Methods

Table A-10 lists the methods you can use for Interface Extensionforsessionwithinitialization.

Interface MarkerExtension
This is just going to be a marker interface containing various member variables which can be used in
interfaces/classes extending from this interface. Extension and ExtensionForSession interfaces will
extend this interface.

Table A-9 Interface Extensionwithinitialization Methods

Name Syntax Description

initialize void
initialize(java.lang.
String
initializeArg)

This method is called by the server when the
extension is first loaded.

destroy void destroy() This method is called by the server when the
extension is going to be unloaded.

Table A-10 Interface Extensionforsessionwithinitialization Methods

Name Syntax Description

initialize void
initialize(java.la
ng.String
initializeArg)

This method is called by the server when the
extension is first loaded.

destroy void destroy() This method is called by the server when the
extension is going to be unloaded.
A-20
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Java Attribute Dictionary
Variables in the Marker Extension Interface

Table A-11 lists the variables in the marker extension interface.

Table A-11 Marker Extension Interface Variables

Name Syntax Description

EXT_OK static final int EXT_OK Returns EXT_OK by implementation of
runExtension() to indicate that the extension operated
correctly and processing of the request should
continue.

EXT_ERROR static final int
EXT_ERROR

Returns EXT_ERROR by implementation of
runExtension() to indicate that the extension failed in
some way and processing of the request should NOT
continue.

EXT_PENDING static final int
EXT_PENDING

Returns EXT_PENDING by implementations of
runExtension() to indicate that the extension operated
correctly and the extension wants to take ownership of
the request for a while. Further processing of the
request by the server will be postponed until the
extension indicates that it can do so by calling the
reschedule method on any of the dictionaries.

EXT_LOG_ERR
OR

static final int
EXT_LOG_ERROR

Indicates that the message should be logged with a
severity of ERROR, when passed to log() in the level
parameter.

EXT_LOG_WA
RNING

static final int
EXT_LOG_WARNING

Indicates that the message should be logged with a
severity of WARNING, when passed to log() in the
level parameter.

EXT_LOG_INF
O

static final int
EXT_LOG_INFO

Indicates that the message should be logged with a
severity of INFO, when passed to log() in the level
parameter.

EXT_REMOVE
_ALL

static final int
EXT_REMOVE_ALL

Indicates that all values associated with the specified
key should be removed, when passed to
AttributeDictionary::remove() in the index parameter.

EXT_REPLACE static final int
EXT_REPLACE

Indicates that all existing values associated with the
specified key(s) should be removed before adding the
new value(s), when passed to
AttributeDictionary::put() (and its variants) in the
index parameter or to
AttributeDictionary::addProfile() in the mode
parameter.

EXT_APPEND static final int
EXT_APPEND

Indicates that the new value(s) should be appended to
the end of the list of any existing values associated with
the specified key(s), when passed to
AttributeDictionary::put() (and its variants) in the
index parameter or to
AttributeDictionary::addProfile() in the mode
parameter.
A-21
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Java Attribute Dictionary
EXT_AUGMEN
T

static final int
EXT_AUGMENT

Indicates that the new association(s) should only be
added if the dictionary does not already have an entry
for the given key(s), when passed to
AttributeDictionary::put() (and its variants) in the
index parameter or to
AttributeDictionary::addProfile() in the mode
parameter.

EXT_START_SE
RVICE

static final int
EXT_START_SERVIC
E

Indicates that the extension should do whatever is
necessary to prepare to offer service, when passed to
extensions used as services. This may include starting
background threads, opening database connections,
and so on.

EXT_AUTHENT
ICATION_SERV
ICE

static final int
EXT_AUTHENTICAT
ION_SERVICE

Indicates that the extension should authenticate the
current request, when passed to extensions used as
services. To indicate whether the request was
authenticated or not, the extension should set the
EnvironmentDictionary entry for "Response-Type" to
either "Access-Accept" or "Access-Reject".

EXT_AUTHORI
ZATION_SERVI
CE

static final int
EXT_AUTHORIZATI
ON_SERVICE

Indicates that the extension should authorize the
current request, when passed to extensions used as
services.

EXT_AUTHENT
ICATION_AND_
AUTHORIZATI
ON_SERVICE

static final int
EXT_AUTHENTICAT
ION_AND_AUTHORI
ZATION_SERVICE

Indicates that the extension should both authenticate
and authorize the current request, when passed to
extensions used as services. To indicate whether the
request was authenticated or not, the extension should
set the EnvironmentDictionary entry for
"Response-Type" to either "Access-Accept" or
"Access-Reject".

EXT_ACCOUN
TING_SERVICE

static final int
EXT_ACCOUNTING_
SERVICE

Indicates that the extension should produce an
accounting record for the current request, when passed
to extensions used as services.

EXT_STOP_SE
RVICE

static final int
EXT_STOP_SERVICE

Indicates that the extension should do whatever is
necessary to shut down, when passed to extensions
used as services. This may include stopping
background threads, closing database connections and
so on.

EXT_NAS_STA
RTED_ACCOU
NTING_SERVI
CE

static final int
EXT_NAS_STARTED_
ACCOUNTING_SERV
ICE

Indicates that the NAS identified in the
EnvironmentDictionary (by either the
"NAS-Identifier" or "NAS-IP-Address" entries) has
indicated that it is starting up, when passed to
extensions used as services. This may be used by
extensions to prepare to receive requests from this
particular NAS if the extension treats requests from
different NASs differently.

Table A-11 Marker Extension Interface Variables (continued)

Name Syntax Description
A-22
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Java Attribute Dictionary
EXT_NAS_STO
PPED_ACCOUN
TING_SERVICE

static final int
EXT_NAS_STOPPED_
ACCOUNTING_SERV
ICE

Indicates that the NAS identified in the
EnvironmentDictionary (by either the
"NAS-Identifier" or "NAS-IP-Address" entries) has
indicated that it is shutting down, when passed to
extensions used as services. This may be used by
extensions to recover any resources associated with
this NAS if the extension treats requests from different
NASs differently.

EXT_INCOMIN
G_SERVER_SC
RIPTING_POIN
T

static final int
EXT_INCOMING_SE
RVER_SCRIPTING_P
OINT

Indicates that the extension is being called from the
script /Radius/IncomingScript, when passed to
extensions used as scripts.

EXT_INCOMIN
G_VENDOR_SC
RIPTING_POIN
T

static final int
EXT_INCOMING_VE
NDOR_SCRIPTING_P
OINT

Indicates that the extension is being called from the
script /Radius/Vendors/<vendor>/IncomingScript.
when passed to extensions used as scripts.

EXT_INCOMIN
G_CLIENT_SC
RIPTING_POIN
T

static final int
EXT_INCOMING_CL
IENT_SCRIPTING_P
OINT

Indicates that the extension is being called from the
script /Radius/Clients/<client>/IncomingScript or
from the script
/Radius/RemoteServers/<server>/IncomingScript,
when passed to extensions used as scripts.

EXT_INCOMIN
G_SERVICE_SC
RIPTING_POIN
T

static final int
EXT_INCOMING_SE
RVICE_SCRIPTING_
POINT

Indicates that the extension is being called from the
script /Radius/Services/<service>/IncomingScript,
when passed to extensions used as scripts.

EXT_USERGRO
UP_AUTHENTI
CATION_SCRIP
TING_POINT

static final int
EXT_USERGROUP_A
UTHENTICATION_S
CRIPTING_POINT

Indicates that the extension is being called from the
script
/Radius/UserGroups/<group>/AuthenticationScrip
t, when passed to extensions used as scripts.

EXT_USERREC
ORD_AUTHEN
TICATION_SCR
IPTING_POINT

static final int
EXT_USERRECORD_
AUTHENTICATION_
SCRIPTING_POINT

Indicates that the extension is being called from the
script
/Radius/UserLists/<userlist>/<user>/Authenticatio
nScript, when passed to extensions used as scripts.

EXT_USERGRO
UP_AUTHORIZ
ATION_SCRIPT
ING_POINT

static final int
EXT_USERGROUP_A
UTHORIZATION_SC
RIPTING_POINT

Indicates that the extension is being called from the
script
/Radius/UserGroups/<group>/AuthorizationScript,
when passed to extensions used as scripts.

EXT_USERREC
ORD_AUTHORI
ZATION_SCRIP
TING_POINT

static final int
EXT_USERRECORD_
AUTHORIZATION_S
CRIPTING_POINT

Indicates that the extension is being called from the
script
/Radius/UserLists/<userlist>/<user>/Authorization
Script, when passed to extensions used as scripts.

EXT_OUTGOIN
G_SERVICE_SC
RIPTING_POIN
T

static final int
EXT_OUTGOING_SE
RVICE_SCRIPTING_
POINT

Indicates that the extension is being called from the
script /Radius/Services/<service>/OutgoingScript,
when passed to extensions used as scripts.

Table A-11 Marker Extension Interface Variables (continued)

Name Syntax Description
A-23
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Java Attribute Dictionary
Class Sessionrecord
Each request processed by an Extension will have a corresponding session. The methods present in this
class operate on the attributes cached in that session record. Group of attributes are cached as an
AttributeDictionary in the session record.

Session Record Methods

Table A-12 lists the methods you can use for Session record.

EXT_OUTGOIN
G_CLIENT_SC
RIPTING_POIN
T

static final int
EXT_OUTGOING_CL
IENT_SCRIPTING_P
OINT

Indicates that the extension is being called from the
script /Radius/Clients/<client>/OutgoingScript or
from the script
/Radius/RemoteServers/<server>/OutgoingScript,
when passed to extensions used as scripts.

EXT_OUTGOIN
G_VENDOR_SC
RIPTING_POIN
T

static final int
EXT_OUTGOING_VE
NDOR_SCRIPTING_P
OINT

Indicates that the extension is being called from the
script /Radius/Vendors/<vendor>/OutgoingScript.
when passed to extensions used as scripts.

EXT_OUTGOIN
G_SERVER_SC
RIPTING_POIN
T

static final int
EXT_OUTGOING_SE
RVER_SCRIPTING_P
OINT

Indicates that the extension is being called from the
script /Radius/OutgoingScript, when passed to
extensions used as scripts.

EXT_REMOTE_
SERVER_OUTA
GE_SCRIPTIN
G_POINT

static final int
EXT_REMOTE_SERV
ER_OUTAGE_SCRIP
TING_POINT

Indicates that the extension is being called from the
script /Radius/Services/<service>/OutageScript,
when passed to extensions used as scripts.

EXT_INCOMIN
G_SESSIONMA
NAGER_SCRIP
TING_POINT

static final int
EXT_INCOMING_SE
SSIONMANAGER_SC
RIPTING_POINT

Indicates that the extension is being called from the
script
/Radius/SessionManagers/<sessionmgr>/Incoming
Script, when passed to extensions used as scripts.

EXT_OUTGOIN
G_SESSIONMA
NAGER_SCRIP
TING_POINT

static final int
EXT_OUTGOING_SE
SSIONMANAGER_SC
RIPTING_POINT

Indicates that the extension is being called from the
script
/Radius/SessionManagers/<sessionmgr>/Outgoing
Script, when passed to extensions used as scripts.

Table A-11 Marker Extension Interface Variables (continued)

Name Syntax Description

Table A-12 Session Record Methods

Name Syntax Description

get public java.lang.String
get(java.lang.String key)

Returns the first value associated with key.

get public java.lang.String
get(java.lang.String
key,int index)

Returns the value at position index associated with key.
A-24
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Java Attribute Dictionary
Note A sample java script is available in the following path “/cisco-ar/examples/java” after the installation of
AR.

put public boolean
put(java.lang.String
key,java.lang.String
value)

Associates key with value and stores it to the session record.
Any existing values associated with key are removed before
adding this association.

The value can be retrieved by calling the get method with a
key that is equal to the original key.

put public boolean
put(java.lang.String
key,java.lang.String
value, int index)

Associates key with value depending on the value of index
and stores it in the session record. If index equals
ExtensionForSession.EXT_REPLACE, any existing
values are removed before adding this new association. If
index equals ExtensionForSession.EXT_APPEND, the
new value is added at the end of the list of existing values.
If index equals ExtensionForSession.EXT_AUGMENT,
the new association is only made if the session record does
not already have an entry for key. If index is a number
greater than or equal to 0 and less than the number of entries
in the list, the value is inserted at that position in the list.
Otherwise, the value is appended at the end of the list.

The value can be retrieved by calling the get method with a
key that is equal to the original key and the appropriate
index.

remove public boolean
remove(java.lang.String
key)

Removes key (and all corresponding values) from the
session record. This method does nothing if key is not in the
session record.

remove public boolean
remove(java.lang.String
key, int index)

Removes value at the position index that is associated with
key. If the index equals
ExtensionForSession.EXT_REMOVE_ALL or if the
value being removed is the last value associated with key,
the key is removed from the session record. This method
does nothing if key is not in the session record.

getSessionI
nfo

public java.lang.String
getSessionInfo()

Returns Session-ID, Session-Start-Time and
Session-Last-Accessed-Time of the session record.

Table A-12 Session Record Methods (continued)

Name Syntax Description
A-25
Cisco Prime Access Registrar 9.2 Reference Guide

Appendix A Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
 Java Attribute Dictionary
A-26
Cisco Prime Access Registrar 9.2 Reference Guide

	Cisco Prime Access Registrar Tcl, REX, and Java Dictionaries
	Tcl Attribute Dictionaries
	Attribute Dictionary Methods
	Tcl Environment Dictionary

	REX Attribute Dictionary
	Attribute Dictionary Methods
	REX Environment Dictionary
	REX Environment Dictionary Methods

	Java Attribute Dictionary
	Java Attribute Dictionary Methods
	Java Environment Dictionary
	Java Environment Dictionary Methods

	Interface Extension
	Interface Extension Methods

	Interface ExtensionforSession
	Interface Extensionforsession Methods

	Interface Extensionwithinitialization
	Interface Extensionwithinitialization Methods

	Interface ExtensionforSessionwithinitialization
	Interface Extensionforsessionwithinitialization Methods

	Interface MarkerExtension
	Variables in the Marker Extension Interface

	Class Sessionrecord
	Session Record Methods

