SIGTRAN-M3UA

SIGTRAN, a working group of the Internet Engineering Task Force (IETF), has defined a protocol for the transport of real-time signaling data over IP networks. Cisco Prime Access Registrar (Prime Access Registrar) supports SS7 messaging over IP (SS7oIP) via SIGTRAN-M3UA, a new transport layer which leverages Stream Control Transmission Protocol (SCTP). Prime Access Registrar supports SIGTRAN-M3UA to fetch the authentication vectors from HLR, which is required for EAP-AKA/EAP-SIM authentication.

Prime Access Registrar supports SIGTRAN-M3UA in both Linux and Solaris platforms.

Note

You have SIGTRAN-M3UA interface support in addition to the existing SUA interface support.

The EAP-AKA and EAP-SIM authentication service is extended to use M3UA. When using M3UA service for authentication, the subscriber identity (IMSI) is used to send a request to HLR and receives information from HLR containing the authentication information for authenticating an user. The authentication service initiates a request to the SIGTRAN server using IMSI, which retrieves the configured number of authentication vectors from HLR, i.e Triplets or Quintets.

![Figure 23-1 MAP Service](image)

The Prime Access Registrar server initiates the MAP service. After enabling the MAP service, the Prime Access Registrar server sends a sendAuthenticationInfo request that contains IMSI and the number of requested authentication vectors to HLR. The HLR sends a response containing the requested vectors information to Prime Access Registrar. Next, the Prime Access Registrar server sends a sendRoutingInfoForLCS request that contains IMSI and the GMLC address to HLR. The HLR sends a response containing the MSISDN information for authenticating the mobile subscribers.

Prime Access Registrar provides map-restore-data authentication support for m3ua services. For more information, see Configuring M3UA Service with Map Restore Data Authorization, page 23-13.
Prime Access Registrar supports multiple remote servers with the protocol type, SIGTRAN-M3UA. However, Prime Access Registrar validates and ensures the following when multiple remote servers are available:

- The source port is different for all the remote servers.
- If Origin Point Code (OPC) is different, the routing context is also different for all the remote servers.
- The Destination Point Code (DPC) is different for all the remote servers.
- The NetworkVariant, SubServiceField (SSF), TCAPVariant, NetworkAppearance, and NetworkIndicator values are the same for all the remote servers.

This section describes the following:

- Prerequisites to SIGTRAN-M3UA
- Configuring EAP-AKA/EAP-SIM with SIGTRAN-M3UA
- Blacklisting IMSI Values, page 23-11
- Configuring M3UA Service
- Support for SCTP Multihoming in SIGTRAN-M3UA, page 23-21
- SIGTRAN-M3UA Logs, page 23-22

Prerequisites to SIGTRAN-M3UA

Before enabling the SIGTRAN-M3UA remote server, you must do the following:

- ensure that LKSCTP is not available in the Prime Access Registrar server.
- ensure to restart the Prime Access Registrar server whenever you make any configuration changes.
- ensure that you have the 32-bit rpm files for the relevant RHEL OS versions while installing the Cisco Prime Access Registrar. For the list of required rpms for the relevant OS versions, see Required 32-bit rpms for Relevant RHEL OS Versions.

Note
You must install the rpm versions relevant to the RHEL OS versions while installing the Prime Access Registrar.

- ensure that the ‘bc’ command (which is an arbitrary precision calculator language) is present while installing Prime Access Registrar in a Linux machine. If the ‘bc’ command is not present, install the relevant rpm such as bc-1.06.95-1.el6.x86_64 on that machine.
- ensure that you have the following packages while installing the Prime Access Registrar on Solaris:
 - gcc version-3.4.6
 - gdome-config-0.8.1

Note
You need to build the gdome-config-0.8.1 package to make it available. For more information, see Building gdome Package, page 23-3

 - xml2-config-2.6.23
 - pkg-config-0.15.0
- glib-2.30
- gkt-2.41
- libxml-2.2.6.20

Required 32-bit rpms for Relevant RHEL OS Versions

<table>
<thead>
<tr>
<th>rpm</th>
<th>RHEL OS Version 5.3</th>
<th>RHEL OS Version 5.4</th>
<th>RHEL OS Version 5.5</th>
<th>RHEL OS Version 6.0</th>
<th>RHEL OS Version 6.1</th>
<th>RHEL OS Version 6.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>glibc</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>gdome2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>glib</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>glib2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>libgcc</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>libstdc++</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>libxml2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ncurses</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>nsspr</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>nss</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>zlib</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>nss-softokn-freebl</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ncurses-libs</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>nss-util</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>gamin</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>libselinux</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Building gdome Package

To build gdome-config-0.8.1 package:

Step 1 Download gdome2-0.8.1.tar.gz package from the location http://gdome2.cs.unibo.it/#downloads.

Step 2 Execute the following command:

```
gunzip gdome2-0.8.1.tar.gz
```

Step 3 Untar the package using the following command:

```
tar -xvf gdome2-0.8.1.tar
```

Step 4 Use the `cd` command to move into the package obtained from Step 3.

Step 5 Execute the following commands:

```
./configure --prefix=<GdomeInstallPath> --with-glib-prefix=<GlibInstalledDirectory>
make
make install
```

Where,

- GdomeInstallPath specifies where the Gdome libraries must be placed.
Configuring EAP-AKA/EAP-SIM with SIGTRAN-M3UA

You can use aregcmd to create and configure the service of type eap-aka or eap-sim, see EAP-AKA or EAP-SIM for more information.

To configure EAP-AKA service with SIGTRAN-M3UA remote server:

Step 1 Launch aregcmd.
Step 2 Create an EAP-AKA service.
 cd /Radius/Services
 add eap-aka-service
Step 3 Set type as eap-aka.
 set eap-aka
Step 4 Add m3ua remote server in the remoteServers
 cd remoteServers/
 Set 1 m3ua

The following shows an example configuration for EAP-AKA service with SIGTRAN-M3UA remote server support, see Table 9-1 to know more about EAP-AKA service properties.

```plaintext
[eap-aka/]
Name = eap-aka
Description =
Type = eap-aka
AlwaysRequestIdentity = False
EnableIdentityPrivacy = False
PseudonymSecret = <encrypted>
PseudonymRenewtime = "24 Hours"
PseudonymLifetime = Forever
Generate3GPPCompliantPseudonym = False
EnableReauthentication = False
MaximumReauthentications = 16
ReauthenticationTimeout = 3600
ReauthenticationRealm =
AuthenticationTimeout = 120
QuintetGenerationScript- =
UseProtectedResults = False
SendReAuthIDInAccept = False
```
To configure EAP-SIM service with SIGTRAN-M3UA remote server:

Step 1 Launch `aregcmd`.
Step 2 Create an EAP-SIM service.

```
cd /Radius/Services
add eap-sim-service
```

Step 3 Set type as `eap-sim`.

```
set eap-sim
```

Step 4 Add m3ua remote server in the remoteServers

```
cd remoteServers
Set 1 m3ua
```

The following shows an example configuration for EAP-SIM service with SIGTRAN-M3UA remote server support, see Table 9-6 to know more about EAP-SIM service properties.

```
eap-sim/
   Name = eap-sim
   Description =
   Type = eap-sim
   NumberOfTriplets = 2
   UseSimDemoTriplets = False
   AlwaysRequestIdentity = False
   EnableIdentityPrivacy = False
   PseudonymSecret = <encrypted>
   PseudonymRenewtime = "24 Hours"
   PseudonymLifetime = Forever
   Generate3GPPCompliantPseudonym = False
   EnableReauthentication = False
   MaximumReauthentications = 16
   ReauthenticationTimeout = 3600
   ReauthenticationRealm =
   TripletCacheTimeout = 0
   AuthenticationTimeout = 120
   UseProtectedResults = False
   SendReAuthIDInAccept = False
   SubscriberDBLookup = SIGTRAN-M3UA
   FetchAuthorizationInfo = FALSE
   MultipleServersPolicy = Failover
   IncomingScript- =
   OutgoingScript- =
   OutageScript- =
   RemoteServers/
```
Configuring EAP-AKA/EAP-SIM with SIGTRAN-M3UA

Chapter 23 SIGTRAN-M3UA

Configuring SIGTRAN-M3UA Remote Server

You can configure the SIGTRAN-M3UA remote server under /Radius/RemoteServers. To configure the SIGTRAN-M3UA remote server:

Step 1 Launch aregcmd.
Step 2 Create sigtran-m3ua remote server.

 cd /r/remoteServers/
 add M3UA
 cd M3UA
 set protocol sigtran-m3ua

Step 3 Set the Subscriber_DBLookup.

 set Subscriber_DBLookup SIGTRAN-M3UA

Step 4 Set the port of the HLR.

 set DestinationPort 2905

Step 5 Set the port for the source.

 set SourcePort 2905

Step 6 Set the reactivate timer interval for the remote server.

 Set the reactivatetimerinterval.

Step 7 Set the subsystem number for the local.

 set LocalSubSystemNumber 149

Note
After enabling the SIGTRAN-M3UA remote server, you must ensure to restart the Prime Access Registrar server whenever you make any configuration changes.

Note
If you set FetchAuthorizationInfo as TRUE for EAP-AKA or EAP-SIM service for SIGTRAN-M3UA in Prime Access Registrar, it fetches the MSISDN information from HLR in response. The following is an example script for reading the MSISDN information from the response,

```plaintext
proc MapMSISDN {request response environ} {
    $environ get AuthorizationInfo
}
```

If you set FetchAuthorizationInfo as TRUE for EAP-AKA or EAP-SIM service for SIGTRAN-M3UA in Prime Access Registrar, it fetches the MSISDN information from HLR in response. The following is an example script for reading the MSISDN information from the response,

```plaintext
proc MapMSISDN {request response environ} {
    $environ get AuthorizationInfo
}
```
Chapter 23 SIGTRAN-M3UA

Configuring EAP-AKA/EAP-SIM with SIGTRAN-M3UA

Note
Prime Access Registrar supports the following local Sub System Numbers (SSNs) by default:
- SGSN (149)
- VLR (7)
- GMLC (145)

Step 8 Set routingindicator.

 Set routingindicator rte_gt

Step 9 Set mlcnumber.

 Set mlcnumber

Step 10 Set routingparameters.

 cd routingparameters/
 set OriginPointCode 2
 set DestinationPointCode 4
 set RemoteSubSystemNumber 6
 set OPCMask 16383
 set DPCMask 16383
 set RoutingContext 11

Step 11 Set the source and destination gt parameters.

Step 12 Set the numbering plan, encoding scheme, format, and digits for source.

Step 13 Set the numbering plan, encoding scheme, format, and digits for destination.

The following shows an example configuration of SIGTRAN-M3UA remote server support:

```plaintext
[ //localhost/Radius/RemoteServers/m3ua ]
    Name = m3ua
    Description =
    Protocol = sigtran-m3ua
    SourcePort = 2905
    LocalSubSystemNumber = 149
    DestinationPort = 2905
    IMSITranslationScript- =
    GlobalTitleTranslationScript= = setGT
    Timeout = 15
    ReactivateTimerInterval = 2000
    LimitOutstandingRequests = FALSE
    MaxOutstandingRequests = 0
    MaxRetries = 3
    MAPVersion = 2
    NetworkVariant = ITU
    SubServiceField = NAT
    TCAPVariant = ITU96
    NetworkAppearance = 1
```
NetworkIndicator = NAT
MLCNumber = 123456789012345
TrafficMode = LOADSHARE
LoadShareMode = SLS
RoutingIndicator = RTE_GT
RoutingParameters/
 OriginPointCode = 2
 DestinationPointCode = 4
 RemoteSubSystemNumber = 6
 OPCMask = 16383
 DPCMask = 16383
 ServiceIndicatorOctet = 0
 RoutingContext = 11
SourceGTAddress/
 SourceGTDigits = 919845071842
 SourceGTFormat = GTFRMT_4
 SourceNatureofAddress = INTNUM
 SourceTranslationType = 0
 SourceNumberingPlan = ISDN
 SourceEncodingScheme = BCDEVEN
DestinationGTAddress/
 DestGTDigits = 919845071842
 DestGTFormat = GTFRMT_4
 DestNatureofAddress = INTNUM
 DestTranslationType = 0
 DestNumberingPlan = ISDN
 DestEncodingScheme = BCDEVEN

Table 23-1 describes SIGTRAN-M3UA remote server properties.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Required; inherited from the upper directory.</td>
</tr>
<tr>
<td>Description</td>
<td>An optional description of the service.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Represents the type of remote server. The value should be SIG-TRAN-M3UA.</td>
</tr>
<tr>
<td>SourcePort</td>
<td>The port number in which Prime Access Registrar is installed for M3UA transactions.</td>
</tr>
<tr>
<td>LocalSubSystemNumber</td>
<td>The local sub system number is set as 149 by default.</td>
</tr>
<tr>
<td>DestinationPort</td>
<td>The destination port number to which Prime Access Registrar connects.</td>
</tr>
<tr>
<td>IMSITranslationScript</td>
<td>The scripting point is used to modify the IMSI based on the requirement before sending the request to STP/HLR.</td>
</tr>
<tr>
<td>GlobalTitleTranslationScript</td>
<td>This is used to specify the name of the script which is responsible for translating IMSI to Global Title Address (GTA).</td>
</tr>
<tr>
<td>Timeout</td>
<td>Specifies the time (in seconds) to wait before an authentication request times out; defaults to 15.</td>
</tr>
<tr>
<td>ReactivateTimerInterval</td>
<td>Specifies the time interval (in milliseconds) to activate an inactive server; defaults to 300000 ms (which is 5 minutes).</td>
</tr>
</tbody>
</table>
Table 23-1 SIGTRAN-M3UA Stack Properties (continued)

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LimitOutstandingRequests</td>
<td>Required; the default is FALSE. Prime Access Registrar uses this property in conjunction with the MaxOutstandingRequests property to tune the RADIUS server’s use of the HLR. When you set this property to TRUE, the number of outstanding requests for this RemoteServer is limited to the value you specified in MaxOutstandingRequests. When the number of requests exceeds this number, Prime Access Registrar queues the remaining requests, and sends them as soon as the number of outstanding requests drops to this number.</td>
</tr>
<tr>
<td>MaxOutstandingRequests</td>
<td>Required when you have set the LimitOutstandingRequests to TRUE. The number you specify, which must be greater than zero, determines the maximum number of outstanding requests allowed for this remote server.</td>
</tr>
<tr>
<td>TrafficMode</td>
<td>The mode of the traffic for the HLR. The possible values are LOADSHARE or ACTSTANDBY.</td>
</tr>
<tr>
<td>LoadShareMode</td>
<td>Required. The TrafficMode is set as LOADSHARE, which is a type of load sharing scheme.</td>
</tr>
<tr>
<td></td>
<td>When there is more than one associations with HLR, then the load sharing is set as Signaling Link Selection (SLS). SLS is done based on a simple round-robin basis.</td>
</tr>
<tr>
<td>MAPVersion</td>
<td>The version of the MAP. The possible values are 2 or 3. Specify the MAP version that the HLR supports, i.e, 2 or 3 during the configuration.</td>
</tr>
<tr>
<td>NetworkVariant</td>
<td>Required. Represents the network variant switch.</td>
</tr>
<tr>
<td></td>
<td>Note Prime Access Registrar supports only ITU value.</td>
</tr>
<tr>
<td>SubServiceField</td>
<td>Specifies the type of network to which this SAP belongs. The possible options are:</td>
</tr>
<tr>
<td></td>
<td>- INT—represents international network</td>
</tr>
<tr>
<td></td>
<td>- NAT—represents national network</td>
</tr>
<tr>
<td></td>
<td>- RESERVE—represents reserved network</td>
</tr>
<tr>
<td></td>
<td>- SPARE—represents spare network</td>
</tr>
<tr>
<td>TCAPVariant</td>
<td>Required; represents the name of the tcap network variant switch. The possible options are ITU88, ITU92, or ITU96.</td>
</tr>
<tr>
<td>NetworkAppearance</td>
<td>Required. A parameter that represents network appearance in the M3UA packet. Value ranges from 0-2147483647 and the default value is 1. This is optional as per the RFC 4666 (http://tools.ietf.org/html/rfc4666.) You can set this value to 0 to remove network appearance from the data packet.</td>
</tr>
<tr>
<td>NetworkIndicator</td>
<td>The network indicator used in SCCP address. The possible options are NAT and INT which represents international network and national network respectively.</td>
</tr>
</tbody>
</table>
Table 23-1 SIGTRAN-M3UA Stack Properties (continued)

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLCNumber</td>
<td>Required, if you select FetchAuthorizationInfo as True in EAP-AKA or EAP-SIM services. Also, required for M3UA service for fetching the MSISDN from the HLR. This is the map layer network node number by which the HLR identifies the Prime Access Registrar in the network. The MLC number is configured in E.164 format.</td>
</tr>
<tr>
<td></td>
<td>Note MLC is a max-15 digit number.</td>
</tr>
<tr>
<td>RoutingIndicator</td>
<td>Required; represents the routing indicator. The possible values are Route on Global Title (RTE_GT) or Route on Sub System Number (RTE_SSN). You can use either RTE_GT or RTE_SSN value to route the packets for HLR.</td>
</tr>
<tr>
<td>OriginPointCode</td>
<td>Required; represents the originating point of a message in a signalling network. The value ranges from 0-16777215.</td>
</tr>
<tr>
<td>DestinationPointCode</td>
<td>Required; represents the destination address of a signalling point in a SS7 network.</td>
</tr>
<tr>
<td>RemoteSubSystemNumber</td>
<td>Required; represents the sub system number of the remote server. The RemoteSubSystemNumber is set as 6 by default.</td>
</tr>
<tr>
<td>OPCMask</td>
<td>Represents the wild card mask for the origin point code. The value ranges from 0-16777215.</td>
</tr>
<tr>
<td>DPCMask</td>
<td>Represents the wild card mask for the destination point code. The value ranges from 0-16777215.</td>
</tr>
<tr>
<td>ServiceIndicatorOctet</td>
<td>Represents the service identifier octet. The value ranges from 0-255.</td>
</tr>
<tr>
<td>RoutingContext</td>
<td>Required; represents the routing context which ranges from 0-16777215.</td>
</tr>
<tr>
<td>SourceIPAddresses add 1, add 2,...</td>
<td>Represent the multiple source IP addresses configured on the remote server.</td>
</tr>
<tr>
<td>DestinationIPAddresses</td>
<td>Represent the multiple destination IP addresses configured on the remote server.</td>
</tr>
<tr>
<td>SourceGTAddress</td>
<td>Required; an unique number to identify the source.</td>
</tr>
<tr>
<td>SourceGTDigits</td>
<td>Required; represents the format of the global translation (GT) rule. The possible values are GTFRMT_0, GTFRMT_1, GTFRMT_2, GTFRMT_3, GTFRMT_4, or GTFRMT_5.</td>
</tr>
<tr>
<td>SourceGTFormat</td>
<td>Required; represents the format of the global translation (GT) rule. The possible values are GTFRMT_0, GTFRMT_1, GTFRMT_2, GTFRMT_3, GTFRMT_4, or GTFRMT_5.</td>
</tr>
<tr>
<td>SourceNatureofAddress</td>
<td>Required; represents the type of the source address. The possible values are ADDR_NOTPRSNT (Address not present), SUBNUM (Subscriber number), NATSIGNUM (National significant number), or INTNUM (International number.)</td>
</tr>
<tr>
<td>SourceTranslationType</td>
<td>Required; represents the type of translation. The possible values ranges from 0-255.</td>
</tr>
</tbody>
</table>
Blacklisting IMSI Values

Prime Access Registrar allows you to blacklist one or more IMSI values available in the EAP-SIM or EAP-AKA requests forwarded to an HLR. A scripting point option is provided such that you can set an environment dictionary variable Blacklisted-IMSI to TRUE or FALSE to blacklist or whitelist IMSI values respectively. An IMSI value marked as blacklisted is rejected and will not be forwarded to the HLR.

To blacklist an IMSI value:

Step 1 Configure a SIGTRAN-M3UA remote server as described in Configuring SIGTRAN-M3UA Remote Server, page 23-6.
Configuring M3UA Service

Prime Access Registrar supports the M3UA service, which is used to fetch MSISDN from IMSI or vice versa through RADIUS packets, see Chapter 4, “M3UA,” for more information.

To configure the M3UA service with SIGTRAN-M3UA remote server:

Step 1 Launch `aregcmd`.

Step 2 Create an M3UA service.

```
cd /Radius/Services
add FetchAuthInfo
```

Step 3 Set the type as M3UA.

```
set type M3UA
```

Step 2 Configure an EAP-AKA or EAP-SIM service with the SIGTRAN-M3UA remote server. See Configuring EAP-AKA/EAP-SIM with SIGTRAN-M3UA, page 23-4 for an example.

Step 3 Run the following script:

```
proc CheckBlackList {request response environ}
{
    set imsi [ $environ get IMSI ]
    if { [ string compare $imsi 984579621012345 ] == 0 }
    {
        $environ put Blacklisted-IMSI TRUE
        $environ put Notification-Code 19384
    }
}
```

Where, `CheckBlackList` is the entriypoint variable of the global title translation script `checklist`, as shown in the example below:

```
[ //localhost/Radius/Scripts/checklist ]
    Name = checklist
    Description =
    Language = tcl
    Filename = tclscript.tcl
    EntryPoint = CheckBlackList
    InitEntryPoint =
    InitEntryPointArgs =
```

If the environment variable `Blacklisted-IMSI` is set as `TRUE` and if the IMSI value available in the incoming script matches the given string, then that IMSI is blacklisted and will not be forwarded to the HLR. You can configure a notification code to represent failure. If no notification code is set, 16384 representing `General Failure` is sent upon rejection of an IMSI value.

Note Notification code is applicable only for EAP-SIM service.

Additionally, you can configure the script to compare the incoming IMSI against the configured IMSIs and take appropriate action as to whether blacklist or whitelist the incoming IMSI.
Step 4
Set AuthorizationInfoLookUp to one of the following:
- MSISDN-IMSI—To fetch MSISDN in the request and send IMSI in the response to the HLR.
- IMSI-MSISDN—To fetch IMSI in the request and send MSISDN in the response to the HLR.

Note
See Example Configuration, page 23-13 for a sample configuration with

- Map-Restore—To fetch the profile information of a subscriber from the HLR. For more information on configuring the M3UA service with Map Restore Data authorization, see Configuring M3UA Service with Map Restore Data Authorization, page 23-13.

set AuthorizationInfoLookUp IMSI-MSISDN

Step 5
Add M3UA remote server in the remoteServers.

```
cd remoteServers
Set 1 m3ua
```

Example Configuration
The following shows an example configuration of the M3UA service:

```
[ //localhost/Radius/Services/test ]
Name = test
Description =
Type = m3ua
IncomingScript~ =
OutgoingScript~ =
OutageScript~ =
OutagePolicy~ = RejectAll
AuthorizationInfoLookUp = IMSI-MSISDN
RemoteServers/
```

Configuring M3UA Service with Map Restore Data Authorization

Prime Access Registrar provides the Map Restore Data functionality to fetch the profile information of a subscriber from the HLR.

This topic contains the following sections:
- Map Restore Data Authorization Flow, page 23-13
- CS Insert Subscriber Data Structure, page 23-14
- CLI Configuration for Map-Restore-Data, page 23-15

Map Restore Data Authorization Flow
Prime Access Registrar sends a MAP_SEND_AUTH_INFO request to HLR on receiving EAP-SIM / EAP-AKA authentication request and fetches the authentication vectors in MAP_SEND_AUTH_INFO_RES message. Prime Access Registrar checks the IMSI and if it is
authentic, sends a MAP_RESTORE_DATA_REQUEST to fetch the profile information from the HLR. HLR then responds with MAP_INSERT_SUBSCRIBER_DATA request to Prime Access Registrar. The request contains the circuit switched (CS) profile information for a subscriber.

Prime Access Registrar server stores the profile information based on the ProfileInfo configuration and sends a MAP_INSERT_SUBSCRIBER_DATA_RESPONSE to HLR. HLR responds with MAP_RESTORE_DATA_RESPONSE to Prime Access Registrar. After successful acknowledgment of MAP_RESTORE_DATA, Prime Access Registrar server maps the fetched profile through RestoreDataMappings to any of the environment variables configured by the user. The CS profile used to authorize WI-FI access which is fetched from HLR can be transported to access point in any of the radius attribute.

The mapping of the values in the response to a profile is possible based on the configuration in the profilemappings configuration.

Figure 23-2 represents the Map-Restore-Data message flow between Prime Access Registrar and HLR.

Figure 23-2 Map-Restore-Data Authorization Flow

CS Insert Subscriber Data Structure

Figure 23-3 shows the parameters fetched by Prime Access Registrar on receipt of the subscriber data request.
Figure 23-3 CS Insert Subscriber Data Structure

CLI Configuration for Map-Restore-Data

If you set AuthorizationInfoLookUp to **Map-Restore**, two additional properties ProfileMappings and RestoreDataMappings are displayed.

The restore data mapping parameters include LSA information, LCS information, and subscriber data. You can configure an index with a value or a range to fetch one or more properties from the subscriber data.

The following is an example configuration of an M3UA service with Map-Restore-Data authorization:

```plaintext
[ //localhost/Radius/Services/serv1 ]
Name = serv1
Description =
Type = m3ua
IncomingScript~ =
OutgoingScript~ =
OutageScript~ =
OutagePolicy~ = RejectAll
AuthorizationInfoLookUp = MAP-RESTORE
RemoteServers/
  1. server1
RestoreDataMappings/
  IMSI = imsi
  Naea-PreferredCI = naea
  RoamingRestrictedInSgsnDueToUnsupportedFeature =
  NetworkAccessMode =
  LMUIndicator =
  ISTAlertTimer =
  SuperChargerSupportedInHLR =
  CSAllocationRetentionPriority =
  ChargingCharacteristics =
  AccessRestrictionData =
  UE-ReachabilityRequestIndicator =
  Category =
  LSAInformation/
    CompleteDataListIncluded = completedatalist
    LSAOnlyAccessIndicator =
    LSADataList/
```
Configuring M3UA Service

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSAIdentity</td>
<td>lsaid</td>
</tr>
<tr>
<td>LSAAttributes</td>
<td>lsattrib</td>
</tr>
<tr>
<td>LSAActiveModeIndicator</td>
<td>activmode</td>
</tr>
<tr>
<td>MSISDN</td>
<td>msisdn</td>
</tr>
<tr>
<td>SubscriberStatus</td>
<td>substatus</td>
</tr>
<tr>
<td>RoamingRestrictionDueToUnsupportedFeature</td>
<td></td>
</tr>
<tr>
<td>BearerServiceList/</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>6-10</td>
</tr>
<tr>
<td>BearerService</td>
<td>bearsrvc</td>
</tr>
<tr>
<td>TeleServiceList/</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>= TeleService</td>
</tr>
<tr>
<td>ProvisionedSS/</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>4-6</td>
</tr>
<tr>
<td>ForwardingInfo/</td>
<td></td>
</tr>
<tr>
<td>FI-SS-Code</td>
<td>fisscode</td>
</tr>
<tr>
<td>ForFeatureList/</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>7-10</td>
</tr>
<tr>
<td>FF-SS-Status</td>
<td>ffssstatus</td>
</tr>
<tr>
<td>ForwardedToNumber</td>
<td></td>
</tr>
<tr>
<td>ForwardedToSubaddress</td>
<td></td>
</tr>
<tr>
<td>ForwardingOptions</td>
<td></td>
</tr>
<tr>
<td>NoReplyConditionTime</td>
<td></td>
</tr>
<tr>
<td>BasicService/</td>
<td></td>
</tr>
<tr>
<td>SS-Ext-BearerService</td>
<td>bextbsservice</td>
</tr>
<tr>
<td>SS-Ext-Teleservice</td>
<td>bextteleservice</td>
</tr>
<tr>
<td>CallBarringInfo/</td>
<td></td>
</tr>
<tr>
<td>CB-SS-Code</td>
<td></td>
</tr>
<tr>
<td>CallBarFeatureList/</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>=</td>
</tr>
<tr>
<td>CB-SS-Status</td>
<td></td>
</tr>
<tr>
<td>BasicService/</td>
<td></td>
</tr>
<tr>
<td>CB-Ext-BearerService</td>
<td></td>
</tr>
<tr>
<td>CB-Ext-Teleservice</td>
<td></td>
</tr>
<tr>
<td>CugInfo/</td>
<td></td>
</tr>
<tr>
<td>CugSubList/</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>=</td>
</tr>
<tr>
<td>CugSubscription/</td>
<td></td>
</tr>
<tr>
<td>Cug-Index</td>
<td></td>
</tr>
<tr>
<td>cug-Interlock</td>
<td></td>
</tr>
<tr>
<td>IntraCUG-Options</td>
<td></td>
</tr>
<tr>
<td>BasicServiceGroupList/</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>=</td>
</tr>
<tr>
<td>CUG-Ext-BearerService</td>
<td></td>
</tr>
<tr>
<td>CUG-Ext-Teleservice</td>
<td></td>
</tr>
<tr>
<td>CugInformation/</td>
<td></td>
</tr>
<tr>
<td>Cug-FeatureList/</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>=</td>
</tr>
<tr>
<td>CUG-Feature</td>
<td></td>
</tr>
<tr>
<td>BasicService.Ext-BearerService</td>
<td></td>
</tr>
<tr>
<td>PreferentialCUG-Indicator</td>
<td></td>
</tr>
<tr>
<td>InterCUG-Restrictions</td>
<td></td>
</tr>
<tr>
<td>SS-Data/</td>
<td></td>
</tr>
<tr>
<td>SSD-SS-Code</td>
<td></td>
</tr>
<tr>
<td>SSD-SS-Status</td>
<td></td>
</tr>
<tr>
<td>SS-SubscriptionOption/</td>
<td></td>
</tr>
<tr>
<td>CliRestrictionOption</td>
<td></td>
</tr>
<tr>
<td>OverrideCategory</td>
<td></td>
</tr>
<tr>
<td>BasicServiceGroupList/</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>=</td>
</tr>
<tr>
<td>BSG-Ext-BearerService</td>
<td></td>
</tr>
</tbody>
</table>
BSG-Ext-Teleservice =
EMLPP-Info/
 MaximumEntitledPriority =
 DefaultPriority =
ODB-Data/
 ODB-GeneralData =
 ODB-HPLMN-Data =
RegionalSubscriptionData/
 Index =
 RegionalSubscriptionData =
VBSSubscriptionData/
 Index =
 VBS-GroupId =
 BroadcastInitEntitlement =
VGCSSubscriptionData/
 Index =
 VGCS-GroupId =
 AdditionalSubscriptions =
 AdditionalInfo =
 LongGroupID =
LCSIInformation/
 GMLC-List/
 Index =
 GMLC =
 LCS-PrivacyExceptionList/
 Index =
 PE-SS-Code =
 SS-Status =
 LCSNotificationToMSUser =
 ExternalClientList/
 Index =
 ClientIdentity.ExternalAddress =
 ExtClGMLC-Restriction =
 ExtClNotificationToMSUser =
 PLMNClientList/
 Index =
 PLMNClient =
 ServiceTypeList/
 Index =
 ServiceTypeIdentity =
 SerTypeGMLC-Restriction =
 SerTypeNotificationToMSUser =
MOLR-List/
 Index =
 MOLR-SS-Code =
 MOLR-SS-Status =
MC-SS-Info/
 MC-SS-Code =
 MC-SS-Status =
 NbrSB =
 NbrUser =
SGSN-CAMEL-SubscriptionInfo/
GPRS-CSI/
 GPRS-CamelCapabilityHandling =
 GPRS-NotificationToCSE =
 GPRS-CSI-Active =
 GPRS-CamelTDPPDataList/
 Index =
 GPRS-TriggerDetectionPoint =
 GPRS-ServiceKey =
 GPRS-GSMSCF-Address =
 DefaultSessionHandling =
MO-SMS-CSI/
 MOSMS-CamelCapabilityHandling =
Configuring M3UA Service

Table 23-2 shows the restore data mapping parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSI</td>
<td>IMSI received in the response from HLR.</td>
</tr>
<tr>
<td>Naea-Preferred CI</td>
<td>North American Equal Access preferred Carrier ID List. A list of the preferred carrier identity codes that are subscribed to.</td>
</tr>
<tr>
<td>Roaming Restricted In Sgsn Due To Unsupported Feature</td>
<td>Indicates that a subscriber is not allowed to roam in the current Service GPRS Support Node (SGSN) or Cisco Mobility Management Entity (MME) area.</td>
</tr>
</tbody>
</table>
Table 23-2 Restore Data Mappings and Profile Mappings Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Access Mode</td>
<td>The Network Access Mode (NAM) defines if the subscriber is registered to get access to the CS (non-GPRS/EPS network), to the PS (GPRS/EPS) network or to both networks. NAM describes the first level of the subscriber data pseudo-tree below the IMSIr0ot. It is permanent subscriber data stored in the HSS / HLR and the SGSN with the Gs interface option, and the MME with the SGs interface option.</td>
</tr>
<tr>
<td>LMU Indicator</td>
<td>Indicates the presence of an LMU.</td>
</tr>
<tr>
<td>IST Alert Timer</td>
<td>Indicates the IST alert timer value that must be used in the Mobile Switching Center (MSC) to inform the HLR about the call activities that the subscriber performs.</td>
</tr>
<tr>
<td>Super Charger Supported In HLR</td>
<td>Indicates whether super charger concept is supported in HLR.</td>
</tr>
<tr>
<td>CS Allocation Retention Priority</td>
<td>Allocation-retention priority for Circuit Switched (CS). This parameter specifies relative importance to compare with other bearers about allocation and retention of bearer.</td>
</tr>
<tr>
<td>Charging Characteristics</td>
<td>Subscribed charging characteristics.</td>
</tr>
<tr>
<td>Access Restriction Data</td>
<td>Allowed Recipient Access Table (RAT) according to subscription data.</td>
</tr>
<tr>
<td>UE Reachability Request Indicator</td>
<td>Indicates that the Home Subscriber Server (HSS) is awaiting a notification of user equipment (UE) reachability.</td>
</tr>
<tr>
<td>Category</td>
<td>Calling party category</td>
</tr>
<tr>
<td>LSA Information</td>
<td>These parameters refer to one or more localized service areas (LSAs) a subscriber may be a member of, together with the priority, the preferential access indicator, the active mode support indicator and active mode indication of each localized service area. The access right outside these localized service areas is also indicated.</td>
</tr>
</tbody>
</table>

Subscriber Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSISDN</td>
<td>MSISDN value in the subscriber data.</td>
</tr>
<tr>
<td>Subscriber Status</td>
<td>Barring status of the subscriber, which could be Service Granted or Operator Determined Barring.</td>
</tr>
<tr>
<td>Roaming Restriction Due To Unsupported Feature</td>
<td>Indicates that the subscriber is not allowed to roam in the current MSC area.</td>
</tr>
<tr>
<td>Bearer Service List</td>
<td>List of extensible bearer services subscribed. Configure the index value to fetch only the required bearer services.</td>
</tr>
<tr>
<td>TeleService List</td>
<td>List of extensible teleservices subscribed. Configure the index value to fetch only the required teleservices.</td>
</tr>
<tr>
<td>Provisioned SS</td>
<td>List of supplementary services provisioned. Configure the index value to fetch only the required supplementary services.</td>
</tr>
<tr>
<td>ODB-Data</td>
<td>Operator Determined Barring (ODB) general data and ODB Home Public Land Mobile Network (HPLMN) specific data.</td>
</tr>
</tbody>
</table>
Configuring M3UA Service

Table 23-2 Restore Data Mappings and Profile Mappings Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Subscription Data</td>
<td>List of regional subscription areas (zones) in which the subscriber is allowed to roam. Configure the index value to fetch only the required zones.</td>
</tr>
<tr>
<td>VBS Subscription Data</td>
<td>List of Voice Broadcast Services (VBS) subscribed. Configure the index value to fetch only the required VBS.</td>
</tr>
<tr>
<td>VGCS Subscription Data</td>
<td>List of Voice Group Call Services (VGCS) subscribed. Configure the index value to fetch only the required VGCS.</td>
</tr>
</tbody>
</table>

LCS Information
Live Communication Server (LCS) related information for the subscriber.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMLC-List</td>
<td>List of Gateway Mobile Location Centers (GMLCs) that are permitted to issue a call/session unrelated or call/session related MT-LR request. Configure the index value to fetch only the required GMLCs.</td>
</tr>
<tr>
<td>LCS-Privacy Exception List</td>
<td>Classes of LCS client that are allowed to locate any target Mobile Station (MS). Configure the index value to fetch only the required classes.</td>
</tr>
<tr>
<td>MOLR-List</td>
<td>Code and status of Mobile Originating Location Request (MO-LR) subscribed. Configure the index value to fetch only the required requests.</td>
</tr>
</tbody>
</table>

ProfileMappings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
<td>The RADIUS attribute to map the fetched profile data.</td>
</tr>
<tr>
<td>Value:Profile</td>
<td>Value of the attribute.</td>
</tr>
</tbody>
</table>

Configuring Environment Variables to Fetch Subscriber Data Values

You can configure an environment variable to fetch the required values from the subscriber data packets. You can run a script to fetch the environment variable along with the values. See the example below:

```bash
proc FetchBearerService {request response environ} {
    set bearerService [ $environ get bs-ext ]
    $request trace 2 "BearerService value fetched is " $bearerService
}
```

In the above script bs-ext is the environment variable that is configured. If the values fetched from BearerServiceList are 17,18,19,20 and 21, the above script returns the value 17:18:19:20:21.

Similarly we can run scripts to retrieve other environment variables as well.
Support for SCTP Multihoming in SIGTRAN-M3UA

Stream Control Transmission Protocol (SCTP) is an IP transport protocol that supports data exchange between exactly two endpoints. Multihoming feature of SCTP provides the ability for a single SCTP endpoint to support multiple IP addresses. With this feature, each of the two endpoints during an SCTP association can specify multiple points of attachment. Each endpoint will be able to receive messages from any of the addresses associated with the other endpoint. With the use of multiple interfaces, data can be sent to alternate addresses when failures occur and thus Prime Access Registrar runs successfully even during network failures.

Prime Access Registrar allows you to configure multiple source and destination addresses on the remote server. The following shows an example configuration of SIGTRAN-M3UA remote server with multiple source and destination addresses:

```
[ /Radius/RemoteServers/m3ua ]
 Name = m3ua
 Description =
 Protocol = sigtran-m3ua
 SourcePort = 2805
 LocalSubSystemNumber = 149
 DestinationPort = 2855
 IMSITranslationScript~ =
 GlobalTitleTranslationScript~ =
 Timeout = 15
 ReactivateTimerInterval = 300000
 LimitOutstandingRequests = FALSE
 MaxOutstandingRequests = 0
 MAPVersion = 3
 NetworkVariant = ITU
 SubServiceField = NAT
 TCAPVariant = ITU96
 NetworkAppearance = 1
 NetworkIndicator = NAT
 MLCNumber = 123456789012345
 TrafficMode = LOADSHARE
 LoadShareMode = SLS
 RoutingIndicator = RTE_SSN
 RoutingParameters/
 OriginPointCode = 2
 DestinationPointCode = 4
 RemoteSubSystemNumber = 6
 OPCMask = 16383
 DPCMask = 16383
 ServiceIndicatorOctet = 0
 RoutingContext = 11
 SourceIPAddressess/
 DestinationIPAddressess/
 ---> cd SourceIPAddressess
 ---> add 1 192.168.0.2
 ---> add 2 192.168.0.3
 ---> cd ../DestinationIPAddressess
 ---> add 1 192.168.0.5
 ---> add 2 192.168.0.6
```

In the above example, the link between IP addresses 192.168.0.2 and 192.168.0.5 acts as the primary link and the link between IP addresses 192.168.0.3 and 192.168.0.6 acts as the secondary link. With the Multihoming feature, if one of the interfaces in the primary link is down, the secondary link carries the active traffic. On restoration of the IP address, the traffic switches back to the primary link.
SIGTRAN-M3UA Logs

The following logs are applicable for SIGTRAN-M3UA:

- **stack.log**—Logs the interaction between Prime Access Registrar and STP/HLR.
- **sm.log**—Logs the internal debug information for SIGTRAN-M3UA stack manager.
- **m3ua.log**—Logs the inter-process communication between Prime Access Registrar and SIGTRAN-M3UA stack.
- **cliActivity.log**—Logs the initialization and command interactions.