
Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
First Published: 2023-10-26

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

© 2023 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

C O N T E N T S

Full Cisco Trademarks with Software License ?

About This Guide viiP R E F A C E

Audience vii

Terms and Definitions vii

Related Documentation ix

ETSI NFV MANO Northbound API Overview 1C H A P T E R 1

ETSI NFV MANO Northbound API Overview 1

Managing Resources 5C H A P T E R 2

Managing Resources 5

Resource Definitions for ETSI API 5

Updating Resource Definitions 7

OAuth (Open Authorization) 2.0 Authentication 10

Managing VIM Connectors 13C H A P T E R 3

VIM Connectors Overview 13

Creating New VIM Connectors 14

Using an Existing VIM Connector 14

Updating the VIM Connector 16

Understanding Virtual Network Function Descriptors 17C H A P T E R 4

Virtual Network Function Descriptor Overview 17

Defining Extensions to the Virtual Network Function Descriptor 17

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
iii

Managing VNF Lifecycle Operations 25C H A P T E R 5

Managing the VNF Lifecycle 25

VNF Lifecycle Operations 26

Creating the VNF Identifier 27

Instantiating Virtual Network Functions 28

Querying Virtual Network Functions 34

Modifying Virtual Network Functions 41

Operating Virtual Network Functions 42

Deleting Virtual Network Function Resource Identifier 43

Changing the VNF Package 44

Monitoring Virtual Network Functions 47C H A P T E R 6

Monitoring Virtual Network Functions Using ETSI API 47

VMMonitoring Operations 50

Notification for VM Monitoring Status 51

Monitoring VNFs Using D-MONA 53C H A P T E R 7

Onboarding D-MONA 53

Deploying D-MONA 53

Configuring D-MONA 56

Using D-MONA for a Deployed VNF 56

Specifying D-MONA Monitoring Agent through ETSI ESC Interface 56

Monitoring Using D-MONA 58

Resetting the Monitoring Rules for D-MONA 58

Migrating the Monitoring Agent 61C H A P T E R 8

Migrating the Monitoring Agent 61

Executing the Monitoring Migration API 62

VNF Notifications During Migration 63

Error Scenarios 64

Healing Virtual Network Functions 71C H A P T E R 9

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
iv

Contents

Healing Virtual Network Functions Using ETSI API 71

Recovering VM During Healing 75

Updating an Existing Deployment During Healing 75

Scaling Virtual Network Functions 79C H A P T E R 1 0

Scaling Virtual Network Functions Using ETSI API 79

VNFD Policies for Scaling 85

Dependencies on Multiple IP Addresses 87

Autoscaling of VNFs 92

Managing VNF Snapshot 93C H A P T E R 1 1

Managing VNF Snapshots 93

Error Handling Procedures 101C H A P T E R 1 2

VNF Lifecycle Management Error Handling Procedures 101

Alarms and Notifications for ETSI LCM Operations 105C H A P T E R 1 3

ETSI Alarms 105

Subscribing to Notifications 108

ETSI Failure and Load Notifications for VNFs 110

Auto-Scaling VNFs Using KPI Instructions 113

Healing VNFs Using KPI Instructions 116

Administering ESC 117C H A P T E R 1 4

ETSI Performance Reports 117

Performance Management Jobs 117

Configuring Threshold for Performance Management Job 121

ETSI Production Properties 127A P P E N D I X A

ETSI Production Properties 127

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
v

Contents

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
vi

Contents

About This Guide

This guide helps you to perform tasks such as lifecycle management operations, monitoring, healing and
scaling of the VNFs using the ETSI APIs.

• Audience, on page vii

Audience
This guide is designed for network administrators responsible for provisioning, configuring, and monitoring
VNFs. Cisco Elastic Services Controller (ESC) and the VNFs whose lifecycle it manages are deployed in a
Virtual Infrastructure Manager (VIM). Currently OpenStack, VMware vCenter, VMware vCloud Director,
and VMware NSX-T are the supported VIMs. The administrator must be familiar with the VIM layer, vCenter,
OpenStack, and the commands used.

Cisco ESC is targeted for Service Providers (SPs) and Large Enterprises. ESC helps SPs reduce cost of
operating the networks by providing effective and optimal resource usage. For Large Enterprises, ESC
automates provisioning, configuring and monitoring of network functions.

Terms and Definitions
The below table defines the terms used in this guide.

Table 1: Terms and Definitions

DefinitionsTerms

Elastic Services Controller (ESC) is a Virtual Network FunctionManager (VNFM), performing
lifecycle management of Virtual Network Functions.

ESC

European Telecommunications Standards Institute (ETSI) is an independent standardization
organization that has been instrumental in developing standards for information and
communications technologies (ICT) within Europe.

ETSI

A deployment flavour definition contains information about affinity relationships, scaling,
min/max VDU instances, and other policies and constraints to be applied to the VNF instance.
The deployment flavour defined in the VNF Descriptor (VNFD) must be selected by passing
the flavour_id attribute in the InstantiateVNFRequest payload during the instantiate VNF
LCM operation.

ETSI
Deployment
Flavour

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
vii

DefinitionsTerms

ESC High Availability (HA) is a solution for preventing single points of ESC failure and
achieving minimum ESC downtime.

HA

Key Performance Indicator (KPI) measures performance management. KPIs specify what,
how and when parameters are measured. KPI incorporates information about source,
definitions, measures, calculations for specific parameters.

KPI

Cisco Managed Services Accelerator (MSX) is a service creation and delivery platform that
enables fast deployment of cloud-based networking services for both Enterprises and Service
Providers customers.

MSX

Network Function Virtualization (NFV) is the principle of separating network functions from
the hardware they run on by using virtual hardware abstraction.

NFV

NFV Orchestrator (NFVO) is a functional block that manages the Network Service (NS)
lifecycle and coordinates the management of NS lifecycle, VNF lifecycle (supported by the
VNFM) and NFVI resources (supported by the VIM) to ensure an optimized allocation of
the necessary resources and connectivity.

NFVO

Cisco Network Services Orchestrator (NSO) is an orchestrator for service activation which
supports pure physical networks, hybrid networks (physical and virtual) and NFV use cases.

NSO

Flavors define the compute, memory, and storage capacity of nova computing instances. A
flavor is an available hardware configuration for a server. It defines the size of a virtual server
that can be launched.

OpenStack
Compute
Flavor

A service consists of a single or multiple VNFs.Service

The Virtualisation Deployment Unit (VDU) is a construct that can be used in an information
model, supporting the description of the deployment and operational behaviour of a subset
of a VNF, or the entire VNF if it was not componentized in subsets.

VDU

The Virtualized Infrastructure Manager (VIM) adds a management layer for the data center
hardware. Its northbound APIs are consumed by other layers to manage the physical and
virtual resources for instantiation, termination, scale in and out procedures, and fault &
performance alarms.

VIM

A Virtual Machine (VM) is an operating system OS or an application installed on a software,
which imitates a dedicated hardware. The end user has the same experience on a virtual
machine as they would have on dedicated hardware.

VM

A Virtual Network Function (VNF) consists of a single or a group of VMs with different
software and processes that can be deployed on a Network Function Virtualization (NFV)
Infrastructure.

VNF

AVirtual Network Function Component is (VNFC) a composite part of the VNF, synonymous
with a VDU, which could be implemented as a VM or a container.

VNFC

Virtual Network Function Manager (VNFM) manages the life cycle of a VNF.VNFM

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
viii

About This Guide
About This Guide

Related Documentation
The Cisco ESC doc set comprises of the following guides to help you perform installation, configuration; the
lifecycle management operations, healing, scaling, monitoring and maintenance of the VNFs using different
APIs.

Information Provided in This GuideGuide

Includes new features and bugs, known issues.Cisco Elastic Services Controller Release
Notes

Includes procedure for new installation and upgrade scenarios,
pre and post installation tasks, and procedure for ESC High
Availability (HA) deployment.

Cisco Elastic Services Controller Install
and Upgrade Guide

Includes lifecycle management operations, monitoring, healing
and scaling of the VNFs.

Cisco Elastic Services Controller User
Guide

Includes lifecycle management operations, monitoring, healing
and scaling of the VNFs using the ETSI APIs.

Cisco Elastic Services Controller ETSI
NFV MANO User Guide

Includes maintenance, monitoring the health of ESC, and
information on system logs generated by ESC.

Cisco Elastic Services Controller
Administration Guide

Information on the Cisco Elastic Services Controller NETCONF
northbound API, and how to use them.

Cisco Elastic Services Controller
NETCONF API Guide

Information on the Cisco Elastic Services Controller RESTful
northbound API, and how to use them.

Cisco Elastic Services Controller REST
API Guide

Includes information on the Cisco Elastic Services Controller
ETSI APIs, and how to use them.

Cisco Elastic Services Controller ETSI
REST API Guide

Includes information about deployment attributes used in a
deployment datamodel.

Cisco Elastic Services Controller
Deployment Attributes

Includes information on licenses and notices for open source
software used in Cisco Elastic Services Controller.

Cisco Elastic Services Controller Open
Source

Obtaining Documentation Request

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service
request, and gathering additional information, see What's New in Cisco Product Documentation, at:
http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html.

Subscribe to What's New in Cisco Product Documentation, which lists all new and revised Cisco technical
documentation, as an RSS feed and deliver content directly to your desktop using a reader application. The
RSS feeds are a free service.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
ix

About This Guide
Related Documentation

http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
x

About This Guide
Obtaining Documentation Request

C H A P T E R 1
ETSI NFV MANO Northbound API Overview

• ETSI NFV MANO Northbound API Overview, on page 1

ETSI NFV MANO Northbound API Overview
The ETSI NFV MANO API (ETSI API) is another programmatic interface to ESC that uses the REST
architecture. The ETSIMANO adheres to the standards defined by the European Telecommunications Standards
Institute (ETSI), specifically around Management and Orchestration (MANO). The API accepts and returns
HTTPmessages that contain JavaScript Object Notation (JSON) payloads. The API contains its own datamodel
designed around the ETSI MANO specifications that abstract away from the ESC core datamodel.

For information on VNF lifecycle management operations using the REST/NETCONF APIs, see the Cisco
Elastic Services Controller User Guide.

Table 2: ETSI MANO Specifications

DescriptionVersion SupportSpecification

Format and structure for the VNF
Descriptor

v3.3.1SOL001

Defines all interactions over the
Ve-Vnfm reference point

v3.3.1SOL002

Defines all interactions over the
Or-Vnfm reference point

v3.3.1SOL003

The terminology used in the ETSI-specific sections of the user guide align to the ETSI MANO standards
defined in the ETSI documentation. For more information, see the ETSI website.

Note

For an orchestrator to check the versions of the APIs supported by a VNFM, a request can be made to the
/api_versions endpoints. A version takes the form MAJOR.MINOR.PATCH; although only the MAJOR
version appears in the URIs presented by the VNFM, the full version indicates the data model that the VNFM
has implemented.

The Operations supported are:

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
1

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
http://www.etsi.org/

• Retrieve all supported versions for the given API

• Retrieve all supported versions for the given API, filtered on the major version

Retrieve all supported versions :

The request returns the version for the apiName supplied, showing the version, whether the version is
deprecated, and optionally when the version will be retired.

Method Type:

POST

VNFM endpoint:

{apiRoot}/{apiName}/api_versions

HTTP Request Headers:

Content-Type:application/json

Response Body (ETSI data structure: ApiVersionInformation)

For example, for vnffm:

{
"uriPrefix" : "localhost:8251/vnffm",
"apiVersions" : [

{
"version" : "1.0.0",
"isDeprecated" : true,
"retirementDate" : "13-Jan-22"

},
{

"version" : "1.3.0",
"isDeprecated" : false

}
]

}

Retrieve all supported versions for a given major version:

The request returns the version for the apiName supplied, showing the version, whether the version is deprecated
and optionally when the version retires, filtered by the major version.

Method type:

POST

VNFM endpoint:

{apiRoot}/{apiName}/{apiMajorVersion}/api_versions

HTTP Request Headers:

Content-Type:application/json

Response Body (ETSI data structure: ApiVersionInformation)

For example, for vnflcm and major version=2:
{

"uriPrefix" : "localhost:8251/vnflcm/v2",
"apiVersions" : [

{

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
2

ETSI NFV MANO Northbound API Overview
ETSI NFV MANO Northbound API Overview

"version" : "2.0.0",
"isDeprecated" : false

}
]

}

The current implementation of the ETSI NFV MANO standards consists of the Or-Vnfm and Ve-Vnfm
reference points, which are the interfaces between the NFVO and VNFM, and the EM and the VNFM
respectively. Both of these allow for the onboarding of ETSI-compliant CSAR packages, management of
virtualized resources, and VNF lifecycle management (LCM) operations.

For more information on Or-Vnfm and Ve-Vnfm reference points, see the ETSI Group Specification document
on the ETSI website. The figure below represents the NFV MANO architecture for all reference points.

Figure 1: NFV MANO Architecture with Reference Points

For information on managing resources, see Managing Resources, on page 5.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
3

ETSI NFV MANO Northbound API Overview
ETSI NFV MANO Northbound API Overview

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
4

ETSI NFV MANO Northbound API Overview
ETSI NFV MANO Northbound API Overview

C H A P T E R 2
Managing Resources

• Managing Resources, on page 5
• Resource Definitions for ETSI API, on page 5
• OAuth (Open Authorization) 2.0 Authentication, on page 10

Managing Resources

Resource Definitions for ETSI API
Cisco Elastic Services Controller (ESC) resources comprise of images, flavours, tenants, volumes, networks,
and subnetworks. These resources are the ones that ESC requests to provision a Virtual Network Function.

For ETSI MANO, these resource definitions are created by NFVO either at the time of onboarding the VNF
package or onboarding the tenant, and represented by the VIM identifiers in the request to ESC.

For information on managing resources using NETCONF or REST APIs, see Managing Resources Overview
in the Cisco Elastic Services Controller User Guide.

ETSI API Documentation

You can access the ETSI API documentation directly from the ESC VM:

http://[ESC VM IP]:8250/API

The ETSI API documentation provides details about all the various operations supported through the ESTI
MANO interface.You can also see the Cisco ETSI API Guide for more information.

The following table lists the resource definitions on the VIM that must be made available before VNF
instantiation.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
5

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-programming-reference-guides-list.html

Table 3: Resource Definitions on VIM

OpenStackResource Definitions

Out of band tenants

You can create a tenant using NETCONF API, REST
API, or the ESC portal. You can also create a tenant
directly on the VIM. The tenant is then referred to
within the vimConnectionInfo data structure. Formore
information, see VIMConnectors Overview, on page
13.

Tenants

Out of band images

The NFVO onboards a VNF package, extracts and
then onboards the image contained within the VNF
package on to the VIM. Though the VNFD refers to
the image file, because of the size of the image file,
instead of onboarding the image at the time of
deployment, the vimAssets in the Grant stipulates the
image to be used.

Images

Out of band flavors

During onboarding of the VNF package, the NFVO
looks at each cisco.nodes.nfv.Vdu.Compute node's
capabilities in the VNFD to determine the flavor to
be created. This is available later at the time of
instantiation, or optionally overriden by a VIM flavor
supplied at instantiation time as an additional
parameter.

ETSI deployment flavour is a different
concept than OpenStack compute flavor.
For more information, see Terms and
Definitions in About This Guide.

Note

Flavors

ESC supports in-band volumes of type
VirtualBlockStorage, as required by a deployment. It
also supports out-of-band volumes as a Cisco
extension to the ETSI specification.

Volumes

External networks are specified in the instantiation
payload to which external connection points will
connect.

External Networks (Virtual Link)

Networks internal to the VNF are supported, as well
as external networks specified in the instantiation
payload to which internal virtual links will be bound
instead of creating ephemeral networks.

Externally Managed Internal Virtual Links

Out-of-band subnetsSubnetworks

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
6

Managing Resources
Resource Definitions for ETSI API

For information on onboarding VNF packages and lifecycle operations using the ETSI API, see Managing
the VNF Lifecycle, on page 25.

Updating Resource Definitions
This section provides details about updating ETSI API resource definitions.

Updating the VNF Flavour

You can define the alternate VNF nodes and deployment flavours for a single VNFD using the following
TOSCA parameters:

• Import statements—The import statement allows a single, parent VNFD yaml file to conditionally
include other files based on an input value which can be specified dynamically, at run time.

• Substitution mappings—The substitution mapping applies only to the node types derived from the
tosca.nodes.nfv.VNF. You cannot substitute values of other node types that is, Connection Points, Virtual
Links and so on.

Example1:

In this example, the yaml file contains three import files.

All three files must exist in the VNFD ZIP archive file in the same location as the parent file importing them.

The requirements and capabilities are not defined in the derived tosca.nodes.nfv.VNF node. These aremandatory
for defining characteristics of VNFs instantiated using this VNFD. They are defined within the imported files.
tosca_definitions_version: tosca_simple_yaml_1_3
description: Substitution Mapping Example

imports:
- df_default.yaml
- df_silver.yaml
- df_gold.yaml

. . .

node_types:
my-vnf:
derived_from: tosca.nodes.nfv.VNF

. . .

topology_template:

. . .

########################
Substitution Mapping
########################
substitution_mappings:
node_type: my-vnf
requirements:
virtual_link: [vm1_nic1, virtual_link]

node_templates:

vnf:
type: my-vnf

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
7

Managing Resources
Updating Resource Definitions

properties:
descriptor_id: 8717E6CC-3D62-486D-8613-F933DE1FB3A0

. . .

flavour_id: default
flavour_description: Default VNF Deployment Flavour

Example 2:

When the VNF is instantiated, the required flavour is sent in the Instantiate request to the VNFM. The TOSCA
parser tries to match the flavour and the VNF node name with the defined substitution mappings. These may
be imported or defined within the VNFD itself. For example, the df_silver.yaml contains the following:

tosca_definitions_version: tosca_simple_yaml_1_3

description: Silver Deployment Flavour

imports:

topology_template:
substitution_mappings:
node_type: my-vnf
properties:
flavour_id: silver
flavour_description: Silver VNF Deployment Flavour
requirements:
- virtual_link: [vm1_nic1, virtual_link]

silver is the flavourId passed in the Instantiate Request payload. The parent yaml shown above has its empty
requirements section updated with the requirements from the silver profile, and the existing flavour_id and
flavour_description properties are updated as well.

tosca_definitions_version: tosca_simple_profile_for_nfv_1_3
description: Deployment Flavour SILVER
topology_template:
substitution_mappings:
node_type: tosca.nodes.nfv.VNF.CiscoESC
requirements:
virtual_link: [anECP, external_virtual_link]

capabilities:
deployment_flavour:
properties:
flavour_id: silver
description: 'SILVER Deployment Flavour'
vdu_profile:
vdu_node_1:
min_number_of_instances: 2
max_number_of_instances: 2

instantiation_levels:
default:
description: 'Default Instantiation Level'
vdu_levels:
vdu_node_1:
number_of_instances: 1

scale_info:
default_scaling_aspect:
scale_level: 2

silver_level:
description: 'SILVER Instantiation Level'
vdu_levels:
vdu_node_1:
number_of_instances: 2

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
8

Managing Resources
Updating Resource Definitions

scale_info:
default_scaling_aspect:
scale_level: 2

default_instantiation_level_id: default
vnf_lcm_operations_configuration: {}
scaling_aspect:
- default_scaling_aspect

cisco_esc_properties:

description: "SILVER: This is substituted if not already defined"

ESC sends a POST request to update the VNF flavour:

Method Type:

POST

VNFM Endpoint:

/vnflcm/v2/vnfinstances/{vnfInstanceId}/change_flavour

Updating the External VNF Connectivity

You can update the external VNF connectivity in an existing deployment. The API supports the following
changes:

• Disconnect the existing connection points (CPs) to the existing external virtual link and connect to a
different virtual link.

• Change the connectivity parameters of the existing external CPs, including changing the addresses.

ESC sends a POST request to update the VNF external connectivity:

Method Type

POST

VNFM Endpoint

/vnflcm/v2/vnfinstances/{vnfInstanceId}/change_ext_conn

Request Payload (Data structure = ChangeExtVnfConnectivityRequest)

{
"extVirtualLinks": [
{
"id": "extVL-98345443-7797-4c6d-a0ed-e18771dacf1c",
"resourceId": "node_1_ecp",
"extCps": [
{
"cpdId": "node_1_ecp",
"cpConfig": {

cp1 : {
"cpProtocolData": [
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"numDynamicAddresses": 2,
"subnetId": "esc-subnet"

}

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
9

Managing Resources
Updating Resource Definitions

]
}

}
]

}
}

}
]

}
]

}

The id in the extVirtualLinks, extVL-98345443-7797-4c6d-a0ed-e18771dacf1c in the above example, must
also exist in the instantiatedVnfInfo in the vnfInstance.

Note

Merging Policy

The substitution merges the new values into the VNFD.

1. For regular scalar properties such as name=joe, the value is replaced in the VNFD.

2. Arrays such as [list, of, strings] are merged. The new values are added into the array, if they do not exist.

3. Objects such as where a key is indented under another key, are replaced. The configurable_properties
object in the matched substitution will overwrite that defined in the VNFD.

Parser Behaviour

• After the substitution mappings are made, the parser tries to populate any additionalParams provided.
Note that the command fails if the input parameters do not match those in the template.

For more information on VNF lifecycle operations, see Managing the VNF Lifecycle, on page 25.

OAuth (Open Authorization) 2.0 Authentication
The ETSI NFVMANO supports OAuth 2.0 authentication for SOL003 Or-Vnfm reference point. The NFVO
makes a token request to ESC providing the client credentials such as client id and client secret for
authentication. In turn, ESC verifies the request and returns the access token.

ETSI supports both basic authentication as well as subscriptions for NFVO connections over SOL003.Note

The NFVO makes a POST request providing the client id and secret as primary authentication.

Method Type

POST

URL
{apiRoot}/oauth2/token

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
10

Managing Resources
OAuth (Open Authorization) 2.0 Authentication

Header

Authorization: Basic {base 64 encoded CLIENT_ID:CLIENT_SECRET}
Accept: application/json
Content-Type: application/x-www-form-urlencoded

Body
grant_type=client_credentials

ESC returns the access token in response.

Example:
{

"access_token":
"eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJjaHJpcyIsImlzcyI6IkVUU0ktVk5GTSIsImlhdCI6MTU1ODYwMzk2NiwiZXhwIjoxNTU4NjA0NTY2f

Q.lAtre7vdCKJjgzNs7p9P3NS2qMcXegC-oWXmy5Kakn0AL95gLWF6liOqPViMZNnWZLOsG5r1kPnGoBWnN0tgIw",
"token_type": "bearer",
"expires_in": 600

}

The access token is then used to access the or_vnfm endpoints.

Example:

Method

GET

URL
{apiRoot}/vnflcm/v2/subscriptions

Headers
Authorization: Bearer eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJjaHJpcyIsImlzcyI6IkVUU0k
tVk5GTSIsImlhdCI6MTU1ODYwMzk2NiwiZXhwIjoxNTU4NjA0NTY2fQ.lAtre7vdCKJjgzNs
7p9P3NS2qMcXegC-oWXmy5Kakn0AL95gLWF6liOqPViMZNnWZLOsG5r1kPnGoBWnN0tgIw

The existing tokens become invalid if the ETSI service is restarted.Note

Accessing and Updating the OAuth Properties File

ESC stores the client id and secret in the new etsi-production.yaml properties file in the same location as the
etsi-production.properties file. The new escadm etsi commands are available to maintain the client id and
secret values. The client secret is encrypted the same way as the existing rest username.

To add or update a client id

sudo escadm etsi oauth2_clients --set <CLIENT_ID>:<CLIENT_SECRET>

To remove a client id

sudo escadm etsi oauth2_clients --remove <CLIENT_ID>

Restart the ETSI services after updating the OAuth 2.0 values.Note

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
11

Managing Resources
OAuth (Open Authorization) 2.0 Authentication

For information on other properties, see ETSI Production Properties, on page 127.

OAuth Calls from ETSI to the NFVO

ESC supports OAUTH 2.0 calls from ETSI to the NFVO.

The following properties are added to the etsi-production.properties file:

nfvo.clientID=<YourClientID>
nfvo.clientSecret=<YourClientSecret>
nfvo.tokenEndpoint=<Your NFVO Token Endpoint>
nfvo.authenticationType=OAUTH2

The Client id, ClientSecret and TokenEndpoint must match that of the OAUTH 2.0 Server. The authentication
type determines authentication of the outgoing calls from ESC to the NFVO. The authentication type must
be either BASIC, or OAUTH2.

The tokens from the NFVO are stored against the token endpoint in the properties file.

When the NFVO sends a call request, ETSI checks for the tokens stored against the token endpoint. If the
token has not expired, then ETSI adds the old token to the header of the request and executes the call. A new
token is required if the token fails to execute.

If there are no tokens against the token endpoint, then new tokens are required to execute the call.

OAuth 2.0 Notification and Subscription

The subscription payloads must add the following to enable OAuth 2.0 authentication with the notifications:

{
"authentication": {
"authType": [
"OAUTH2_CLIENT_CREDENTIALS"

],
"paramsOauth2ClientCredentials": {
"clientId": <client_id>,
"clientPassword": <client_secret>,
"tokenEndpoint": <token_endpoint>

}
}

}

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
12

Managing Resources
OAuth (Open Authorization) 2.0 Authentication

C H A P T E R 3
Managing VIM Connectors

• VIM Connectors Overview, on page 13
• Creating New VIM Connectors, on page 14
• Using an Existing VIM Connector, on page 14
• Updating the VIM Connector, on page 16

VIM Connectors Overview
The ETSI API creates VIM connectors during the processing of an LCMoperation or uses an existing connector.

The Grant response or the LCM operation request from the NFVO supplies new VimConnectionInfo to the
VnfInstance. During the processing of the LCM operation, ETSI synchronizes the new VimConnectionInfo
with the VIM connectors in ESC.

A VimConnectionInfo is new if the VnfInstance does not have an existing VimConnectionInfo with the same
id. Any VimConnectionInfo supplied that matches an existing VimConnectionInfo id stored against any
VnfInstance as part of an LCM request uses the existing connector and ignore any changes submitted in the
new request.

ESC creates a new VIM connector only if a matching VIM connector is not available.

The ETSI API allows only the existing VimConnectionInfo, and the associated VIM connector, to be updated
via the Modify VNF information operation.

The Grant from the NFVO specifies the vimConnectionId for each resource. This value identifies the
VimConnectionInfo and the associated VIM connector for creating the locator for each resource. The VIM
specific VimConnectionInfo.accessInfo properties are set as additional properties in the locator.

Example for VimConnectionInfo in OpenStack:

{
,
"vimType": "OPENSTACK_V3",
"interfaceInfo": {
"endpoint": "https://10.18.54.42:13001/v3/"

},
"accessInfo": {
"username": "admin",
"password": "bmkQJtyDrbPFnJT8ENdZw2Maw",
"project": "cbamnso",
"projectDomain": "Default",
"userDomain": "Default",

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
13

"vim_project": "cbamnso"
}

}

Example for VimConnectionInfo in VMware Cloud Director:

{
,
"vimType": "VMWARE_VCD",
"interfaceInfo": {
"endpoint": "https://10.85.103.150"

},
"accessInfo": {
"username": "admin@cisco",
"password": "bmkQJtyDrbPFnJT8ENdZw2Maw",
"vim_project": "cbamnso",
"vim_vdc": "vdc1"

}
}

Example for VimConnectionInfo in VMware vCenter
{

"vimType": "VMWARE_VSPHERE",
"interfaceInfo": {
"endpoint": "https://10.85.103.21"

},
"accessInfo": {
"username": "admin@vsphere.local",
"password": "bmkQJtyDrbPFnJT8ENdZw2Maw",
"vim_project": "cbamnso",
"vim_vdc": "vdc1"

}
}

For VIM Connector Status and SNMP Trap Notifications, see the Cisco Elastic Services Controller
Administration Guide.

Creating New VIM Connectors
During the ETSI LCM operation, ESC checks each VimConnectionInfo against the existing VIM connector
records. If an existing VIM connector is not available, ESC creates a new VIM connector.

If the VimConnectionInfo.vimId is supplied, then this value is used as the id of the new VIM connector. If the
VimConnectionInfo.vimId is not supplied, then an id is generated for the new VIM connector and this value
is also set as the VimConnectionInfo.vimId.

To use an existing VIM connector, see Using an Existing VIM Connector, on page 14.

VIM connectors to many VIMs of different types are supported by a single instance of ESC.

Using an Existing VIM Connector
During an ETSI LCM operation, ESC checks for an existing vimConnectionInfo with a matching identifier
stored against any VnfInstance.

Existing VIM connectors are found by:

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
14

Managing VIM Connectors
Creating New VIM Connectors

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-maintenance-guides-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-maintenance-guides-list.html

• Matching the VimConnectionInfo.vimId, if supplied, to the id of a VIM connector.

• Matching the VIM specific properties of the VimConnectionInfo to a VIM connector.

• OpenStack

• vimType

• interfaceInfo.endpoint

• accessInfo.project

• VMware Cloud Director or vCenter

• vimType

• interfaceInfo.endpoint

If a matching VIM connector is found, and the VimConnectionInfo.vimId is not set, then the
VimConnectionInfo.vimId is set to the id of the VIM connector.

If an NFVO provides a VimConnectionInfo with accessInfo to stipulate some of the connection properties,
we use the following keys to configure the VIM connectors:

vCenterCloud DirectorOpenStackaccessInfo Property

YesYesYesusername

YesYesYespassword

Yesproject

YesYesYesvim_project

YesprojectDomain

YesuserDomain

YesYesvim_vdc

The ETSI specifications does not specify the keys to be used as part of the accessInfo attribute. In order to
ease integration, in the event that an NFVO uses different keys, the properties file allows the user to specify
a mapping from the third party keys to the ones that ESC understands.

mapping.vimConnectionInfo.accessInfo.username
mapping.vimConnectionInfo.accessInfo.password
mapping.vimConnectionInfo.accessInfo.project
mapping.vimConnectionInfo.accessInfo.projectDomain
mapping.vimConnectionInfo.accessInfo.userDomain
mapping.vimConnectionInfo.accessInfo.vim_project
mapping.vimConnectionInfo.accessInfo.vim_vdc

To create a new VIM connector, see Creating New VIM Connectors, on page 14.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
15

Managing VIM Connectors
Using an Existing VIM Connector

Updating the VIM Connector
The ETSI API updates the existing VimConnectionInfo, and the associated VIM connector via the Modifying
Virtual Network Functions, on page 41 operation. The VimConnectionInfo in the modify request payload is
compared to the existing VimConnectionInfo stored against the VnfInstance.

If an existing VimConnectionInfo stored against any VnfInstance with a matching id is not found, then then
VimConnectionInfo is added to the VnfInstance.

If an existing VimConnectionInfo stored against any VnfInstance with a matching id is found, then the
VimConnectionInfo is updated. If the VimConnectionInfo has been modified and it has an associated VIM
connector, then the VIM connector is also updated.

To create new VIM connectors, see Creating New VIM Connectors, on page 14.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
16

Managing VIM Connectors
Updating the VIM Connector

C H A P T E R 4
Understanding Virtual Network Function
Descriptors

• Virtual Network Function Descriptor Overview, on page 17
• Defining Extensions to the Virtual Network Function Descriptor, on page 17

Virtual Network Function Descriptor Overview
ESC supports a TOSCA-based Virtual Network Function Descriptor (VNFD) to describe the VNF
characteristics. The VNFD conforms to the GS NFV-SOL 001 v.3.3.1 specifications and standard specified
by ETSI (which in turn implements TOSCA Simple Profile in YAML Version 1.3).

The VNFD file describes the instantiation parameters and operational behaviors of the VNFs, their internal
topology as well as their external connectivity. It also contains KPIs and other key requirements that can be
used in the process of onboarding and managing the lifecycle of a VNF.

For VNF Lifecycle operations, see VNF Lifecycle Operations, on page 26.

Defining Extensions to the Virtual Network Function Descriptor
The VNFM implements extensions to the VNFD to expose the more advanced concepts supported by ESC
that are not explicitly defined in the ETSI standards. These extensions have been implemented in an
ETSI-compliant way to ensure maximum compatibility with other ETSI NFV MANO components.

If there is a requirement to control these properties on a per-deployment basis, then replace the hard-coded
values with inputs in the VNFD that can be supplied as additionalParams in the incoming request.

VNFCs (tosca.nodes.nfv.Vdu.Compute)

The Compute node allows for many of the ESC features to be exposed via the extended
tosca.datatypes.nfv.VnfcAdditionalConfigurableProperties. This includes the following:

• Overriding the automatically generated name for a VNFC on the VIM.

• VIM flavor (overriding the ETSI capabilities specified for a VNFC).

• Supplying ESC with an expected bootup time to prevent further actions being taken until this timer has
expired.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
17

• Providing Day-0 configuration blocks to execute/store on the VNFC once deployed.

• Specifying KPI parameters and associated rules to configure the monitoring agent.

• Intra-VM Group placement rules.

Here is the data type extension definition:
data_types:
...
cisco.datatypes.nfv.VnfcAdditionalConfigurableProperties:
derived_from: tosca.datatypes.nfv.VnfcAdditionalConfigurableProperties
properties:
vim_flavor:
type: string
required: true

bootup_time:
type: integer
required: true

vm_name_override:
type: string
required: false

recovery_action:
type: string
required: true

recovery_wait_time:
type: integer
required: true

monitor_on_error:
type: boolean
description: Continue monitoring of VNFC on error state.
required: false

max_retries:
type: integer
description: The number of recovery attempts
required: false

kpi_data:
type: map # key: event_name
description: The different KPIs applicable to this VDU
required: false
entry_schema:
type: cisco.datatypes.nfv.data.Kpi
description: A single KPI

admin_rules:
type: map # key: event_name
description: Actions for events
required: false
entry_schema:
type: cisco.datatypes.nfv.data.Admin_rules
description: Define actions for events

name_override:
type: string
description: An optional custom name that can be configured on the VIM
required: false

vendor_section:
type: cisco.datatypes.nfv.VendorExtension
required: false

cisco.datatypes.nfv.VnfcConfigurableProperties:
derived_from: tosca.datatypes.nfv.VnfcConfigurableProperties
properties:
additional_vnfc_configurable_properties:
type: cisco.datatypes.nfv.VnfcAdditionalConfigurableProperties
required: false

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
18

Understanding Virtual Network Function Descriptors
Defining Extensions to the Virtual Network Function Descriptor

node_types:
cisco.nodes.nfv.Vdu.Compute:
derived_from: tosca.nodes.nfv.Vdu.Compute
properties:
configurable_properties:
type: cisco.datatypes.nfv.VnfcConfigurableProperties
description: Describes the configurable properties of all VNFC instances based on

this VDU
required: false

For example:
vdu1:

type: tosca.nodes.nfv.Vdu.Compute
properties:
name: Example VDU1
description: Example VDU
boot_order: true

configurable_properties:
additional_vnfc_configurable_properties:
vim_flavor: Automation-Cirros-Flavor
bootup_time: 1800
vm_name_override: my-vdu-1
recovery_action: REBOOT_THEN_REDEPLOY
recovery_wait_time: 100
monitor_on_error: false
max_retries: 2
kpi_data:
VM_ALIVE-1:
event_name: 'VM_ALIVE-1'
metric_value: 1
metric_cond: 'GT'
metric_type: 'UINT32'
metric_occurrences_true: 1
metric_occurrences_false: 30
metric_collector:
type: 'ICMPPing'
nicid: 1
poll_frequency: 10
polling_unit: 'seconds'
continuous_alarm: false

admin_rules:
VM_ALIVE-1:
event_name: 'VM_ALIVE-1'
action:
- 'ALWAYS log'
- 'FALSE recover autohealing'
- 'TRUE esc_vm_alive_notification'

placement_type: zone
placement_target: nova
placement_enforcement: strict
vendor_section:
cisco_esc:
config_data:
example.txt:
file: ../Files/Scripts/example.txt
variables:
DOMAIN_NAME: { get_input: DOMAIN_NAME }
NAME_SERVER: { get_input: NAME_SERVER }
VIP_ADDR: { get_input: VIP_ADDR }
VIP_PREFIX: { get_input: VIP_PREFIX }

vdu_profile:
min_number_of_instances: 1
max_number_of_instances: 1

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
19

Understanding Virtual Network Function Descriptors
Defining Extensions to the Virtual Network Function Descriptor

capabilities:
virtual_compute:
properties:
virtual_cpu:
num_virtual_cpu: 8

virtual_memory:
virtual_mem_size: 16

requirements:
- virtual_storage: cdr1-volume
- virtual_storage: boot1-volume

If vm_name_override is not specified, ESC will auto-generate the VM names.

ESC stores the VNFC specific value in
VnfInstance.instantiatedVnfInfo.vnfcResourceInfo.metadata.vim_vm_name for the VNFC identified by the
vduId, which matches the label given to the Compute node representing the VNFC.

You can supply a high number of input parameters, allowing the use of a single template for multiple
deployments.

Note

Connection Points (tosca.nodes.nfv.VduCp)

The Cisco extensions to the VduCp node type mainly allows for defining the interface requirements map. The
features added to the connection point are as follows:

• Overriding the automatically generated name for a port on the VIM

• Identification of whether the port is a management port (i.e. used for monitoring)

• Allowed Address Pairs

• Support for specific network card types and interface types, e.g. SR-IOV

• Support for port binding profiles

• Whether port security is enabled

For example:
vdu1_nic0:

type: tosca.nodes.nfv.VduCp
properties:
layer_protocols: [ipv6]
protocol:
- associated_layer_protocol: ipv6

trunk_mode: false
order: 0
virtual_network_interface_requirements:
- support_mandatory: true
network_interface_requirements:

allowed_address_pairs: { get_input: VDU1_NIC0_AADR_PAIRS }
nw_card_model: virtio
iface_type: direct
management: true
name_override: my-vdu1-nic0
port_security_enabled: false
binding_profile:
trusted: true

requirements:
- virtual_binding: vdu1

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
20

Understanding Virtual Network Function Descriptors
Defining Extensions to the Virtual Network Function Descriptor

ESC supports SR-IOV properties using the network interface requirements. You can configure the interface
to associate the VNFC with an SR-IOV pass-through adapter by specifying the type as direct, as per the
previous example.

If there is a requirement to control these properties on a per-deployment basis, then replace the hard-coded
values with inputs in the VNFD that can be supplied as additionalParams in the incoming request, as per the
allowed address pairs above.

The port binding profile is available for Pike and later versions of OpenStack.Note

Volumes (tosca.nodes.nfv.Vdu.VirtualBlockStorage)

ESC supports out-of-band volumes as a Cisco extension. This allows the specification of the persistent volume
UUID as the resourceId property against the VirtualBlockStorage node to be used in place of the ephemeral
volume defined in the VNFD. ESC allows the request to override the volume specified in the VNFD and
supplies its own persistent (deployed out-of-band) storage by identifying it with a UUID from the VIM.

For example:
boot1-volume:

type: tosca.nodes.nfv.Vdu.VirtualBlockStorage
properties:
virtual_block_storage_data:
size_of_storage: 4GB
vdu_storage_requirements:
resource_id: { get_input: VDU1_BOOT_VOL_UUID }
vol_id: 1
bus: ide
type: LUKS

sw_image_data:
name: 'Automation_Cirros'
version: '1.0'
checksum: 9af30fce37a4c5c831e095745744d6d2
container_format: bare
disk_format: qcow2
min_disk: 2 GB
size: 2 GB

artifacts:
sw_image:
type: tosca.artifacts.nfv.SwImage
file: ../Files/Images/Automation-Cirros.qcow2

The VNFD accepts the volume or software image size in mebibyte-based units such as MiB, GiB or TiB
equivalent. If the volume or software image size is in megabyte-based units such as MB, GB or TB, ESC
converts the size to mebibyte-based equivalent and adjusts to the nearest value. Ensure you use mebibyte-based
units for volume or software image size for clarity.

Note

Security Group Rule (tosca.nodes.nfv.VduCp)

As per the handling a persistent of the volume above, ESC provides the ability to specify an out-of-band
security group instead of configuring one in the VNFD. This is because the verbs used to describe the security
group in the standards documentation are too simplistic for a very complicated configuration. Since the security
group is being specified for use on a connection point, this is where it is defined in the VNFD.

For example:

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
21

Understanding Virtual Network Function Descriptors
Defining Extensions to the Virtual Network Function Descriptor

c1_nic0:
type: tosca.nodes.nfv.VduCp
properties:
order: 0
layer_protocols: [ipv6]
protocol:
- associated_layer_protocol: ipv6

trunk_mode: false
virtual_network_interface_requirements:
- support_mandatory: true
network_interface_requirements:
management: "false"
iface_type: "virtual"

metadata:
security_groups: { get_input: VIM_NETWORK_SEC_GRP_0 }

requirements:
- virtual_binding: c1

Virtual Links (tosca.nodes.nfv.VnfVirtualLink)

The virtual links defined in the VNFD can be used to define those physical provider networks.

For example:

vpc-di-internal1:
type: tosca.nodes.nfv.VnfVirtualLink
properties:
connectivity_type:
layer_protocols: [ipv4]

description: DI Internal 1 Network VL
vl_profile:
max_bitrate_requirements:
root: 100000

min_bitrate_requirements:
root: 0

virtual_link_protocol_data:
- associated_layer_protocol: ethernet
l2_protocol_data:
vlan_transparent: yes
network_type: vlan
segmentation_id: { get_input: VL1_SEG_ID }
physical_network: vlan_network

They can also be used to specify the IP subnets that an internal connection point may use when using DHCP
to assign an address to them.

For example:
vpc-di-internal2:
type: tosca.nodes.nfv.VnfVirtualLink
properties:
connectivity_type:
layer_protocols: [ipv4]

description: DI Internal 1 Network VL
vl_profile:
max_bitrate_requirements:
root: 100000

min_bitrate_requirements:
root: 0

virtual_link_protocol_data:
- associated_layer_protocol: ipv4
l3_protocol_data:
ip_version: ipv4

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
22

Understanding Virtual Network Function Descriptors
Defining Extensions to the Virtual Network Function Descriptor

cidr: 1.180.10.0/29
dhcp_enabled: true

For information on lifecycle management operations, see Managing the VNF Lifecycle.

The previous versions of ESC supported Cisco-only extensions to support the above functionality. These
extensions were outside of the specification and although now these extensions are largely conformant with
the SOL001 standard, the previous definitions are still supported by ESC for backward compatibility. For
more information, see the Cisco Elastic Services Controller 5.5 documentation.

Note

Package Change Policy (tosca.policies.nfv.VnfPackageChange)

In order to support the change of a VNF package without redeploying the VNF instance, ETSI defines the
Change Current VNF Package endpoint which allows the VNF package to be swapped for a new one. For
example, a SOL004 package is immutable once created. The following policies ensure that only desired
upgrades and downgrades pass the validation in the VNFM.
type: tosca.policies.nfv.VnfPackageChange

properties:
selector:
source_descriptor_id: f5699972-3d35-4679-b2e7-19633154bd8d2
destination_descriptor_id: 0628204d-3a29-4133-9f2b-7b26f76ef88d
source_flavour_id: default

modification_qualifier: up
destination_flavour_id: small

type: tosca.policies.nfv.VnfPackageChange
properties:
selector:
source_descriptor_id: 0628204d-3a29-4133-9f2b-7b26f76ef88d
destination_descriptor_id: f5699972-3d35-4679-b2e7-19633154bd8d2
source_flavour_id: small

modification_qualifier: down
destination_flavour_id: default

Although the source and destination descriptor IDs are validated, no other constructs are considered as part
of the validation of the current implementation of this API.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
23

Understanding Virtual Network Function Descriptors
Defining Extensions to the Virtual Network Function Descriptor

https://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/5-4/etsi/guide/Cisco-Elastic-Services-Controller-ETSI-User-Guide-5-4/managing_vnf_lifecycle_using_etsi_api.html#concept_u3j_mtf_2cb

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
24

Understanding Virtual Network Function Descriptors
Defining Extensions to the Virtual Network Function Descriptor

C H A P T E R 5
Managing VNF Lifecycle Operations

• Managing the VNF Lifecycle, on page 25
• VNF Lifecycle Operations, on page 26

Managing the VNF Lifecycle
The NFVO communicates with ESC using the ETSI MANO API for lifecycle management of a VNF. A
configuration template, the Virtual Network Function Descriptor (VNFD) file describes the deployment
parameters and operational behaviors of a VNF type. The VNFD is used in the process of deploying a VNF
and managing the lifecycle of a VNF instance.

The lifecycle operations of a VNF instance is as follows:

1. Create a VNF Identifier—ESC generates a new VNF Instance Id (a universally unique identifier) that
is subsequently used as a handle to reference the instance upon which to execute further operations.

2. Instantiate / Deploy VNF—As part of VNF instantiation, ESC instantiates a new VNF instance in the
VIM. ESC receives a request to instantiate a VNF instance fromNFVO. The instantiate request contains
resource requirements, networking and other service operational behaviors. All these requirements along
with the VNFD and the grant information provides all the necessary information to instantiate the VNF.

3. Operate VNF—ESC allows you to start and stop a VNF instance. The resources are not released or
changed, but the VNF instance in the VIM is toggled between these two states.

4. Query VNF—To query one or more VNF instances known to ESC. This is a specific REST end point
that can be filtered to find specific instances. The instances can be filtered using the VNF Instance Id.

Also, a separate REST end point allows the NFVO to query the status of one or more lifecycle operation
occurrences associated with a VNF. The lifecycle operations can be filtered using a specific occurrence
identifier.

5. Modify VNF—ESC allows you to modify the properties of a single VNF instance. The instantiated
VNF is updated, and the lifecycle management operation occurrence sends notification to the NFVO
about the status of the VNF.

6. Scale and Scale to Level VNF—ESC allows you to scale VNFs in two ways. You can scale a VNF
incrementally, or to a specific level.

7. Heal VNF—ESC heals the VNF when there is a failure.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
25

8. Terminate / Undeploy VNF—To terminate the VNF instance in the VIM. The resources themselves
remain reserved for the VNF instance, however the VNF itself is undeployed.

9. Delete VNF Identifier—The resources are fully released in the VIM and in ESC and the associated
VNF instance identifer is also released.

10. Change Current VNF Package – To change the package upon which the VNF instance is defined
without a redeploy of the instance.

For VNF lifecycle operations using REST and NETCONF APIs, see Configuring Deployment Parameters in
the Cisco Elastic Services Controller User Guide.

The ESC health monitor API can determine the connectivity of ESC to the NFVO and send appropriate status
notifications. For more details, see Monitoring ESC Health in the Cisco Elastic Services Controller
Administration Guide.

VNF Lifecycle Operations
VNFM Prerequisites

The following prerequisites must be met for VNF lifecycle operations:

• The resource definitions must be created out of band and must be available before VNF instantiation.

• There are a few options with respect to specifying connections to the VIM. The VIMConnector specifies
how ESC connects to the VIM and may be created and validated in advance of deploying a VNF (and
identified by name), created as part of the request if new vimConnectionInfo is supplied or as part of the
Grant response (all have a common source - the NFVO). See VIM Connectors Overview, on page 13.

NFVO Prerequisites

• The VNF to be instantiated has to be onboarded to the NFVO within an ETSI compliant VNF package.

• The NFVO must provide ETSI compliant VNF Packages to ESC.

• The VNF package must contain a VNF Descriptor (VNFD) file.

The NFVO must support the /vnf_packages API to allow access to the package artifacts.See chapter 10
in the ETSI GS NFV-SOL 003 specification on the ETSI website for details.

• Update the properties file, etsi-production.properties under: /opt/cisco/esc/esc_database/. The
properties file provides details about the NFVO to ESC.

The single property nfvo.apiRoot allows specification of the NFVO host and port. For example,
nfvo.apiRoot=localhost:8280.

For notes on ESC in HA mode, enabled with ETSI service, see the Cisco Elastic Services Controller Install
and Upgrade Guide.

Note

Deployment Request

The deployment request includes the following tasks:

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
26

Managing VNF Lifecycle Operations
VNF Lifecycle Operations

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-maintenance-guides-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-maintenance-guides-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-installation-guides-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-installation-guides-list.html

The VNFD provides a description of the following constructs (see ETSI GS NFV-SOL 001 specification on
the ETSI website for details)

• The deployment level configuration such as deployment flavours and external connections

• The VDU configuration, including any applicable images (Compute)

• The internal connection points (VduCp)

• Any volumes to be created, including any applicable images (VirtualBlockStorage)

• The internal virtual links (VnfVirtualLink)

• Policies and groups for placement, scaling and security

The InstantiateVnfRequest:

• The chosen deployment flavour

• The VIM connection details (vimConnectionInfo - Or-Vnfm only)

• Any external networks to which to connect the external connection points (extVirtualLinks)

• Any external networks that may be bound to for internal virtual links (extManagedVirtualLinks)

• A list of key-value pairs to provide deployment specific variables for the deployment (additionalParams)

The Grant from the NFVO (see ETSI GS NFV-SOL 003 specification on the ETSI website for details):

• Approved and/or updated resources to be added, updated or removed (UUIDs)

• Confirmed placement information

Each lifecycle management request is submitted to the VNFM through the Ve-Vnfm or Or-Vnfm reference
points, SOL002 or SOL003 respectively. In order to invoke the correct API, the {apiRoot} is constructed of
the following elements:
[http_protocol]://[esc_ip]:[esc_port]/[ve_vnfm|or_vnfm]

and is followed by the apiName and operations, as per the following sections.

Creating the VNF Identifier
Creating the VNF Identifier is the first request for any VNF instance. This identifier is used for all further
LCM operations executed by the ETSI API. Resources are neither created nor reserved at this stage.

ESC sends a POST request to create VNF instances:

Method Type:
POST

VNFM Endpoint:
/vnf_instances/

HTTP Request Headers:
Content-Type:application/json

Request Payload (ETSI data structure: CreateVnfRequest):

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
27

Managing VNF Lifecycle Operations
Creating the VNF Identifier

{
"vnfInstanceName": "Test-VNf-Instance",
"vnfdId": "vnfd-88c6a03e-019f-4525-ae63-de58ee89db74"

}

Response Headers:

HTTP/1.1 201
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Application-Context: application:8250
Accept-Ranges: none
Location: http://localhost:8250/vnflcm/v2/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Date: Thu, 04 Jan 2018 12:18:13 GMT

Response Body (ETSI Data structure:VnfInstance)
{

"id": "14924fca-fb10-45da-bcf5-59c581d675d8",
"instantiationState": "NOT_INSTANTIATED",
"onboardedVnfPkgInfoId": "vnfpkg-bb5601ef-cae8-4141-ba4f-e96b6cad0f74",
"vnfInstanceName": "Test-VNf-Instance",
"vnfProductName": "vnfd-1VDU",
"vnfProvider": "Cisco",
"vnfSoftwareVersion": "1.1",
"vnfdId": "vnfd-88c6a03e-019f-4525-ae63-de58ee89db74",
"vnfdVersion": "1.3",
"_links": {

"instantiate": {
"href":

"http://localhost:8250/vnflcm/v2/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8/instantiate"

},
"self": {

"href":
"http://localhost:8250/vnflcm/v2/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8"

}
}

}

For instantiating VNFs, see Instantiating Virtual Network Functions, on page 28.

Instantiating Virtual Network Functions
The instantiation request triggers several message exchanges, which allow the call flow to deploy a VNF
instance. The resources for the VNF are only allocated when the VNF instance is instantiated. The request
requires the VNF instance identifier, returned by the Create VNF request to be encoded into the URL to which
the request is posted.

The instantiation sub-tasks within the flow include:

1. Retrieving the VNF Descriptor (VNFD) template from the NFVO.

2. Requesting permission from the NFVO (bi-directional Grant flow). For more information see, Requesting
Permission via Grant.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
28

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

Example for SOL003:

Method type:
POST

VNFM Endpoint:
/vnf_instances/{vnfInstanceId}/instantiate

HTTP Request Header:
Content-Type:application/json

Request Payload (ETSI data structure: InstantiateVnfRequest)

{
"flavourId": "default",
"extVirtualLinks": [

{
"id": "extVL-dbf477ad-199a-47ff-939a-cb0101c92585",
"resourceId": "ext-net",
"extCps": [
{
"cpdId": "ecp_1_vdu_node_1",
"cpConfig": {
"cp1": {
"cpProtocolData": [
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"numDynamicAddresses": "1",
"subnetId": "23bb3-742aa-8213eb-dded2"
"type": "IPV4"

}
]

}
}

]
}

}
}

],
"extManagedVirtualLinks": [

{
"id": "my-network",
"resourceId": "93fb90ae-0ec1-4a6e-8700-bf109a0f4fba",
"virtualLinkDescId": "VLD1"

}
],
"vimConnectionInfo": {
"default_openstack_vim": {

"accessInfo": {
"password": "*******,
"username": "admin",
"vim_project": "tenantName"

},
"extra": {

"name": "esc"
},

"interfaceInfo": {
"baseUrl": "http://localhost:8080"

},

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
29

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

"vimId": "default_openstack_vim",
"vimType": "OPENSTACK"

}
}
"additionalParams": {

"CPUS": 2,
"MEM_SIZE": "512 MB",
"VIM_FLAVOR": "Automation-Cirros-Flavor",
"BOOTUP_TIME": "1800"

}
}

The flavourId value must be the same as a single flavour_id specified in the VNFD.

The previous example also includes an external connection point with a subnet defined. The IP addresses are
allocated from that subnet. For information on fixed IP or MAC addresses, see Scaling Virtual Network
Functions Using ETSI API, on page 79.

The Grant response from the NFVO provides the vimConnectionInfo. It is not provided in the SOL002 payload.
This is required in some cases since the SOL002 payloads do not include the vimConnectionInfo information.

Note

You can customize the VNF before instantiation by adding variables to the VNFD template. The values that
map to those variables are supplied in the additionalParams field of the LCM request. The variables are
key-value pairs, where the value can be either a list, string, numeric or boolean.

When the VNFD is retrieved by the VNFM, the additionalParams variables are merged into the VNF instance
data from the original request received to form instance-specific data.

The list of parameters supplied is driven by the contents of the VNFD; the additionalParams specified in the
request are used by the VNFD using the get_input TOSCA method within the VNFD. For example, the cpus,
and mem_size variables are merged with the placeholders within the VNFD. For example:
tosca_definitions_version: tosca_simple_yaml_1_3

imports:
- cisco_nfv_sol001_types.yaml
- etsi_nfv_sol001_vnfd_3_3_1_types.yaml

metadata:
template_name: Example
template_author: Cisco Systems
template_version: '1.0'

topology_template:
inputs:

CPUS:
description: Number of CPUs
type: string
default: "2"

MEM_SIZE:
description: Memory size
type: string
default: "512 MB"

VIM_FLAVOR:
description: VIM Flavor
type: string
default: "Automation-Cirros-Flavour"

BOOTUP_TIME:
description: Time taken to boot the VNF

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
30

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

type: string
default: "1800"

substitution_mappings:
node_type: cisco.1VDU.1_0.1_0
requirements:
- virtual_link: [node_1_nic0, virtual_link]

node_templates:

vdu1:
type: tosca.nodes.nfv.Vdu.Compute
properties:
name: vdu1
description: Example
configurable_properties:
additional_vnfc_configurable_properties:
vim_flavor: { get_input: VIM_FLAVOR }
bootup_time: { get_input: BOOTUP_TIME }
...

vdu_profile:
min_number_of_instances: 1
max_number_of_instances: 1

capabilities:
virtual_compute:
properties:
virtual_cpu:
num_virtual_cpu: { get_input: CPUS }

virtual_memory:
virtual_mem_size: { get_input: MEM_SIZE }

node_1_nic0:
type: tosca.nodes.nfv.VduCp
properties:
order: 0
layer_protocols: [ipv4]
protocol:
- associated_layer_protocol: ipv4

trunk_mode: false
virtual_network_interface_requirements:
- support_mandatory: true
network_interface_requirements:
management: "false"
name_override: { get_input: SRIOV_A_INT_NAME }
iface_type: "direct"

requirements:
- virtual_binding: vdu_1

If a modification request with new additionalParams variables is submitted for the same VNF instance, then
the new variables overwrites the existing values for those keys. The VNFM uses the new variables for
deployment.

Although internal links are designed to be ephemeral, in some deployment scenarios they can be bound to
external links that outlive the VNF. Consider the following example VNFD fragment:

automation_net:
type: tosca.nodes.nfv.VnfVirtualLink
properties:
connectivity_type:
layer_protocols: [ipv4]

description: Internal Network VL
vl_profile:
max_bitrate_requirements:
root: 10000

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
31

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

min_bitrate_requirements:
root: 0

virtual_link_protocol_data:
- associated_layer_protocol: ipv4
l3_protocol_data:
ip_version: ipv4
cidr: 1.180.10.0/29
dhcp_enabled: true

To specify an external virtual link to be used in place of automation_net in the VNF deployment, the following
data structure is used as part of the instantiation request:

...
"extManagedVirtualLinks": [

{
"id": "net-5ddc8435-9d85-4560-8b95-bfcd3369c5c2",
"resourceId": "esc-net2",
"vimConnectionId":"default_openstack_vim",
"virtualLinkDescId": "automation_net"

}
],
...

Although the ETSI specifications only support the concept of ephemeral volumes, many vendors require the
specification of a persistent volume and so Cisco has implemented an extension to support this. The VIM
resource Id of the persistent volume can be supplied as an additionalParams key (that matches the get_input
in the VNFD) and replace a volume in the VNFD using an optional property, as per the following example:

example-volume:
type: tosca.nodes.nfv.Vdu.VirtualBlockStorage
properties:
virtual_block_storage_data:
size_of_storage: 200 GB
vdu_storage_requirements:
resource_id: { get_input: EX_VOL_UUID }
vol_id: "0"
bus: ide
type: LUKS

Requesting Permission via Grant

The ETSI API requests permission from the NFVO to complete lifecycle management operations for the VNF
instance resources and gets resource Ids for any resources pre-provisioned. Following is an example of
GrantRequest:
{
"flavourId": "default",
"instantiationLevelId": "default",
"isAutomaticInvocation": false,
"operation": "INSTANTIATE",
"vnfInstanceId": "e426a94e-7963-430c-96ee-778dde5bd021",
"vnfLc mOpOccId": "06fe989b-7b0b-40dc-afb3-de26c18651ae",
"vnfdId": "6940B47B-B0D0-48CB-8920-86BC23F91B16",
"addResources":
[
{
"id": "res-1abb1609-a1f3-418a- a7a0-2692a5e53311",
"resourceTemplateId": "vdu1",
"type": "COMPUTE",
"vduId": "vdu1"

},

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
32

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

{
"id": "res-c5ece35c-89e3-4d29-b594-ee9f6591f061",
"resourceTemplateI d": "node_1_nic0",
"type": "LINKPORT",
"vduId": "vdu1"

},
{
"id": "res-e88d8461-5f5a-4dba-af14-def82ce894e5",
"resourceTemplateId": "automation_net",
"type": "VL"

}
],
"_links":
{
"vnfInstance":
{
"href": "https://172.16

.255.8:8251/vnflcm/v2/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8"
},
"vnfLcmOpOcc":
{
"href":

"https://172.16.255.8:8251/vnflcm/v2/vnf_lcm_op_occs/457736f0-c877-4e07-8055-39dd406c616b"
}

}
}

The corresponding grant returned may look like the following:
{

"id": "grant-0b7d3420-e6ee-4037-b116-18808dea4e2a",
"vnfInstanceId": "14924fca-fb10-45da-bcf5-59c581d675d8",
"vnfLcmOpOccId": "457736f0-c877-4e07-8055-39dd406c616b",
"addResources": [

{
"resourceDefinitionId": "res-1abb1609-a1f3-418a-a7a0-2692a5e53311",
"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c"

},
{

"resourceDefinitionId": "res-c5ece35c-89e3-4d29-b594-ee9f6591f061",
"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c"

},
{

"resourceDefinitionId": "res-e88d8461-5f5a-4dba-af14-def82ce894e5",
"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c"

}
],
"vimAssets": {

"computeResourceFlavours": [
{

"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c",
"vimFlavourId": "Automation-Cirros-Flavor",
"vnfdVirtualComputeDescId": "vdu1"

}
],
"softwareImages": [

{
"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c",
"vimSoftwareImageId": "Automation-Cirros-DHCP-2-IF",
"vnfdSoftwareImageId": "vdu1"

}
]

},
"vimConnections": {
"default_openstack_vim": {

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
33

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

"vimId": "default_openstack_vim",
"vimType": "OPENSTACK",
"accessInfo": {

"vim_project": "admin"
}

}
},
"zones": [

{
"id": "zone-c9f79460-7a23-43e4-bb6d-0683e2cdb3d4",
"vimConnectionId": "default_openstack_vim",
"zoneId": "default"

},
{

"id": "zone-4039855e-a2cb-48f8-996d-b328cdf9889a",
"vimConnectionId": "default_openstack_vim",
"zoneId": "nova"

}
],
"_links": {

"self": {
"href":

"http://localhost:8280/grant/v1/grants/grant-0b7d3420-e6ee-4037-b116-18808dea4e2a"
},
"vnfInstance": {

"href": "https://172.16
.255.8:8251/vnflcm/v1/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8"

},
"vnfLcmOpOcc": {

"href":
"https://172.16.255.8:8251/vnflcm/v1/vnf_lcm_op_occs/457736f0-c877-4e07-8055-39dd406c616b"

}
}

}

The grant request is accepted only if all the requested resources have been granted, else the grant is rejected.

Querying Virtual Network Functions
Querying VNFs does not affect the state of any VNF instance. This operation simply queries ESC for all the
VNF instances it knows about, or a specific VNF instance.

Method Type:
GET

VNFM Endpoint:
/vnf_instances/vnf_instances/{vnfInstanceId}

HTTP Request Header:
Content-Type: application/json

Request Payload:
not applicable.

Response Headers:

< HTTP/1.1 200
HTTP/1.1 200
< X-Content-Type-Options: nosniff
X-Content-Type-Options: nosniff

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
34

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

< X-XSS-Protection: 1; mode=block
X-XSS-Protection: 1; mode=block
< Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
< Pragma: no-cache
Pragma: no-cache
< Expires: 0
Expires: 0
< X-Frame-Options: DENY
X-Frame-Options: DENY
< Strict-Transport-Security: max-age=31536000 ; includeSubDomains
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
< X-Application-Context: application:8250
X-Application-Context: application:8250
< Accept-Ranges: none
Accept-Ranges: none
< ETag: "2"
ETag: "2"
< Content-Type: application/json;charset=UTF-8
Content-Type: application/json;charset=UTF-8
< Transfer-Encoding: chunked
Transfer-Encoding: chunked
< Date: Thu, 04 Jan 2018 12:25:32 GMT
Date: Thu, 04 Jan 2018 12:25:32 GMT

Response Body for a single VNF Instance (ETSI Data structure:VnfInstance)

The ETag response header is only returned for a single VNF query (that is, one with the VNF Instance ID
specified). The ETag value is conditionally used during any subsequent VNF modify operations.

Note

{
"_links": {
"instantiate": {
"href":

"http://localhost:8250/vnflcm/v2/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8/instantiate"

},
"self": {
"href":

"http://localhost:8250/vnflcm/v2/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8"
}

},
"id": "14924fca-fb10-45da-bcf5-59c581d675d8",
"instantiationState": "NOT_INSTANTIATED",
"onboardedVnfPkgInfoId": "vnfpkg-bb5601ef-cae8-4141-ba4f-e96b6cad0f74",
"vnfInstanceName": "Test-VNf-Instance",
"vnfProductName": "vnfd-1VDU",
"vnfProvider": "Cisco",
"vnfSoftwareVersion": "1.1",
"vnfdId": "vnfd-88c6a03e-019f-4525-ae63-de58ee89db74",
"vnfdVersion": "2.1"

}

The query VNF operation output shows the instantiated state of the VNF. The InstantiatedVnfInfo element
shows the VIM resource information for all the VNFs.

For example:
{
"instantiatedVnfInfo": {

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
35

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

"extCpInfo": [
{
"cpProtocolInfo": [
{
"ipOverEthernet": {
"ipAddresses": [
{
"addresses": [
"172.16.235.19"

],
"isDynamic": false,
"type": "IPV4"

}
],
"macAddress": "fa:16:3e:4b:f8:03"

},
"layerProtocol": "IP_OVER_ETHERNET"

}
],
"cpdId": "anECP",
"id": "extCp-4143f7d4-f581-45fc-a730-568435dfdb4f"

}
],
"extManagedVirtualLinkInfo": [
{
"id": "net-d39bc4de-285c-4056-8113-24eccf821ebc",
"networkResource": {
"resourceId": "my-network",
"vimConnectionId": "esc-b616e5be-58ce-4cfc-8eee-e18783c5ae5d"

},
"vnfLinkPorts": [
{
"cpInstanceId": "vnfcCp-9b24c9e0-1b28-4aba-a9df-9bfc786bfaed",
"cpInstanceType": "EXT_CP"
"id": "vnfLP-9b24c9e0-1b28-4aba-a9df-9bfc786bfaed",
"resourceHandle": {
"resourceId": "926b7748-61d9-4295-b9ff-77fceb05589a",
"vimConnectionId": "esc-b616e5be-58ce-4cfc-8eee-e18783c5ae5d"

}
}

],
"vnfVirtualLinkDescId": "my-network"

}
],
"extVirtualLinkInfo": {

"id": "extLP-4143f7d4-f581-45fc-a730-568435dfdb4f",
"resourceHandle": {

"resourceId": "d6a4c231-e77c-4d1f-a6e2-d3f463c4ff72"
},
"extLinkPorts": {

"id": "extLP-4143f7d4-f581-45fc-a730-568435dfdb4f",
"resourceHandle": {

"resourceId": "d6a4c231-e77c-4d1f-a6e2-d3f463c4ff72 "
}

},
"currentVnfExtCpData": [

{
"cpdId": "extCp-4143f7d4-f581-45fc-a730-568435dfdb4f",
"cpConfig": {

"vm1_nic0": {
"linkPortId": "extLP-4143f7d4-f581-45fc-a730-568435dfdb4f"
}

}
}

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
36

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

]
}

"id": "extVL-b9bd55a9-4bd9-4ad8-bf67-ba1e7b82aca6",
"resourceHandle": {
"resourceId": "anECP",
"vimConnectionId": "esc-b616e5be-58ce-4cfc-8eee-e18783c5ae5d"

}
}

],
"flavourId": "bronze",
"scaleStatus": [
{
"aspectId": "default_scaling_aspect",
"scaleLevel": 1

}
],
"vnfState": "STARTED",
"vnfcResourceInfo": [
{
"computeResource": {
"resourceId": "a21f0b15-ec4b-4968-adce-1ccfad118caa",
"vimConnectionId": "default_openstack_vim"

},
"id": "res-89a669bb-fef4-4099-b9fe-c8d2e465541b",
"vduId": "vdu_node_1",
"vnfcCpInfo": [
{
"cpProtocolInfo": [
{
"ipOverEthernet": {
"ipAddresses": [
{
"addresses": [
"172.16.235.19"

],
"isDynamic": false,
"type": "IPV4"

}
],
"macAddress": "fa:16:3e:4b:f8:03"

},
"layerProtocol": "IP_OVER_ETHERNET"

}
],
"cpdId": "node_1_nic0",
"id": "vnfcCp-c09d5cf2-8727-400e-8845-c4d5cb479db8",
"vnfExtCpId": "extCp-4143f7d4-f581-45fc-a730-568435dfdb4f"

},
{
"cpProtocolInfo": [
{
"ipOverEthernet": {
"ipAddresses": [
{
"addresses": [
"172.16.235.16"

],
"isDynamic": false,
"type": "IPV4"

}
],
"macAddress": "fa:16:3e:94:b3:91"

},

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
37

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

"layerProtocol": "IP_OVER_ETHERNET"
}

],
"cpdId": "node_1_nic1",
"id": "vnfcCp-9b24c9e0-1b28-4aba-a9df-9bfc786bfaed"

}
]

}
]

}
}

Selecting Attributes for VNF Query

You can select the attributes to appear in the VNF Query response using the attribute selector. You can mark
the attributes for including or excluding from a query. You can exclude some of the attributes that are not
required, for example attributes with a lower bound of zero on their cardinality (e.g. 0..1, 0..N) and that are
not mandatory (subject to certain conditions).

By selecting only the necessary attributes in the query reduces the amount of data exchanged over the interface
and processed by the API consumer application.

The table lists the URI query parameters for selecting attributes for the GET Request.

Table 4: Selecting Attributes for GET Request

DefinitionParameter

Requests all complex attributes included in the response, including those
suppressed by exclude_default. It is opposite to the exclude_default parameter.
The API producer supports the all_fields parameter for certain resources.

The complex attributes are structured attributes or arrays.Note

all_fields

Requests to include only the listed complex attributes in the response.

The parameter is formatted as a list of attribute names. An attribute name can
either be the name of an attribute, or a path consisting of the names of multiple
attributes with parent-child relationship, separated by "/". The attribute names
in the list can be separated by comma (","). The valid attribute names for a
particular GET request are the names of all complex attributes in the expected
response that have a lower cardinality bound of 0 and that are not conditionally
mandatory.

The API producer supports the fields parameter for certain resources. The details
are defined in the clauses specifying the actual resources.

The "/" and "~" characters in attribute names in an attribute selector will be
escaped according to the IETF standards.

The "," character in attribute names in an attribute selector will be escaped by
replacing it with "~a".

Further, percent-encoding applies to the characters that are not allowed in a
URI query part according to the IETF standards.

fields

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
38

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

DefinitionParameter

Requests to exclude the listed complex attributes from the response. For the
format, eligible attributes and support by the API producer, the provisions
defined for the "fields" parameter will apply.

exclude_fields

Requests to exclude a default set of complex attributes from the response. Not
every resource has a default set. Only complex attributes with a lower cardinality
bound of zero that are not conditionally mandatory can be included in the set.

The API producer supports this parameter for certain resources.

The exclude_default parameter is a flag and has no value.

If a resource supports attribute selector, and none of the attribute selector
parameters is specified in a GET request, then the exclude_default parameter
becomes the default. To emulate the original behaviour of GET Request, you
can either supply the all_fields flag or set the ETSI property
attribute.selector.default.all_fields to true which changes the behaviour, when
no attribute selectors are provided, to all_fields.

exclude_default

The GET Response validates the parameter combinations in the GET Request.The table defines the valid
parameter combinations.

Table 5: Parameter combinations for Get Response

GET ResponseParameter Combination

Includes same as exclude_default.(none)

Includes all the attributes.all_fields

Includes all the attributes except all complex attributes
with minimum cardinality of zero that are not
conditionally mandatory, and that are not provided
in <list>.

fields=<list>

Includes all attributes except those complex attributes
with a minimum cardinality of zero that are not
conditionally mandatory, and that are provided in
<list>.

exclude_fields=<list>

Includes all attributes except those complex attributes
with a minimum cardinality of zero that are not
conditionally mandatory, and that are part of the
default exclude set defined in the present document
for the particular resource.

exclude_default

Includes all attributes except those complex attributes
with a minimum cardinality of zero that are not
conditionally mandatory and that are part of the
default exclude set defined in the present document
for the particular resource, but that are not part of
<list>.

exclude_default and fields=<list>

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
39

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

The GET Request for resources such as VNF Instances, VNF LCM Operation Occurrences, and PM Jobs
supports the selection of attributes.

Table 6: Resources supporting the selection of attributes

DescriptionCardinalityName

VNF Instances

Indicates to exclude the following
complex attributes from the
response.

The following attributes are
excluded from the VnfInstance
structure in the response body if
this parameter is provided, or none
of the parameters (all_fields, fields,
exclude_fields, exclude_default)
are provided:

• vnfConfigurableProperties

• vimConnectionInfo

• instantiatedVnfInfo

• metadata

• extension

0..1exclude_default

VNF LCM operation occurrences

The following attributes are
excluded from the VnfLcmOpOcc
structure in the response body if
this parameter is provided, or none
of the parameters (all_fields, fields,
exclude_fields, exclude_default)
are provided:

• operationParams

• error

• resourceChanges

• changedInfo

• changedExtConnectivity

0..1exclude_default

PM Jobs

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
40

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

DescriptionCardinalityName

The following attributes are
excluded from the PmJob structure
in the response body if this
parameter is provided, or none of
the parameters (all_fields, fields,
exclude_fields, exclude_default)
are provided:

• Reports

0..1exclude_default

For information on VNF lifecycle operations, see VNF Lifecycle Operations, on page 26.

Modifying Virtual Network Functions
You can modify or update the properties of a VNF instance, which is in the NOT_INSTANTIATED state,
using the modify VNF lifecycle operation. ESC receives a PATCH request from NFVO to modify a single
VNF instance.

A JSONmerge algorithm is applied from the input payload against the stored data to modify the VNF instance.

Modifying VNF operation updates only the properties, but not the functionality of the VNF. The modify
operation is only valid on a VNF instance resource that is NOT_INSTANTIATED.

Note

The following properties of an existing VNF instance can be modified:

• vnfInstanceName

• vnfInstanceDescription

• onboardedVnfPkgInfoId (null value is not allowed)

• vnfConfigurableProperties

• metadata

• extensions

• vimConnectionInfo

Method Type
PATCH

VNFM Endpoint
/vnf_instances/{vnfInstanceId}

HTTP Request Header
Content-Type: application/merge-patch+json
If-Match: ETag value

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
41

Managing VNF Lifecycle Operations
Modifying Virtual Network Functions

The ETag, if specified, is validated against the ETag value stored against the VNF instance resource. If the
values do not match, the modify request will be rejected.

Note

Request Payload (ETSI data structure: VnfInfoModifications)
{

"vnfInstanceName": "My NEW VNF Instance Name",
"vnfInstanceDescription": "My NEW VNF Instance Description",

"vnfConfigurableProperties": {
"isAutoscaleEnabled": "true"

},
"metadata": {

"serialRange": "ab123-cc331",
"manufacturer": "Cisco"

},
"extensions": {

"testAccess": "false",
"ipv6Interface": "false"

},
"vimConnectionInfo": {
"default_openstack_vim": {

"vimType": "openstack",
"interfaceInfo": {

"uri": "http://172.16.14.27:35357/v3"
},
"accessInfo": {

"domainName": "default",
"projectName": "admin",
"userName": "default"

}
}

}
}

The Grant response from the NFVO provides the vimConnectionInfo instead of the SOL002 payload. The
SOL002 request contains some attributes that affect the VNF resource at a finer VNFC-level such as
vnfcInfoModifications. See SOL002 on the ETSI website for more details.

Note

Response Header:
not applicable.

Response Body:
not applicable.

When the PATCH operation is complete, the VNF instance is modified, and the details are sent to the NFVO
through the notification.

Operating Virtual Network Functions
You can start or stop a VNF instance using the operate lifecycle management operation. The VNF instance
can be stopped gracefully or forcefully.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
42

Managing VNF Lifecycle Operations
Operating Virtual Network Functions

The OpenStack API supports only forceful stop.Note

The changeStateTo field must have the value STARTED or STOPPED in the request payload, to start or stop
a VNF instance.

Permission is also required from the NFVO (bi-directional Grant flow) for this operation. See Requesting
Grant Permission for more informaiton.

Method Type:
POST

VNFM Endpoint:
/vnf_instances/{vnfInstanceId}/operate

HTTP Request Headers:

Content-Type:application/json

Response Headers:

HTTP/1.1 202
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: TEST
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Application-Context: application:8250
Accept-Ranges: none
Location: http://localhost:8250/vnflcm/v2/vnf_lcm_op_occs/e775aad5-8683-4450-b260-43656b6b13e9
Content-Length: 0
Date: Thu, 04 Jan 2018 12:40:27 GMT

Response Body:
not applicable.

Deleting Virtual Network Function Resource Identifier
Deleting VNF operation releases the VIM resources reserved for the VNF instance as well as deletes the VNF
instance identifier. Upon deletion, the VNF instance identifier is no longer available. So, no further lifecycle
management operations are possible using this identifier.

Method Type:
DELETE

VNFM Endpoint:
/vnf_instances/{vnfInstanceId}

HTTP Request Headers:
Content-Type:application/json

Request Payload:
not applicable.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
43

Managing VNF Lifecycle Operations
Deleting Virtual Network Function Resource Identifier

Response Headers:

HTTP/1.1 204
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: TEST
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Application-Context: application:8250
Accept-Ranges: none
Date: Thu, 04 Jan 2018 12:48:59 GMT

Response Body:
not applicable.

Changing the VNF Package
Changing the VNF package operation allows the package which is immutible upon which an instance is
modelled to change into a new package.There are cases for this operation such as a software upgrade or fixing
defects in the original package. Validate the change as per the policies defined to describe the allowable
upgrade or downgrade.

ESC 5.8 supports only a change in the software image which is either supplied in the request or in the grant
as part of the execution of this API.

Note

Method Type:

POST

VNFM Endpoint:
/vnf_instances/{vnfInstanceId}/change_vnfpkg

HTTP Request Headers:
Content-Type:application/json

Request Payload:
{

"vnfdId": "CE2F2413-5723-4661-8EC0-6A8FD7562892",
"extVirtualLinks": [{}],
"extManagedVirtualLinks": "[{}]",
"vimConnectionInfo": {[

{
"id": "vci1",
"vimType": "OPENSTACK_V3",
"interfaceInfo": {

"uri": "http://10.51.14.27:35357/v3"
},
"accessInfo": {

"domainName": "default",
"projectName": "admin",
"userName": "default"

}
}

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
44

Managing VNF Lifecycle Operations
Changing the VNF Package

]},
"vnfConfigurableProperties": {},
"additionalParams": {
"SOFTWARE_IMAGE": "NEW_IMAGE_NAME"

},
"extensions": {}

}

Response Headers:
HTTP/1.1 202
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: TEST
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Application-Context: application:8250
Accept-Ranges: none
Date: Thu, 04 Jan 2018 12:48:59 GMT

Response Body:

Not applicable.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
45

Managing VNF Lifecycle Operations
Changing the VNF Package

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
46

Managing VNF Lifecycle Operations
Changing the VNF Package

C H A P T E R 6
Monitoring Virtual Network Functions

• Monitoring Virtual Network Functions Using ETSI API, on page 47
• VM Monitoring Operations, on page 50

Monitoring Virtual Network Functions Using ETSI API
During the deployment of a VNF, metrics must be defined to instruct the ESC monitoring agent component
(MONA) how to determine if the VNF is healthy. The definition of metrics is within the Key Performance
Indicator (KPI) section of the VNFD and allow MONA to periodically monitor the VNF to check its health
and workload, defined on a per-VNFC basis. Actions are then associated with these KPIs and executed when
the appropriate conditions are met.

There are several built-in monitoring methods such as ICMP Ping and SNMP. Some of the metrics to monitor
on the constituent VNFCs include:

• reachability

• resource usage (such as CPU, memory, disk and network throughput)

The following pre-requisites must be met for the deployed VNFCs to be monitored:

• The deployed VNFCs must be alive

• Monitoring is enabled

• KPIs must be configured

Example:
vdu1:

type: tosca.nodes.nfv.Vdu.Compute
properties:
name: Example VDU1
description: Example VDU
boot_order:
- boot1-volume

configurable_properties:
additional_vnfc_configurable_properties:
vim_flavor: Automation-Cirros-Flavor
bootup_time: 1800
vm_name_override: my-vdu-1
recovery_action: REBOOT_THEN_REDEPLOY
recovery_wait_time: 100

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
47

monitor_on_error: false
max_retries: 2
kpi_data:
VM_ALIVE-1:
event_name: 'VM_ALIVE-1'
metric_value: 1
metric_cond: 'GT'
metric_type: 'UINT32'
metric_occurrences_true: 1
metric_occurrences_false: 30
metric_collector:
type: 'ICMPPing'
nicid: 1
poll_frequency: 10
polling_unit: 'seconds'
continuous_alarm: false

admin_rules:
VM_ALIVE-1:
event_name: 'VM_ALIVE-1'
action:
- 'ALWAYS log'
- 'FALSE recover autohealing'
- 'TRUE esc_vm_alive_notification'

placement_type: zone
placement_target: nova
placement_enforcement: strict
vendor_section:
cisco_esc:
config_data:
example.txt:
file: ../Files/Scripts/example.txt
variables:
DOMAIN_NAME: { get_input: DOMAIN_NAME }
NAME_SERVER: { get_input: NAME_SERVER }
VIP_ADDR: { get_input: VIP_ADDR }
VIP_PREFIX: { get_input: VIP_PREFIX }

vdu_profile:
min_number_of_instances: 1
max_number_of_instances: 1

capabilities:
virtual_compute:
properties:
virtual_cpu:
num_virtual_cpu: 8

virtual_memory:
virtual_mem_size: 16

requirements:
- virtual_storage: cdr1-volume
- virtual_storage: boot1-volume

The kpi_data shown above is the default KPI required that is required in all deployments at a minimum so
that the VM_ALIVEmessage is generated to tell ESCManager that the VNFC has been deployed successfully;
it consists of the KPI, how it is collected and the actions to be executed when the KPI is met.

Cisco data structure properties

ValuesDescriptionProperty NameData Type

AnyUnique user-defined
KPI name

KPI labelcisco.datatypes.nfv.data.Kpi

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
48

Monitoring Virtual Network Functions
Monitoring Virtual Network Functions Using ETSI API

ValuesDescriptionProperty NameData Type

URI for the agentSpecifies the
monitoring agent for a
VNF, for example,
local or distributed
MONA

monitoring_agentcisco.datatypes.nfv.data.Kpi

event_namecisco.datatypes.nfv.data.Kpi

metric_valuecisco.datatypes.nfv.data.Kpi

metric_condcisco.datatypes.nfv.data.Kpi

metric_typecisco.datatypes.nfv.data.Kpi

metric_occurrences_truecisco.datatypes.nfv.data.Kpi

metric_occurrences_falsecisco.datatypes.nfv.data.Kpi

See theNETCONFAPI
Guide

See theNETCONFAPI
Guide

typecisco.datatypes.nfv.metric.Collector

nicidcisco.datatypes.nfv.metric.Collector

poll_frequencycisco.datatypes.nfv.metric.Collector

polling_unitcisco.datatypes.nfv.metric.Collector

continuous_alarmcisco.datatypes.nfv.metric.Collector

property_listcisco.datatypes.nfv.metric.Collector

AnyUnique user-defined
name

Rule labelcisco.datatypes.nfv.data.Admin_rules

This value must match
a Kpi event_name

event_namecisco.datatypes.nfv.data.Admin_rules

actioncisco.datatypes.nfv.data.Admin_rules

property_listcisco.datatypes.nfv.data.Admin_rules

The following extract is from the ETSI properties file, which allows the subscription to an extension notification
type:
For notificationType "InfrastructureOperationOccurrenceNotification"
subscription.notifications.infra.filter.operationTypes=MONITORING_MIGRATION
subscription.notifications.infra.filter.operationStates=COMPLETED,FAILED_TEMP,FAILED,ROLLED_BACK
subscription.notifications.infra.callbackUri=http://<nfvoHost>:<nfvoPort>/monitoring/migration/notification
Full URL where the notification will be sent
subscription.notifications.infra.authentication.authType=BASIC # or OAUTH2_CLIENT_CREDENTIALS

Basic Auth credentials (based on authType)
subscription.notifications.infra.authentication.paramsBasic.userName=nfvo
subscription.notifications.infra.authentication.paramsBasic.password=mypw

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
49

Monitoring Virtual Network Functions
Monitoring Virtual Network Functions Using ETSI API

Alternatively, OAUTH 2.0 credentials (based on authType)
#subscription.notifications.infra.authentication.paramsOauth2ClientCredentials.clientId=
#subscription.notifications.infra.authentication.paramsOauth2ClientCredentials.clientPassword=
#subscription.notifications.infra.authentication.paramsOauth2ClientCredentials.tokenEndpoint=

If the previous properties are not set, then these notifications are sent to the subscribers where all notifications
types are applicable.

Note

For more information on KPIs and Rules, see the Cisco Elastic Services Controller User Guide.

VM Monitoring Operations
You can set and unset monitoring of VMs using RESTful interface.

The operation is defaults to asynchronous, you must set sync.supported=true to use this functionaity in a
synchronous way.

A payload is required to monitor VMs:

Method type
POST

VNFM Endpoint

Example for SOL003:
{apiRoot}/or_vnfm/vnflcm/v2/ext/vnf_instances/{vnfInstanceId}/monitoring/operations

Example for SOL002:
{apiRoot}/ve_vnfm/vnflcm/v2/ext/vnf_instances/{vnfInstanceId}/monitoring/operations

To start and stop monitoring operation on a specified VM, set the vnfcInstanceIds

with payload:
{

"vnfcInstanceIds": ["vnfcInstanceId1","vnfcInstanceId2",...,"vnfcInstaceIdN"], ##
optional

"operation": "ENABLE_MONITOR", ##
mandatory ENABLE_MONITOR, DISABLE_MONITOR, REBOOT

"additionalParams": [] ##
optional - for future use :-)
}

To start and stop monitoring operation on the entire VNF, do not set the vnfcInstanceIds.

Youmust mention enable_monitoring to set VMmonitoring, and disable_monitoring to unset VMmonitoring
in the operation field.

When a user reboots the VM from the ESC ETSI interface, the monitoring is automatically enabled.Note

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
50

Monitoring Virtual Network Functions
VM Monitoring Operations

Notification for VM Monitoring Status
ETSI NFV MANO provides status notifications for VMMonitoring. You can enable, disable, and reboot the
VMs on a particular VNF or on a particular VM of a VNF using payload.

ETSINFVMANO sends the following [notifications-per-operation]when setting, unsetting, or rebooting
the VMs:
[notifications-per-operation]

VM_MONITOR_SET notification when enabling a monitor
VM_MONITOR_UNSET notification when disabling a monitor
VM_REBOOTED notification when rebooting

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
51

Monitoring Virtual Network Functions
Notification for VM Monitoring Status

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
52

Monitoring Virtual Network Functions
Notification for VM Monitoring Status

C H A P T E R 7
Monitoring VNFs Using D-MONA

• Onboarding D-MONA, on page 53
• Deploying D-MONA, on page 53
• Configuring D-MONA, on page 56
• Using D-MONA for a Deployed VNF, on page 56
• Specifying D-MONA Monitoring Agent through ETSI ESC Interface, on page 56
• Monitoring Using D-MONA, on page 58
• Resetting the Monitoring Rules for D-MONA, on page 58

Onboarding D-MONA
Cisco Elastic Services Controller supports Distributed Monitoring and Actions (D-MONA) for effective
monitoring of the VNFs. D-MONA is a standalone monitoring application. For more information, see
Monitoring VNFs Using D-MONA in the Cisco Elastic Services Controller User Guide.

To onboard D-MONA, you must fulfill the prerequisites and prepare the deployment data model:

Prerequisites

• Ensure connectivity between ESC and D-MONA.

• Ensure connectivity between D-MONA and the deployed VNFs.

Monitoring of D-MONA by another D-MONA is not supported.Note

For information on deploying D-MONA, see Deploying D-MONA, on page 53.

Deploying D-MONA
From ESC 5.3 or later, 1:1 mapping is not required. It supports explicit D-MONA deployment.

• In this scenarios, multiple D-MONA Instances can be deployed.

• VNFs can be deployed under, or migrated to specified monitoring agent.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
53

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html

For more information on deploying the VNFs with explicit D-MONAmapping, see the Deploying VNFs with
Explicit D-MONA Mapping chapter in the Cisco Elastic Services Controller User Guide.

For using D-MONA in your infrastructure, you must:

1. Deploy the D-MONA with the monitoring infrastructure.

2. Deploy the VNFs using the D-MONA for monitoring.

After deployment, D-MONA is monitored by the local MONA running on the ESC VM.

The following example shows the D-MONA VNFD:

tosca_definitions_version: tosca_simple_yaml_1_3
description: D-MONA VNFD (SOL001 v0.10.0)

imports:
- cisco_nfv_sol001_types.yaml
- etsi_nfv_sol001_vnfd_0_10_0_types.yaml

metadata:
template_name: D-MONA
template_author: Cisco Systems
template_version: '1.0'

dsl_definitions:
descriptor_id: &descriptor_id f5b37b47-d9bd-4605-afb0-30c0d659a3c2
provider: &provider cisco
product_name: &product_name D-MONA
software_version: &software_version '1.0'
descriptor_version: &descriptor_version '1.0'
flavour_id: &flavour_id default
flavour_description: &flavour_description 'Default VNF Deployment Flavour'
vnfm: &vnfm '9:Cisco Elastic Services Controller:v04.04.01'

For information on deploying VNFs using D-MONA, see Using D-MONA for a Deployed VNF, on page 56.

Table 7: Input Parameters for D-MONA Deployment

DescriptionParameter

The name of ESC imageSW_IMAGE_NAME

The HTTPS certificateDMONA_CERT

The admin user passwordADMIN_PASSWORD

A flag that indicates whether basic security is enabled
or not

SECURITY_BASIC_ENABLED

A security user to communicate with ESCManagerSECURITY_USER_NAME

A security user's password used to communicate with
ESCManager

SECURITY_USER_PASSWORD

KPI data:

• property_list

• name—protocol

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
54

Monitoring VNFs Using D-MONA
Deploying D-MONA

• value—https

• name—port

• value—8443

• name—path

• value—mona/v1/health/status

• name—application_startup_timevalue—true

Config data parameters:

• user-data.txt

admin_password—value defined for ADMIN_PASSWORD in input parameter

• application—dmona.template

• monitoring.agent—true

• security_basic_enabled—value defined for SECURITY_BASIC_ENABLED in input parameter

• security_user_name—value defined for SECURITY_USER_NAME in input parameter

• security_user_password—value defined for SECURITY_USER_PASSWORD in input parameter

• monitoring.agent.vim.mapping—false

Example payload:

config_data:
'--user-data':

file: ../Files/Scripts/user-data.txt
variables:

admin_password: { get_input: ADMIN_PASSWORD }
'/opt/cisco/esc/mona/dmona.crt':

data: { get_input: DMONA_CERT }
'/opt/cisco/esc/mona/config/application-dmona.properties':

file: ../Files/Scripts/application-dmona.template
variables:

monitoring.agent: true
security_basic_enabled: { get_input: SECURITY_BASIC_ENABLED }
security_user_name: { get_input: SECURITY_USER_NAME }
security_user_password: { get_input: SECURITY_USER_PASSWORD }
monitoring.agent.vim.mapping: false

The following table lists the D-MONA VM flavors for large scale deployments:

Number of total
VMs Supported

Virtual Hard
Disk (GB)per VM

Virtual Memory
(GB) per VM

Virtual CPU per
VM

Number of VMsDeployment

150040841D-MONA

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
55

Monitoring VNFs Using D-MONA
Deploying D-MONA

Configuring D-MONA
While configuring D-MONA, you can view two types of runtime behavior; one from a typical ESC deployment,
and the other one with capabilities provided by D-MONA.

D-MONA Day Zero Configuration

The D-MONA runtime behavior is controlled by the day 0 configuration provided to the VM at the time of
deployment.

The following example shows D-MONA SSH access and D-MONA ESC certificate configuration:
config_data:
'--user-data':
file: file:///opt/cisco/esc/esc-config/dmona/user-data.template
variables:
This is the SHA-512 hashed password for 'C1sco@123'
vm_credentials:

6rounds=4096$6YN5.SHEdfa6v$t6tkvtIrEZv9xpFlLIKkkU2CBq6G2rtObztMqui4Y7uRUBDU62T0NIeDpMn4/TPMsbiBL8CHjdjZaj/5HlwIo/

'/opt/cisco/esc/mona/dmona.crt':
data: { get_input: DMONA_CERT }

'/opt/cisco/esc/mona/config/application-dmona.properties':
file: file:///opt/cisco/esc/esc-config/dmona/application-dmona.template

The vm_credentials passes the encrypted password to admin for SSH access to D-MONA.

For monitoring using D-MONA, see Monitoring Using D-MONA, on page 58.

Using D-MONA for a Deployed VNF
For deploying the VNFs using D-MONA for monitoring, you must have the D-MONA with the
monitoring.agent.vim.mapping day-0 variable set to false. When ESC detects D-MONA, monitoring of
the VNF is assigned to that D-MONA, otherwise the local MONA handles the monitoring.

Specifying D-MONA Monitoring Agent through ETSI ESC
Interface

Use the following to specify the monitoring agent:

1. Only specify the monitoring agent (via additionalParams), or you can have the monitoring agent under
KPI section of VNFD.

Here, the specified agent is used to populate the deployment model processed by ESC.

NFVO or EM sends the POST request.

Method Type:

POST

VNFM Endpoint:
vnflcm/v2/vnf_instances/$vnf_instance_id/instantiate

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
56

Monitoring VNFs Using D-MONA
Configuring D-MONA

Example:
InstantiateVnfRequest with only the monitoring agent specified (additionalParams)

###########################
Instantiate VNF Request
###########################

#POST https://localhost:8251/vnflcm/v2/vnf_instances/$vnf_instance_id/instantiate
{

"flavorId": "default",
"instantiationLevelId": "default",
"vimConnectionInfo": {

"default_openstack_vim": {
"accessInfo": {

"password": "VIM-password",
"project": "Project_001",
"projectDomain": "default",
"region": "regionOne",
"userDomain": "VIM-user-uuid",
"username": "VIM-user"

},
"interfaceInfo": {
"endpoint": "http://openstack_vim:5000/v3/auth"

},
"vimId": "VIM-001",
"vimType": "OPENSTACK_V3"

}
},
"extVirtualLinks": [

{
"id": "Network0",
"extCps": [

{
"cpConfig": {
"cp1": {

"cpProtocolData": [
{

"ipOverEthernet": {
"ipAddresses": [

{
"subnetId":

"654c5793-c74b-4e78-8bd5-2162ec3f9f3e",
"type": "IPV4"

}
]

},
"layerProtocol": "IP_OVER_ETHERNET"

}
]

}
],
"cpdId": "VDU_1:port_1"

}
],
"resourceId": "3ecaeb96-f2f5-4eed-b51f-8a69e80748f3",
"resourceProviderId": "3ecaeb96-f2f5-4eed-b51f-8a69e80748f3",
"vimConnectionId": "string"

}
],
"additionalParams": {

"CF1_SLOT_CARD_NUMBER": "1",
"CF2_SLOT_CARD_NUMBER": "2",
"CF_CARD_TYPE_NUM": "0x40010100",

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
57

Monitoring VNFs Using D-MONA
Specifying D-MONA Monitoring Agent through ETSI ESC Interface

"CF_DOMAIN_NAME": "cisco.com",
"CF_NAME_SERVER": "171.70.168.183",
"CF_STAROS_CONFIG_URL": "../Files/Scripts/control-function/staros_config.txt",
"CF_STAROS_PARAM_URL": "../Files/Scripts/control-function/staros_param_cf.cfg",

"CF_VIP_ADDR": "172.77.11.6",
"CHASSIS_KEY": "164c03a0-eebb-44a8-87fa-20c791c0aa6d",
"SF1_SLOT_CARD_NUMBER": "3",
"SF2_SLOT_CARD_NUMBER": "4",
"SF_CARD_TYPE_NUM": "0x42030100",
"SF_STAROS_PARAM_URL": "../Files/Scripts/session-function/staros_param_sf.cfg",

"VIM_NETWORK_DI_INTERNAL1": "etsi-vpc-di-internal1",
"VIM_NETWORK_DI_INTERNAL2": "etsi-vpc-di-internal2",
"VIM_NETWORK_MANAGEMENT": "DualStack-KPI-M-Test-Net",
"VIM_NETWORK_ORCHESTRATION": "esc-net",
"VIM_NETWORK_SERVICE1": "etsi-vpc-service1",
"VIM_NETWORK_SERVICE2": "etsi-vpc-service2",
"VNFM_PROXY_ADDRS": "172.77.12.106,172.77.12.104,172.77.12.105",
"VNFM_MONITORING_AGENT": "dmonaName://dm1-agent"

}
}

The single agent specified in the API request is mapped to the variable wherever it is used in the VNFD
and is converted to the appropriate data model.

Monitoring Using D-MONA
Tomonitor the VNFs using D-MONA, you must deploy the ETSI VNFDD-MONA and then deploy the ETSI
VNFD monitored by D-MONA.

The D-MONA parameters are defined within the VNFD, or provided as additionalparams in the instantiate
D-MONA VNF payload.

An ETSI compliant VNFD is used for the deployment of D-MONA.

The input parameters, KPI data, and config paramters are required for instantiation of D-MONA deployment.

The input parameters are either defined within the VNFD or provided as additionalParams section of instantiate
D-MONA VNF payload.
"VNFM_MONITORING_AGENT": "dmonaName://<dmona_instance__name>"

Resetting the Monitoring Rules for D-MONA
ESC can now detect rebooting of the D-MONA application by monitoring the startup time.

The local MONA monitors D-MONA by performing a HTTP(S) call to the D-MONA health API and keeps
track of the last known startup time of the polled D-MONA process. Upon successful request (status code =
200), local MONA compares the last known startup time with the returned startup time from the polled
application.

To enable the startup time check, you must set application_startup_time to true in KPI section of VNFD
yaml.

However, if the application_startup_time is not present or set to false, then DMONA reboot check is
disabled. You must set this property for D-MONA reboot.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
58

Monitoring VNFs Using D-MONA
Monitoring Using D-MONA

The application startup time is not backward compatible. It is available from ESC release 5.3 onwards.Note

Following is a sample KPI section of D-MONA VNFD:
VM_ALIVE-1:

event_name: 'VM_ALIVE'
metric_value: 1
metric_cond: 'GT'
metric_type: 'UINT32'
metric_occurrences_true: 1
metric_occurrences_false: 30
metric_collector:
type: 'HTTPGET'
nicid: 0
address_id: 0
poll_frequency: 3
polling_unit: 'seconds'
continuous_alarm: false
property_list:
- name: protocol
value: https

- name: port
value: 8443

- name: path
value: mona/v1/health/status

- name: application_startup_time # Set to true to enable start time
check

value: true

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
59

Monitoring VNFs Using D-MONA
Resetting the Monitoring Rules for D-MONA

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
60

Monitoring VNFs Using D-MONA
Resetting the Monitoring Rules for D-MONA

C H A P T E R 8
Migrating the Monitoring Agent

• Migrating the Monitoring Agent, on page 61
• Executing the Monitoring Migration API, on page 62
• VNF Notifications During Migration, on page 63
• Error Scenarios, on page 64

Migrating the Monitoring Agent
Each ESC instance has an agent to monitor it to enable ESC to control recovery and scaling operations.
Following are the various scenarios that need migration of the monitoring agent:

1. Migrating from local to distributed

For example:

When introducing a new D-MONA into a data center.

2. Migrating from distributed to local

For example:

When performing a software upgrade.

3. Migrating from distributed to distributed

For example:

When performing load balancing.

4. Migrating many instances in quick succession from distributed to distributed

For example:

Disaster recovery

This section covers API that will enable migrating the monitoring agent without impacting the primary function
of the VNF instance and also minimizing the impact on virtualisation (recovery/scaling).

The following three steps are performed by this API to process the monitoring update:

• Disable monitoring

• Service model update

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
61

• Re-enable monitoring

Executing the Monitoring Migration API
Method Type:

GET

VNFM Endpoint:
{http_scheme}://{api_root}/vnflcm/v2/ext/vnf_instances/{vnfInstanceId}/monitoring/migrate

HTTP Request Header:
Content-Type: application/json

Following are the examples for JSON payload:

Sample VnfMonitoring payload for migrating monitoring to a D-MONA instance (dmona1):
{
"monitoring_agent": "dmona://dmona1",
"key": "MONITORING_AGENT"

}

Sample for VnfMonitoring payload migrating monitoring to local MONA
{
"monitoringAgent": "dmonaName://local_mona",
"key": "MONITORING_AGENT"

}

A new string value is introduced to represent the central MONA component within ESC. It is used for the
migration to local MONA by the previous API.

Note

The following are the supported attribute names and data types for the migration request:

Table 8:

DescriptionData TypeAttribute Name

Deployment identifier of the
monitoring agent. In the event the
agent is local to ESC, the string
must be set to
dmonaName://local_mona.

Identifiermonitoring_agent

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
62

Migrating the Monitoring Agent
Executing the Monitoring Migration API

DescriptionData TypeAttribute Name

This is the key in which the value
for the monitoring agent should be
stored. It must match the key used
to identify the monitoring agent in
the initial deployment. However, if
the VNFD contained no agent
definition then the key will
reference a new KeyValue pair
against which the agent reference
should be stored, else update the
existing value.

If the key supplied
does not match the
initial Key used to
specify a monitoring
agent, a new key will
be created to store the
new value against the
VnfInstance. If the
deployment is
terminated and then
re-instantiated
without a new value
for the monitoring
agent, then the old
value is used, which
may not be the
required outcome.

Note

IdentifierInVnfdkey

VNF Notifications During Migration
Once a request received for migration, ESC sends notifications for LCM operations for a particular VNF.

Following is the example for Starting Notification:

{
"vnfInstanceId": "fd0bcc11-3f22-4c91-b363-1def72619db8",
"timeStamp": "2020-07-23T08:38:47.876Z",
"isAutomaticInvocation": false,
"notificationType": "InfrastructureOperationOccurrenceNotification",
"operationState": "STARTING",
"notificationStatus": "START",
"vnfLcmOpOccId": "143cfc34-cc14-414d-9374-d70d01ae7b5a",
"_links": {

"vnfInstance": {
"href":

"https://172.16.235.30:8251/vnflcm/v2/vnf_instances/fd0bcc11-3f22-4c91-b363-1def72619db8"
},
"vnfLcmOpOcc": {

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
63

Migrating the Monitoring Agent
VNF Notifications During Migration

"href":
"https://172.16.235.30:8251/vnflcm/v2/vnf_lcm_op_occs/143cfc34-cc14-414d-9374-d70d01ae7b5a"

},
"subscription": {

"href":
"https://172.16.235.30:8251/vnflcm/v2/subscriptions/e54d546a-6753-4f35-86fa-6ef8ac07a9de"

}
},
"subscriptionId": "e54d546a-6753-4f35-86fa-6ef8ac07a9de",
"operation": "MONITORING_MIGRATION",
"id": "6b737d3f-a485-46d9-9276-6802eb48decd"

}

If required, you can subscribe for other notifications.

The migration API is an extension for the existing subscription endpoint, VNFM-preferred for all other LCM
operations .

Note

For more information on the Subscription, see the Subscribing to Notifications section in the Alarms and
Notifications for ETSI LCM Operations chapter.

Error Scenarios
ETSI invokes the following error handling procedures for all its ETSI VNF lifecycle management (LCM)
operations:

For more information on the VNF Lifecycle Management Error Handling Procedures, see Error Handling
Procedures chapter.

A new property, monitorMigration.terminalStateOnError, is added to the ETSI service to determine what
happens in the event of an error when ESC is performing the migration.

ETSI-VNFM Behaviour

Resulting LcmOpOcc state

with *
1

Resulting
LcmOpOcc state

ETSI-VNFM
Behaviour

ESC BehaviourError /
Interrupt

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
64

Migrating the Monitoring Agent
Error Scenarios

ETSI-VNFM Behaviour

• Move operation to
FAILED

• Send notification with
problem details
containing error
message from ESC.

Resulting LcmOpOcc state

FAILED

FAILED_TEMP• Move
operation
to
FAILED_TEMP

• Send
notification
with
problem
details
containing
error
message
from ESC
Manager.

• Send validation
error

• Rejects service
update request

Validation
Failure

ETSI-VNFM Behaviour

• Move operation to
FAILED

• Send notification with
problem details
containing error
message from ESC
Manager.

Resulting LcmOpOcc state

FAILED

FAILED_TEMP• Move
operation
to
FAILED_TEMP

• Send
notification
with
problem
details
containing
error
message
from ESC
Manager.

• ESCManager will
reject service
update for
monitoring
migration if any of
the VM is in
VM_MONITOR_UNSET_STATE.

Monitoring
already unset

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
65

Migrating the Monitoring Agent
Error Scenarios

ETSI-VNFM Behaviour

• Move operation to
COMPLETED

• Send notification

Resulting LcmOpOcc state

COMPLETED

COMPLETED• Move
operation
to
COMPLETED

• Send
notification

• Unset monitor fails
silently.

• Deleting rule from
existingmonitoring
agent failed.

• Update
deployment.

• Sends service
update success
notification.

• Set monitor on the
new monitoring
agent.

• Send
VM_SET_MONITOR_STATUS
and
SVC_SET_MONITOR_STATUS
notifications.

Unset monitor
fails

ETSI-VNFM Behaviour

• Send notification with
problem details
containing error
message from ESC
Manager.

• Start rollback process
(ROLLING_BACK)

Resulting LcmOpOcc state

ROLLING_BACK→
ROLLED_BACK

FAILED_TEMP• Move
operation
to
FAILED_TEMP

• Send
notificationwith
problem
details
containing
error
message
from ESC
Manager.

• Unset monitor on
existingmonitoring
agent.

• Deployment update
failed.

• Send service
update failure
notification.

• Set monitor on the
existing/previous
monitoring agent
based on if the
deployment was
actually updated.

• Send
VM_SET_MONITOR_STATUS
notification.

• Send
SVC_SET_MONITOR_STATUS
notification.

Service
Update fails

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
66

Migrating the Monitoring Agent
Error Scenarios

• Send notification with
problem details
containing error
message from ESC
Manager.

• Start rollback process
(ROLLING_BACK)

Resulting LcmOpOcc state

ROLLING_BACK→
ROLLED_BACK

FAILED_TEMP• Move
operation
to
FAILED_TEMP

• Send
notificationwith
problem
details
containing
error
message
from ESC
Manager.

• Unset monitor
from existing
monitoring agent.

• Update
deployment.

• Send service
update success
notification.

• Set monitor failed
- Adding rule to
new monitoring
agent failed.

• Send
VM_SET_MONITOR_STATUS
notification with
failure state.

• Skips set monitor
for other VMswith
same monitoring
agent.

• Send
SVC_SET_MONITOR_STATUS
notification with
partial
failure/failure
notification.

Set monitor
fails

N/AN/AN/A• ETSI should not
rollback on unset
monitor failure.

Unset monitor
fails (rollback)

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
67

Migrating the Monitoring Agent
Error Scenarios

ETSI-VNFM Behaviour

• Move operation to
FAILED_TEMP

• Send notification with
problem details
containing error
message from ESC
Manager.

Resulting LcmOpOcc state

FAILED_TEMP

FAILED_TEMP• Move
operation
to
FAILED_TEMP

• Send
notificationwith
problem
details
containing
error
message
from ESC
Manager.

• If the deployment
config was updated
with the new
monitoring agent
during the service
update failure, then
a service update
rollback will
restore the previous
monitoring agent
and a set monitor is
attempted on the
previous
monitoring agent.

• If the deployment
config was not
updated due to
service update
failure, then a
service update
rollback will not be
accepted by
ESCManager
(service update will
not be accepted
unless there is
something to be
updated).

Service
Update fails
(rollback)

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
68

Migrating the Monitoring Agent
Error Scenarios

• Move operation to
ROLLED_BACK

• Send notification

Note:

Rollback only checks for the
service update notification
not the service level set
monitor notification.

Resulting LcmOpOcc state

ROLLED_BACK

ROLLED_BACK• Move
operation
to
ROLLED_BACK

• Send
notification

Note:

Rollback only
checks for the
service update
notification not
the service
level set
monitor
notification.

• Unset monitor on
new monitoring
agent (because
deployment config
was already
updated
successfully).

• Update deployment
with the previous
monitoring agent.

• Send service
update success.

• Set monitor on the
previous
monitoring agent.

• Send
VM_SET_MONITOR_STATUS
notification with
success/failure
state.

• Send
SVC_SET_MONITOR_STATUS
notification with
success/failure/partial-failure
state.

Set monitor
fails (rollback)

N/AN/AN/ASince the request to ESC
Core is atomic, cancel
cannot be serviced.

Cancel
operation
(during unset)

N/AN/AN/ASince the request to ESC
Core is atomic, cancel
cannot be serviced.

Cancel
operation
(during
service
update)

N/AN/AN/ASince the request to ESC
Core is atomic, cancel
cannot be serviced.

Cancel
operation
(during set)

1 monitorMigration.terminalStateOnErrorOutcome flag true

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
69

Migrating the Monitoring Agent
Error Scenarios

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
70

Migrating the Monitoring Agent
Error Scenarios

C H A P T E R 9
Healing Virtual Network Functions

• Healing Virtual Network Functions Using ETSI API, on page 71
• Recovering VM During Healing, on page 75
• Updating an Existing Deployment During Healing, on page 75

Healing Virtual Network Functions Using ETSI API
As part of life cycle management, ESC heals the VNFs when there is a failure. The recovery policy specified
during deployment controls the recovery. ESC supports recovery using the policy-driven framework, for more
information, see Configuring a Recovery Policy Using the Policy-driven Framework in the Cisco Elastic
Services Controller User Guide.

The healing parameters define the behavior that is monitored to trigger a notification to heal a VNF. These
parameters are configured in the KPI section of each compute node in the VNFD with rules. The rules define
the action as a result of these KPI conditions to heal a VNF.

The ETSI VNFM configures monitoring using the following two sections:

• kpi_data—defines the type of monitoring, events, polling interval, and other parameters

• admin_rules—defines the actions when the KPI monitoring events are triggered

Example:

vdu1:
type: cisco.nodes.nfv.Vdu.Compute
properties:
name: Example VDU1
description: Example VDU
...
configurable_properties:
additional_vnfc_configurable_properties:
vim_flavor: { get_input: VIM_FLAVOR }
bootup_time: { get_input: BOOTUP_TIME }
vm_name_override: { get_input: VDU1_VM_NAME}
recovery_action: REBOOT_THEN_REDEPLOY
recovery_wait_time: 1
kpi_data:
VM_ALIVE-1:
event_name: 'VM_ALIVE'
metric_value: 1
metric_cond: 'GT'

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
71

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html

metric_type: 'UINT32'
metric_occurrences_true: 1
metric_occurrences_false: 30
metric_collector:
type: 'ICMPPing'
nicid: 1
address_id: 0
poll_frequency: 10
polling_unit: 'seconds'
continuous_alarm: false

admin_rules:
VM_ALIVE:
event_name: 'VM_ALIVE'
action:
- 'ALWAYS log'
- 'FALSE recover autohealing'
- 'TRUE esc_vm_alive_notification'

The previous example shows the default KPI and rule to support the service alive notification required to
complete the deployment in ESC. For more information on KPI, rules, and the underlying data model that is
exposed in the VNFD, see KPIs, Rules and, Metrics in the Cisco Elastic Services Controller User Guide.

The recovery of the VNF is to request action against the affected VNFCs determined by the recovery policy
defined during the initial deployment or in the recovery request.

There are four types of actions for recovery. When an event denoting that an instance requires attention is
received, a timer expires, or a manual recovery request is received. The healing workflow by default uses the
recovery policy configured at either the VNF-level or at the VNFC-level within the VNFD. The supported
policies are:

• REBOOT_THEN_REDEPLOY—first attempt to reboot the affected VNFCs; if this fails, then it attempts
to redeploy the affected VNFCs (on the same host)

• REBOOT_ONLY—only attempt to reboot the VM

• RESET_THEN_REBOOT—reset the state of the VM (Openstack only) and then attempt to reboot the
VM

• REDEPLOY_ONLY—only attempt to redeploy the VM

If the recovery policy is configured at a VNF-level, the policy applies to each constituent VNFC. If it is
specified at VNFC-level, then that policy prevails. The monitoring agent monitors each VNFC and when a
recovery situation arises, the message is converted to an alarm and sent to any subscribed consumers (e.g. an
NFVO or Element Manager).

The HealVnfRequest contains a cause parameter that triggers different behaviors within the VNFM while
processing the recovery request. If the cause is one of the values supported by the VNFM (and listed in the
VNFD for the deployment as a supported cause) then certain additionalParams keys are activated to support
the desired recovery action, as mentioned in the following table. If the NFVO supports the cause, the grant
receives the additionalParams and allows the inputs to be modified before executing the recovery request.

If the cause is not one of the overriding causes supported by ESC, then it is assumed that the value provided
is simply metadata and ignored; the VNFM would then use the recovery policy configured at the time of
deployment. If the cause is supported by ESC, but not listed in the VNFD, then the request is rejected.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
72

Healing Virtual Network Functions
Healing Virtual Network Functions Using ETSI API

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html

Table 9: HealVnfRequest causes

Recovery behavioradditionalParams keysCause

The recovery attempts to reboot the
entire VNF unless vnfcInstanceId
is populated with a list of valid
identifiers for VNFC instance(s)
which constrains the recovery to
those VNFCs only. For example:
{
...
"vnfcInstanceId": [
"resId1",
"resId2"

]
...
}

Optional:

vnfcInstanceId

APPLICATION_FAILURE

The treatment of the
vnfcInstanceId is as per
APPLICATION_FAILURE .

In addition, if there is a persistent
volume to be replaced in the same
request, the identifier for the
volume in the VNFD and the VIM
is supplied to avoid multiple
requests. However, the VNFC to
which the volume is attached must
be in the list of VNFCs to be
healed. This persistent volume
update is only applicable to
Openstack VIMs.

Any ephemeral ports and volumes
managed by VNFM that are faulty
or deleted will be recreated and
attached to ensure the recovery is
successful.

Optional:

vnfcInstanceId
resourceId
virtualStorageDescId

VIRTUALISATION_FAILURE

As per APPLICATION_FAILURE.

Any ephemeral ports and volumes
managed by VNFM that are faulty
or deleted will be recreated and
attached to ensure the recovery is
successful if the VMs are
redeployed.

Optional:

vnfcInstanceId

APPLICATION_OR_VIRTUALISATION_FAILURE

As per APPLICATION_FAILURE.Optional:

vnfcInstanceId

INVALID_VM_STATE

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
73

Healing Virtual Network Functions
Healing Virtual Network Functions Using ETSI API

Recovery behavioradditionalParams keysCause

The treatment of the
vnfcInstanceId is as per
APPLICATION_FAILURE. The
mandatory keys allow a new
persistent volume to replace the
existing volume without
redeploying the VM. Once the data
model is updated and the volume
is replaced, and the VM is rebooted.
This is only applicable to
Openstack VIMs.

Mandatory:

resourceId
virtualStorageDescId

Optional:

vnfcInstanceId

PERSISTENT_VOLUME_FAILURE

The mandatory keys allow a new
persistent (including multi-attach)
volume to replace the existing
volume without redeploying the
VM. Once the data model is
updated and the volume is replaced,
the VM is rebooted. This is only
applicable to Openstack VIMs.

Mandatory:

resourceId
virtualStorageDescId

CHANGE_PERSISTENT_VOLUME

No additionalParams keys are
activated, however the Grant from
the NFVO must include new
vimConnectionInfo to redeploy the
VNF on aVIM that is available else
the recovery request is rejected.

The old deployment
is not removed since
the VIM is assumed
to be unavailable if
this cause is used; it
needs to be manually
removed once the
VIM is reachable
again.

Note

NoneVIM_FAILURE

If autoheal is enabled on the VNF instance, then ESC automatically attempts to recover the VNF based on
the recovery policy configured on deployment. This may be configured in the VNFD or modified against the
VNF instance before instantiation.

To modify the autoheal flag (isAutohealEnabled) VNF instance resource, see Modifying Virtual Network
Functions, on page 41.

If autoheal is not enabled, only the alarm is dispatched to all the subscribers. The subscriber can initiate a
manual HealVnfRequest, as per the following examples. The parameters are optional by default but subject
to the rules in table 9 for the different causes.

Example for SOL003:

Method type:

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
74

Healing Virtual Network Functions
Healing Virtual Network Functions Using ETSI API

POST

VNFM Endpoint:

/vnf_instances/{vnfInstanceId}/heal

HTTP Request Header:

Content-Type:application/json

Request Payload (ETSI data structure: HealVnfRequest)
{
"cause":"VIRTUALISATION_FAILURE",
"additionalParams": {
"virtualStorageDescId": "cf-cdr1-vol",
"resourceId": " d8771acb-a32f-66dg-7bc2-8f4ec333ccb8"
},
"vnfcInstanceId": [b9909dde-e21e-45ec-9cc0-9e9ae413eee0"]
}

Example for SOL002:

POST /vnf_instance/{vnfInstanceId}/heal
{
"vnfcInstanceId": ["b9909dde-e21e-45ec-9cc0-9e9ae413eee0"],
"cause": "b9909dde-e21e-45ec-9cc0-9e9ae413eee0"

}

The list of vnfcInstanceIds constrains recovery to the required VNFCs. However, the absence of this list
means the request applies to the entire VNF.

The cause in the SOL002 HealVnfRequest has the same behavior as in the SOL003 API.

For information on monitoring, see Monitoring Virtual Network Functions Using ETSI API, on page 47.

Recovering VM During Healing
If the recovery action is REDEPLOY_ONLY or REBOOT_THEN_REDEPLOY and VM needs to be redeployed during
SOL002 and SOL003 heal operation, check whether the:

• ephemeral volume is missing or in error state; and recreate them.

• ephemeral neutron port is missing or in error state; and recreate them.

SOL002 heal is constrained to specific VNFCs, if vnfcInstanceIds are supplied in the heal payload.Note

Updating an Existing Deployment During Healing
After a deployment is created successfully, the resources within it can be updated. As part of deployment
management, you can add or remove resources, or update the configuration of the existing resources. These
updates can be carried out in a running deployment. The resources are updated as part of the recovery process.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
75

Healing Virtual Network Functions
Recovering VM During Healing

You can update an existing deployment (provisioned through the ETSI NFVMANO API) during the healing
workflow. During the Heal request, the existing image and Day-0 parameters are compared and updated to
the new ones provided as part of a subsequent Heal request.

The healing workflow allows:

• Updating the deployment model with the new image and Day-0 configuration

• Re-applying new or existing configuration data to the VNFC when healing with an upgraded image

You must redeploy the VNF after any update to the data model if the change is not carried out directly on the
VIM.

Note

After supplying new additionalParams via the HealVnfRequest, if the Grant response (from the NFVO) also
supplies a new image or new additionalParams, this would also trigger a service update.

If the NFVO determines that the deployment should be moved as part of a redeployment, then the Grant
provides a new zoneId to reflect the new placement of the resources.

The recovery action takes place after the service update is complete. In the event of a redeploy, it considers
the up-to-date deployment model to ensure that any deployed updates are not reverted.

The following example shows the details NFVO returns in the Grant to trigger a service update with new
additionalParams and/or a new vimSoftwareImageId.

Example:

{
"headers" : {
"Content-Type" : ["application/json"],
"Location" : [

"http://{nfvoApiRoot}/sol003/default/grant/v1/grants/38ba2103-dab3-450e-992b-ee85aad6c899"
],

"Content-Length" : ["22935"],
},
"body" : {
"id" : "38ba2103-dab3-450e-992b-ee85aad6c899",
"vnfInstanceId" : "6aaf527c-0093-49c3-ba2e-49fc6d8a4f71",
"vnfLcmOpOccId" : "cdc5d9b3-81a0-400b-a4d9-97d1b3e117d9",
"_links" : {
"self" : {
"href" :

"http://{nfvoApiRoot}/sol003default/grant/v1/grants/38ba2103-dab3-450e-992b-ee85aad6c899"
},
"vnfLcmOpOcc" : {
"href" :

"https://{vnfmApiRoot}/vnflcm/v2/vnf_lcm_op_occs/cdc5d9b3-81a0-400b-a4d9-97d1b3e117d9"
},
"vnfInstance" : {
"href" :

"https://{vnfmApiRoot}/vnflcm/v2/vnf_instances/6aaf527c-0093-49c3-ba2e-49fc6d8a4f71"
}

},
"vimConnections" : {
"default_openstack_vim": {
"vimType" : "OPENSTACK_V3",
"vimId" : "595b0bc2-8dad-4087-abdf-ebe3b0b14d96",
"interfaceInfo" : {

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
76

Healing Virtual Network Functions
Updating an Existing Deployment During Healing

"endpoint" : "https://{vimApiRoot}/v3"
},
"accessInfo" : {
"password" : "********",
"project" : "cisco",
"projectDomain" : "demo",
"region" : "RegionOne",
"userDomain" : "demo",
"username" : "********"

}
} },
"zones" : [{
"id" : "1773873a-ab15-4a7b-b024-bc338425ed24",
"zoneId" : "nova"

},{
"id" : "1773873a-ab15-4a7b-b024-bc555555ed55",
"zoneId" : "nova2"

}],
"addResources" : [{
"resourceDefinitionId" : "res-a6252dbf-b418-4f88-b8a9-14d8f3942938",
"vimConnectionId" : "myVimConnection",
"zoneId" : "1773873a-ab15-4a7b-b024-bc555555ed55"

}],
"vimAssets" : {
"softwareImages" : [{
"vnfdSoftwareImageId" : "s3",
"vimSoftwareImageId" : "3a609da7-e2b2-4e27-91b6-7bcabe902820",
"vimConnectionId" : "myVimConnection"

}, {
"vnfdSoftwareImageId" : "s4",
"vimSoftwareImageId" : "3a609da7-e2b2-4e27-91b6-7bcabe902820",
"vimConnectionId" : "myVimConnection"

}]
}

},
"additionalParams": [
...
/* changed additionalParams */
"CF_VIP_ADDR": "10.123.23.4",
"SF_VIP_ADDR": "10.123.24.4",
...

],
"statusCode" : "CREATED",
"statusCodeValue" : 201

}

For more information on healing, see Healing Virtual Network Functions Using ETSI API, on page 71.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
77

Healing Virtual Network Functions
Updating an Existing Deployment During Healing

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
78

Healing Virtual Network Functions
Updating an Existing Deployment During Healing

C H A P T E R 10
Scaling Virtual Network Functions

• Scaling Virtual Network Functions Using ETSI API, on page 79

Scaling Virtual Network Functions Using ETSI API
One of the main benefits of ESC is its capability to elastically scale a service. This allows a VNFC that
performs a particular role or aspect within the VNF to be able to service requests and scale out to meet high
demand or scale in when being under utilized. This aspect may span across multiple VNFCs.

The scaling requests may be manual or automatic. The different approaches to accomplishing scaling are
detailed below.

For more details on these concepts and specification, please see Annex B of ETSI GS NFV-SOL 003.

For information on Scaling VNFs using REST andNETCONFAPIs, see theCisco Elastic Services Controller
User Guide.

Scale

The Scale VNF request uses the scaleStatus, an attribute found as part of the instantiatedVnfInfo when querying
a VnfInstance resource. This attribute describes the current scale level of each aspect in the VNF, for example:

"scaleInfo": [
{
"aspectId": "webserver", "scaleLevel": "4"

},
{
"aspectId": "processing", "scaleLevel": "2"

}
]

This forms the starting point for a Scale VNF request, which allows a single aspect to be scaled horizontally
(i.e. adding or removing VNFCs) relative to the current scaleLevel for that dimension of the VNF. Any scaling
operation on an aspect will be applied to each VNFC that supports that aspect.

The current specification does not support vertical scaling (adding/removing resources to/from existing VNFC
instances) at this time.

Note

Request Payload (ETSI data structure: ScaleVNFRequest)

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
79

{
"type": "SCALE_OUT",
"aspectId": "processing",
"numberOfSteps": 1,
"additionalParams": {}

}

The above payload results in the scaleStatus example above being updated to and the addition of the number
of VNFCs for this step required to scale out to scaleLevel 3:

"scaleInfo": [
{
"aspectId": "webserver", "scaleLevel": "4"

},
{
"aspectId": "processing", "scaleLevel": "3"

}
]

To understand the scaling steps and other related policies configured to support scaling, see the VNFD Policies
for Scaling.

Scale To Level

The Scale VNF To Level request, rather than the relative scaling that Scale VNF offers, specifies the absolute
scale result desired and so some aspects may be scaled out and others scaled in. This option uses one of the
two approaches to define the scaling required:

• instantiation level

• scale level

These are mutually exclusive and allow for more than one aspect to be scaled in a single request.

Instantiation Level

An Instantiation level is a predefined size for each aspect, where each level has a scale level associated with
each aspect. There is no further granularity offered and so the entire VNF (that is, all aspects) is scaled
according to the instantiation level requested.

Example:

Request Payload (ETSI data structure: ScaleVNFToLevelRequest)

{
"instantiationLevelId": "premium"

}

See the VNFD Policies for the definition of instantiation levels.

Scale Level

The Scale Level is also a pre-defined size for each aspect where each aspect has target VNFCs, defined
step_deltas (since each scaling step may not be uniform) and a maximum scale level. The policies that define
this option allow the different targets to have different scaling outcomes.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
80

Scaling Virtual Network Functions
Scaling Virtual Network Functions Using ETSI API

The scale level does not represent the number of VMs; for example scaleLevel=0 means the initial number
of instances (initial delta) for that aspect on the target VNFC and scaleLevel=1 is the initial delta plus the first
scaling step defined for that aspect and VNFC tuple.

Note

Request Payload (ETSI data structure: ScaleVNFToLevelRequest)

{
"scaleInfo": [
{

"aspectId": "processing",
"scaleLevel": "2"

},
{

"aspectId": "webserver",
"scaleLevel": "3"

}
]

}

For information on definition of scale levels, See the VNFD Policies for Scaling.

ESC ETSI Support for Trunks and Subports

ETSI VLAN Trunk:

Introduction:

For OpenStack VIMs, starting from 5.8, ESC supports trunks and VLANs. The initial release was limited to
the ESCNetconf/APIs and trunk enabled VNFs were not scalable. The introduction of TOSCA SOL003 3.5.1
version provided new node types allowing an ETSI VNFD to define trunks and subports. With the ESC 5.9
release, the ETSI VNFM supports scalable trunks and subports.

Defining a Trunk in the VNFD:

The TOSCA type tosca.nodes.nfv.VduSubCp is available from SOL001 3.5.1. Use the VNFD version that is
SOL001 3.5.1 or higher.

Apply the ETSI Trunk Mode to CPs that is Connection Points between the VDU which is Virtualisation
Deployment Unit and VL which is the Virtual Link or network. For a given CP, setting a trunk_mode property
value as true signifies it as being the parent port for a trunk.

Example Payload:
s3_nic0:

type: tosca.nodes.nfv.VduCp
properties:
layer_protocols: [ipv4]
protocol:
- associated_layer_protocol: ipv4

trunk_mode: true # denotes the parent port
order: 0
management: false
allowed_address_pairs:
- ip_address: 192.168.0.0/18

requirements:
- virtual_binding: s3

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
81

Scaling Virtual Network Functions
Scaling Virtual Network Functions Using ETSI API

https://forge.etsi.org/rep/nfv/SOL001/-/blob/v3.5.1/etsi_nfv_sol001_vnfd_types.yaml

Setting the trunk_mode property creates a trunk. The CP is the primary port for the VDU linked by
virtual_binding. The trunk name is generated in the format "trunk-" + VDU name + "-" + index number. The
index is based on the number of CPs in trunk mode for the current VDU. Note that setting trunk_mode can
be done at instantiation time.

Defining Subports in the VNFD:

To make a trunk useful, the trunk needs to connect to other networks through subports. A subport is defined
with a node of type tosca.nodes.nfv.VduSubCp as follows:

Sample Payload:
s3_nic0_1:
type: tosca.nodes.nfv.VduSubCp
properties:
layer_protocols: [ethernet, ipv4]
segmentation_type: vlan
segmentation_id: 303
management: false

requirements:
- trunk_binding: s3_nic0
- virtual_link: a_vlan_VL

Here the segmentation type and ID are configured. The requirements properties have two links:

• trunk_binding: The node name of the CP where the primary port is defined that is trunk_mode set to true

• virtual_link: The name of the VL node to which this subport will be connected.

Example Payload for VL that is type tosca.nodes.nfv.VnfVirtualLink:
a_vlan_VL:
type: tosca.nodes.nfv.VnfVirtualLink
properties:
connectivity_type:
layer_protocols: [ethernet]

description: subport VL
vl_profile:
max_bitrate_requirements:
root: 100000

min_bitrate_requirements:
root: 0

virtual_link_protocol_data:
- associated_layer_protocol: ethernet
l2_protocol_data:
vlan_transparent: false
segmentation_id: 303

Configure the subports with the JSON payload at instantiation time together with user data that are input
variables.

Note

The following shows the traditional dep.xml produced by ETSI constructs:

<trunk>
<name>trunk-name-0</name> <!-- Derived from VDU name and index -->
<parent_nicid>0</parent_nicid> <!-- Primary port -->
<subports>

<subport>
<name>trunk-name-0-subport-0</name> <!-- Derived from trunk name and subport

index -->

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
82

Scaling Virtual Network Functions
Scaling Virtual Network Functions Using ETSI API

<network>child-net</network>
<segmentation_type>vlan</segmentation_type>
<segmentation_id>500</segmentation_id>
<binding_profile>

<property>
<name>physical_network</name>
<value>physnet_tenant1</value>

</property>
<property>

<name>trusted</name>
<value>true</value>

</property>
</binding_profile>

</subport>
</subports>

</trunk>

ETSI VNF SCALING:

Trunk and subports scale automatically depending on the policy defined in the VNFD. As ESC scales the
VNF up and down, additional trunks and subports are created or deleted as necessary. These are managed by
ESC. ESC ensures VIM resources are cleaned up during LCM operations that are modify, delete.

During scaling, ESC duplicates the trunk and port names and relies on resource IDs when updating or deleting.

For ETSI, scaling is controlled according to the scaling policies.

Note

######
VM
######

- vm_initial_delta:
type: tosca.policies.nfv.VduInitialDelta
properties:
initial_delta:
number_of_instances: 2

targets: [s3_nic0]

- vm_instantiation_levels:
type: tosca.policies.nfv.VduInstantiationLevels
properties:
levels:
default:
number_of_instances: 2

targets: [s3_nic0]

- vm_scaling_aspect_deltas:
type: tosca.policies.nfv.VduScalingAspectDeltas
properties:
aspect: default_scaling_aspect
deltas:
delta_1:
number_of_instances: 2

delta_2:
number_of_instances: 3

targets: [s3_nic0]

The following shows the traditional dep.xml produced by ETSI constructs:
<scaling>

<min_active>1</min_active>

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
83

Scaling Virtual Network Functions
Scaling Virtual Network Functions Using ETSI API

<max_active>2</max_active>
</scaling>

And the appropriate VM group blocks are created.

Scaling Behaviour within ESC:

When a VMGroup is scaled up, then the corresponding trunks and subports are created, and the deployment
detail queries through REST or Netconf APIs show the trunk and subport details.

When a VMGroup is scaled down, then the corresponding trunks and subports are deleted from the VIM, and
deployment detail queris through REST or Netconf show the new trunk and subport details.

Updating SOL001 Parser to Support The trunk_mode Property for the Connection Points

The interfaces currently configured by ESC are not trunk ports, and so they do not support the definition of
sub-ports. To use the networks more efficiently, segment the network using VLANs to connect multiple Layer
2 networks to a single pass-through interface. The following data model supports this configuration.

The following is an extract of a VNFD for a VPC-DI, with a parent port shown to be a trunk port, with 2
subports defined - one with an external VL connection that is exposed as an external connection through
substitution_mappings and the other connected to an internal VL that is both of which specify their own
segmentation Id.
s3_nic0:

type: tosca.nodes.nfv.VduCp
properties:
layer_protocols: [ipv4]
protocol:
- associated_layer_protocol: ipv4

trunk_mode: true # denotes the parent port
order: 0
management: false
allowed_address_pairs:
- ip_address: 192.168.0.0/18

requirements:
- virtual_binding: vdu_node_1

s3_nic0_1:
type: tosca.nodes.nfv.VduSubCp
properties:
layer_protocols: [ipv4]
protocol:
- associated_layer_protocol: ipv4

trunk_mode: false
segmentation_type: vlan
segmentation_id: 303
management: false

requirements:
- trunk_binding: s3_nic0
- virtual_link: a_vlan_VL

The trunk_mode is set to true, indicating that when the port is created, it is used as a trunk port and sub-ports
are configured within the trunk network.

Note

This results in the following deployment XML:
<trunks>

<trunk>
<name>trunk-vdu_node_1-0</name>

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
84

Scaling Virtual Network Functions
Scaling Virtual Network Functions Using ETSI API

<parent_nicid>0</parent_nicid>
<subports>

<subport>
<name>trunk-vdu_node_1-0-subport-0</name>
<network>a_vlan_VL</network>
<segmentation_type>vlan</segmentation_type>
<segmentation_id>303</segmentation_id>

</subport>
<subport>

<name>trunk-vdu_node_1-0-subport-1</name>
<network>a_vlan_VL</network>
<segmentation_type>vlan</segmentation_type>
<segmentation_id>304</segmentation_id>

</subport>
</subports>

</trunk>
</trunks>

VNFD Policies for Scaling
There are a number of policies that make up the overall scaling behavior of a VNF. These policies will support
the various scaling approaches described above. The first policy defines the aspects that may be scaled (or
not):

policies:
- scaling_aspects:

type: tosca.policies.nfv.ScalingAspects
properties:
aspects:
webserver:
name: 'webserver'
description: 'The webserver cluster.'
max_scale_level: 5
step_deltas:
- delta_1

processing:
name: 'processing'
description: 'An example processing function'
max_scale_level: 3
step_deltas:
- delta_1
- delta_2
- delta_1

database:
name: 'database'
description: 'A test database'
max_scale_level: 0

You can see in this example that the database aspect has a max_scale_level of 0, which denotes that it cannot
be scaled out - this does not mean 0 instances of that aspect - see the algorithm below to see why. The webserver
aspect only has a single step_delta, meaning that all scaling steps are uniform whereas the processing aspect
has different step_deltas specified for each scaling step. This is called non-uniform scaling. This is only the
declaration of the aspects of this VNF, and this is one of the policies used to perform the validation when a
scaling request is received.

Next, they must be applied to VNFCs to control their behavior:
- db_initial_delta:

type: tosca.policies.nfv.VduInitialDelta
properties:
initial_delta:

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
85

Scaling Virtual Network Functions
VNFD Policies for Scaling

number_of_instances: 1
targets: [vdu1]

- ws_initial_delta:
type: tosca.policies.nfv.VduInitialDelta
properties:
initial_delta:
number_of_instances: 1

targets: [vdu2, vdu4]

- pc_initial_delta:
type: tosca.policies.nfv.VduInitialDelta
properties:
initial_delta:
number_of_instances: 1

targets: [vdu3]

- ws_scaling_aspect_deltas:
type: tosca.policies.nfv.VduScalingAspectDeltas
properties:
aspect: webserver
deltas:
delta_1:
number_of_instances: 1

targets: [vdu2, vdu4]

- pc_scaling_aspect_deltas:
type: tosca.policies.nfv.VduScalingAspectDeltas
properties:
aspect: processing
deltas:
delta_1:
number_of_instances: 1

delta_2:
number_of_instances: 2

targets: [vdu2, vdu4]

In the examples above, the VNFCs are identified as targets; the aspects could have different behaviours on
different VNFCS, but this is not shown here. The definition of the step_deltas are also shown here which are
used in the validation and generation of scaling requests (these steps are inferred by the scale level requested).
The minimum number of instances of a VNFC is always assumed to be 0 and the maximum number is
calculated by the following algorithm:

initial_delta plus the number of instances for each step up to the max_scale_level.

These policies are considered for the scale-level based scaling. There are similar constructs used for
instantiation-level based scaling.
- instantiation_levels:

type: tosca.policies.nfv.InstantiationLevels
properties:
levels:
default:
description: 'Default instantiation level'
scale_info:
database:
scale_level: 0

webserver:
scale_level: 0

processing:
scale_level: 0

premium:
description: 'Premium instantiation level'
scale_info:

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
86

Scaling Virtual Network Functions
VNFD Policies for Scaling

database:
scale_level: 0

webserver:
scale_level: 2

processing:
scale_level: 3

default_level: default

Similar to the scaling aspects, the first part of the definition of instantiation levels is just their declaration.
Here each aspect must already be declared and then each aspect's scale_level is declared for the instantiation
level; a default instantiation level is also stipulated in the event that no other is specified.What each scale_level
means for each VNFC is further elaborated upon in the VduInstantiationLevels policies, for example:
- ws_instantiation_levels:

type: tosca.policies.nfv.VduInstantiationLevels
properties:
levels:
default:
number_of_instances: 1

targets: [vdu2, vdu4]

So these policies together state that the default instantiation level is 'default' which will result in the webserver
aspect being instantiated at scale_level 0 which is 1 VNFC instance.

Dependencies on Multiple IP Addresses
Static IP Addresses

If the VNFC has connection points configured with a static IP address, the VNFC cannot scale as there are
no further IP addresses to assign to the connection points on the newly spun up VNFC instances. Instead, you
can specify a pool of static IP addresses in the instantiate request or Grant response (in the extVirtualLinks
element) as a list:

• in fixedAddresses in a single cpProtocolData

• of individual fixedAddresses in multiple cpProtocolData

A list of ipAddresses in a single cpProtocolData assigns all the IP addresses to a single port on a single VNFC
instance.

Note

Alternatively, a contiguous range can also be supplied in an ipAddresses entry, as an addressRange. If the
specific IP addresses need not be stipulated, then a subnetId can be used, as per the example in Instantiating
Virtual Network Functions, on page 28.

The following example explains how to create a static IP pool with four IP addresses by specifying them as
a list in fixedAddresses in a single cpProtocolData:

{
…
"extVirtualLinks": [
{
"id": "extVL-dbf477ad-199a-47ff-939a-cb0101c92585",
"resourceId": "ext-net",
"extCps": [
{
"cpdId": "ecp_1_vdu_node_1",

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
87

Scaling Virtual Network Functions
Dependencies on Multiple IP Addresses

"cpConfig": {
"cp1": {
"cpProtocolData": [
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.10",
"172.16.0.11",
"172.16.0.12",
"172.16.0.13"

]
}

]
}

}
}

}
]

}
]

}
]
…

}

The same pool of IP addresses can also be created by specifying them as individual fixedAddresses in multiple
cpProtocolData:

{
…
"extVirtualLinks": [
{
"id": "extVL-dbf477ad-199a-47ff-939a-cb0101c92585",
"resourceId": "ext-net",
"extCps": [
{
"cpdId": "ecp_1_vdu_node_1",
"cpConfig": {
"cp1": {
"cpProtocolData": [
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.10"

]
}

]
}

},
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
88

Scaling Virtual Network Functions
Dependencies on Multiple IP Addresses

"172.16.0.11"
}

}
]

}
},
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.12"

]
}

]
}

},
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.13"

]
}

]
}

}
]

}
]

}
]

}
]
…

}

The same pool of IP addresses created using an addressRange:

{
…
"extVirtualLinks": [
{
"id": "extVL-dbf477ad-199a-47ff-939a-cb0101c92585",
"resourceId": "ext-net",
"extCps": [
{
"cpdId": "ecp_1_vdu_node_1",
"cpConfig": {
"cp1": {
"cpProtocolData": [
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"addressRange": {
"minAddress": "172.16.0.10",

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
89

Scaling Virtual Network Functions
Dependencies on Multiple IP Addresses

"maxAddress": "172.16.0.13"
}

}
]

}
}

]
}

}
}

]
}

]
…

}

The implementation of these IP address pools conforms to theETSI NFV MANO SOL003 specification, chapter
4.4.1.10.

Static MAC Addresses

If the VNFC has connection points configured with a static MAC address, the VNFC cannot scale as there
are no further MAC addresses to assign to the connection points on the newly spun up VNFC instances.
Instead, a pool of further static MAC addresses can be specified in the instantiate request or grant response.

Static MAC address pools can be created in the extVirtualLinks element of the instantiate request or grant
response by specifying the macAddress in multiple cpProtocolData.

The following example shows how to create a static MAC pool with four MAC addresses by specifying them
in multiple cpProtocolData:

{
…
"extVirtualLinks": [
{
"id": "extVL-dbf477ad-199a-47ff-939a-cb0101c92585",
"resourceId": "ext-net",
"extCps": [
{
"cpdId": "ecp_1_vdu_node_1",
"cpConfig": {
"cp1": {
"cpProtocolData": [
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"macAddress": "fa:16:3e:0b:10:10",
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.10"

]
}

]
}

},
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"macAddress": "fa:16:3e:0b:10:11",
"ipAddresses": [
{

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
90

Scaling Virtual Network Functions
Dependencies on Multiple IP Addresses

"type": "IPV4",
"fixedAddresses": [
"172.16.0.11"

}
}

]
}

},
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"macAddress": "fa:16:3e:0b:10:12",
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.12"

]
}

]
}

},
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"macAddress": "fa:16:3e:0b:10:13",
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.13"

]
}

]
}

}
]

}
]

}
]

}
]
…

}

Day Zero Configuration

After deploying the VNFs, day 0 variables are configured in the VNFC instance for the deployment service.
In most cases, the values for the day 0 configuration is constant. In other cases, there is a resource pool of
values supplied to the day 0 parameter to allow new values to be assigned to the new VNFC instances.

Day 0 configuration within the vendor_section of the VNFD:

vdu3:
type: cisco.nodes.nfv.Vdu.Compute
properties:
name: 'Processing1'
description: 'Processing VNFC'
vdu_profile:
min_number_of_instances: 1
max_number_of_instances: 5

vendor_section:
cisco_esc:

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
91

Scaling Virtual Network Functions
Dependencies on Multiple IP Addresses

config_data:
'/tmp/OSRESTTestETSIDay0_Inline_data.cfg':
data: |
NODE_NAME $NODE_NAME
NUM_OF_CPU $NUM_OF_CPU
MEM_SIZE $MEM_SIZE
PROXY_ADDRS $PROXY_ADDRS
SPECIAL_CHARS $SPECIAL_CHARS

variables:
NODE_NAME: vdu_node_1
NUM_OF_CPU: 1
MEM_SIZE: 1GB
PROXY_ADDRS: ["1.1.1.1", "1.1.2.1", "1.1.3.1", "1.1.4.1", "1.1.5.1",

"1.1.6.1", "1.1.7.1"]
SPECIAL_CHARS: '`~!@#$%^&*()-_=+[{]}|;:<.>/?'

In the above example the day 0 configuration is specified inline, with velocity variables defined in the target
configuration. Each of these variables are supported by a variable with one or more values. In order to support
multiple values for the $PROXY_ADDRS variable, a list of values are provided. These values are used to
populate subsequent uses of the variable on new instances of the VNFC.

For information on day 0 configuration in the deployment data model, see Day Zero Configuration in the
Cisco Elastic Services Controller User Guide.

Autoscaling of VNFs
KPIs, rules and actions defined in the VNFD determine the conditions under which scaling must be considered.
The details are provided in Monitoring Virtual Network Functions. The scaling policies are also defined in
the VNFD using several policy types that control the allowed scaling boundaries. These policy items are
described below.

After deployment, ESC configures a monitoring agent (this may be the centralised or distributed instance)
with the KPIs to monitor each VNFC. The scaling workflow begins if a KPI reaches its threshold; based on
the action defined, ESC performs scale in or scale out and generates appropriate notifications and event logs.
This is subject to some built-in functions that can be specified such as log or an onboarded script.

ESC sends appropriate notifications to the subscribed consumers. At this time, ESC interrogates the VNF
instance resource for the isAutoscaleEnabled flag (this is set initially by the value in the VNFD but can be
modified after creation). If this flag is set to true, ESC invokes the scaling workflow (instigated using a
ScaleVnfToLevelRequest to request the scaling of multiple aspects in a single request). If the isAutoscaleEnabled
is set to false, then the control is with an external system such as an NFVO or EM to trigger the desired action
using the requests described above.

While creating an auto scaling or auto healing request, any new external requests are blocked. The user is
notified of the corresponding response and problem details of the blocked request.

Note

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
92

Scaling Virtual Network Functions
Autoscaling of VNFs

C H A P T E R 11
Managing VNF Snapshot

• Managing VNF Snapshots, on page 93

Managing VNF Snapshots
A snapshot is a mechanism that allows the creation of a new image on OpenStack from a running Instance.
VNF Snapshots mainly serves two purposes:

• As a backup mechanism: Save the main disk of the instance to an image and later boot a new instance
from this image with saved data.

• As a templating mechanism: Customize a base image and save it to use as a template for new instances.

The full lifecycle of a VNF snapshot can be managed using ETSI-defined APIs.

Notes and Limitations:

Before using the ETSI APIs for VNF Snapshots, it is important to understand the following points:

• There are no changes required for the VNFDescriptor files to use VNF snapshots.Snapshot functionality
exists for VNFs deployed against an OpenStack VIM. If a snapshot is attempted for a VNF deployed on
a non-OpenStack VIM such as CVIM or VMWare, then the appropriate error message is generated.

• As per ETSI specifications, the API root is only available under the new, "v2" URL, that is
http://192.168.201.33:8250/or_vnfm/vnflcm/v2/vnf_snapshots for SOL003 APIs or
http://192.168.201.33:8250/ve_vnfm/vnflcm/v2/vnf_snapshots for SOL002 APIs.

• If a VNF uses one or more volumes that are either VNF-managed volumes or out-of-band volumes, then
a resultant snapshot of the VNF results in image and volume snapshot resources generated on OpenStack.

• Deletion of a VNF within ETSI does not trigger deletion of any previous snapshots taken of the VNF.
Therefore, delete the VNF Snapshots before deletion of the parent VNF.

API Resources for Snapshot Management:

Create, Query, Revert and Delete the VNF Snapshots using the ETSI APIs.

VNF Snapshot Creation:

The creation of a snapshot with the associated resources generated on OpenStack is a two-step process:

• Creating a snapshot resource

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
93

• Creating the snapshot given a snapshot resource ID and existing VNF Instance ID

API Execution

The following shows the operations, sample payloads, and the API responses using Linux curl as a client,
executing the APIs on the ESC VM that is a local host itself:

• Create a snapshot resource - note the returned "id" value

[admin@host]$ curl -s --user 'admin:*******' -X POST --data {} -H
'Content-Type:application/json' http://localhost:8250/or_vnfm/vnflcm/v2/vnf_snapshots |
python -m json.tool
{

"_links": {
"self": {

"href":
"http://localhost:8250/or_vnfm/vnflcm/v2/vnf_snapshots/fc7f055c-a541-4801-9295-299ce806763f"

}
},
"id": "fc7f055c-a541-4801-9295-299ce806763f"

}

• Create the snapshot given snapshot resource ID and an existing VNF Instance ID

[admin@host]$ cat create_snapshot.json
{

"vnfSnapshotInfoId": "fc7f055c-a541-4801-9295-299ce806763f"
}

[admin@host]$ curl -s --user 'admin:*******' -X POST --data @create_snapshot.json -H
'Content-Type:application/json'
http://localhost:8250/or_vnfm/vnflcm/v2/vnf_instances/c9cdf5c8-3681-4641-ba7e-df40539815b5/create_snapshot

The payload must contain the VNF Snapshot ID from the earlier operation, and the VNF Instance ID in the
URL must refer to an INSTANTIATED VNF.

Error Conditions:

• An error returns if the VNF Snapshot ID or the VNF Instance ID are invalid.

• OpenStack-specific errors return if the OpenStack is unreachable or if the resource quotas exceed.

• The ETSI services rely on all other ESC services to operate, otherwise there are connectivity-related
errors.

Notifications Generated:

There are no notifications generated when the snapshot resource is created.

When the snapshot is created on OpenStack, three notifications are generated for the three operational states
namely: STARTING, PROCESSING, and COMPLETED as shown:
{

"vnfInstanceId": "c9cdf5c8-3681-4641-ba7e-df40539815b5",
"timeStamp": "2022-07-20T15:08:43.089Z",
"isAutomaticInvocation": false,
"notificationType": "VnfLcmOperationOccurrenceNotification",
"operationState": "STARTING",
"notificationStatus": "START",
"vnfLcmOpOccId": "ecbbdc92-a38a-4aed-bc7c-acf0df1a5b92",

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
94

Managing VNF Snapshot
Managing VNF Snapshots

"_links": {
"vnfInstance": {

"href":
"https://192.168.10.50:8251/or_vnfm/vnflcm/v2/vnf_instances/c9cdf5c8-3681-4641-ba7e-df40539815b5"

},
"vnfLcmOpOcc": {

"href":
"https://192.168.10.50:8251/or_vnfm/vnflcm/v2/vnf_lcm_op_occs/ecbbdc92-a38a-4aed-bc7c-acf0df1a5b92"

},
"subscription": {

"href":
"https://192.168.10.50:8251/or_vnfm/vnflcm/v2/subscriptions/900c511f-27e7-4819-aa8d-1fae527caa85"

}
},
"subscriptionId": "900c511f-27e7-4819-aa8d-1fae527caa85",
"operation": "CREATE_SNAPSHOT",
"id": "640804b1-2564-4020-af72-16b70d6ac83d"

}

{
"vnfInstanceId": "c9cdf5c8-3681-4641-ba7e-df40539815b5",
"timeStamp": "2022-07-20T15:08:43.798Z",
"isAutomaticInvocation": false,
"notificationType": "VnfLcmOperationOccurrenceNotification",
"operationState": "PROCESSING",
"notificationStatus": "START",
"vnfLcmOpOccId": "ecbbdc92-a38a-4aed-bc7c-acf0df1a5b92",
"_links": {

"vnfInstance": {
"href":

"https://192.168.10.50:8251/or_vnfm/vnflcm/v2/vnf_instances/c9cdf5c8-3681-4641-ba7e-df40539815b5"

},
"vnfLcmOpOcc": {

"href":
"https://192.168.10.50:8251/or_vnfm/vnflcm/v2/vnf_lcm_op_occs/ecbbdc92-a38a-4aed-bc7c-acf0df1a5b92"

},
"subscription": {

"href":
"https://192.168.10.50:8251/or_vnfm/vnflcm/v2/subscriptions/900c511f-27e7-4819-aa8d-1fae527caa85"

}
},
"subscriptionId": "900c511f-27e7-4819-aa8d-1fae527caa85",
"operation": "CREATE_SNAPSHOT",
"id": "6907ac6f-41e4-4bb6-9d31-83f9e809b933"

}

{
"vnfInstanceId": "c9cdf5c8-3681-4641-ba7e-df40539815b5",
"timeStamp": "2022-07-20T15:09:02.773Z",
"isAutomaticInvocation": false,
"notificationType": "VnfLcmOperationOccurrenceNotification",
"operationState": "COMPLETED",
"notificationStatus": "RESULT",
"vnfLcmOpOccId": "ecbbdc92-a38a-4aed-bc7c-acf0df1a5b92",
"_links": {

"vnfInstance": {
"href":

"https://192.168.10.50:8251/or_vnfm/vnflcm/v2/vnf_instances/c9cdf5c8-3681-4641-ba7e-df40539815b5"

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
95

Managing VNF Snapshot
Managing VNF Snapshots

},
"vnfLcmOpOcc": {

"href":
"https://192.168.10.50:8251/or_vnfm/vnflcm/v2/vnf_lcm_op_occs/ecbbdc92-a38a-4aed-bc7c-acf0df1a5b92"

},
"subscription": {

"href":
"https://192.168.10.50:8251/or_vnfm/vnflcm/v2/subscriptions/900c511f-27e7-4819-aa8d-1fae527caa85"

}
},
"subscriptionId": "900c511f-27e7-4819-aa8d-1fae527caa85",
"operation": "CREATE_SNAPSHOT",
"id": "de25c769-4264-4fa3-a61f-2aae960c6b60"

}

OpenStack Resources Generated:

Upon successful completion of the operation and receiving the final notification, the following resources are
created in OpenStack:

IMAGE

Create an image for every VMwithin the VNF. For example, if the VNF contains two VDUs, then two images
are created in OpenStack.

The images have the name of the auto-generated VNFC Snapshot, a UUID-type value. For example
[admin@host]$ openstack image list
+--------------------------------------+---+--------+
| ID | Name
| Status |
+--------------------------------------+---+--------+
| 92e144ae-24fc-49a5-8622-bb224f1e55cd | eac61a66-51d2-47dd-b8f4-289f38203eff
| active |

Note: Find both the image ID and its UUID-like name in the VNF Snapshot query output, explained in the
“Query VNF Snapshot” section

Note

VOLUME SNAPSHOT:

Create a volume snapshot for every volume within the VNF. For example, if the VNF contains two VDUs
within two volumes each, then four volume snapshots are created in OpenStack.

The volume snapshots have the name of the auto-generated VNFC Snapshot which is a UUID type value
prepended by “snapshot for “. For example:
[admin@host]$ openstack volume snapshot list
+--------------------------------------+---+-------------+-----------+------+
| ID | Name
| Description | Status | Size |
+--------------------------------------+---+-------------+-----------+------+
| 503c348d-94f1-4351-85ec-686b4a21589c | snapshot for eac61a66-51d2-47dd-b8f4-289f38203eff
| None | available | 1 |

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
96

Managing VNF Snapshot
Managing VNF Snapshots

Find both the volume snapshot ID and the UUID portion of its name in the VNF Snapshot query output,
explained in the “Query VNF Snapshot” section

Note

Query VNF Snapshot:

Use these two main queries to return ETSI VNF Snapshot information:

• Query all VNF Snapshots

• Query a specific VNF Snapshot

API Execution

The following shows both these operations and the API responses, using Linux curl as a client, executing the
APIs on the ESC VM that is, the localhost itself:

• Query all VNF Snapshots - an array is returned

[admin@host]$ curl -s --user 'admin*******' -X GET -H 'Content-Type:application/json'
http://localhost:8250/or_vnfm/vnflcm/v2/vnf_snapshots | python -m json.tool
[

{
"_links": {

"self": {
"href":

"http://localhost:8250/or_vnfm/vnflcm/v2/vnf_snapshots/fc7f055c-a541-4801-9295-299ce806763f"

},
"takenFrom": {

"href":
"http://localhost:8250/or_vnfm/vnflcm/v2/vnf_instances/c9cdf5c8-3681-4641-ba7e-df40539815b5"

}
},
"id": "fc7f055c-a541-4801-9295-299ce806763f",
"vnfSnapshot": {

"creationFinishedAt": "2022-07-20T15:09:02.588Z",
"creationStartedAt": "2022-07-20T15:08:43.966Z",
"id": "0e61b4f8-b347-4d48-80e1-b7a1d28196ef",
"vnfInstanceId": "c9cdf5c8-3681-4641-ba7e-df40539815b5",
"vnfdId": "9fb7e4ee-2db1-4aef-bc62-98a2d35d1fa0"

}
}

]

• Query a specific VNF Snapshot - a single snapshot is returned

[admin@host]$ curl -s --user 'admin:cisco123' -X GET -H 'Content-Type:application/json'
http://localhost:8250/or_vnfm/vnflcm/v2/vnf_snapshots/fc7f055c-a541-4801-9295-299ce806763f
| python -m json.tool
{

"_links": {
"self": {

"href":
"http://localhost:8250/or_vnfm/vnflcm/v2/vnf_snapshots/fc7f055c-a541-4801-9295-299ce806763f"

},
"takenFrom": {

"href":

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
97

Managing VNF Snapshot
Managing VNF Snapshots

"http://localhost:8250/or_vnfm/vnflcm/v2/vnf_instances/c9cdf5c8-3681-4641-ba7e-df40539815b5"

}
},
"id": "fc7f055c-a541-4801-9295-299ce806763f", <!-- THE VNF SNAPSHOT ID -->
"vnfSnapshot": {

"creationFinishedAt": "2022-07-20T15:09:02.588Z",
"creationStartedAt": "2022-07-20T15:08:43.966Z",
"id": "0e61b4f8-b347-4d48-80e1-b7a1d28196ef",
"vnfInstance": {

"id": "c9cdf5c8-3681-4641-ba7e-df40539815b5",
"instantiatedVnfInfo": {

<!-- Data deleted as identical to the output from a VNF Instance query -->

},
"vnfInstanceId": "c9cdf5c8-3681-4641-ba7e-df40539815b5", <!-- THE VNF INSTANCE ID

-->
"vnfcSnapshots": [

{
"computeSnapshotResource": {

"resourceId": "92e144ae-24fc-49a5-8622-bb224f1e55cd" <!-- THE IMAGE
ID -->

},
"creationFinishedAt": "2022-07-20T15:09:02.588Z",
"creationStartedAt": "2022-07-20T15:08:43.966Z",
"id": "eac61a66-51d2-47dd-b8f4-289f38203eff", <!-- THE IMAGE NAME AND

VOLUME SNAPSHOT NAME -->
"storageSnapshotResources": [

{
"storageResourceId": "res-cfd9a704-0cae-43e2-9880-0b1ba41f2615",
"storageSnapshotResource": {

"resourceId": "503c348d-94f1-4351-85ec-686b4a21589c" <!-- THE
VOLUME SNAPSHOT ID -->

}
}

],
"vnfcInstanceId": "res-9f5401e3-0129-4657-8ef7-18da424fd369", <!-- NEEDED

IF USING THE SOL002 API -->
"vnfcResourceInfoId": "res-9f5401e3-0129-4657-8ef7-18da424fd369"

},
],
"vnfdId": "9fb7e4ee-2db1-4aef-bc62-98a2d35d1fa0"

}
}

Reverting to VNF Snapshot using SOL002 or SOL003 APIs:

Users can perform a revert to VNF snapshot lifecycle management operation to return to a previous version
of the VNF.

API Execution:

The following shows a sample payload to revert to VNF snapshot:

• Revert to VNF snapshot giving snapshot resource id and the VNF Instance ID

[admin@host]$ cat revert_snapshot.json
{

"vnfSnapshotInfoId": "fc7f055c-a541-4801-9295-299ce806763f"
}

[admin@host]$ curl -s --user 'admin:*******' -X POST --data @revert_snapshot.json -H

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
98

Managing VNF Snapshot
Managing VNF Snapshots

'Content-Type:application/json'
http://localhost:8250/or_vnfm/vnflcm/v2/vnf_instances/c9cdf5c8-3681-4641-ba7e-df40539815b5/revert_to_snapshot

The SOL002 API root uses ve_vnfm, not or_vnfm.Note

The following sample payload, restricts the revert to a single VNFC

SOL002:

{
"vnfSnapshotInfoId": “fc7f055c-a541-4801-9295-299ce806763f”,
"vnfcInstanceId": “res-9f5401e3-0129-4657-8ef7-18da424fd369",
"vnfcSnapshotInfoId": “eac61a66-51d2-47dd-b8f4-289f38203eff"

}

SOL003 using Additional Parameters:

{
"vnfSnapshotInfoId": “fc7f055c-a541-4801-9295-299ce806763f”,
"additionalParams": {

"vnfcInstanceId": “res-9f5401e3-0129-4657-8ef7-18da424fd369",
"vnfcSnapshotInfoId": “eac61a66-51d2-47dd-b8f4-289f38203eff"

}
}

Notifications Generated:

When the snapshot is reverted on OpenStack, three notifications are generated for the three operational states
namely: STARTING, PROCESSING, and COMPLETED.

Notes and Limitations:

• Revert to snapshot does not currently support snapshots of VM without a bootable volume.

• It is not possible to revert a snapshot with OOB volumes.

• OpenStack prevents the deletion of volumes if they have a volume snapshot, ESC attempts to delete the
volumes during the revert but these are left on the VIM.

VNF Snapshot Deletion:

Deleting a VNF snapshot involves the single URL as shown:
[admin@host]$ curl --user 'admin:********' -X DELETE
http://localhost:8250/or_vnfm/vnflcm/v2/vnf_snapshots/fc7f055c-a541-4801-9295-299ce806763f

The VNF Snapshot Deletion is a synchronous operation, that is, the API call does not return until the entire
workflow in ESC has finished. Deletion takes some time if the VNF Snapshot has to delete multiple VDUs
and volumes.

Note

Error Conditions

• A suitable error returns if the VNF Snapshot ID is invalid.

• OpenStack-specific errors return if the OpenStack is unreachable or if the resource quotas exceed.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
99

Managing VNF Snapshot
Managing VNF Snapshots

• The ETSI services rely on all other ESC services to operate, otherwise there are connectivity-related
errors.

Notifications Generated:

As per the ETSI Specification, no notifications are generated for a VNF Snapshot delete operation due to its
synchronous nature.

Creating a VNF Snapshot using SOL002 APIs:

Create a VNF Snapshot using the SOL002 API, which allows the specification of an individual VNFC ID.

Individual VDUs (VNFCs) within a VNF have snapshots created for them as opposed to taking a VNF Snapshot
of the entire VNF.
[admin@host]$ cat create_snapshot.json
{

"vnfSnapshotInfoId": "fc7f055c-a541-4801-9295-299ce806763f",
"additionalParams": {

"vnfcInstanceId": "res-9f5401e3-0129-4657-8ef7-18da424fd369"
}

}
[admin@host]$ curl --user 'admin:********' -X POST --data @create_snapshot.json -H
'Content-Type:application/json'
http://localhost:8250/ve_vnfm/vnflcm/v2/vnf_instances/c9cdf5c8-3681-4641-ba7e-df40539815b5/create_snapshot

The SOL002 API root uses ve_vnfm, not or_vnfm.Note

Error Conditions:

• An error returns if the VNF Snapshot ID, the VNF Instance ID, or the VNFC Instance ID are invalid.

• OpenStack-specific errors return if the OpenStack is unreachable or if the resource quotas exceed.

• The ETSI services rely on all other ESC services to operate, otherwise there are connectivity-related
errors.

Notifications generated:

The identical notifications for the SOL003 VNF Snapshot Create are generated.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
100

Managing VNF Snapshot
Managing VNF Snapshots

C H A P T E R 12
Error Handling Procedures

• VNF Lifecycle Management Error Handling Procedures, on page 101

VNF Lifecycle Management Error Handling Procedures
ETSI invokes the following error handling procedures for all its ETSI VNF lifecycle management (LCM)
operations:

• Retry

• Rollback

• Fail

• Cancel

The image below represents the transitional states of the VNF lifecycle management operational occurrence.

Figure 2: VNF Lifecycle Management Transitional States

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
101

The vnfLcmOpOccId is encoded into the URI, which is the primary key to retrieve the request details.

The retry, rollback and fail requests are rejected if the LCM operation is in any other state other than the
FAILED_TEMP state. This error returns HTTP code 409.

The retry, rollback, fail and cancel requests are not supported for the particular VNF LCM operation for the
particular VNF. This error returns HTTP code 404.

An error occurs if the vnfLcmOpOccId does not exist in the ETSI database. This error returns HTTP code
404.

Note

Retry

A retry request is applicable if there is a possibility of the LCM operation to succeed. The operation should
be (pre-condition) in the FAILED_TEMP state for a retry request. You can send several retry requests, as
long as the operation is in the FAILED_TEMP state.

FAILED_TEMP statePrecondition

POST {api_root}/vnf_lcm_op_occs/{vnfLcmOpOccId}/retry()Request

PROCESSING statePostcondition

Upon successful retry, ESC sends a START or PROCESSING notification. If the retry request fails, then ESC
sends a notification to the NFVO with the details.

Rollback

A rollback request is made if it is not possible for the operation to succeed even after a retry request.

Set the rollback_required flag to true. If this is not set to true, then rollback is not performed.

FAILED_TEMP statePrecondition

POST {api_root}/vnf_lcm_op_occs/{vnfLcmOpOccId}/rollback()Request

ROLLED_BACKPostcondition

Upon successful rollback, the LCM operation is rolled back. If the rollback request fails, then the LCM
operation is back to the failed_temp sate.

Fail

When an LCM operation does not require a retry request, or a clean up, a fail request allows you to free up
resources for a subsequent request.

If the rollback_required flag is set to true, a fail request cannot be made.

FAILED_TEMP statePrecondition

POST {api_root}/vnf_lcm_op_occs/{vnfLcmOpOccId}/fail()Request

FAILED statePostcondition

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
102

Error Handling Procedures
VNF Lifecycle Management Error Handling Procedures

Upon successful execution of this request, the LCM operation is in FAILED state.

Cancel

A cancel request is possible if the operation is in STARTING state.

A cancel request is currently possible in the STARTING or PROCESSING state for Instantiate, but only
STARTING for all other LCM operations.

Note

STARTING statePrecondition

POST {api_root}/vnf_lcm_op_occs/{vnfLcmOpOccId}/cancel(CancelMode)Request

ROLLED_BACKPostcondition

The cancel request is Forceful.

ETSI supports canceling an LCM operation in starting state only. The cancel request for LCM operations in
processing or rolling back states are currently not supported.

Note

Example JSON payload (CancelMode):

{
"cancelMode": "FORCEFUL",
"action": "cancel"

}

Set the IsCancelPending attribute of the VnfLcmOpOcc to true. This will stop the processing request, and
move the LCM operation to ROLLED_BACK state.

Error Handling Procedures for ETSI VNF Lifecycle Operations

If the LCM operation for a VNF instance fails, the operation moves to the FAILED_TEMP state according
to the state machine. To complete the intended operation, you must either run the retry or rollback request.

• If creating a VNF identifier fails, then no further action is required. The rollback request is not supported.

• If instantiating the VNF fails, then ESC terminates the request, and sends a new instantiation request.

• If operating the VNF fails, then no further action is required.

• If terminating the VNF fails, you must retry the operation, as rollback is not supported.

• If deleting the VNF operation fails, then no further action is required. Th erollback request is not supported.

The error handling requests do not impact the operating VNF lifecycle operation.Note

For information on VNF lifecycle operations, see VNF Lifecycle Operations, on page 26.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
103

Error Handling Procedures
VNF Lifecycle Management Error Handling Procedures

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
104

Error Handling Procedures
VNF Lifecycle Management Error Handling Procedures

C H A P T E R 13
Alarms and Notifications for ETSI LCM
Operations

• ETSI Alarms, on page 105
• Subscribing to Notifications, on page 108
• ETSI Failure and Load Notifications for VNFs, on page 110

ETSI Alarms
ESC provides alarms and notifications to the NFVO. The NFVO has to subscribe to these alarms and
notifications and send requests to ESC.

The NFVO can receive information about the alarms in the following ways:

Query All Alarms

The NFVO can get a list of all the alarms from the alarms resource.

Method Type:
GET

VNFM Endpoint:
/vnffm/v1/alarms

HTTP Request Header:
Accept:application/json

For example, to query all alarms with the event type as ENVIRONMENTAL_ALARM

Method Type:
GET

VNFM Endpoint:
http://localhost:8250/vnffm/v1/alarms?eventType="ENVIRONMENTAL_ALARM"

HTTP Request Headers:
Accept:application/json

While querying for multiple alarms, the NFVO can use the URI query parameters to filter the results. The
following attribute names are supported for the URI query of the alarms:

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
105

• id

• managedObjectId

• rootCauseFaultyResource.faultyResourceType

• eventType

• perceivedSeverity

• probableCause

The URI query parameters are for querying multiple alarms only.Note

Query an Individual Alarm

The NFVO can query a particular alarm from the alarmId resource.

Method Type:
GET

VNFM Endpoint
/vnffm/v1/alarms/{alarmId}

HTTP Request Header:
Accept:application/json

Modify an Individual Alarm

To modify an alarm, the NFVO must send a PATCH request to the AlarmModifications resource.

Method Type:
PATCH

VNFM Endpoint:

HTTP Request Header:
Content-Type: application/merge-patch+json

If-Match: ETag value

If-Match: is optional. If specified, its value is validated against the ETag value stored against the VNF (and
returned from a single VNF query).

Note

The supported attribute is ackState, and the supported attribute values are ACKNOWLEDGED and
UNACKNOWLEDGED. All other modification payloads are rejected.

VNF Failure and Load Alarms

The following alarms are created for ETSI VNF failure and load notifications.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
106

Alarms and Notifications for ETSI LCM Operations
ETSI Alarms

• Failure Alarm—ESC generates the failure alarms when one of the compute resources within the VNF
becomes unreachable based upon the VM_ALIVEKPI configuration of the VFND. For more information,
see ETSI Failure and Load Notifications for VNFs.

Example:

Method Type
POST

VNFM Endpoint
/vnffm/v1/extension/alarms

HTTP Request Header
Content-Type:application/json

Request Payload:
{
"externalAlarmId" : "26bf1e3d-cefa-4f59-88ea-210a29358a5c", #generated value
"alarmSource" : "MONA", #hard-coded
"managedObjectId" : "08733ef2-319b-46ce-9d8d-95730306bd1a", #external_deployment_id
"rootCauseFaultyResource" : "chrimann-dep_g1_0_212da327-0573-421b-ae37-057f6b1a6aef",
#vm_name
"alarmRaisedTime" : "$timestamp", #generated value
"ackState" : "UNACKNOWLEDGED", #hard-coded
"perceivedSeverity" : "CRITICAL", #hard-coded
"eventTime" : "2018-05-08T00:59:32.571+00:00", #do we have the eventTime?
"eventType" : "EQUIPMENT_ALARM", #hard-coded
"faultType" : "COMPUTE", #hard-coded
"probableCause" : "VM_MANUAL_RECOVERY_NEEDED", #event_name
"isRootCause" : "TRUE", #hard-coded
"links" : {
"objectInstance" :

"{http_scheme}://{api_root}/vnflcm/v2/vnf_instances/08733ef2-319b-46ce-9d8d-95730306bd1a"

}
}

• LoadAlarm—ESC generates the load alarmswhen one of the compute resources within the VNF becomes
over or under loaded based upon the related KPI configurations of the VFND. ESC creates these alarms
after receiving notifications from the NFVO. For more information, see ETSI Failure and Load
Notifications for VNFs.

Example:

Method Type
POST

VNFM Endpoint
/vnffm/v1/extension/alarms

HTTP Request Header
Content-Type:application/json

Request Payload

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
107

Alarms and Notifications for ETSI LCM Operations
ETSI Alarms

Alarm Extensions

ETSI provides an extension for the alarms to interact with the third party tools. You must send a POST request
to create the alarms.

Method Type
POST

VNFM Endpoint
/vnffm/v1/extension/alarms

HTTP Request Header
Content-Type:application/json

Request Payload

[admin@davwebst-esc-4-2-0-49-keep ETSI]$ cat CreateAlarm.json
{

"id": "alm87032",
"externalAlarmId": "ext-id-xx11214",
"managedObjectId": "930fb087-c1b9-4660-bec8-2a8d97dc1df5",
"rootCauseFaultyResource": {

"id": "fres7629",
"faultyResource": {

"resourceId": "res7727"
},
"faultyResourceType": "NETWORK"

},
"alarmRaisedTime": "2018-05-30T13:55:15.645000+00",
"ackState": "UNACKNOWLEDGED",
"perceivedSeverity": "MAJOR",
"eventTime": "2018-05-30T13:55:15.645000+00",
"eventType": "ENVIRONMENTAL_ALARM",
"probableCause": "Server room overheating",
"isRootCause": "false",
"vnfInstanceIds": [

"res-a3023a03-fc73-430a-a983-5e9439011e45"

}

Subscribing to Notifications
The NFVO can subscribe to the ETSI notifications related to fault management from ESC.

Create a Subscription

The NFVO sends a POST request to subscribe to the notifications.

Method Type:
POST

VNFM Endpoint:
/vnffm/v1

Response Payload:
{
"filter" : {

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
108

Alarms and Notifications for ETSI LCM Operations
Subscribing to Notifications

"notificationTypes" : [
"AlarmNotification",
"AlarmClearedNotification",
"AlarmListRebuiltNotification"

],
"perceivedSeverities" : [
"CRITICAL",
"MAJOR"

]
},
"callbackUri" : "https://nfvo.endpoint.listener",
"authentication" : {
"authType" : "BASIC",
"paramsBasic" : {
"userName" : "admin",
"password" : "pass123"

}
}

}

This creates a new subscription resource and a new identifier. The callbackUri is the only mandatory parameter.
The others are all optional. You can verify if the callbackuri is valid and reachable by sending a GET request.

Query all Subscriptions

The NFVO can query information about its subscriptions by sending a GET request to the subscriptions
resource.

Method Type:
GET

VNFM Endpoint:
/vnffm/v1/subscriptions

HTTP Request Header:
Accept:application/json

For example, to query all alert subscriptions, when the callbackUri is
http://10.10.1.44:9202/alerts/subscriptions/callback

GET

VNFM Endpoint
http://localhost:8250/vnffm/v1/subscriptions?callbackUri="http://10.10.1.44:9202/alerts/subscriptions/callback"

HTTP Request Header
Accept:application/json

The NFVO can use the URI query parameters to filter the results. The following attribute names are supported
for the URI query of the subscriptions:

• id

• filter

• callbackUri

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
109

Alarms and Notifications for ETSI LCM Operations
Subscribing to Notifications

The URI query parameters are for querying multiple subscriptions only.Note

Query an Individual Subscription

You must know the subscription ID to query an individual subscription.

Method Type:
GET

VNFM Endpoint:
/vnffm/v1/subscriptions/{subscriptionId}

HTTP Request Header:
Accept:application/json

Delete a Subscription

You can delete a subscription if the NFVO does not need it. Send a delete request to the individual subscription.

Method Type:
DELETE

VNFM Endpoint:
/vnffm/v1/subscriptions/{subscriptionId}

HTTP Request Header:
http://localhost:8250/vnffm/v1/subscriptions/682791f8-34ad-487e-811a-553036bf49b2

ETSI Failure and Load Notifications for VNFs
ESC generates notifications for the following:

• VM Failure

The NFVO receives failure notifications from ESC, when the VMs within the deployed VNFs fail. After
receiving the notifications, alarms are generated. For more information on alarms, see ETSI Alarms, on
page 105.

The NFVO must subscribe to the ESC for notifications.

Example:
<?xml version="1.0" encoding="UTF-8"?>
<esc_event xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<deployment_name>sample-dep</deployment_name>
<event_name>MY_VM_UNDERLOADED</event_name>
<event_type>VM_UNDERLOADED</event_type>
<external_deployment_id>e911eecf-5f3f-456c-9c80-d99aca2416da</external_deployment_id>

<external_tenant_id>etsi_tenant</external_tenant_id>
<internal_deployment_id>99f7629f-98d3-40f5-ad68-7addcfe07006</internal_deployment_id>

<internal_tenant_id>etsi_tenant</internal_tenant_id>
<vm_source>

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
110

Alarms and Notifications for ETSI LCM Operations
ETSI Failure and Load Notifications for VNFs

<generated_vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</generated_vm_name>

<interfaces>
<addresses>
<address>
<address_id>0</address_id>
<gateway>172.16.0.1</gateway>
<ip_address>172.16.0.0</ip_address>
<dhcp_enabled>true</dhcp_enabled>
<prefix>20</prefix>
<subnet>365a0884-fdb3-424c-afe9-2deb3b39baae</subnet>

</address>
</addresses>
<network_uuid>c7fafeca-aa53-4349-9b60-1f4b92605420</network_uuid>
<mac_address>fa:16:3e:38:1d:6c</mac_address>
<nic_id>0</nic_id>
<port_forwarding/>
<port_uuid>0aeb9585-5190-4f3b-b1aa-495e09c56b7d</port_uuid>
<security_groups/>
<subnet_uuid>none</subnet_uuid>
<type>virtual</type>

<vim_interface_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vim_interface_name>

</interfaces>
<vim_id>default_openstack_vim</vim_id>
<vim_project>admin</vim_project>
<vim_project_id>c12f013306d849e5b1bbf257c54d5891</vim_project_id>
<host_uuid>6b8cf361c5ff08a5a886e26f591b8087dadcf2d2b34fb3b5d2772a8d</host_uuid>
<host_name>my-server</host_name>
<vm_uuid>9fea3fe7-9417-4734-b962-b24340941ef3</vm_uuid>
<vm_group_name>vm1</vm_group_name>
<vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vm_name>

</vm_source>
</esc_event>

• VM Overload and Underload

Similarly, the NFVO receives an overload or underload notification for a VM.

If scaling is not enabled automatically, ESC generates a notification depending on the state of the VM.

Examples:
<?xml version="1.0" encoding="UTF-8"?>
<esc_event xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<deployment_name>sample-dep</deployment_name>
<event_name>MY_VM_UNDERLOADED</event_name>
<event_type>VM_UNDERLOADED</event_type>
<external_deployment_id>e911eecf-5f3f-456c-9c80-d99aca2416da</external_deployment_id>

<external_tenant_id>etsi_tenant</external_tenant_id>
<internal_deployment_id>99f7629f-98d3-40f5-ad68-7addcfe07006</internal_deployment_id>

<internal_tenant_id>etsi_tenant</internal_tenant_id>
<vm_source>

<generated_vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</generated_vm_name>

<interfaces>
<addresses>
<address>
<address_id>0</address_id>
<gateway>172.16.0.1</gateway>

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
111

Alarms and Notifications for ETSI LCM Operations
ETSI Failure and Load Notifications for VNFs

<ip_address>172.16.0.0</ip_address>
<dhcp_enabled>true</dhcp_enabled>
<prefix>20</prefix>
<subnet>365a0884-fdb3-424c-afe9-2deb3b39baae</subnet>

</address>
</addresses>
<network_uuid>c7fafeca-aa53-4349-9b60-1f4b92605420</network_uuid>
<mac_address>fa:16:3e:38:1d:6c</mac_address>
<nic_id>0</nic_id>
<port_forwarding/>
<port_uuid>0aeb9585-5190-4f3b-b1aa-495e09c56b7d</port_uuid>
<security_groups/>
<subnet_uuid>none</subnet_uuid>
<type>virtual</type>

<vim_interface_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vim_interface_name>

</interfaces>
<vim_id>default_openstack_vim</vim_id>
<vim_project>admin</vim_project>
<vim_project_id>c12f013306d849e5b1bbf257c54d5891</vim_project_id>
<host_uuid>6b8cf361c5ff08a5a886e26f591b8087dadcf2d2b34fb3b5d2772a8d</host_uuid>
<host_name>my-server</host_name>
<vm_uuid>9fea3fe7-9417-4734-b962-b24340941ef3</vm_uuid>
<vm_group_name>vm1</vm_group_name>
<vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vm_name>

</vm_source>
</esc_event>

VM underload example:
<?xml version="1.0" encoding="UTF-8"?>
<esc_event xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<deployment_name>sample-dep</deployment_name>
<event_name>MY_VM_OVERLOADED</event_name>
<event_type>VM_OVERLOADED</event_type>
<external_deployment_id>e911eecf-5f3f-456c-9c80-d99aca2416da</external_deployment_id>

<external_tenant_id>etsi_tenant</external_tenant_id>
<internal_deployment_id>99f7629f-98d3-40f5-ad68-7addcfe07006</internal_deployment_id>

<internal_tenant_id>etsi_tenant</internal_tenant_id>
<vm_source>

<generated_vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</generated_vm_name>

<interfaces>
<addresses>
<address>
<address_id>0</address_id>
<gateway>172.16.0.1</gateway>
<ip_address>172.16.0.0</ip_address>
<dhcp_enabled>true</dhcp_enabled>
<prefix>20</prefix>
<subnet>365a0884-fdb3-424c-afe9-2deb3b39baae</subnet>

</address>
</addresses>
<network_uuid>c7fafeca-aa53-4349-9b60-1f4b92605420</network_uuid>
<mac_address>fa:16:3e:38:1d:6c</mac_address>
<nic_id>0</nic_id>
<port_forwarding/>
<port_uuid>0aeb9585-5190-4f3b-b1aa-495e09c56b7d</port_uuid>
<security_groups/>
<subnet_uuid>none</subnet_uuid>
<type>virtual</type>

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
112

Alarms and Notifications for ETSI LCM Operations
ETSI Failure and Load Notifications for VNFs

<vim_interface_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vim_interface_name>

</interfaces>
<vim_id>default_openstack_vim</vim_id>
<vim_project>admin</vim_project>
<vim_project_id>c12f013306d849e5b1bbf257c54d5891</vim_project_id>
<host_uuid>6b8cf361c5ff08a5a886e26f591b8087dadcf2d2b34fb3b5d2772a8d</host_uuid>
<host_name>my-server</host_name>
<vm_uuid>9fea3fe7-9417-4734-b962-b24340941ef3</vm_uuid>
<vm_group_name>vm1</vm_group_name>
<vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vm_name>

</vm_source>
</esc_event>

ETSI only generates an alarm for a VNFC that exists in instantiatedVnfInfo.vnfcResourceInfo when the
notification from ESC is received.

Note

Auto-Scaling VNFs Using KPI Instructions
ESC can auto-scale VMs using the KPI instructions. The scaling workflow begins when the VNF instance is
in the instantiated state.The NFVO enables and disables the auto-scaling while modifying isAutoscaleEnabled
configurable property of the VNF.

Following are the events that trigger an ETSI-compliant auto-scale, which requires an instigation of a
ScaleVnfToLevelRequest: functionality.

• Overload and Underload

If the state of a VM changes and it is under or overloaded, ESC gets a notification to determine if the
scaling is automatically enabled. If it is not, ESC generates a notification towards the ETSI-VNFM
component to check the VNF's state.

The following example shows underloaded notification from ESC:
Headers:
esc-status-code = 200
esc-status-message = VM [sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de]

underloaded.
Body:
<?xml version="1.0" encoding="UTF-8"?>
<esc_event xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<deployment_name>sample-dep</deployment_name>
<event_name>MY_VM_UNDERLOADED</event_name>
<event_type>VM_UNDERLOADED</event_type>
<external_deployment_id>e911eecf-5f3f-456c-9c80-d99aca2416da</external_deployment_id>

<external_tenant_id>etsi_tenant</external_tenant_id>
<internal_deployment_id>99f7629f-98d3-40f5-ad68-7addcfe07006</internal_deployment_id>

<internal_tenant_id>etsi_tenant</internal_tenant_id>
<vm_source>

<generated_vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</generated_vm_name>

<interfaces>
<addresses>
<address>

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
113

Alarms and Notifications for ETSI LCM Operations
Auto-Scaling VNFs Using KPI Instructions

<address_id>0</address_id>
<gateway>172.24.0.1</gateway>
<ip_address>172.24.0.37</ip_address>
<dhcp_enabled>true</dhcp_enabled>
<prefix>20</prefix>
<subnet>365a0884-fdb3-424c-afe9-2deb3b39baae</subnet>

</address>
</addresses>
<network_uuid>c7fafeca-aa53-4349-9b60-1f4b92605420</network_uuid>
<mac_address>fa:16:3e:38:1d:6c</mac_address>
<nic_id>0</nic_id>
<port_forwarding/>
<port_uuid>0aeb9585-5190-4f3b-b1aa-495e09c56b7d</port_uuid>
<security_groups/>
<subnet_uuid>none</subnet_uuid>
<type>virtual</type>

<vim_interface_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vim_interface_name>

</interfaces>
<vim_id>default_openstack_vim</vim_id>
<vim_project>admin</vim_project>
<vim_project_id>c12f013306d849e5b1bbf257c54d5891</vim_project_id>
<host_uuid>6b8cf361c5ff08a5a886e26f591b8087dadcf2d2b34fb3b5d2772a8d</host_uuid>
<host_name>my-server-65</host_name>
<vm_uuid>9fea3fe7-9417-4734-b962-b24340941ef3</vm_uuid>
<vm_group_name>vm1</vm_group_name>
<vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vm_name>

</vm_source>
</esc_event>

The following example shows overloaded notification from ESC:
Headers:
esc-status-code = 200
esc-status-message = VM [sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de]

overloaded.
Body:
<?xml version="1.0" encoding="UTF-8"?>
<esc_event xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<deployment_name>sample-dep</deployment_name>
<event_name>MY_VM_OVERLOADED</event_name>
<event_type>VM_OVERLOADED</event_type>
<external_deployment_id>e911eecf-5f3f-456c-9c80-d99aca2416da</external_deployment_id>

<external_tenant_id>etsi_tenant</external_tenant_id>
<internal_deployment_id>99f7629f-98d3-40f5-ad68-7addcfe07006</internal_deployment_id>

<internal_tenant_id>etsi_tenant</internal_tenant_id>
<vm_source>

<generated_vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</generated_vm_name>

<interfaces>
<addresses>
<address>
<address_id>0</address_id>
<gateway>172.24.0.1</gateway>
<ip_address>172.24.0.37</ip_address>
<dhcp_enabled>true</dhcp_enabled>
<prefix>20</prefix>
<subnet>365a0884-fdb3-424c-afe9-2deb3b39baae</subnet>

</address>
</addresses>
<network_uuid>c7fafeca-aa53-4349-9b60-1f4b92605420</network_uuid>

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
114

Alarms and Notifications for ETSI LCM Operations
Auto-Scaling VNFs Using KPI Instructions

<mac_address>fa:16:3e:38:1d:6c</mac_address>
<nic_id>0</nic_id>
<port_forwarding/>
<port_uuid>0aeb9585-5190-4f3b-b1aa-495e09c56b7d</port_uuid>
<security_groups/>
<subnet_uuid>none</subnet_uuid>
<type>virtual</type>

<vim_interface_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vim_interface_name>

</interfaces>
<vim_id>default_openstack_vim</vim_id>
<vim_project>admin</vim_project>
<vim_project_id>c12f013306d849e5b1bbf257c54d5891</vim_project_id>
<host_uuid>6b8cf361c5ff08a5a886e26f591b8087dadcf2d2b34fb3b5d2772a8d</host_uuid>
<host_name>my-server-65</host_name>
<vm_uuid>9fea3fe7-9417-4734-b962-b24340941ef3</vm_uuid>
<vm_group_name>vm1</vm_group_name>
<vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vm_name>

</vm_source>
</esc_event>

• VNFD

The VNFD notification contains the instructions for the scale action required for isAutoscaleEnabled
configurable property of the VNF operation flow.

If the scaling is not enabled automatically, you can instigate the manual LCM operations using the KPI
instructions. It is instigated by processing the ESC notification stream. You must validate the notification
once you receive the KPI events.

You must take the following actions:

• Find the matching VNF instance

• Validate that the appropriate configuration property is set to enable the automated operation

If the validation passes then you can request to instigate the operation flow to generate the appropriate
operation occurrence and associated notifications. For scaling, any specified KPI data determines the
scaling parameters. The properties file includes the following new attributes:
external.scaling.decision = 1
#external.scaling.window = 120
external.healing.decision = 1
#external.healing.window = 120

• VnfInstance resource

The VNFD determines the scale level using the current scaleStatus. The processing of the request
determines the number of VMs to request from ESCManager. The request only supplies a relative number
of increments (SCALE_IN or SCALE_OUT).

You can call the ScaleVnfToLevel endpoint with the following payload, using vnfInstanceId from the
vnfInstance resource of the VNF to be scaled.

Ensure that the VnfLcmOpOcc.isAutomaticInvocation is set to true.

The following eexample shows JSON payload:
{
/* "instantiationLevelId":"id111", */
"scaleInfo": [
{ "aspectId":"processing", "scaleLevel":"3" },

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
115

Alarms and Notifications for ETSI LCM Operations
Auto-Scaling VNFs Using KPI Instructions

{ "aspectId":"database", "scaleLevel":"2" }
]
"additionalParams": {
"password": "pass1234",
"username": "admin"

},
"action": "scale_to_level"

}

Healing VNFs Using KPI Instructions
ESC can auto-heal VMs using the KPI instructions. The NFVO enables and disables the auto-healing while
modifying isAutohealEnabled configurable property of the VNF.

The isAutohealEnabled property permits to enable (TRUE)/disable (FALSE) the auto-healing functionality.

•

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
116

Alarms and Notifications for ETSI LCM Operations
Healing VNFs Using KPI Instructions

C H A P T E R 14
Administering ESC

• ETSI Performance Reports, on page 117
• Performance Management Jobs, on page 117
• Configuring Threshold for Performance Management Job, on page 121

ETSI Performance Reports
ESC allows you to collect the performance information of the VNFs such as metrics and notifications using
the performance management job functionality. You must first create a performance management (PM) job.
After creating the PM job, you can perform the following tasks:

• Query, delete, or notify performance management jobs

• Read an individual report, or obtain the performance reports

• Configure the threshold of the performance management jobs

• Query, delete or notify the threshold of the performance management jobs

• Create or update subscriptions belonging to a Performance Management job or Threshold

Performance Management Jobs
This section describes the performance management jobs.

Create Performance Management Job

You must create a performance management job to further query and run reports.

As a part of the job creation, subscription details should be provided to receive any notification.

The NFVO is notified using the PerformanceInformationAvailableNotification notification.

Method Type:

POST

VNFM Endpoint:
{api_root}/vnfpm/v2/pm_jobs (Data structure=CreatePmJobRequest)

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
117

Request Payload:

{
"objectInstanceIds": ["9d20a459-b3ff-4d1c-9b63-0dae7444b645"],
"subObjectInstanceIds": ["9d20a459-b3ff-4d1c-9b63-0dae7444b645"],
"objectType": "XYZ",
"callbackUri": "http://localhost:45247/notification",
"authentication": {
"authType": ["BASIC"],
"paramsBasic": {

"userName": "admin",
"password": "P@55w0rd!"

}
},
"criteria": {
"collectionPeriod": 60,
"reportingPeriod": 3600,
"reportingBoundary": "2020-08-01T00:00:00.000Z",
"performanceMetric": [
"Gold",
"Silver"

],
"performanceMetricGroup": [
"VIP",
"Europe"

]
}

}

Response Payload:

{
"id": "b375b81c-3236-4b1c-9c47-61455bf5bc74",
"objectType": "XYZ",
"callbackUri": "http://localhost:45248/notification",
"objectInstanceIds": [

"9d20a459-b3ff-4d1c-9b63-0dae7444b645"
],
"subObjectInstanceIds": [

"07775e8b-1279-4338-a643-be283d36fa98"
],
"criteria": {

"collectionPeriod": 60,
"reportingPeriod": 3600,
"performanceMetric": [

"Gold",
"Silver"

],
"performanceMetricGroup": [

"VIP",
"Europe"

],
"reportingBoundary": "2020-08-01T00:00:00.000Z"

},
"reports": [

{
"href":

"http://localhost:8250/or_vnfm/vnfpm/v2/pm_jobs/b375b81c-3236-4b1c-9c47-61455bf5bc74/reports/1c787c0d-69a5-4ade-b5ca-43f80e17bd58",

"readyTime": "2022-02-28T07:29:45.609Z"
}

],
"_links": {

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
118

Administering ESC
Performance Management Jobs

"self": {
"href":

"http://localhost:8250/or_vnfm/vnfpm/v2/pm_jobs/b375b81c-3236-4b1c-9c47-61455bf5bc74"
},
"objects": [

{
"href":

"http://localhost:8250/or_vnfm/vnflcm/v2/vnf_instances/9d20a459-b3ff-4d1c-9b63-0dae7444b645"

}
]

}
}

Update the same response for Query and Individual Performance Management Job and Query All
Performance Management jobs.

Note

Query an Individual Performance Management Job

The NFVO queries for the individual performance management job.

Method Type:

GET

VNFM Endpoint:
{api_root}/vnfpm/v2/pm_jobs/{pmJobId}

Request Payload:

NA.

Response Payload:

{
"id": "13963644-11b0-4302-a13b-26ca3d9eb8f8",
"objectInstanceIds": [
"cc6a34e5-0463-459a-b367-493ba997775f "

],
"criteria": {
"performanceMetric": [
"default"

],
"performanceMetricGroup": [
"default"

],
"collectionPeriod": 3600,
"reportingPeriod": 14400,
"reports": [
{
"href": "uri_where_report_can_be_obtained",
"readyTime": "2018-08-20T06:17:35.081+0000",
"expiryTime": "2018-10-20T06:17:35.081+0000",
"fileSize": "5000"

}
]

},
"_links": {
"self": {

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
119

Administering ESC
Performance Management Jobs

"href": "http://host:port/vnfpm/v2/pm_jobs/13963644-11b0-4302-a13b-26ca3d9eb8f8"
},
"objects": [
{
"href":

"http://host:port/vnflcm/v2/vnf_instances/cc6a34e5-0463-459a-b367-493ba997775f"
}

]
}

}

A reports section is added to the response payload (as shown above) only if a report is available.

All the attribute names and the data types referenced from the attribute names in the response payload are
supported in the attribute-based filtering.

Note

Query All Performance Management Jobs

The NFVO gets the list of all the performance management jobs.

Method Type:

GET

VNFM Endpoint:
{api_root}/vnfpm/v2/pm_jobs

Request Payload:

NA.

Response Payload:

{
"id": "13963644-11b0-4302-a13b-26ca3d9eb8f8",
"objectInstanceIds": [
"cc6a34e5-0463-459a-b367-493ba997775f "

],
"criteria": {
"performanceMetric": [
"default"

],
"performanceMetricGroup": [
"default"

],
"collectionPeriod": 3600,
"reportingPeriod": 14400,
"reports": [
{
"href": "uri_where_report_can_be_obtained",
"readyTime": "2018-08-20T06:17:35.081+0000",
"expiryTime": "2018-10-20T06:17:35.081+0000",
"fileSize": "5000"

}
]

},
"_links": {
"self": {
"href": "http://host:port/vnfpm/v2/pm_jobs/13963644-11b0-4302-a13b-26ca3d9eb8f8"

},

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
120

Administering ESC
Performance Management Jobs

"objects": [
{
"href":

"http://host:port/vnflcm/v2/vnf_instances/cc6a34e5-0463-459a-b367-493ba997775f"
}

]
}

}

A reports section is added to the response payload (as shown above) only if a report is available.

All the attribute names in the response payload and data types referenced from the attribute names are supported
in the attribute-based filtering.

Note

Update a Performance Management Job

The NFVO updates the callbackUri and associated authentication of the individual performance management
job.

Method Type:

PATCH

VNFM Endpoint:
http://localhost:8250/or_vnfm/vnfpm/v2/pm_jobs/{pmJobId}

Request Payload:
{
"callbackUri": "http://localhost:45248/notification",
"authentication": {
"authType": ["BASIC"],
"paramsBasic": {

"userName": "admin",
"password": "P@55w0rd!"

}
}
}

Response Payload:
{

"callbackUri": "http://localhost:45248/notification"
}

Delete a Performance Management Job

The NFVO sends a delete request to the existing performance management job.
DELETE {api_root}/vnfpm/v2/pm_jobs/{pmJobId}

Configuring Threshold for Performance Management Job
This seciton describes how to set the threshold for the performance management jobs.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
121

Administering ESC
Configuring Threshold for Performance Management Job

Create a Threshold

The NFVO sends a create request to create a threshold for the performance management job.

As part of the threshold creation, subscription details should be provided to receive any notification.

The NFVO receives the ThresholdCrossedNotification if ESC crosses a configured threshold.

Method Type:

POST

VNFM Endpoint:
{api_root}/vnfpm/v2/thresholds (Datastructure=CreateThresholdRequest)

Request Payload:

{
"objectInstanceId": "9d20a459-b3ff-4d1c-9b63-0dae7444b645",
"thSubObjectInstanceIds": ["9d20a459-b3ff-4d1c-9b63-0dae7444b645"],
"objectType": "THRESHOLDJOB",
"callbackUri": "http://localhost:45247/notification",
"authentication": {
"authType": ["BASIC"],
"paramsBasic": {
"userName": "admin",
"password": "P@55w0rd!"

}
},
"criteria": {
"performanceMetric" : "uptime",
"thresholdType" : "SIMPLE",
"simpleThresholdDetails" : {
"thresholdValue" : "74400.0",
"hysteresis" : "10.0"

}
}

}

Response Payload:
{

"id": "0341d294-f8db-408a-a68b-64b1db306304",
"objectInstanceId": "9d20a459-b3ff-4d1c-9b63-0dae7444b645",
"criteria": {

"performanceMetric": "uptime",
"thresholdType": "SIMPLE",
"simpleThresholdDetails": {

"thresholdValue": 74400.0,
"hysteresis": 10.0

}
},
"objectType": "THRESHOLDJOB",
"callbackUri": "http://localhost:45247/notification",
"thSubObjectInstanceIds": [

"9d20a459-b3ff-4d1c-9b63-0dae7444b645"
],
"_links": {

"self": {
"href":

"http://localhost:8250/or_vnfm/vnfpm/v2/thresholds/0341d294-f8db-408a-a68b-64b1db306304"
},
"object": {

"href":

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
122

Administering ESC
Configuring Threshold for Performance Management Job

"http://localhost:8250/or_vnfm/vnflcm/v2/vnf_instances/9d20a459-b3ff-4d1c-9b63-0dae7444b645"

}
}

}

Same Response Payload for Query an individual threshold and Query all thresholdsNote

Query an Individual Threshold

The NFVO can query the threshold of a performance management job.

GET

VNFM Endpoint:
{api_root}/vnfpm/v2/thresholds/{thresholdId}

Request Payload: NA

Response Payload:

{
"id": "23f52511-9f72-4797-881b-c0f72e60a052",
"objectInstanceId": "cc6a34e5-0463-459a-b367-493ba997775f",
"criteria": {
"performanceMetric": "default",
"thresholdType": "SIMPLE",
"simpleThresholdDetails": {
"thresholdValue": 0.8,
"hysteresis": 0.9

}
},
"_links": {
"self": {
"href": "http://host:port/vnfpm/v2/thresholds/23f52511-9f72-4797-881b-c0f72e60a052"

},
"object": [
{
"href":

"http://host:port/vnflcm/v2/vnf_instances/cc6a34e5-0463-459a-b367-493ba997775f"
}

]
}

}

Attribute-based filtering is not possible when specifying a threshold id.Note

Query All Thresholds

The NFVO can query the threshold of a performance management job.

Method Type:

GET

VNFM Endpoint:

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
123

Administering ESC
Configuring Threshold for Performance Management Job

{api_root}/vnfpm/v2/thresholds

Request Payload: NA

Response Payload:

{
"id": "23f52511-9f72-4797-881b-c0f72e60a052",
"objectInstanceId": "cc6a34e5-0463-459a-b367-493ba997775f",
"criteria": {
"performanceMetric": "default",
"thresholdType": "SIMPLE",
"simpleThresholdDetails": {
"thresholdValue": 0.8,
"hysteresis": 0.9

}
},
"_links": {
"self": {
"href": "http://host:port/vnfpm/v2/thresholds/23f52511-9f72-4797-881b-c0f72e60a052"

},
"object": [
{
"href":

"http://host:port/vnflcm/v2/vnf_instances/cc6a34e5-0463-459a-b367-493ba997775f"
}

]
}

}

All the attribute names in the response payload and data types referenced from the attribute names are supported
in the attribute-based filtering.

Note

Update a Threshold

The NFVO sends a update request to update a threshold for the performance management job.

Method Type:

PATCH

VNFM Endpoint:
http://localhost:8250/or_vnfm/vnfpm/v2/thresholds/{thresholdId}

Request Payload:
{
"callbackUri": "http://localhost:45248/notification",
"authentication": {
"authType": ["BASIC"],
"paramsBasic": {

"userName": "admin",
"password": "P@55w0rd!"

}
}
}

Response Payload:

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
124

Administering ESC
Configuring Threshold for Performance Management Job

{
"callbackUri": "http://localhost:45248/notification"

}

Delete a Threshold

TheNFVO sends a delete request to delete the threshold configuration of the existing performancemanagement
job.
DELETE {api_root}/vnfpm/v2/thresholds/{thresholdId}

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
125

Administering ESC
Configuring Threshold for Performance Management Job

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
126

Administering ESC
Configuring Threshold for Performance Management Job

A P P E N D I X A
ETSI Production Properties

• ETSI Production Properties, on page 127

ETSI Production Properties
There are many properties that can be set to determine the behaviour of ESC. These properties enable integration
of ESC with the NFVO in the system architecture.

You can access the properties file in the following location:

/opt/cisco/esc/esc_database/etsi-production.properties

The following table describes the parameters that can be used to control the behaviour of ESC acting as a
VNFM within the ETSI NFV MANO stack.

Table 10: ETSI Production Properties

D e f a u l t
Value

TypeDescriptionProperty Name

StringThe host IP address on
which the ETSI
service is located. This
is a mandatory
property if the server
has multiple IP
addresses, or if the
deployment is
configured for High
Availability (it should
then be set to the VIP).

server.host

falseBooleanWhere there are
multiple IP address
types assigned to the
server, use the IPv6
address over any IPv4
address.

server.host.preferInet6

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
127

D e f a u l t
Value

TypeDescriptionProperty Name

8250IntegerThe port used to
communicate over
HTTP.

server.port

8251IntegerThe port used to
communicate over
HTTPS.

server.port.https

trueBooleanDetermine whether to
validate a host in any
certificate presented
when using HTTPS.
Relaxes the validation
of certificates,
especially useful in
testing.

certificate.validation

3IntegerThemaximumnumber
of threads utilised for
the notification
service.

notification.maxThreads

trueBooleanUpon creating a new
s u b s c r i p t i o n ,
determine whether to
test

notification.subscription.test

httpsEnumThe HTTP scheme
u s e d f o r
communicating with
the NFVO for
notifications. The
valid values are http
and https.

notification.links.httpScheme

5IntegerThe number of retries
for the notification
retry mechanism.

notification.retry.maxAttempt

1000IntegerThe interval for the
notification retry
mechanism.

notification.retry.backOff.delay

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
128

ETSI Production Properties
ETSI Production Properties

D e f a u l t
Value

TypeDescriptionProperty Name

StringMandatory: This is
the REST API
username. It is set by
sudo escadm etsi

set --rest_user

<username>:<password>

and should be
synchronized here.

security.user.name

localhost:8280StringMandatory: The
apiRoot for the
NFVO.

nfvo.apiRoot

httpEnumThe HTTP scheme
u s e d f o r
communicating with
the NFVO. The valid
values are http and
https.

nfvo.httpScheme

trueBooleanDetermine if the
VNFMwill attempt to
subscribe to package
notifications.

nfvo.isPackageNotificationSupported

httpsEnumThe HTTP scheme
u s e d f o r
communicating with
the NFVO when
polling for responses.
The valid values are
http and https.

nfvo.callback.httpScheme

StringThe username for
NFVO credentials.

nfvo.userName

StringThe password for
NFVO credentials,
required in plain text.

nfvo.password

1000IntegerThe number of retries
for the exponential
retry mechanism.

retryTemplate.expotential.retryPolicy.maxAttempt

1000IntegerThe starting interval
for the exponential
retry mechanism.

retryTemplate.expotential.backOffPolicy.interval.initial

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
129

ETSI Production Properties
ETSI Production Properties

D e f a u l t
Value

TypeDescriptionProperty Name

50IntegerThe number of retries
for the simple retry
mechanism.

retry.simple.maxAttempt

1000IntegerThe interval for the
s im p l e r e t r y
mechanism.

retry.simple.backOff.delay

StringThe value to use to
filter packages on the
NFVOwhen querying
for packages.

nfvo.allPackagesFilter

usernameStringProvide an alternate
attribute name when
specifying the
u s e r n am e i n
accessInfo.

mapping.vimConnectionInfo.accessInfo.username

passwordStringProvide an alternate
attribute name when
specifying the
p a s s w o r d i n
accessInfo.

mapping.vimConnectionInfo.accessInfo.password

projectStringProvide an alternate
attribute name when
specifying the project
in accessInfo.

mapping.vimConnectionInfo.accessInfo.project

projectDomainStringProvide an alternate
attribute name when
specifying the
projectDomain in
accessInfo.

mapping.vimConnectionInfo.accessInfo.projectDomain

userDomainStringProvide an alternate
attribute name when
specifying the
userDomain in
accessInfo.

mapping.vimConnectionInfo.accessInfo.userDomain

vim_projectStringProvide an alternate
attribute name when
specifying the
vim_project in
accessInfo.

mapping.vimConnectionInfo.accessInfo.vim_project

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
130

ETSI Production Properties
ETSI Production Properties

D e f a u l t
Value

TypeDescriptionProperty Name

vim_vdcStringProvide an alternate
attribute name when
specifying the
vim_vdc in accessInfo.

mapping.vimConnectionInfo.accessInfo.vim_vdc

5IntegerThe number of retries
f o r f a i l e d
G r a n t R e q u e s t
attempts.

nfvo.grantRequest.retry.maxAttempt

1000IntegerThe interval for the
retries for failed
G r a n t R e q u e s t
attempts.

nfvo.grantRequest.retry.backOff.delay

yyyy-MM-dd

'T'HH:mm:ss.

SSSXXX

StringA string to represent a
date format to allow
for varying NFVO
implementations to
read dates correctly.

spring.jackson.date-format

StringS e t t i n g t h e
authentication type of
the NFVO that is
being used. Required
property. Valid
options are "BASIC",
"OAUTH2", "OFF".
All other Strings will
be treated the same as
"OFF". Use this to
enable Basic and
O A u t h 2
authentication.

nfvo.authenticationType

StringFor NFVO OAuth2
Authentication. Client
ID.

nfvo.clientID

StringFor NFVO OAuth2
Authentication. Client
Secret.

nfvo.clientSecret

StringFor NFVO OAuth2
Authentication. The
endpoint for ETSI to
retrieve a OAuth2
token from the NFVO.

nfvo.tokenEndpoint

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
131

ETSI Production Properties
ETSI Production Properties

D e f a u l t
Value

TypeDescriptionProperty Name

IntegerSet the bucket capacity
for read (GET)
requeusts to the ETSI
REST API.

By default this is
disabled.

rate.limit.capacity.read

DoubleSets the rate (per
second) at which the
bucket empties for the
read (GET) requests to
the ETSI REST API.

By default this is
disabled.

rate.limit.perSecond.read

IntegerSet the bucket capacity
for write (POST, PUT,
PATCH, DELETE)
requeusts to the ETSI
REST API.

By default this is
disabled.

rate.limit.capacity.write

DoubleSets the rate (per
second) at which the
bucket empties for the
write (POST, PUT,
PATCH, DELETE)
requests to the ETSI
REST API.

By default this is
disabled.

rate.limit.perSecond.write

falseBooleanThe flag to enable
logging response for
query multiple VNF
instances and response
for query multiple
VNF lifecycle
management operation
occurrences.

log.multiple.query

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
132

ETSI Production Properties
ETSI Production Properties

D e f a u l t
Value

TypeDescriptionProperty Name

1IntegerSet the interval value
for theVnfLcmOpOcc
cleanup task.

The combination of
interval.value and
interval.unit will
determine the
frequency that the
cleanup task is
executed.

scheduled.cleanup[vnfLcmOpOcc].interval.value

DAYSSet the interval unit
for theVnfLcmOpOcc
cleanup task.

The combination of
interval.value and
interval.unit will
determine the
frequency that the
cleanup task is
executed.

Valid values:

NANOS, MICROS,

MILLIS, SECONDS,

MINUTES, HOURS,

HALF_DAYS, DAYS

scheduled.cleanup[vnfLcmOpOcc].interval.unit

60IntegerSet the age value for
the VnfLcmOpOcc
cleanup task.

The combination of
age.value and age.unit
will determine the age
of orphan records to
be deleted.

scheduled.cleanup[vnfLcmOpOcc].age.value

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
133

ETSI Production Properties
ETSI Production Properties

D e f a u l t
Value

TypeDescriptionProperty Name

DAYSSet the age unit for the
V n f L c m O p O c c
cleanup task.

The combination of
age.value and age.unit
will determine the age
of orphan records to
be deleted.

Valid values:

NANOS, MICROS,

MILLIS, SECONDS,

MINUTES, HOURS,

HALF_DAYS, DAYS

scheduled.cleanup[vnfLcmOpOcc].age.unit

0IntegerSetting a value > 0
turns on paging for
query endpoints.

This value represents
the number of results
to be included per
page.

If a response is paged
and there are further
pages then the
response will include
a header named "Link"
with rel="next" for
example:

<http://example.com

/resources?nextpage_

opaque_marker=abc123>;
rel="next"

The link url will
retrieve the next page.

If there are no further
pages to be retrieved
then the Link header
will be omitted.

paging.size

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
134

ETSI Production Properties
ETSI Production Properties

D e f a u l t
Value

TypeDescriptionProperty Name

falseBooleanSetting the value to
true will change the
behaviour of ETSI
query endpoints to
return the full set of
attributes if an
attribute selector is not
provided (all_fields).

attribute.selector.default.all_fields

falseBooleanDefines whether the
lifecycle operation
will move to terminal
state automatically on
e r r o r d u r i n g
monitoring migration.

monitorMigration.terminalStateOnError

falseBooleanAllows the operations
ENABLE/DISABLE
MONITOR to be
p e r f o r m e d
synchronously. Note:
This is only supported
in a non cloud native
environment.

sync.supported

MONITORING_

MIGRATION

MONITORING_

OPERATION

Part of the properties
used to register the
i n f r a s t r u c t u r e
notifications. Defines
the operation types
filter.

I f t h e s e
properties are
set, then
infrastructure
notifications
will not be
sent to the
o t h e r
subscriptions.

Note

subscription.notifications.infra.

filter.operationTypes

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
135

ETSI Production Properties
ETSI Production Properties

D e f a u l t
Value

TypeDescriptionProperty Name

STARTING

PROCESSING

COMPLETED

FAILED_TEMP

FAILED

ROLLING_BACK

ROLLED_BACK

Part of the properties
used to register the
i n f r a s t r u c t u r e
notifications.

Defines the operation
states filter.

I f t h e s e
properties are
set, then
infrastructure
notifications
will not be
sent to the
o t h e r
subscriptions.

Note

subscription.notifications.infra.

filter.operationStates

StringPart of the properties
used to register the
i n f r a s t r u c t u r e
notifications.

Defines the callback
URI to send the
notifications. This is
the full URI including
the scheme, host and
port.

I f t h e s e
properties are
set, then
infrastructure
notifications
will not be
sent to the
o t h e r
subscriptions.

Note

subscription.notifications.infra.

callbackUri

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
136

ETSI Production Properties
ETSI Production Properties

D e f a u l t
Value

TypeDescriptionProperty Name

BASIC

OAUTH2_CLIENT_

CREDENTIALS

Part of the properties
used to register the
i n f r a s t r u c t u r e
notifications.

D e f i n e s t h e
authentication type for
the notification.

I f t h e s e
properties are
set, then
infrastructure
notifications
will not be
sent to the
o t h e r
subscriptions.

Note

subscription.notifications.infra.

authentication.authType

StringPart of the properties
used to register the
i n f r a s t r u c t u r e
notifications.

Defines the BASIC
authType username.

I f t h e s e
properties are
set, then
infrastructure
notifications
will not be
sent to the
o t h e r
subscriptions.

Note

subscription.notifications.infra.

authentication.paramsBasic.userName

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
137

ETSI Production Properties
ETSI Production Properties

D e f a u l t
Value

TypeDescriptionProperty Name

StringPart of the properties
used to register the
i n f r a s t r u c t u r e
notifications.

Defines the BASIC
authType password.

I f t h e s e
properties are
set, then
infrastructure
notifications
will not be
sent to the
o t h e r
subscriptions.

Note

subscription.notifications.infra.

authentication.paramsBasic.password

StringPart of the properties
used to register the
i n f r a s t r u c t u r e
notifications.

D e f i n e s t h e
OAUTH2_CLIENT_CREDENTIALS

authType client id.

I f t h e s e
properties are
set, then
infrastructure
notifications
will not be
sent to the
o t h e r
subscriptions.

Note

subscription.notifications.infra.

authentication.paramsOauth2ClientCredentials.

clientId

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
138

ETSI Production Properties
ETSI Production Properties

D e f a u l t
Value

TypeDescriptionProperty Name

StringPart of the properties
used to register the
i n f r a s t r u c t u r e
notifications.

D e f i n e s t h e
OAUTH2_CLIENT_CREDENTIALS

authType client
password.

I f t h e s e
properties are
set, then
infrastructure
notifications
will not be
sent to the
o t h e r
subscriptions.

Note

subscription.notifications.infra.authentication.

paramsOauth2ClientCredentials.clientPassword

StringPart of the properties
used to register the
i n f r a s t r u c t u r e
notifications.

D e f i n e s t h e
OAUTH2_CLIENT_

C R E D E N T I A L S

authType token
endpoint. This is the
full URI including the
scheme, host and port.

I f t h e s e
properties are
set, then
infrastructure
notifications
will not be
sent to the
o t h e r
subscriptions.

Note

subscription.notifications.infra.

authentication.paramsOauth2ClientCredentials.

tokenEndpoint

For information on resource definitions, see Resource Definitions for ETSI API, on page 5.

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
139

ETSI Production Properties
ETSI Production Properties

Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
140

ETSI Production Properties
ETSI Production Properties

	Cisco Elastic Services Controller 6.0 ETSI NFV MANO User Guide
	Full Cisco Trademarks with Software License
	Contents
	About This Guide
	Audience
	Terms and Definitions
	Related Documentation
	Obtaining Documentation Request

	ETSI NFV MANO Northbound API Overview
	ETSI NFV MANO Northbound API Overview

	Managing Resources
	Managing Resources
	Resource Definitions for ETSI API
	Updating Resource Definitions

	OAuth (Open Authorization) 2.0 Authentication

	Managing VIM Connectors
	VIM Connectors Overview
	Creating New VIM Connectors
	Using an Existing VIM Connector
	Updating the VIM Connector

	Understanding Virtual Network Function Descriptors
	Virtual Network Function Descriptor Overview
	Defining Extensions to the Virtual Network Function Descriptor

	Managing VNF Lifecycle Operations
	Managing the VNF Lifecycle
	VNF Lifecycle Operations
	Creating the VNF Identifier
	Instantiating Virtual Network Functions
	Querying Virtual Network Functions
	Modifying Virtual Network Functions
	Operating Virtual Network Functions
	Deleting Virtual Network Function Resource Identifier
	Changing the VNF Package

	Monitoring Virtual Network Functions
	Monitoring Virtual Network Functions Using ETSI API
	VM Monitoring Operations
	Notification for VM Monitoring Status

	Monitoring VNFs Using D-MONA
	Onboarding D-MONA
	Deploying D-MONA
	Configuring D-MONA
	Using D-MONA for a Deployed VNF
	Specifying D-MONA Monitoring Agent through ETSI ESC Interface
	Monitoring Using D-MONA
	Resetting the Monitoring Rules for D-MONA

	Migrating the Monitoring Agent
	Migrating the Monitoring Agent
	Executing the Monitoring Migration API
	VNF Notifications During Migration
	Error Scenarios

	Healing Virtual Network Functions
	Healing Virtual Network Functions Using ETSI API
	Recovering VM During Healing
	Updating an Existing Deployment During Healing

	Scaling Virtual Network Functions
	Scaling Virtual Network Functions Using ETSI API
	VNFD Policies for Scaling
	Dependencies on Multiple IP Addresses
	Autoscaling of VNFs

	Managing VNF Snapshot
	Managing VNF Snapshots

	Error Handling Procedures
	VNF Lifecycle Management Error Handling Procedures

	Alarms and Notifications for ETSI LCM Operations
	ETSI Alarms
	Subscribing to Notifications
	ETSI Failure and Load Notifications for VNFs
	Auto-Scaling VNFs Using KPI Instructions
	Healing VNFs Using KPI Instructions

	Administering ESC
	ETSI Performance Reports
	Performance Management Jobs
	Configuring Threshold for Performance Management Job

	ETSI Production Properties
	ETSI Production Properties

