
Monitoring Cisco NFVI Performance

The following topics tell you how to display logs to monitor Cisco VIM performance.

• Logging and Monitoring in Cisco NFVI, on page 1
• Displaying Cisco VIM Log Files Using the CLI, on page 3
• Logging Into Kibana Dashboard, on page 6
• Rotation of the Cisco VIM Logs, on page 17
• Snapshot Manager Tool for Elasticsearch, on page 17
• Remote NFS Backup for Elasticsearch Snapshots, on page 19
• Network Performance Test with NFVBench, on page 19
• Customizing CVIM-MON Dashboard, on page 20
• Cisco VIM MON Inventory Discovery API usage, on page 21
• Connectivity Analysis, on page 30

Logging and Monitoring in Cisco NFVI
Cisco VIM uses a combination of open source tools to collect and monitor the Cisco OpenStack services
including Elasticsearch, Fluentd, and the Kibana dashboard (EFK).

In VIM, we have moved our platform to use Fluentd, instead of logstash. However, to maintain backwards
compatibility, the code, and documentation refers to ELK, instead of EFK at various places. In VIM, these
two acronyms are interchangeable, however it refers to the presence of EFK in the offering. OpenStack services
that followed by EFK include:

• MariaDB—A relational database management system which is based on MySQL. All the OpenStack
components store their data in MariaDB.

• HAProxy—HAProxy is a free open source software that provides a high-availability load balancer, and
proxy server for TCP and HTTP-based applications that spreads requests across multiple servers.

• Keystone—Keystone is an OpenStack project that provides identity, token, catalog, and policy services
for use specifically by projects in the OpenStack.

• Glance—An OpenStack project that allows you to upload and discover data assets that are meant for use
with other services.

• Neutron—An OpenStack project that provides the network connectivity between interface devices, such
as vNICs, managed by other OpenStack services, such as Nova.

Monitoring Cisco NFVI Performance
1

• Nova—An OpenStack project that is designed to provide massively scalable, on demand, self-service
access to compute resources.

• HTTP—The Apache HTTP server Project, an effort to develop and maintain an open-source HTTP
server.

• Cinder—An OpenStack block storage service that is designed to present storage resources to the users
that are consumed by the OpenStack compute project (Nova).

• Memcached—A general purpose distributed memory caching system.

• CloudPulse—Is an OpenStack tool that checks the health of the cloud. CloudPulse includes operator and
end-point tests.

• Heat—The main OpenStack Orchestration program. Heat implements an orchestration engine to launch
multiple composite cloud applications that is based on text file templates.

• Other OpenStack services—RabbitMQ, Ceph, Open vSwitch, Linux bridge, Neutron VTS (optional),
and others.

• VMTP—Integrated control and data plane log for testing the cloud.

• NFVBench—Network performance benchmarking tool.

A Fluentd container resides on each control, compute, and storage nodes. They forward log to the Fluentd-aggr
server residing on the management node.

The following figure shows a high-level schematic of the Fluent service assurance architecture.

Monitoring Cisco NFVI Performance
2

Monitoring Cisco NFVI Performance
Logging and Monitoring in Cisco NFVI

Figure 1: EFK Service Assurance Architecture

The EFK flow includes:

• Fluentd extracts the relevant data from the logs and tags them so that Kibana can use it later to display
useful information about those logs.

• Fluentd sends the logs from all the compute, controller, and storage nodes to the Fluentd-aggr server on
the management node.

• Fluentd-aggr in the management node sends the structured logs into the Elasticsearch database.
• Elasticsearch stores the data, indexes it, and supports fast queries against a large amount of log data.
• Kibana visualizes the data that is stored in Elasticsearch using a custom dashboard. You can also add
filters to the data to visualize interesting fragments of the log data.

Displaying Cisco VIM Log Files Using the CLI
Cisco VIM log file location depends on the node and log type. Installer logs are found in the management
node under the /var/log/mercury/<install_uuid>/ directory. The last 20 log directories are tarred and kept in
this directory. These files contain logs related to bootstrap, build orchestration, baremetal, common setup,
and OpenStack orchestration.

Monitoring Cisco NFVI Performance
3

Monitoring Cisco NFVI Performance
Displaying Cisco VIM Log Files Using the CLI

If the installer fails, look at the last tar.gz file for logs, for example:
[root@mgmtnode mercury]# ls -lrt
total 20
drwxr-xr-x. 2 root root 80 Jul 19 23:42 573f2b7f-4463-4bfa-b57f-98a4a769aced
drwxr-xr-x. 2 root root 4096 Jul 20 03:29 installer
drwxr-xr-x. 2 root root 79 Jul 20 03:29 e9117bc5-544c-4bda-98d5-65bffa56a18f
drwxr-xr-x. 2 root root 79 Jul 20 04:54 36cdf8b5-7a35-4e7e-bb79-0cfb1987f550
drwxr-xr-x. 2 root root 79 Jul 20 04:55 bd739014-fdf1-494e-adc0-98b1fba510bc
drwxr-xr-x. 2 root root 79 Jul 20 04:55 e91c4a6c-ae92-4fef-8f7c-cafa9f5dc1a3
drwxr-xr-x. 2 root root 79 Jul 20 04:58 1962b2ba-ff15-47a6-b292-25b7fb84cd28
drwxr-xr-x. 2 root root 79 Jul 20 04:59 d881d453-f6a0-448e-8873-a7c51d8cc442
drwxr-xr-x. 2 root root 78 Jul 20 05:04 187a15b6-d425-46a8-a4a2-e78b65e008b6
drwxr-xr-x. 2 root root 4096 Jul 20 06:47 d0346cdd-5af6-4058-be86-1330f7ae09d1
drwxr-xr-x. 2 root root 79 Jul 20 17:09 f85c8c6c-32c9-44a8-b649-b63fdb11a79a
drwxr-xr-x. 2 root root 67 Jul 20 18:09 179ed182-17e4-4f1f-a44d-a3b6c16cf323
drwxr-xr-x. 2 root root 68 Jul 20 18:13 426cb05f-b1ee-43ce-862d-5bb4049cc957
drwxr-xr-x. 2 root root 68 Jul 20 18:13 1d2eec9d-f4d8-4325-9eb1-7d96d23e30fc
drwxr-xr-x. 2 root root 68 Jul 20 18:13 02f62a2f-3f59-46a7-9f5f-1656b8721512
drwxr-xr-x. 2 root root 68 Jul 20 18:14 c7417be9-473e-49da-b6d0-d1ab8fb4b1fc
drwxr-xr-x. 2 root root 68 Jul 20 18:17 b4d2077b-c7a9-46e7-9d39-d1281fba9baf
drwxr-xr-x. 2 root root 68 Jul 20 18:35 21972890-3d45-4642-b41d-c5fadfeba21a
drwxr-xr-x. 2 root root 80 Jul 20 19:17 d8b1b54c-7fc1-4ea6-83a5-0e56ff3b67a8
drwxr-xr-x. 2 root root 80 Jul 20 19:17 23a3cc35-4392-40bf-91e6-65c62d973753
drwxr-xr-x. 2 root root 80 Jul 20 19:17 7e831ef9-c932-4b89-8c81-33a45ad82b89
drwxr-xr-x. 2 root root 80 Jul 20 19:18 49ea0917-f9f4-4f5d-82d9-b86570a02dad
drwxr-xr-x. 2 root root 80 Jul 20 19:18 21589a61-5893-4e30-a70e-55ad0dc2e93f
drwxr-xr-x. 2 root root 80 Jul 20 19:22 6ae6d136-7f87-4fc8-92b8-64cd542495bf
drwxr-xr-x. 2 root root 4096 Jul 20 19:46 1c6f4547-c57d-4dcc-a405-ec509306ee25
drwxr-xr-x. 2 root root 68 Jul 20 21:20 c6dcc98d-b45b-4904-a217-d25001275c85
drwxr-xr-x. 2 root root 68 Jul 20 21:40 ee58d5d6-8b61-4431-9f7f-8cab2c331637
drwxr-xr-x. 2 root root 4096 Jul 20 22:06 243cb0f8-5169-430d-a5d8-48008a00d5c7
drwxr-xr-x. 2 root root 4096 Jul 20 22:16 188d53da-f129-46d9-87b7-c876b1aea70c

Cisco VIM autobackup logs are found in the following location:
CVIM autobackup logs (auto-backup enabled by default)
/var/log/mercury/autobackup_3.2.x_2019-03-19_15-11-10.log

cobbler apache log (may be needed for PXE troubleshooting)
/var/log/cobblerhttpd/access_log
/var/log/cobblerhttpd/error_log

VMTP logs
/var/log/vmtp/vmtp.log

Cisco VIM RestAPI log location
CVIM RestAPI logs
/var/log/mercury_restapi/restapi.log

CIM RestAPI apache logs (TCP port 8445)
/var/log/httpd/mercury_access.log
/var/log/httpd/mercury_error.log

CIM RestAPI log-directory logs (TCP port 8008)
/var/log/httpd/access_log
/var/log/httpd/error_log

EFK log location
Elasticsearch-fluentd-Kibana
/var/log/elasticsearch/
/var/log/fluentd-aggr/
/var/log/kibana/
/var/log/curator/

Monitoring Cisco NFVI Performance
4

Monitoring Cisco NFVI Performance
Displaying Cisco VIM Log Files Using the CLI

HAProxy TLS certificate expiration check
/var/log/curator/certchecker.log

Viewing Cisco VIM Logs
list logs sorted reverse on time
ls -lrt /var/log/mercury/
untar logs
tar xvzf /var/log/mercury/<UUID>/mercury_install_2018-3-20_10-2.tar.gz -C /tmp/

Cisco VIM Configuration Files
example configuration files
/root/openstack-configs/setup_data.yaml.B_Series_EXAMPLE
/root/openstack-configs/setup_data.yaml.C_Series_EXAMPLE

system maintained setup files - do not modify directly
always supply user copy of setup_data.yaml
when using ciscovim client
/root/openstack-configs/setup_data.yaml

system inventory in pretty format
/root/openstack-configs/mercury_servers_info

passwords store
/root/openstack-configs/secrets.yaml

openstack configuration file
/root/openstack-configs/openstack_config.yaml

RestAPI password
/opt/cisco/ui_config.json

Insight password
/opt/cisco/insight/secrets.yaml

Enabling debug logs for certain OpenStack Services
openstack config file
/root/openstack-configs/openstack_config.yaml

help
ciscovim help

list openstack keys
ciscovim list-openstack-configs

help on reconfigure sub-command
ciscovim help reconfigure

how to execute subcommand, example below
important note: reconfigure requires a maintenance window
ciscovim reconfigure --setopenstackconfig KEYSTONE_DEBUG_LOGGING,CINDER_DEBUG_LOGGING

On controller and compute nodes, all services are run within their respective Docker™ containers.

To list the Docker containers in the node, execute the following:
[root@control-server-2 ~]# docker ps -a
CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES
258b2ca1d46a 172.31.228.164:5000/mercury-rhel7-osp8/nova-scheduler:4780
"/usr/bin/my_init /no" 25 minutes ago Up 25 minutes novascheduler_4780
ffe70809bbe0 172.31.228.164:5000/mercury-rhel7-osp8/nova-novncproxy:4780
"/usr/bin/my_init /st" 25 minutes ago Up 25 minutes novanovncproxy_4780

Monitoring Cisco NFVI Performance
5

Monitoring Cisco NFVI Performance
Displaying Cisco VIM Log Files Using the CLI

12b92bcb9dc0 172.31.228.164:5000/mercury-rhel7-osp8/nova-consoleauth:4780
"/usr/bin/my_init /st" 26 minutes ago Up 26 minutes

……
novaconsoleauth_4780
7295596f5167 172.31.228.164:5000/mercury-rhel7-osp8/nova-api:4780
"/usr/bin/my_init /no" 27 minutes ago Up 27 minutes novaapi_4780

To view the Docker logs of any container, execute the following on the corresponding host:
ls –l /var/log/<service_name>/<log_filename>
e.g. ls -l /var/log/keystone/keystone.log

To get into a specific container, execute the following commands:
[root@control-server-2 ~]# alias | grep container

root@control-server-2 ~]# source /root/.bashrc
#execute the alias:
[root@control-server-2 ~]# novaapi

novaapi_4761 [nova@control-server-2 /]$
novaapi_4761 [nova@control-server-2 /]$ exit
exit

If the Docker status indicates a container is down (based on output of “docker ps –a”), collect the Docker
service logs as well:
cd /etc/systemd/system/multi-user.target.wants/
ls docker* # get the corresponding service name from the output
systemctl status <service_name> -n 1000 > /root/filename # redirects the output to the file

For storage nodes running Ceph, execute the following to check the cluster status:
ceph –v # on monitor nodes (controller), show’s ceph version

ceph –s # on monitor nodes (controller), show cluster status

ceph osd lspools #on monitor nodes (controller),list pools

ceph mon stat # summarize monitor status

ceph-disk list # on OSD / storage nodes; List disks, partitions, and Ceph OSDs

rbd list images # on monitor nodes (controller); dump list of image snapshots

rbd list volumes # on monitor nodes (controller); dump list of volumes

Logging Into Kibana Dashboard
Kibana is an open source data visualization platform that is used to explore Cisco VIM logs.

To log into the Kibana dashboard:

Step 1 Using a terminal client, use SSH to log into your management node and enter the password to login.

The following command shows that the management node has an IP address of 17.0.0.2:
ssh root@17.0.0.2
root@17.0.0.2's password

Monitoring Cisco NFVI Performance
6

Monitoring Cisco NFVI Performance
Logging Into Kibana Dashboard

Step 2 To obtain the password, check whether VAULT feature is enabled. If it is enabled, refer to the Vault section, otherwise
locate the line containing KIBANA_PASSWORD in /root/installer-{tag
id}/openstack-configs/secrets.yaml during SSH terminal session. Note the value of the
KIBANA_PASSWORD as it is used in Step 4.
cat /root/installer-{tag-id}/openstack-configs/secrets.yaml
...
KIBANA_PASSWORD: <note this value>
...

Step 3 Navigate to the http://<management_node_ip_address>:5601.

Kibana uses the HTTPS + TLS to provide a secure connection between the browser and the Kibana service.

By default Kibana uses the certificate located at /var/www/mercury/mercury.<crt|key> or you can provide your
own certificates in /root/openstack-configs/ directory (using the same mercury.<crt|key> file names).

Note

If you are accessing Kibana for the first time, by default it shows self-signed certificate. Some browsers display
the warning message Your connection is not private. Click Proceed to access the Kibana link. A window dialog
box appears.

Note

Step 4 Enter the Username and Password:

User Name: admin

Password: <value of ELK_PASSWORD from Step 2>. The Kibana dashboard appears which displays the Cisco VIM
service and installer logs.

Step 5 Choose the desired dashboard from the list.

Ensure that you do not use Management option on the left side.Note

Monitoring Cisco NFVI Performance
7

Monitoring Cisco NFVI Performance
Logging Into Kibana Dashboard

Figure 2: Lists of Dashboards

The following are the list of dashboards:

• Hostlogs Dashboard: Provides log information of the system for the cloud nodes. This displays entries from the host
logs-* index in Elasticsearch. It contains the log from /var/log/messages file on each server.

• Installer Dashboard: Provides information about the management node and the installation process. It can only read
uncompressed files. Hence, it reads the files prior to the cloud installation. This displays entries from the installer-*
index in Elasticsearch.

• OpenStack Dashboard: (openstack-* index) Provides log information about all the OpenStack processes. This displays
entries from the openstack-* index in Elasticsearch.

Monitoring Cisco NFVI Performance
8

Monitoring Cisco NFVI Performance
Logging Into Kibana Dashboard

• VMTP Dashboard: Provides log information about the VMTP runs performed against the cloud. It displays entries
from the vmtp-* index in Elasticsearch

For example, if you click OpenStack Dashboard link, the following screen appears.
Figure 3: OpenStack Dashboard

Monitoring Cisco NFVI Performance
9

Monitoring Cisco NFVI Performance
Logging Into Kibana Dashboard

You can switch on from one dashboard to another by selecting the appropriate dashboard from the right top bar menu.

All dashboards have generic and specific fields.

The generic ones are:

• Title: It is seen at the top left of the page. Ite shows which dashboard is being displayed. For example: OpenStack
Dashboard.

• Filter bar : It is an input field where you can enter a query in the Lucene syntax format to filter the logs by specific
fields (which depend on the fields for the index being selected).

• Time bar: Time is seen at the top right of the page. Time indicates the time schedule for the log information. You
can modify the time to indicate absolute, relative time in the past or specify automatically refresh rates.

• Add a filter tab: Use this tab to introduce filters graphically.

For more information on using Kibana, see the Kibana documentation (Version 7.2).

Cisco VIM stores the OpenStack logs in Elasticsearch. The Elasticsearch snapshots all the indices (where the data is
stored) which are rotated on a periodic basis. You may not see the older data in Kibana if the data is rotated out and/or
deleted.

Logs keep being visualized in Kibana as they are being updated in Elasticsearch on the Discover tab. To debug something
on kibana, you can program the Kibana dashboard to auto-refresh at specific intervals (by default is off). To enable
auto-refresh, click the Calendar drawing at the top right corner of the dashboard and program on Refresh every with
desired value. Configure the desired value by clicking the Start and Auto-refresh.

Monitoring Cisco NFVI Performance
10

Monitoring Cisco NFVI Performance
Logging Into Kibana Dashboard

Figure 4: Auto-Refresh

Once you program a Auto-refresh, the Calendar drawing is replaced by a Clock. Then you can click Stop button on the
top navigator bar to pause the refreshing of logs events. You can also select intervals that you want to see the logs from.

Also you can select an absolute or relative interval:

Monitoring Cisco NFVI Performance
11

Monitoring Cisco NFVI Performance
Logging Into Kibana Dashboard

a) Few examples on usage of filters in Openstack dashboard to gather useful information

• • On the Hostlogs Dashboard, in the Events by Host panel, choose a hostname and click the + or - symbol
that appears close to the hostname to include or exclude that server from the filter. Then, click the desired
slice on the Events By Service panel to add the docker service to the section.

• Under the Filter field, you see included sections in green and excluded sections in red.

Monitoring Cisco NFVI Performance
12

Monitoring Cisco NFVI Performance
Logging Into Kibana Dashboard

Figure 5: Hostlogs Dashboard

b) To know the log events in the Openstack for a given VM by writing the filter directly on the Search field:

The uuid of the VM is identified by executing openstack nova list or looking at the horizon website.Note

• Write the Lucene query (service: nova and service: neutron and message:<uuid>) in the Search field which is
on top of the Dashboard. <uuid> is the number got from Horizon or nova list for the identifier of the instance
VM.
Figure 6: Search Query Page

Monitoring Cisco NFVI Performance
13

Monitoring Cisco NFVI Performance
Logging Into Kibana Dashboard

• For example, if you want to know the DHCP events of the Openstack Neutron, select the filters by clicking outer
circle of pie chart:

• On the OpenStack Dashboard, the Openstack - Events By Service panel has a pie chart with the inner section
for the services and the outer sections for the service_subtypes. To add filters for selecting all the events
in a service (for example, neutron), click on the inner section of the pie. To add filters for selecting the
service_subtypes (for example, dhcp), click on the outer circle of the pie.
Figure 7: Events by Service

• In the following window, click on Apply:

Monitoring Cisco NFVI Performance
14

Monitoring Cisco NFVI Performance
Logging Into Kibana Dashboard

• You can scroll down the OpenStack Dashboard to see the OpenStack - Errors and the OpenStack - Events
panel.. The OpenStack - Errors panel displays the error messages. If there are no errors, the No results
found message is displayed.

Monitoring Cisco NFVI Performance
15

Monitoring Cisco NFVI Performance
Logging Into Kibana Dashboard

• Without knowing the Lucene Syntax, you can set the filter criteria in the Search field using the Add a
filter + option.

Following are the steps to add a filter:

• Click Add a filter (+).

• Set the filter criteria by choosing appropriate label and operators from the drop-down lists, and entering
keywords and click Save.

Figure 8: Add Filters Page

Set the filter criteria by choosing appropriate label and operators from the drop-down lists, and entering keywords.

Monitoring Cisco NFVI Performance
16

Monitoring Cisco NFVI Performance
Logging Into Kibana Dashboard

Figure 9: Choosing Appropriate Labels

Rotation of the Cisco VIM Logs
Cisco VIM stores all logs in Elasticsearch. Elasticsearch indices are rotated on a periodic basis to prevent the
disk space overflow by creating snapshots. The following lists show the Snapshots that are defined in
openstack_config.yaml:
vi ~/openstack-configs/openstack_config.yaml
…
Elk rotation parameters
elk_rotation_frequency: "monthly" # Available: "daily", "weekly", "fortnightly", "monthly"
elk_rotation_size: 2 # Unit is in Gigabytes (float is allowed)
elk_rotation_del_older: 10 # Delete older than 10 units (where units depends on the
value set on elk_rotation_frequency)
…

You can change the frequency of the rotation by changing the values. For more information on how to set the
Elasticsearch parameters throughVIMAPI or CLI, refer to the sectionReconfiguring Passwords andOpenStack
Configurations.

Cisco VIM uses the open source Elasticsearch Curator tool to manage the Elasticsearch indices and snapshots.
For more information about Elasticsearch handles snapshots, look at the official information on Elastic.co
(Version 5.4) https://www.elastic.co/guide/en/elasticsearch/client/curator/5.4/index.html.

Snapshot Manager Tool for Elasticsearch
The snapshot_mgr.sh tool wraps up the Elasticsearch Curator APIs. This tool helps you to access the snapshots
of the logs that are maintained by the Elasticsearch.

Run the following command to view the snapshot logs which is in the tools directory of the installer.
./tools/snapshot_mgr.py --help
usage: snapshot_mgr.py [options]

Snapshot Manager handles snapshot logs maintained by Elasticsearch

Monitoring Cisco NFVI Performance
17

Monitoring Cisco NFVI Performance
Rotation of the Cisco VIM Logs

optional arguments:
-h, --help show this help message and exit
--list display all snapshots in Elasticsearch
--display GET_SS get details of the snapshot called <GET_SS>
--create create a snapshot
--restore RESTORE_SS restore snapshot named <RESTORE_SS>
--delete DELETE_SS delete the snapshot called <DELETE_SS>
--autodelete threshold_warning threshold_low threshold_high

autodelete snapshots until reach a disk space
threshold

Snapshot list gives you the details of the snapshot performed on the system like the UUID, the name the
snapshot, end time of the snapshot, the state and the indices where it was snapshorted:
./snapshot_mgr.py --list
+------------------------+------------------------+---------------------+---------+---+----------+
| uuid | snapshot_name | time_snapshot_ended | state |
indices_snapshoted

| failures |
+------------------------+------------------------+---------------------+---------+---+----------+
| 6WGVUnKjQbGtZYzfC0yeEg | curator-20180304140002 | 2018-03-04 14:00:04 | SUCCESS |
hostlogs-2018.03.02

| - |
| U4IVWJNnQW6PdFWxpRUc-A | curator-20180304150001 | 2018-03-04 15:00:04 | SUCCESS |
hostlogs-2018.03.03

| - |
| 5RxDuhnETC6TW4XSPDNZlw | curator-20180304160001 | 2018-03-04 16:00:24 | SUCCESS |
installer-2018.03.03, installer-2018.03.01, installer-2018.03.02, openstack-2018.03.02,
hostlogs-2018.03.04, installer-2018.03.04 | - |
| k2gZYwLeRPO98bJZslI2pw | curator-20180305040002 | 2018-03-05 04:00:32 | SUCCESS |
openstack-2018.03.03, hostlogs-2018.03.04, installer-2018.03.04

| - |
+------------------------+------------------------+---------------------+---------+---+----------+

To view the details of the individual snapshot run the display option command.:
./tools/snapshot_mgr.py --display curator-20180304140002
{ 'duration_in_millis': 1944,
'end_time': '2018-03-04T14:00:04.019Z',
'end_time_in_millis': 1520172004019,
'failures': [],
'indices': ['hostlogs-2018.03.02'],
'shards': { 'failed': 0, 'successful': 5, 'total': 5},
'snapshot': 'curator-20180304140002',
'start_time': '2018-03-04T14:00:02.075Z',
'start_time_in_millis': 1520172002075,
'state': 'SUCCESS',
'uuid': '6WGVUnKjQbGtZYzfC0yeEg',
'version': '6.0.0',
'version_id': 6000099}

To create a snapshot run the following command:
./tools/snapshot_mgr.py --create
Executing: curl PUT
http://localhost:9200/_snapshot/es_backup/3a9b90c2979b46bf9c7b3f9223074d5d?wait_for_completion=true
-d
{'indices': 'installer-*,hostlogs-*,openstack-*,vmtp-*', 'ignore_unavailable': 'true',
'include_global_state': 'false'}
Response: {u'snapshot': {u'uuid': u'BSznQj1SQ9mjxxk9swTirQ', u'duration_in_millis': 46496,
u'start_time':
u'2018-03-06T16:37:49.774Z', u'shards': {u'successful': 35, u'failed': 0, u'total': 35},
u'version_id': 6000099,
u'end_time_in_millis': 1520354316270, u'state': u'SUCCESS', u'version': u'6.0.0',
u'snapshot': u'3a9b90c2979b46bf9c7b3f9223074d5d', u'end_time': u'2018-03-06T16:38:36.270Z',

Monitoring Cisco NFVI Performance
18

Monitoring Cisco NFVI Performance
Snapshot Manager Tool for Elasticsearch

u'indices': [u'installer-2018.03.06', u'vmtp-2018.03.02', u'hostlogs-2018.03.06',
u'hostlogs-2018.03.05',
u'installer-2018.03.05', u'openstack-2018.03.05', u'openstack-2018.03.06'],
u'failures': [], u'start_time_in_millis': 1520354269774}}

Run the following command to delete a snapshot:
./tools/snapshot_mgr.py --delete 3a9b90c2979b46bf9c7b3f9223074d5d
Executing: curl DELETE
http://localhost:9200/_snapshot/es_backup/3a9b90c2979b46bf9c7b3f9223074d5d -d None
Response: {u'acknowledged': True}

Restore the indices of a snapshot back to the Elasticsearch database by using the restore option. Run the
following command to restore:
./snapshot_mgr.py --restore curator-20180306050001
Executing: curl POST
http://localhost:9200/hostlogs-2018.03.04,installer-2018.03.05,installer-2018.03.04,
openstack-2018.03.04,hostlogs-2018.03.05,openstack-2018.03.02/_close -d None

Remote NFS Backup for Elasticsearch Snapshots
Cisco VIM 2.4 supports remote NFS backup of the Elasticsearch snapshots. This allows you to empty the
disk space in the Elasticsearch snapshots. You can use the snapshot manager tool to manually create, list,
show, and delete snapshots.

Remote NFS backup of the Elasticsearch snapshots feature can be configured by adding the following section
to the setup_data.yaml configuration file:

ES_REMOTE_BACKUP: # Set if Elasticsearch backups can use a remote host
service: 'NFS' # Set if an remote NFS server is used
remote_host: <ip_addr> # IP of the NFS server
remote_path: /root/es_remote # Path of location of the backups in the remote server

Important considerations about the remote NFS directory on the remote server (specified by the remote_path
config option):

• This directory allows the elasticsearch user (pid number 2020) and group mercury (pid 500) to read, and
write. Otherwise, Curator cannot copy the snapshots to the remote NFS directory.

• It is good if the folder is empty and is used only by Cisco VIM.

• Cisco VIM does not delete the information in this directory after unbootstrap.

You can enable or disable this feature by running reconfiguration. With reconfiguration, you can change the
remote_host ip or remote_path.

Network Performance Test with NFVBench
NFVBench is a network performance benchmarking tool integrated with Cisco VIM. For more details, refer
to NFVBench section of Chapter 1 in the admin guide for details.

Monitoring Cisco NFVI Performance
19

Monitoring Cisco NFVI Performance
Remote NFS Backup for Elasticsearch Snapshots

Customizing CVIM-MON Dashboard
With CVIM-MON, you can create and modify dashboards.You must save the created or edited dashboards
in Grafana, and use CLI command on the management node to make the dashboards persistent across reboots.
Though the modifications to built-in dashboards does not persist, you can customize the dashboards by
exporting them and importing back as a new dashboard.

The command “ciscovim help cvimmon-dashboard” provides all the details associated with CVIMMON
dashboard customization.

Following are the steps to get the Grafana edits in sync with the management node repository so that it persists
(also called Persistence workflow).

Step 1 Create a new Dashboard or edit a custom dashboard on grafana UI.
Step 2 Once all the new dashboards are ok, save it on grafana.
Step 3 On the management node, execute the list to see the current status of custom dashboards:

ciscovim cvimmon-dashboard list

Step 4 To sync all custom dashboards to the management repository and make it persist across reboots, execute the following
command:
ciscovim cvimmon-dashboard save

• To delete custom dashboard from the management node repository (if deleted from Grafana), execute the
steps associated to add followed by using save command that is augmented with “-f or –force” option.

• You can save all the custom dashboards on the Grafana server, to a specified directory only if that directory
is empty.

Note

Step 5 To export the custom dashboard to a directory, use the below command:
ciscovim cvimmon-dashboard save --dir-path <target_empty_dir_on_mgmt_node>

Step 6 To import back the saved dashboard from a specified directory with custom dashboard snapshots, execute the following
command:
ciscovim cvimmon-dashboard upload -–force --dir-path <dir_on_mgmt_node_where customization_exist>

The 'upload' command supports two options:

• -f or --force option: To delete all existing dashboards in the management node repository, and replace them with the
new custom dashboard.

• -p or --preserve: To preserve all dashboards and add new dashboard to the management node repository.

All the logs for cvimmon-dashboards are populated under /var/log/mercury_restapi/restapi.log file.

Monitoring Cisco NFVI Performance
20

Monitoring Cisco NFVI Performance
Customizing CVIM-MON Dashboard

Cisco VIM MON Inventory Discovery API usage

API Client
By default, Inventory_Discovery API is running on TCP port 8747 on the Cisco VIM management node.

The pod administrator can use the below tools offered on the management node:

1. API client: Available at / /var/lib/calipso/calipso_client.py

2. Data replication client: Available at /var/lib/calipso/calipso_replication_client.py

The API client provides options to interact with the Inventory API on any Cisco VIM pod.

On the Cisco VIM management node, aliases are available for both clients that run with calipso_client and
calipso_replication_client. You can use them on desktop and any CiscoVIM node, if the following pre-requisites
are met:

• python 2.7 or 3.5

• python requests

You can use any common REST query tool against the Inventory_Discovery API like curl, postman, httpie,
and so on.

As the client source code is available, you can use it to understand the API and build similar client using other
languages. The main library used is ‘requests’ which can be obtained for more capabilities from
https://pypi.org/project/requests/

Running calipso_client --help provides details of the options available with API client.

Listed below are the key parameters of the tool:

• api_server API_SERVER - FQDN or IP address of the API Serve (default=localhost)

• api_port API_PORT - TCP Port exposed on the API Server (default=8747)

• api_passwordAPI_PASSWORD -API password (secret) used by the API Server (default=calipso_default)

• environment ENVIRONMENT - specify environment (pod) name configured on the API server
(default=None)

• scan SCAN - actively discover the specific cloud environme -options:
NOW/HOURLY/DAILY/WEEKLY/MONTHLY/YEARLY (default=None)

• method METHOD - method to use on the API server - options: get/post/delete/put (default=None)

• endpoint ENDPOINT - endpoint url extension to use on the API server - options: see API documentation
for endpoints (default=None)

• payload PAYLOAD - 'dict' string with parameters to send to the API - options: see API documentation
per endpoint (default=None)

• page PAGE - a page number for retrieval (default=0)

• page_size PAGE_SIZE - a number of total objects listed per page (default=1000)

Monitoring Cisco NFVI Performance
21

Monitoring Cisco NFVI Performance
Cisco VIM MON Inventory Discovery API usage

• version-get a reply back with calipso_client version.

The default parameters for api_server and api_port are used for cases where the client is used on the same
management node and the API server is running. For other cases, specific details are needed.

Environment name is used to describe the cloud facility endpoints managed by a specific entity. This naming
convention is used to support multiple cloud types.

Note

api_password is obtained through Cisco VIM secrets, either through cat /root/openstack-configs/secrets.yaml
| grep CALIPSO_API_SERVICE_PWD cat /root/openstack-configs/secrets.yaml or when VAULT is used
in setup_data, then retrieve using vault api:

1. Get vault data from source /var/lib/calipso/calipso_config as vault token is rendered in calipso_config in
place of passwords if vault is defined.

2. Fetch Mongo password from curl
http://$MGMT_IP:8200/v1/secret/data/cvim-secrets/CALIPSO_MONGO_SERVICE_PWD
-H "X-Vault-Token: $VAULT_TOKEN

Environments
The first parameter that must be configured on the API server is an 'environment_config' that holds all the
parameters forattributes of an 'environment'.

Environment_config is mandatory step before any scan discovery request can be made. The Environment is
a generic cloud facility (of many types) to be discovered by the scanning server. In CVIM the Environment
definition holds all the configurations needed to interact with the cloud and discover it's content, for example
the API endpoints, the admin passwords, the DB passwords, the SSH passwords/keys, the Message-BUS
access url and credentials etc.

To obtain the list of environments available on a specific API server use the examples below (using curl or
calipso_client).:

The x-token is grabbed per session, allowing one-time password for secure communication with the server,
any 'FQDN' or IP for API server can be used:

Token request using curl:

request:
curl -i -H "Content-Type: application/json" -H "Accept: application/json"
-X POST -d '{"auth": {"methods": ["credentials"],
"credentials": {"username": "calipso","password": "<CALIPSO_API_SERVICE_PWD> "}}}'
http://localhost:8747/auth/tokens

response:
{"issued_at": "2019-06-17T09:13:17.388124", "method": "credentials", "expires_at":
"2019-06-18T09:13:17.388124",
"token": "a1fcff2023894061898a80fea6d5dd52", "_id": "5d0759ad6d07b1001214934b"}

As the underlying data is always json, it is recommended that each request has those two headers: Content-Type
application/json and Accept application/json.

Post request requires data in json format (-d in curl), Get requests need to include attributes in the url.

Monitoring Cisco NFVI Performance
22

Monitoring Cisco NFVI Performance
Environments

For the duration of the session ('expires_at' is returned) the value of the 'token' mustbe used for all requests
to the API server in a X-Auth-Token header, for example:

Environment request using curl:

request:
curl -i -H "Content-Type: application/json" -H "Accept: application/json" -H
"X-Auth-Token: a7d13511ad44406281362d18366d99fc" -X
GET http://localhost:8747/environment_configs

response:
{"environment_configs": [{"name": "cvim-cloud", "distribution": "Mercury"}]}

In the above example, GET is used ands url includes the values in case of the endpoint of /environment_configs.

The calipso_client handles all security needs automatically per request, and defaults to 'localhost' with default
port and default username. You can give the API secret in a single call to get the same response

Environment request using calipso_client:

request:
calipso_client --api_server <br_api_mgmt_node> --api_password <CALIPSO_API_SERVICE_PWD>
--method get --endpoint environment_configs

response:

{"environment_configs": [{"name": "cvim-cloud", "distribution": "Mercury"}"}]}

Once the name of the environment is known, you can make a SCAN request to discover cloud content.

Scans
Discovering the details (inventory and dependencies) of a specific environment is handled through scan
requests, scan requests can be made once (automated as needed)

or can be scheduled in-advance through scheduled scan request.

A prerequisite for any scan request is the existent of an environment_config (see validations above).

It is advised to kick off a Scan request once some configurations (instances, flavors, networks etc) has been
made on the OpenStack environment.

Scan request and a successfully completed scan with full discovery is a mandatory step before any other query
can be made against the underlying data .

Here is an example of a one-time scan request, note that specifying an environment parameter is mandatory
for scan request:
Scan environment with calipso_client

Scan can take a while, depending on the size of the customer deployed resources on the OpenStack environment,
if scan_status returns errors this needs to be debugged in the calipso_scan container (hint: look at the logs).

When scan_status is 'completed' and all Inventory, Links and Cliques has been discovered, the API can now
be further used to grab data for analysis.

Scan can also be scheduled in advance, here is an example of a scheduled scan request:

Monitoring Cisco NFVI Performance
23

Monitoring Cisco NFVI Performance
Scans

Scheduled-scan environment with calipso client
request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD> --environment cvim-cloud --scan
WEEKLY

response:
Scheduled scan at: 2019-06-24T12:49:35.332000
Submitted at: 2019-06-17T05:49:34.426000
Scan frequency: WEEKLY

For scheduled-scan the reply above provides details about the submitted time and the time of the next scheduled
scan, the scan will be repeated at the frequency defined in the request.

To watch the details of any previously submitted scan request, use the /scans or /scheduled_scans as endpoint
for the request, also environment name is mandatory to get scans per that environment:

Get historical scan and scheduled scans with calipso_client

request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD>
--method get --endpoint scans --environment cvim-cloud

response
{

"scans": [
{

"environment": "cvim-cloud",
"id": "5cdd9d7c6d07b10013ade7f2",
"status": "completed"

},
{

"environment": "cvim-cloud",
"id": "5cddb2726d07b10013ade7ff",
"status": "completed"

},
{

"environment": "cvim-cloud",
"id": "5cdff1476d07b10013ade80f",
"status": "running"

},
]

}

request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD> --method get --endpoint
scheduled_scans --environment cvim-cloud

response:
{

"scheduled_scans": [
{

"environment": "cvim-cloud",
"freq": "WEEKLY",
"id": "5ce2f78e6d07b10013ade824",
"scheduled_timestamp": "2019-06-17T18:53:04.519000"

},
{

"environment": "cvim-cloud",
"freq": "WEEKLY",

Monitoring Cisco NFVI Performance
24

Monitoring Cisco NFVI Performance
Scheduled-scan environment with calipso client

"id": "5d078c5e6d07b10012149382",
"scheduled_timestamp": "2019-06-24T12:49:35.332000"

},
{

"environment": "cvim-cloud",
"freq": "WEEKLY",
"id": "5d078f3a6d07b10012149385",
"scheduled_timestamp": "2019-06-24T13:01:46.794000"

}
]

}

The developer needs to make sure schedules are well known and there are not too many overlapping or too
frequent scans running against the same pod, during scan the data is cleared by default and scan can take some
time.

Note

Paging
Each Inventory Discovery API server may hold many objects, depending on the customer deployment this
can get quite large.

A mechanism of paging is available for all API queries to the server, supporting page number and page size,
and engineer can use this mechanism to request a certain page from a big list of items on the server and request
total number of items to be listed per page (page_size).

Here is an example of request using paging, this example runs against the scans endpoint:

request:
calipso_client --
api_password <CALIPSO_API_SERVICE_PWD>--method get --
endpoint scans --environment cvim-cloud --page 0 --page_size 1

response:
{

"scans": [
{

"environment": "cvim-cloud",
"id": "5cdd9d7c6d07b10013ade7f2",
"status": "completed"

}
]

}

request:
request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD>--method get --
endpoint scans --environment cvim-cloud --page 0 --page_size 2

response:

{
"scans": [

{
"environment": "cvim-cloud",

Monitoring Cisco NFVI Performance
25

Monitoring Cisco NFVI Performance
Paging

"id": "5cdd9d7c6d07b10013ade7f2",
"status": "completed"

},
{

"environment": "cvim-cloud",
"id": "5cddb2726d07b10013ade7ff",
"status": "completed"

}
]

}

Inventory
Each Inventory Discovery API server runs on a specific pod/environment and holds the latest scan results for
all objects and resources on that specific environment in the mongoDB 'calipso' in a special collection called
'inventory'.

Query for inventory collection requires specifying an environment name and the common 'get' method.

The first logical query would be getting a list of all objects in that environment of a specific 'type'.

The list of supported object types can be grabbed from constants, here is the latest output for 3.4 release, with
embedded explanations for the different types:

request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD>--method
get --endpoint constants --payload "{'name': 'object_types'}"

response:
request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD>--method get --endpoint constants
--payload "{'name': 'object_types'}"

response:
{

"_id": "5cdd5f92bac311001dfbdbca",
"data": [

{
"label": "vnic", --> virtual NIC attached to a VM or a Namespace (ex: tap

interface, virtualEthernet interface)
"value": "vnic"

},
{

"label": "vconnector", --> Local Bridge connecting VMs running inside the
same node)ex: linux_bridge , bridge_domain)

"value": "vconnector"
},
{

"label": "vedge", --> The device connecting VMs running inside a node to the
physical network (ex: VPP, OVS, SR-IOV)

"value": "vedge"
},
{

"label": "instance", --> VM
"value": "instance"

},
{

"label": "container", --> Container
"value": "container"

},

Monitoring Cisco NFVI Performance
26

Monitoring Cisco NFVI Performance
Inventory

{
"label": "pod", --> K8s Pod
"value": "pod"

},
{

"label": "vservice", --> a Namespace, a process/device providing networking
services
(ex: DHCP, Router, Proxy)

"value": "vservice"
},
{

"label": "host_pnic", --> physical NIC on a node/host
"value": "host_pnic"

},
{

"label": "switch_pnic", --> physical NIC on a switch
"value": "switch_pnic"

},
{

"label": "network", --> the logical representation of an end-to-end
communication ,
like an OpenStack network

"value": "network"
},
{

"label": "switch", --> physical switching device
"value": "switch"

},
{

"label": "port", --> endpoint on a network
"value": "port"

},
{

"label": "otep", --> overlay tunneling endpoint, of many types (gre, vxlan,
geneve etc ...)

"value": "otep"
},
{

"label": "agent", --> a process running on a host for control (ex: ovs agent,
dhcp agent etc)

"value": "agent"
},
{

"label": "host", --> the node, physical server (or VM in nested environments)
"value": "host"

},
{

"label": "project", --> openstack's tenant
"value": "project"

}
],
"id": "5cdd5f92bac311001dfbdbca",
"name": "object_types"

}

Querying for object details
To query the MongoDB for objects you need the following information:

• type of the specific object

• specific id of the object

Monitoring Cisco NFVI Performance
27

Monitoring Cisco NFVI Performance
Querying for object details

The list of available objects of certain type with their names, ids and some generic attributes can be listed by
query to inventory endpoint for a paged list of certain object type, for example here we look for instances, 5
per page:

request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD>--environment cvim-cloud
--method get --endpoint inventory --page_size 5 --payload "{'type': 'instance'}"

response:
{

"objects": [
{

"environment": "cvim-cloud",
"id": "3959f44c-5e76-4648-a8b7-86039f6f9372",
"name": "gold-vm-1",
"name_path": "/cvim-cloud/Regions/RegionOne/Availability

Zones/aio-zone/cloud-aio-2/
Instances/gold-vm-1",

"type": "instance"
},
{

"environment": "cvim-cloud",
"id": "5a3cb117-714a-4086-a414-c162dab583cc",
"name": "gold-vm-4",
"name_path": "/cvim-cloud/Regions/RegionOne/Availability

Zones/aio-zone/cloud-aio-2/
Instances/gold-vm-4",

"type": "instance"
}

]

All objects in the API have a unique id, this id is listed in the query for any object type list, this should then
be used to grab the more detailed data available for specific object, for example:

request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD>--environment cvim-cloud --method
get --endpoint
inventory --payload "{'id': 'fb7cb28a-08aa-497e-9d70-5dae755c18a2'}"

response:
{

"_id": "5d078b2184c6929f454701d8",
"accessIPv4": "",
"accessIPv6": "",
"addresses": {

"flat-network": [
{

"OS-EXT-IPS-MAC:mac_addr": "fa:16:3e:db:29:4a",
"OS-EXT-IPS:type": "fixed",
"addr": "192.168.90.4",
"version": 4

}
]

},
Etc….etc….

"revision_number": 0,
"security_group_id": "ce305d1f-4d02-4759-89b7-a5f92446bb8d",
"tags": [],
"tenant_id": "c7488606a2ac40ccbd79172ba1ae8b93",
"updated_at": "2019-05-16T14:29:13Z"

}

Monitoring Cisco NFVI Performance
28

Monitoring Cisco NFVI Performance
Querying for object details

],
"tags": [],
"tenant_id": "c7488606a2ac40ccbd79172ba1ae8b93",
"updated_at": "2019-05-16T14:29:13Z"

}
},
"show_in_tree": true,
"task_state": null,
"tenant_id": "c7488606a2ac40ccbd79172ba1ae8b93",
"terminated_at": null,
"type": "instance",
"user_id": "5d0068c060d146789c3bbaf085e573ed",
"uuid": "fb7cb28a-08aa-497e-9d70-5dae755c18a2",
"vm_state": "active",
"volumes_attached": []

}

Inventory is offering dat discovered fromOpenStack APIs , Databases and also from host-level CLI commands.

Links
Links represent relationships, a certain connection between specific object and another object, for example
an instance connected to it's vnic or a host_pnic connected to a network.

Each Inventory Discovery API server runs on a specific pod/environment and holds the latest scan results for
all links on that specific environment in the mongoDB 'calipso' in a special collection called 'links'.

Query for links collection requires specifying an environment name and the common 'get' method.

The first logical query would be getting a list of all links in that environment of a specific 'link_type'.

The list of supported link_types can be grabbed from constants, here is the latest output for 3.4 release, with
embedded explanations for the different types:

request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD>--method get --
endpoint constants --payload "{'name': 'link_types'}"

response:
{

"data": [
{

"label": "instance-vnic",
"value": "instance-vnic"

},
{

"label": "vnic-instance",
"value": "vnic-instance"

},
{

"label": "vnic-vconnector",
"value": "vnic-vconnector"

},
}, etc ..etc ..
{

"label": "host_pnic-switch_pnic",
"value": "host_pnic-switch_pnic"

Etc…etc..
"id": "5cdd5f92bac311001dfbdbc7",
"name": "link_types"

}

Monitoring Cisco NFVI Performance
29

Monitoring Cisco NFVI Performance
Links

Querying for link details
To query the MongoDB for links you need the following information:

• link_type of the specific link

• specific id of the link

The list of available links of a certain type with their names, ids and some generic attributes can be listed by
query to links endpoint for a paged list of certain link type, for example here we look for instance-vnic links,
5 per page:

request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD>--environment cvim-cloud --method
get --
endpoint links --
page_size 5 --payload "{'link_type': 'instance-vnic'}"

response:
{

"links": [
{

"environment": "cvim-cloud",
"host": "cloud-aio-2",
"id": "5d078b4184c6929f454705a3",
"link_name": "flat-network",
"link_type": "instance-vnic"

},
{

"environment": "cvim-cloud",
"host": "cloud-aio-2",
"id": "5d078b4184c6929f454705a8",
"link_name": "flat-network",
"link_type": "instance-vnic"

},
Etc…etc…
}

Connectivity Analysis
All links in the API have a unique id, this id is listed in the query for any link type list, this should then be
used to grab the more detailed data available for specific link, for example:

request:
request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD>--environment cvim-cloud --
method get --endpoint links --payload "{'id': '5d078b4184c6929f454705b2'}"

response:
{

"attributes": {
"network": "12772133-b894-4a06-8cfb-1f01154721f1"

},
"environment": "cvim-cloud",
"host": "cloud-aio-1",
"id": "5d078b4184c6929f454705b2",
"implicit": false,
"link_name": "flat-network",

Monitoring Cisco NFVI Performance
30

Monitoring Cisco NFVI Performance
Querying for link details

"link_type": "instance-vnic",
"link_weight": 0,
"source": "5d078b2184c6929f454701d8",
"source_id": "fb7cb28a-08aa-497e-9d70-5dae755c18a2",
"source_label": "",
"state": "up",
"target": "5d078b3a84c6929f45470404",
"target_id": "cloud-aio-1-gold-vm-2-vhostuser-fa:16:3e:db:29:4a",
"target_label": ""

}}

Response is always a JSON and can be filtered by any means, including grep on command line.

One important detail on any link is whether or not it is 'implicit' (implicit means it is analyzed after discovery
for end-to-end dependency, explicit means it is discovered from real-time data on the objects).

Each link have a 'target_id' and a 'source_id' which represents the 'ids' of certain objects on the inventory
collection and can each be grabbed from inventory as explained above on the 'inventory' section.

Cliques
Cliques represent a more complex concept for analysis purposes : dependencies for a certain object.

The object is a 'focal_point' (object of interest) and it refers to an array of links all representing the dependency
tree (or topology tree) for that specific object, for example an instance connected to it's vnic, then to a bridge,
then to ovs, then to vxaln, then to host_pnic etc.

Each Inventory Discovery API server runs on a specific pod/environment and holds the latest scan results for
all cliques and their resources on that specific environment in the mongoDB 'calipso' in a special collection
called 'cliques'.

Query for cliques collection requires specifying an environment name and the common 'get' method.

The first logical query would be getting a list of all clique_types in that environment for each specific
'focal_point_type'.

Clique_types are specific for cloud type, meaning it depends on attributes like the distribution type, the
type_driver and mechanism_driver in use etc.

When analyzing the data for cliques, a match is made between the attributes of the below clique_types (for
example - the distribution value) and the value on the specific environment_config (see environment section
above).

The list of supported clique types can be grabbed from a specific endpoint called clique_types, here is the
latest output for 3.4 release, with embedded explanations for the different types:

request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD>--method
get --endpoint clique_types

response:
request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD>--method get --endpoint clique_types

response:
{

"clique_types": [
{

"environment": "ANY", --> this list of links for this
focal_point_type will be used if a more specific one is not matched

Monitoring Cisco NFVI Performance
31

Monitoring Cisco NFVI Performance
Cliques

"focal_point_type": "instance", --> this object type (instance) will depend
on the below list of link_types

"id": "5cdd5f92bac311001dfbdbaa",
"link_types": [

"instance-vnic",
"vnic-vconnector",
"vconnector-vedge",
"vedge-otep",
"otep-vconnector",
"vconnector-host_pnic",
"host_pnic-network"

],
"name": "instance"

},
{

"environment": "ANY", --> this list of links for this
focal_point_type will be used if a more specific one is not matched

"focal_point_type": "vservice", -> this object type (vservice) will depend
on the below list of link_types

"id": "5cdd5f92bac311001dfbdbab",
"link_types": [

"vservice-vnic",
"vnic-vedge",
"vedge-otep",
"otep-vconnector",
"vconnector-host_pnic",
"host_pnic-network"

],
"name": "vservice"

}
{

"distribution": "Mercury", --> for a more specific distribution of this
type (Mercury) the below links will be used for this focal_point_type

"environment": "",
"focal_point_type": "instance",
"id": "5cdd5f92bac311001dfbdbb2",
"link_types": [

"instance-vnic",
"vnic-vconnector",
"vconnector-vedge",
"vedge-host_pnic",
"host_pnic-network"

],
"name": "instance_vconnector_clique"

},
{

"distribution": "Mercury",
"environment": "",
"focal_point_type": "vservice",
"id": "5cdd5f92bac311001dfbdbb3",
"link_types": [

"vservice-vnic",
"vnic-vconnector",
"vconnector-vedge",
"vedge-host_pnic",
"host_pnic-network"

],
"name": "vservice_vedge_clique"

},
{

"distribution": "Mercury",
"environment": "",
"focal_point_type": "network",
"id": "5cdd5f92bac311001dfbdbb4",

Monitoring Cisco NFVI Performance
32

Monitoring Cisco NFVI Performance
Cliques

"link_types": [
"network-host_pnic",
"host_pnic-vedge",
"vedge-vconnector",
"vedge-vnic",
"vconnector-vnic",
"vnic-instance",
"vnic-vservice"

],
"name": "network"

}, etc…etc…
}

]
}

Querying for clique details
To query the MongoDB for cliques you need the following information:

• focal_point_type for the specific clique

• specific focal_point_object_id of the clique

• id of the specific clique

The actual logical flow of getting full clique details is listed further below in this section:

The list of available cliques with the specific focal_point ids and some generic attributes can be listed by query
to cliques endpoint for a paged list of certain clique type, for example here we look for instance as focal_point,
and list 5 per page:

request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD>--method get --
endpoint cliques --environment cvim-cloud --payload
"{'focal_point_type': 'instance'}" --page_size 5

All objects in the API have a unique id, this id is listed in the query for any clique type list, this should then
be used to grab the more detailed data available for specific clique, for example:

response:
request:
calipso_client --api_password <CALIPSO_API_SERVICE_PWD>--environment cvim-cloud --method
get --endpoint cliques --payload "{'id': '5d07d78084c6929f454a99fa'}"

response:
{

"clique_type": "5cdd5f92bac311001dfbdbb2",
"constraints": {

"network": [
"e4ab9d18-21a3-4241-b220-5070753251ec"

]
},
"environment": "cvim-cloud",
"focal_point": "5d07d76784c6929f454a881a",
"focal_point_object_id": "ae3fa0a0-e21b-47c1-b531-9a86f7cdd602",
"focal_point_type": "instance",
"id": "5d07d78084c6929f454a99fa",
"links": [

"5d07d77e84c6929f454a8ba1",
"5d07d77e84c6929f454a8c50",
"5d07d77e84c6929f454a8d4c",

Monitoring Cisco NFVI Performance
33

Monitoring Cisco NFVI Performance
Querying for clique details

"5d07d77e84c6929f454a8d52",
"5d07d77e84c6929f454a8d5f",
"5d07d77e84c6929f454a8d64",
"5d07d77e84c6929f454a8d6e",
"5d07d77e84c6929f454a8ecb",
"5d07d77e84c6929f454a8ed0",
"5d07d77e84c6929f454a8ec6",
"5d07d77e84c6929f454a8ed5"

],
"links_detailed": [

{
"_id": "5d07d77e84c6929f454a8ba1",
"attributes": {

"network": "e4ab9d18-21a3-4241-b220-5070753251ec"
},
"environment": "cvim-cloud",
"host": "cloud-compute-1",
"implicit": false,
"link_name": "my-network",
"link_type": "instance-vnic",
"link_weight": 0,
"source": "5d07d76784c6929f454a881a",
"source_id": "ae3fa0a0-e21b-47c1-b531-9a86f7cdd602",
"source_label": "",
"state": "up",
"target": "5d07d77a84c6929f454a8a44",
"target_id": "cloud-compute-1-test-vm-2-vhostuser-fa:16:3e:0b:6e:b2",
"target_label": ""

}, etc…etc..
],
"nodes": [

"5d07d76b84c6929f454a884c",
"5d07d77a84c6929f454a8a44",
"5d07d77b84c6929f454a8aaf",
"5d07d77b84c6929f454a8ab6",
"5d07d77b84c6929f454a8aa8",
"5d07d77b84c6929f454a8abd",
"5d07d74384c6929f454a8398",
"5d07d76b84c6929f454a885a",
"5d07d76784c6929f454a881a"

]
}

Collections Scheme
While not restricted to any specific scheme, each object, based on its type, can hold lots of attributes, specific
to its technology domain, but several attributes are mandatory on the server, for accuracy, analysis and
UI/Front-End common requirements.

The following main collections are always deployed with the DB for Inventory Discovery:

• api_tokens - not exposed externally, used to hold session tokens for interaction with the DB

• attributes_for_hover_on_data - not exposed externally, used for UI to control the display of specific
attributes from a specific object

• clique_constraints - not exposed externally, defined the depth of the topology discovery (see 'constraints'
in clique attributes)

• clique_types - exposed externally, defines the type of topology / dependency tree available on each
specific cloud / environment type

Monitoring Cisco NFVI Performance
34

Monitoring Cisco NFVI Performance
Collections Scheme

• cliques - exposed externally, holds the details of each dependency tree for each object in the inventory

• connection_tests - not exposed externally, holds the requests for testing a connection to API endpoints,
DBs and CLI on hosts

• constants - exposed externally, holds the list of all supported objects and thier attributes for the different
clouds

• environment_options - not exposed externally, holds lists of all supported environment configurations
usedby UI

• environments_config - exposed externally, the real time details of how to interact and communicate with
a specific cloud / environment

• inventory - exposed externally, holds the list of all object discovered in real time from the cloud
environment

• link_types - exposed externally, holds the list of all supported link types

• links - exposed externally, holds the list of all links discovered in real time from the cloud environment

• messages - exposed externally, holds the list of all messages and events discovered in real time from the
cloud environment

• monitoring_config - not exposed externally, holds the list of actual monitoring configurations for the
different clouds

• monitoring_config_templates - not exposed externally, holds the list of supported monitoring
configurations templates for the different clouds

• network_agent_types - not exposed externally, holds the list of all supported network agents (per cloud
release)

• roles - not exposed externally, used for role definitions for RBAC to access the system with LDAP or
Internal

• scans - exposed externally, holds the list of requested scans to discover, per cloud environment

• scheduled_scans - exposed externally, holds the list of requested scheduled scans to discover, per cloud
environment

• statistics - not exposed externally, holds the list of metrics and statistics over time for sensu with TSDB
cases

• supported_environments - not exposed externally, holds the list of all supported variances for the different
clouds (distributions, type_drivers etc)

• user_settings - not exposed externally, used for user authorization definitions for RBAC to access the
system with LDAP or Internal

• users - not exposed externally, used for user definitions for RBAC to access the system with LDAP or
Internal

Mandatory attributes for inventory object
The following attributes are mandatory per colection, while each object, linkd and clique based on it's type
have many more additional attributes:

Monitoring Cisco NFVI Performance
35

Monitoring Cisco NFVI Performance
Mandatory attributes for inventory object

• Mandatory attributes for inventory objects

• environment - name of cloud environment where this object was discovered

• id - unique identification across all the inventory

• type - specific type of the object (ex: instance, switch, host etc)

• name and object_name - none-unique identification as name and per-environment unique name as
object_name

• show_in_tree - boolean , if object needs to be presented in a tree

• name_path - clear placement in the herarchical tree, per environment/cloud type, based on names

• id_path - clear placement in the herarchical tree, per environment/cloud type, based on ids

• parent - name of the parent object (like instances under a certain host, ports under a certain network,
containers under a certain pod etc)

• parent_id - id of the parent object

• parent_type - object type of the parent object

• launched_at - when this object was discovered last

• created_at - when this object was created

• state - for monitoring purposes, several values apply per type

• host/switch - (one of which mandatory) - physical device that runs this object (more attributes apply for
nested environments)

•
•

Mandatory attributes for links
• environment - name of cloud environment where this link was discovered

• id - unique identification across all the links

• link_type - specific link type of the link (ex: instance-vnic, switch_pnic-host_pnic etc) per supported
link_types in constants

• link_name - per-environment unique name for the link

• state - for monitoring purposes, several values apply per type

• source_id - id of the source object of this link

• link_weight - level of importance per clique, defaults to 0

• implicit - boolean value, represent if link is real-time discovered per data presented in inventory or
analyzed through other links

• host/switch - (one of which mandatory) - physical device that runs this link (more attributes apply for
nested environments

Monitoring Cisco NFVI Performance
36

Monitoring Cisco NFVI Performance
Mandatory attributes for links

Mandatory attributes for cliques
• environment - name of cloud environment where this link was discovered

• id - unique identification across all the links

• focal_point - mongoDB id of the specific 'object of intrest' that is the source of the listed links (ex: instance
is a start of a list of links: instance-vnic, vnic-vconnector etc) per supported clique_types

• focal_point_object_id - inventory id of the specific focal_point on the inventory

• nodes - all the objects that are part of the clqiue (for UI graphing purposes)

• links - all the links that are part of the clqiue (for UI graphing purposes)

• clique_type - the type of the clique, per the supported clique_types

• links_detailed - all details per link

• constraints - which object type is the final 'depth' (lowest, last) object in the specific topology tree

Monitoring Cisco NFVI Performance
37

Monitoring Cisco NFVI Performance
Mandatory attributes for cliques

Monitoring Cisco NFVI Performance
38

Monitoring Cisco NFVI Performance
Mandatory attributes for cliques

	Monitoring Cisco NFVI Performance
	Logging and Monitoring in Cisco NFVI
	Displaying Cisco VIM Log Files Using the CLI
	Logging Into Kibana Dashboard
	Rotation of the Cisco VIM Logs
	Snapshot Manager Tool for Elasticsearch
	Remote NFS Backup for Elasticsearch Snapshots
	Network Performance Test with NFVBench
	Customizing CVIM-MON Dashboard
	Cisco VIM MON Inventory Discovery API usage
	API Client
	Environments
	Scans
	Scheduled-scan environment with calipso client
	Paging
	Inventory
	Querying for object details
	Links
	Querying for link details

	Connectivity Analysis
	Cliques
	Querying for clique details
	Collections Scheme
	Mandatory attributes for inventory object
	Mandatory attributes for links
	Mandatory attributes for cliques

