Scaling Virtual Network Functions

* Scaling Virtual Network Functions Using ETSI API, on page 1

Scaling Virtual Network Functions Using ETSI API

One of the main benefits of ESC is its capability to elastically scale a service. This allows a VNFC that
performs a particular role or aspect within the VNF to be able to service requests and scale out to meet high
demand or scale in when being under utilized. This aspect may span across multiple VNFCs.

The scaling requests may be manual or automatic. The different approaches to accomplishing scaling are
detailed below.

For more details on these concepts and specification, please see Annex B of ETS GSNFV-SOL 003.

For information on Scaling VNFs using REST and NETCONF APIs, see the Cisco Elastic Services Controller
User Guide.

Scale

The Scale VNF request uses the scaleSatus, an attribute found as part of the instantiatedVnfInfo when querying
a Vnflnstance resource. This attribute describes the current scale level of each aspect in the VNF, for example:

"scaleInfo": [
{
"aspectId": "webserver", "scaleLevel": "4"
}I
{
"aspectId": "processing", "scaleLevel": "2"

}
1

This forms the starting point for a Scale VNF request, which allows a single aspect to be scaled horizontally
(i.e. adding or removing VNFCs) relative to the current scaleLevel for that dimension of the VNF. Any scaling
operation on an aspect will be applied to each VNFC that supports that aspect.

N

Note The current specification does not support vertical scaling (adding/removing resources to/from existing VNFC

instances) at this time.

Request Payload (ETSI data structure: ScaleVNFRequest)

Scaling Virtual Network Functions .

Scaling Virtual Network Functions |
. Scaling Virtual Network Functions Using ETSI API

"type": "SCALE_OUT",
"aspectId": "processing",
"numberOfSteps": 1,
"additionalParams": {}

}

The above payload results in the scaleStatus example above being updated to and the addition of the number
of VNFCs for this step required to scale out to scaleLevel 3:

"scaleInfo": [
{
"aspectId": "webserver", "scaleLevel": "4"
by
{
"aspectId": "processing", "scalelLevel": "3"

}
]

To understand the scaling steps and other related policies configured to support scaling, see the VNFD Policies
for Scaling.

Scale To Level

The Scale VNF To Level request, rather than the relative scaling that Scale VNF offers, specifies the absolute
scale result desired and so some aspects may be scaled out and others scaled in. This option uses one of the
two approaches to define the scaling required:

« instantiation level

* scale level

These are mutually exclusive and allow for more than one aspect to be scaled in a single request.
Instantiation L evel

An Instantiation level is a predefined size for each aspect, where each level has a scale level associated with
each aspect. There is no further granularity offered and so the entire VNF (that is, all aspects) is scaled
according to the instantiation level requested.

Example:

Request Payload (ETSI data structure: ScaleVNFToLevelRequest)

{

"instantiationLevelId": "premium"

}
See the VNFD Policies for the definition of instantiation levels.
Scale Level

The Scale Level is also a pre-defined size for each aspect where each aspect has target VNFCs, defined
step_deltas (since each scaling step may not be uniform) and a maximum scale level. The policies that define
this option allow the different targets to have different scaling outcomes.

. Scaling Virtual Network Functions

| Scaling Virtual Network Functions
Scaling Virtual Network Functions Using ETSI API .

\)

Note The scale level does not represent the number of VMs; for example scaleLevel=0 means the initial number
of instances (initial delta) for that aspect on the target VNFC and scaleLevel=1 is the initial delta plus the first
scaling step defined for that aspect and VNFC tuple.

Request Payload (ETSI data structure: ScaleVNFToLevelRequest)

"scaleInfo": [

{
"aspectId": "processing",
"scaleLevel”: "2"

}!

{
"aspectId": "webserver",
"scaleLevel”: "3"

}

For information on definition of scale levels, See the VNFD Policies for Scaling.

ESC ETSI Support for Trunks and Subports
ETSI VLAN Trunk:
Introduction:

For OpenStack VIMs, starting from 5.8, ESC supports trunks and VLANSs. The initial release was limited to
the ESC Netconf/APIs and trunk enabled VNFs were not scalable. The introduction of TOSCA SOL003 3.5.1
version provided new node types allowing an ETSI VNFD to define trunks and subports. With the ESC 5.9

release, the ETSI VNFM supports scalable trunks and subports.

Defining a Trunk in the VNFD:

The TOSCA type tosca.nodes.nfv.VduSubCp is available from SOL001 3.5.1. Use the VNFD version that is
SOLO001 3.5.1 or higher.

Apply the ETSI Trunk Mode to CPs that is Connection Points between the VDU which is Virtualisation
Deployment Unit and VL which is the Virtual Link or network. For a given CP, setting a trunk mode property
value as true signifies it as being the parent port for a trunk.

Example Payload:

s3 nicO:

type: tosca.nodes.nfv.VduCp
properties:
layer protocols: [ipv4]
protocol:

- associated layer protocol: ipv4
trunk mode: true # denotes the parent port
order: 0
management: false
allowed address pairs:

- ip address: 192.168.0.0/18

requirements:
- virtual binding: s3

Scaling Virtual Network Functions .

https://forge.etsi.org/rep/nfv/SOL001/-/blob/v3.5.1/etsi_nfv_sol001_vnfd_types.yaml

Scaling Virtual Network Functions |
. Scaling Virtual Network Functions Using ETSI API

Setting the trunk_mode property creates a trunk. The CP is the primary port for the VDU linked by
virtual_binding. The trunk name is generated in the format "trunk-" + VDU name + "-" + index number. The

index is based on the number of CPs in trunk mode for the current VDU. Note that setting trunk_mode can
be done at instantiation time.

Defining Subportsin the VNFD:

To make a trunk useful, the trunk needs to connect to other networks through subports. A subport is defined
with a node of type tosca.nodes.nfv.VduSubCp as follows:

Sample Payload:

s3 nicO 1:

type: tosca.nodes.nfv.VduSubCp

properties:
layer protocols: [ethernet, ipv4]
segmentation type: vlan
segmentation id: 303
management: false

requirements:
- trunk binding: s3 nicO
- virtual link: a vlan VL

Here the segmentation type and ID are configured. The requirements properties have two links:
* trunk binding: The node name of the CP where the primary port is defined that is trunk_mode set to true

» virtual _link: The name of the VL node to which this subport will be connected.

Example Payload for VL that is type tosca.nodes.nfv.VnfVirtualLink:

a vlan VL:
type: tosca.nodes.nfv.Vnfvirtuallink
properties:
connectivity type:
layer protocols: [ethernet]
description: subport VL
vl profile:
max _bitrate requirements:
root: 100000
min bitrate requirements:
root: 0
virtual link protocol data:
- associated layer protocol: ethernet
12 protocol data:
vlan transparent: false
segmentation id: 303

)

Note Configure the subports with the JSON payload at instantiation time together with user data that are input
variables.

The following shows the traditional dep.xml produced by ETSI constructs:

<trunk>
<name>trunk-name-0</name> <!-- Derived from VDU name and index -->
<parent nicid>0</parent nicid> <!-- Primary port -->
<subports>
<subport>

<name>trunk-name-0-subport-0</name> <!-- Derived from trunk name and subport
index -->

. Scaling Virtual Network Functions

Scaling Virtual Network Functions
Scaling Virtual Network Functions Using ETSI API .

<network>child-net</network>
<segmentation type>vlan</segmentation type>
<segmentation i1d>500</segmentation id>
<binding profile>
<property>
<name>physical network</name>
<value>physnet tenantl</value>
</property>
<property>
<name>trusted</name>
<value>true</value>
</property>
</binding profile>
</subport>
</subports>
</trunk>

ETSI VNF SCALING:

Trunk and subports scale automatically depending on the policy defined in the VNFD. As ESC scales the
VNF up and down, additional trunks and subports are created or deleted as necessary. These are managed by
ESC. ESC ensures VIM resources are cleaned up during LCM operations that are modify, delete.

N

Note During scaling, ESC duplicates the trunk and port names and relies on resource IDs when updating or deleting.

For ETSI, scaling is controlled according to the scaling policies.

FHEHHEH
VM
FHEHHEH
- vm_initial delta:
type: tosca.policies.nfv.VdulInitialDelta
properties:
initial delta:
number of instances: 2
targets: [s3 nic0O]

- vm_instantiation_levels:
type: tosca.policies.nfv.VdulnstantiationLevels

properties:
levels:
default:
number of instances: 2
targets: [s3 nic0O]

- vm_scaling aspect deltas:
type: tosca.policies.nfv.VduScalingAspectDeltas

properties:
aspect: default scaling aspect
deltas:
delta 1:
number of instances: 2
delta 2:
number of instances: 3
targets: [s3 nic0O]

The following shows the traditional dep.xml produced by ETSI constructs:

<scaling>
<min active>1</min active>

Scaling Virtual Network Functions .

Scaling Virtual Network Functions |

. Scaling Virtual Network Functions Using ETSI API

<max_active>2</max active>
</scaling>

And the appropriate VM group blocks are created.
Scaling Behaviour within ESC:

When a VMGroup is scaled up, then the corresponding trunks and subports are created, and the deployment
detail queries through REST or Netconf APIs show the trunk and subport details.

When a VMGroup is scaled down, then the corresponding trunks and subports are deleted from the VIM, and
deployment detail queris through REST or Netconf show the new trunk and subport details.

Updating SOL001 Parser to Support The trunk_mode Property for the Connection Points

The interfaces currently configured by ESC are not trunk ports, and so they do not support the definition of
sub-ports. To use the networks more efficiently, segment the network using VLANSs to connect multiple Layer
2 networks to a single pass-through interface. The following data model supports this configuration.

The following is an extract of a VNFD for a VPC-DI, with a parent port shown to be a trunk port, with 2
subports defined - one with an external VL connection that is exposed as an external connection through
substitution mappings and the other connected to an internal VL that is both of which specify their own
segmentation Id.

s3 nicO:
type: tosca.nodes.nfv.VduCp
properties:
layer protocols: [ipv4]
protocol:

- associated layer protocol: ipv4
trunk mode: true # denotes the parent port
order: 0
management: false
allowed address pairs:
- ip address: 192.168.0.0/18
requirements:
- virtual binding: vdu node 1

s3 nicO 1:
type: tosca.nodes.nfv.VduSubCp
properties:
layer protocols: [ipv4]
protocol:

- associated layer protocol: ipv4
trunk mode: false
segmentation type: vlan
segmentation id: 303
management: false

requirements:
- trunk binding: s3_nicO
- virtual link: a vlan VL

\}

Note

are configured within the trunk network.

The trunk mode is set to true, indicating that when the port is created, it is used as a trunk port and sub-ports

This results in the following deployment XML.:

<trunks>
<trunk>
<name>trunk-vdu node 1-0</name>

. Scaling Virtual Network Functions

| Scaling Virtual Network Functions
VNFD Policies for Scaling [JJj

<parent nicid>0</parent nicid>
<subports>
<subport>
<name>trunk-vdu node 1-0-subport-0</name>
<network>a vlan VL</network>
<segmentation type>vlan</segmentation type>
<segmentation i1d>303</segmentation id>
</subport>
<subport>
<name>trunk-vdu node 1-0-subport-1</name>
<network>a vlan VL</network>
<segmentation type>vlan</segmentation type>
<segmentation id>304</segmentation id>
</subport>
</subports>
</trunk>
</trunks>

VNFD Policies for Scaling

There are a number of policies that make up the overall scaling behavior of a VNF. These policies will support
the various scaling approaches described above. The first policy defines the aspects that may be scaled (or
not):

policies:
- scaling aspects:
type: tosca.policies.nfv.ScalingAspects
properties:
aspects:
webserver:
name: 'webserver'
description: 'The webserver cluster.
max_scale_level: 5
step deltas:
- delta 1
processing:
name: 'processing'
description: 'An example processing function'
max_scale level: 3
step deltas:
- delta 1
- delta 2
- delta 1
database:
name: 'database'
description: 'A test database'
max_scale level: 0

You can see in this example that the database aspect has a max_scale_level of 0, which denotes that it cannot
be scaled out - this does not mean 0 instances of that aspect - see the algorithm below to see why. The webserver
aspect only has a single step _delta, meaning that all scaling steps are uniform whereas the processing aspect
has different step _deltas specified for each scaling step. This is called non-uniform scaling. This is only the
declaration of the aspects of this VNF, and this is one of the policies used to perform the validation when a
scaling request is received.

Next, they must be applied to VNFCs to control their behavior:

- db initial delta:
type: tosca.policies.nfv.VduInitialDelta
properties:
initial delta:

Scaling Virtual Network Functions .

Scaling Virtual Network Functions |
VNFD Policies for Scaling

number of instances: 1
targets: [vdul]

- ws_initial delta:
type: tosca.policies.nfv.VduInitialDelta
properties:
initial delta:
number of instances: 1
targets: [vdu2, vdu4d]

- pc_initial delta:
type: tosca.policies.nfv.VduInitialDelta
properties:
initial delta:
number of instances: 1
targets: [vdu3]

- ws_scaling aspect deltas:
type: tosca.policies.nfv.VduScalingAspectDeltas

properties:
aspect: webserver
deltas:
delta 1:
number of instances: 1
targets: [vdu2, vdu4d]

- pc_scaling aspect deltas:
type: tosca.policies.nfv.VduScalingAspectDeltas

properties:
aspect: processing
deltas:
delta 1:
number of instances: 1
delta 2:
number of instances: 2
targets: [vdu2, vdu4d]

In the examples above, the VNFCs are identified as targets; the aspects could have different behaviours on
different VNFCS, but this is not shown here. The definition of the step_deltas are also shown here which are
used in the validation and generation of scaling requests (these steps are inferred by the scale level requested).
The minimum number of instances of a VNFC is always assumed to be 0 and the maximum number is
calculated by the following algorithm:

initial _delta plus the number of instances for each step up to the max_scale level.

These policies are considered for the scale-level based scaling. There are similar constructs used for
instantiation-level based scaling.

- instantiation levels:
type: tosca.policies.nfv.InstantiationLevels

properties:
levels:
default:
description: 'Default instantiation level'
scale_info:
database:
scale_level: 0
webserver:
scale_level: 0
processing:
scale_level: 0
premium:
description: 'Premium instantiation level'

scale_info:

. Scaling Virtual Network Functions

| Scaling Virtual Network Functions
Dependencies on Multiple IP Addresses .

database:
scale_level: 0

webserver:
scale_level: 2

processing:

scale _level: 3
default level: default

Similar to the scaling aspects, the first part of the definition of instantiation levels is just their declaration.
Here each aspect must already be declared and then each aspect's scale level is declared for the instantiation
level; a default instantiation level is also stipulated in the event that no other is specified. What each scale level
means for each VNFC is further elaborated upon in the VdulnstantiationLevels policies, for example:

- ws_instantiation_ levels:
type: tosca.policies.nfv.VdulInstantiationLevels

properties:
levels:
default:
number of instances: 1
targets: [vdu2, vdu4d]

So these policies together state that the default instantiation level is 'default' which will result in the webserver
aspect being instantiated at scale level 0 which is 1 VNFC instance.

Dependencies on Multiple IP Addresses
Static IP Addresses

If the VNFC has connection points configured with a static IP address, the VNFC cannot scale as there are
no further IP addresses to assign to the connection points on the newly spun up VNFC instances. Instead, you
can specify a pool of static IP addresses in the instantiate request or Grant response (in the extVirtualLinks
element) as a list:

* in fixedAddresses in a single cpProtocolData

» of individual fixedAddresses in multiple cpProtocolData

)

Note A list of ipAddresses in a single cpProtocolData assigns all the IP addresses to a single port on a single VNFC
instance.

Alternatively, a contiguous range can also be supplied in an ipAddresses entry, as an addressRange. If the
specific IP addresses need not be stipulated, then a subnetld can be used, as per the example in Instantiating
Virtual Network Functions.

The following example explains how to create a static IP pool with four IP addresses by specifying them as
a list in fixedAddresses in a single cpProtocolData:
{
xextVirtualLinks": [

{
"id": "extVL-dbf477ad-199a-47f£f-939%9a-cb0101c92585",

"resourceId": "ext-net",
"extCps": [
{
"cpdId": "ecp 1 vdu node 1",

Scaling Virtual Network Functions .

Cisco-Elastic-Services-Controller-ETSI-User-Guide-6-0_chapter5.pdf#nameddest=unique_27
Cisco-Elastic-Services-Controller-ETSI-User-Guide-6-0_chapter5.pdf#nameddest=unique_27

Scaling Virtual Network Functions |

Dependencies on Multiple IP Addresses

"cpConfig": {
"cpl": |
"cpProtocolData": [
{

"layerProtocol": "IP_OVER _ETHERNET",
"ipOverEthernet": ({
"ipAddresses": [

{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.10",
"172.16.0.11",
"172.16.0.12",
"172.16.0.13"

}

The same pool of IP addresses can also be created by specifying them as individual fixedAddresses in multiple
cpProtocolData:

"extVirtualLinks": [
{
"id": "extVL-dbf477ad-199a-47££f-939%9a-cb0101c92585",
"resourceId": "ext-net",
"extCps": [
{
"cpdId": "ecp_1 vdu node 1",
"cpConfig": {
"cpl": |
"cpProtocolData": [
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": ({
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.10"

"layerProtocol": "IP_OVER _ETHERNET",
"ipOverEthernet": ({
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [

. Scaling Virtual Network Functions

Scaling Virtual Network Functions
Dependencies on Multiple IP Addresses .

"172.16.0.11"

"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": ({
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.12"

"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": ({
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.13"

}

The same pool of IP addresses created using an addressRange:

"extVirtualLinks": [
{
"id": "extVL-dbf477ad-199a-47££f-939%9a-cb0101c92585",
"resourceId": "ext-net",
"extCps": [
{
"cpdId": "ecp_1 vdu node 1",
"cpConfig": {
"cpl": |
"cpProtocolData": [
{
"layerProtocol": "IP_OVER _ETHERNET",
"ipOverEthernet": ({
"ipAddresses": [
{
"type": "IPV4",
"addressRange": {
"minAddress": "172.16.0.10",

Scaling Virtual Network Functions .

Scaling Virtual Network Functions |
. Dependencies on Multiple IP Addresses

"maxAddress": "172.16.0.13"

The implementation of these IP address pools conforms to the ETS NFV MANO SOL003 specification, chapter
4.4.1.10.

Static MAC Addresses

If the VNFC has connection points configured with a static MAC address, the VNFC cannot scale as there
are no further MAC addresses to assign to the connection points on the newly spun up VNFC instances.
Instead, a pool of further static MAC addresses can be specified in the instantiate request or grant response.

Static MAC address pools can be created in the extVirtualLinks element of the instantiate request or grant
response by specifying the macAddress in multiple cpProtocolData.

The following example shows how to create a static MAC pool with four MAC addresses by specifying them
in multiple cpProtocolData:

"extVirtuallLinks": [
{
"id": "extVL-dbf477ad-199a-47£f£f-939%9a-cb0101c92585",
"resourceId": "ext-net",
"extCps": [
{
"cpdId": "ecp 1 vdu node 1",

"cpConfig": {
"cpl": |
"cpProtocolData": [
{
"layerProtocol": "IP_OVER _ETHERNET",
"ipOverEthernet": ({
"macAddress": "fa:16:3e:0b:10:10",
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.10"
]
}
]
}
}l
{
"layerProtocol": "IP_OVER ETHERNET",
"ipOverEthernet": ({
"macAddress": "fa:16:3e:0b:10:11",
"ipAddresses": [

{

. Scaling Virtual Network Functions

Scaling Virtual Network Functions
Dependencies on Multiple IP Addresses .

"type™: "IPV4",
"fixedAddresses": [
"172.16.0.11"

"layerProtocol": "IP_OVER _ETHERNET",
"ipOverEthernet": ({
"macAddress": "fa:16:3e:0b:10:12",
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.12"
]
}
]
}
}I
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": ({
"macAddress": "fa:16:3e:0b:10:13",
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.13"

}

Day Zero Configuration

After deploying the VNFs, day 0 variables are configured in the VNFC instance for the deployment service.
In most cases, the values for the day 0 configuration is constant. In other cases, there is a resource pool of
values supplied to the day 0 parameter to allow new values to be assigned to the new VNFC instances.

Day 0 configuration within the vendor section of the VNFD:

vdu3:
type: cisco.nodes.nfv.Vdu.Compute
properties:

name: 'Processingl'
description: 'Processing VNEC'

vdu_profile:
min number of instances: 1
max number of instances: 5
vendor_ section:
cisco_esc:

Scaling Virtual Network Functions .

Scaling Virtual Network Functions |
. Autoscaling of VNFs

config data:
'/tmp/OSRESTTestETSIDay0 Inline data.cfg':
data: |
NODE_NAME $NODE_NAME
NUM OF CPU $NUM OF CPU
MEM_SIZE $MEM_S IZE
PROXY_ ADDRS $PROXY_ADDRS
SPECIAL_CHARS SSPEC IAL_CHARS
variables:
NODE_NAME: vdu_node_ 1
NUM OF CPU: 1
MEM SIZE: 1GB

PROXY ADDRS: ["1.1.1.1", "1.1.2.1", "1.1.3.1", "1.1.4.1", "1.1.5.1",
"1.1.6.1", "1.1.7.1"]
SPECTAL CHARS: ' ~!@#5$%7&* ()— =+[{]}];:<.>/2"

In the above example the day 0 configuration is specified inline, with velocity variables defined in the target
configuration. Each of these variables are supported by a variable with one or more values. In order to support
multiple values for the SPROXY ADDRS variable, a list of values are provided. These values are used to
populate subsequent uses of the variable on new instances of the VNFC.

For information on day 0 configuration in the deployment data model, see Day Zero Configuration in the
Cisco Elastic Services Controller User Guide.

Autoscaling of VNFs

KPIs, rules and actions defined in the VNFD determine the conditions under which scaling must be considered.
The details are provided in Monitoring Virtual Network Functions. The scaling policies are also defined in
the VNFD using several policy types that control the allowed scaling boundaries. These policy items are
described below.

After deployment, ESC configures a monitoring agent (this may be the centralised or distributed instance)
with the KPIs to monitor each VNFC. The scaling workflow begins if a KPI reaches its threshold; based on
the action defined, ESC performs scale in or scale out and generates appropriate notifications and event logs.
This is subject to some built-in functions that can be specified such as 1o0g or an onboarded script.

ESC sends appropriate notifications to the subscribed consumers. At this time, ESC interrogates the VNF
instance resource for the iSAutoscaleEnabled flag (this is set initially by the value in the VNFD but can be
modified after creation). If this flag is set to true, ESC invokes the scaling workflow (instigated using a
ScaleVnfToLevel Request to request the scaling of multiple aspects in a single request). If the iSAutoscaleEnabled
is set to false, then the control is with an external system such as an NFVO or EM to trigger the desired action
using the requests described above.

\}

Note While creating an auto scaling or auto healing request, any new external requests are blocked. The user is
notified of the corresponding response and problem details of the blocked request.

. Scaling Virtual Network Functions

	Scaling Virtual Network Functions
	Scaling Virtual Network Functions Using ETSI API
	VNFD Policies for Scaling
	Dependencies on Multiple IP Addresses
	Autoscaling of VNFs

