Virtual Network Function Operations

* VNF Operations, on page 1
* VNF Backup and Restore Operations, on page 2
* Managing Individual and Composite VNFs, on page 12

VNF Operations

You can start, stop and reboot VNFs. Start, stop and reboot operations are performed using the RESTful
interface.

A payload is required for VNF operations:
POST ESCManager/v0/{internal tenant id}/deployments/service/{internal deployment id}
Example,

<?xml version='1l.0' encoding='UTF-8'?>

<service operation xmlns='urn:ietf:params:xml:ns:netconf:base:1.0"'>
<operation>stop</operation>

</service operation>

You must mention start, stop or reboot in the operation field.

+ Start VNF: Starts all VMs, enables monitoring, and reassigns thresholds according the KPI details. The
VMs start running and move to VM_ALIVE STATE. The service will be in service active state. Only
undeploy can interrupt the start VNF workflow.

* Stop VNF: Once the service is stopped, monitoring is disabled and all the VM services are stopped. The
VMs are no longer available. The service will be in service_stopped_state. VM will be in shutoff state.
You cannot perform any recovery, scale out, scale in. You can only undeploy the VNFs.

* Reboot VNF: Disables monitoring, reboots all VMs, that is stop and then start in OpenStack, enables
monitoring, and reassigns thresholds according to KPI details. The VM is in VM_ALIVE STATE and
the service is in service_alive_state. Only undeploy can interrupt the reboot operation.

You cannot start monitoring a VNF which is already running. After a reboot, logging back into the VM must
indicate the reboot, update and monitoring details. It must also indicate recovery.

VM Operations

Similar to VNF operations, you can start, stop and reboot individual VMs.

Virtual Network Function Operations .

Virtual Network Function Operations |
. VNF Backup and Restore Operations

A payload is required for VM operations:

POST ESCManager/v0/{internal tenant id}/deployments/vm/{vm name}

Example,

<?xml version='1l.0' encoding='UTF-8'?>

<vm_operation xmlns='urn:ietf:params:xml:ns:netconf:base:1.0'>
<operation>stop</operation>

<force>true/false</force>
</vm_operation>

You must mention start, stop or reboot in the operation field.

VNF Backup and Restore Operations

This section describes VNF backup and restore operations using VM snapshots.

VNF Backup Operations

Manage VM Snapshots

ESC creates a snapshot, which is an image (and a volume in certain circumstances) on OpenStack VIM. ESC
APIs manage the snapshots of VNFs managed by ESC. ESC supports three main snapshot operations:

* Create VM snapshots

* List VM snapshots

* Delete VM snapshots
ESC executes the VM snapshot operations using ESC REST API with HTTP and HTTPS protocols. The
create and delete VM snapshot operations are supported through esc_nc c1i script. Both Netconf and REST

API notifications are generated during the various stages of the snapshot operations for create and delete
operations.

)

Note The VM snapshot operations are supported on the OpenStack VIM only.

Create VM Snapshot

You can create a snapshot (using the REST API or the esc_nc_cli script) from any VNF that is managed by
the ESC VM. A snapshot can only be created for active or stopped VNFs, which translate to the ESC VM
status of VM_ALIVE or VM_STOPPED respectively. You can specify the snapshot name in the payload of
the API invocations. A unique ID is generated along with the snapshot name, which is used as a reference
when specifying the ESC snapshot operation payloads, if the snapshot name is not unique. A snapshot (an
image) is created on OpenStack. In case of a VNF which uses a bootable volume, a volume snapshot is also
created on OpenStack.

Create Snapshot Using REST API
To create a snapshot, specify an HTTP POST operation to the ESCManager API:

POST: /ESCManager/v0/<tenant-id>/deployments/snapshot-vm/<generated-vm-name>

. Virtual Network Function Operations

| Virtual Network Function Operations
VNF Backup Operations .

The payload must contain operation and name values, and the operation value must be snapshot.

operation: snapshot
name: <snapshot-name>

If successful, an HTTP 200 code is returned, and there is no payload.

If unsuccessful (validation error or OpenStack API error), an appropriate HTTP error code and error message
are returned.

The following shows the API invocation to create a snapshot:

[admin@localhost]$ cat snapshot.json
{

"operation": "snapshot",

"name": "my-snapshot-name"

}

[admin@localhost]$ curl -X POST -d @snapshot.json -H 'Content-Type: application/json' -H
'callback: http://localhost:9009' -H 'Callback-ESC-Events: http://localhost:9009'
"'hittpo: //ocalhost :8080/ESAVeErager/A0/ snapshot—tenant/deploymentss/snapshot—my/new-ceployment—n new-gr 0 af0148e2-e74c-4oe7408c1-4%db3defaoa"

Create Snapshot Using esc_nc_cli script

To create a snapshot using the esc_nc_c11i script, fixed parameters can be passed specifying the generated
VM name and operation:

VM Backup Action : vm-backup-action vm-name backup-name [<action-type>] [<xmlfile>]
action-type := SNAPSHOT |EXPORT

The optional action-type parameter defaults to SNAPSHOT if not specified. The following shows the script
invocation to create a snapshot:

[admin@localhost]$ esc nc cli vm-backup-action
new-deployment-n new-gr 0 af0l48e2-e74c-4be7-b8cl-49bd53defbba my-snapshot-name SNAPSHOT
VM Backup Action
/opt/cisco/esc/confd/bin/netconf-console --port=830 --host=127.0.0.1 --user=esc-nc-admin
--privKeyFile=/home/admin/.ssh/confd id rsa --privKeyType=rsa
--rpc=/tmp/tmp esc nc_cli.c8d9kAjcGf
<?xml version="1.0" encoding="UTF-8"7?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">

<ok/>
</rpc-reply>

If successful, an XML payload with a single <ok/> element is returned. If unsuccessful (validation error or
OpenStack API error), an appropriate error message is returned.

Notes
Note the following for both ESC REST API and the esc_nc_cli:

* Snapshot names must be less than or equal to 255 characters in length.
* The generated VM name must be valid.
* action-type must be SNAPSHOT or EXPORT (esc_nc_c1i only).

« xmlfile - if specified - must contain a valid XML document (esc_nc_cli only).

Notifications

Both Netconf notifications and ESC REST callback messages are sent during the create snapshot operation.

Virtual Network Function Operations .

Virtual Network Function Operations |
. VNF Backup Operations

Table 1:

Notification (NETCONF or ESC callback) When the notification is sent

VM_BACKUP_INIT When the API is invoked and validation passed.

VM_BACKUP_CREATED When OpenStack has successfully received and
validated the snapshot create request.

VM_BACKUP COMPLETE When OpenStack has finished the snapshot create
request operation, and it was either a success, or an
error occurred.

The following shows an example VM_BACKUP_CREATED successful Netconf notification (other notifications
are similar):

<?xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2021-09-14T12:18:39.836+00:00</eventTime>
<escEvent xmlns="http://www.cisco.com/esc/esc">
<status>SUCCESS</status>
<status_code>202</status_code>
<status_message>Snapshot is now active.</status message>
<depname>snapshot-deployment-name</depname>
<tenant>snapshot-tenant</tenant>
<tenant 1d>7d61b5de73874£88a458d486759%9a9%9p83</tenant id>
<depid>aelbea05-9630-4d17-a9%e7-926£f1£f625dc7</depid>
<vm_group>snapshot-group</vm_group>
<vm_source>
<vmid>1773914c-20cd-4£50-b337-1ed6be2cf295</vmid>
<vmname>new-deployment-n new-gr 0 af0l48e2-e74c-4be7-b8cl-49bd53defbba</vmname>

<generated vmname>new-deployment-n new-gr 0 af0l48e2-e74c-4be7-b8cl-49bd53defbba</generated vmname>

<vim_id>default openstack_vim</vim_ id>
<vim project>snapshot-tenant</vim project>
<vim project i1d>7d61b5de73874£88a458d486759%9a9b83</vim project id>
<hostid>95503baadeccce2d33e5d924322390aee9d30c6ed24043284bf46984</hostid>
<hostname>pf-ucs-27</hostname>
</vm_source>
<event>
<type>VM BACKUP_ CREATED</type>
</event>
</escEvent>
</notification>

For the failure cases, Netconf notifications and ESC REST callback messages are still generated, but:

* the <status> value will be FAILURE,
» the <status_code> will be 500, and

« the <status_message> will be an appropriate message, either internally generated or sent back from
OpenStack.

. Virtual Network Function Operations

| Virtual Network Function Operations
VNF Backup Operations .

List Snapshot

You can list the snapshots using the ESC REST API. Only the snapshots managed by ESC can be listed. A
subset of the snapshot data can be specified as query parameters to reduce the number of snapshots returned.
The returned snapshot data can be in XML or JSON format, controlled by the HTTP Accept header. The
Accept header value defaults to XML if not specified.

Only the ESC REST API supports listing snapshots. The esc_nc_c1i does not supported listing ESC managed
entities.

List Snapshot Usig ESC REST API

To list snapshots, an HTTP GET operation can be specified to the ESCManager API:
GET: /ESCManager/v0/snapshots

Optional query parameters can also be specified: internal Tenantld, generatedVMName
An HTTP 200 code is always returned regardless of how many snapshots are returned.

The following shows the API invocation to list a snapshot for a specific internal tenant id and generated VM
name:

[admin@localhost]$ curl -X GET --header "Accept: application/xml"
"hitp: //localhost:8080/ESMareger/Al)/snepah oS intermel Trent ok ged o-tenantsogsrerated Maresnaw-deployrent—n rewgr 0 afl148:2-€74c-4os Al -4%cb30ef6a!"

| xmllint --format -

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<snapshots>
<snapshot xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<id>7813c20b-94b6-492b-ae74-0bd36cl168dc</id>
<name>my-snapshot-name</name>
<creation_ start date>2021-07-20T11:26:47.53272</creation_start date>
<creation end date>2021-07-20T11:27:53.139Z2</creation_end date>
<status>available</status>
<status message>Snapshot image for VM [gen vm name] is active.</status message>

<gen vm name>new-deployment-n new-gr 0 af0148e2-e74c-4be7-b8cl-4%d53def6ba</created from generated vm name>

<vim id>default openstack vim</vim id>
<tenant>snapshot-tenant</tenant>
<bootable volume snapshot id:c3cd5d13-63bf-49f0-b864-df3bc024d5e4/>
</snapshot>
</snapshot>

\}

Note There are no notifications generated when this API is invoked.

Delete Snapshots

Snapshot created by ESC can be deleted using REST API or the esc_nc_c1i script. Only snapshots managed
by the current ESC VM can be deleted, and only one snapshot can be deleted at a time. If successful, the
snapshot is deleted from ESC, and also the related image and volume snapshot (if applicable) within OpenStack.

Delete Snapshots Using REST API

To delete a snapshot previously created via ESC, an HTTP DELETE operation can be specified to the
ESCManager API:

DELETE: /ESCManager/v0/snapshots/<snapshot-id|snapshot-name>

Virtual Network Function Operations .

Virtual Network Function Operations |
. VNF Backup Operations

Either a snapshot id can be passed, or a snapshot name. If successful, an HTTP 200 code is returned, and there
is no payload. If unsuccessful (validation error or OpenStack API error), an appropriate HTTP error code and
error message are returned. The following shows the API invocation to delete a snapshot:

[admin@localhost]$ curl -X DELETE -H 'callback: http://localhost:9009' -H
'Callback-ESC-Events: http://localhost:9009"'
"http://localhost:8080/ESCManager/v0/snapshots/7813c20b-94b6-492b-ae74-0bd36c1168dc"

Delete Snapshot Using esc_nc_c1i

To delete a snapshot using the esc_nc_c1li script, only a snapshot id or snapshot name needs to be passed as
the single parameter:

Snapshot Action : snapshot-action <snapshot-id|snapshot-name>

The following shows the script invocation to create a snapshot:
[admin@localhost]$ esc nc cli snapshot-action delete my-snapshot-name
or

[admin@localhost]$ esc nc_cli snapshot-action delete my-snapshot-name-1
<?xml version="1.0" encoding="UTF-8"?>
<error xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<error code>404</error code>
<error message>Snapshot image [my-snapshot-name-1] not found.</error message>
</error>

If successful, an XML payload with a single <ok/> element is returned. If unsuccessful (validation error or
OpenStack API error), an appropriate error message is returned.

Note the following for both ESC REST APl and esc_nc_cli.

* The snapshot id or snapshot name must be valid.

* If a snapshot name is specified, it must be unique.

Notifications
Both Netconf notifications and ESC REST callback messages are sent during the delete snapshot operation.

The notifications are:

Table 2:

Notification (Netconf and/or ESC Callback) When the notification is sent

VM_SNAPSHOT_DELETING Sent upon successful submission and validation.

VM_SNAPSHOT DELETED When OpenStack has finished the snapshot delete
operation, and it was either a success, or an error
occurred.

If the snapshot has a volume snapshot along with the
image snapshot, then the notification will not be sent
until both are deleted.

The following shows an example VM_SNAPSHOT DELETED successful Netconf notification (other
notifications are similar):

<?xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">

. Virtual Network Function Operations

| Virtual Network Function Operations
VNF Backup Operations .

<eventTime>2021-09-14T12:18:39.836+00:00</eventTime>

<escEvent xmlns="http://www.cisco.com/esc/esc">

<status>SUCCESS</status>

<status_code>200</status_code>

<status_message>Snapshot image [2ffadd36-3b41-4cl3-a9d6-a48c07764dla] has been

deleted.</status_message>

<depname>snapshot-deployment-name</depname>

<tenant>snapshot-tenant</tenant>

<tenant 1d>7d61b5de73874£88a458d486759%9a9%9b83</tenant id>

<depid>ae0bea05-9630-4d17-a9%e7-926£f1£f625dc7</depid>

<vm_group>snapshot-group</vm_group>

<vm_source>
<vmid>1773914c-20cd-4£50-b337-1ed6be2cf295</vmid>
<vmname>new-deployment-n new-gr 0 af0l48e2-e74c-4be7-b8cl-49bd53defbba</vmname>

<gen_vm name>new-deployment-n new-gr 0 af(0l48e2-e74c-4be7-b8cl-49bd53def6ba</generated vmname>

<vim id>default openstack vim</vim id>
<vim project>snapshot-tenant</vim project>
<vim project i1d>7d61b5de73874£88a458d486759%9a9b83</vim project id>
<hostid>95503baadeccce2d33e5d924322390aee9d30c6ed24043284b£f46984</hostid>
<hostname>pf-ucs-27</hostname>

</vm_source>

<event>
<type>VM SNAPSHOT DELETED</type>

</event>

</escEvent>

</notification>

For the failure cases, Netconf notifications and ESC REST callback messages are still generated, but:

* the <status> value will be FAILURE,
» the <status_code> will be 500, and

* the <status_message> will be an appropriate message, either internally generated or sent back from
OpenStack.

VM Snapshot Polling Parameters

Vim Manager configuration properties can be used to control the interval between calls to OpenStack to check
the status of the create and delete operations, along with the maximum number of minutes an operation is
allowed before timing out with an error.

These properties are:

+ vim.asyncpoller.snapshot.create.poll.secs # default 15, the number of seconds between polls

+ vim.asyncpoller.snapshot.create.timeout.mins # default 20, maximum number of minutes for the create
snapshot operation

« vim.asyncpoller.snapshot.delete.poll.secs # default 15, the number of seconds between polls
+ vim.asyncpoller.snapshot.delete.timeout.mins # default 20, maximum number of minutes for the delete

snapshot operation

The default values can be overridden by setting them in the application.properties file under
/opt/cisco/esc/vimmanager/application.properties, and restarting the vim manager service, as shown below:

[admin@localhost]$ sudo cat /opt/cisco/esc/vimmanager/application.properties
vim.asyncpoller.snapshot.create.poll.secs=5
vim.asyncpoller.snapshot.create.timeout.mins=10

Virtual Network Function Operations .

. VNF Backup Operations

Virtual Network Function Operations |

vim.asyncpoller.snapshot.delete.poll.secs=10
vim.asyncpoller.snapshot.delete.timeout.mins=60

[admin@localhost]$ sudo escadm vimmanager restart
Stopping vimmanager service: [OK]
Starting vimmanager service: [OK]

[admin@localhost]$ sudo escadm vimmanager show
VimManager System Configurations.

{

"ccp.pollRetries": "200",

"ccp.pollRetryDelaySecs": "15",

"vim.asyncpoller.snapshot.create.poll.secs": "5",

"vim.asyncpoller.snapshot.create.mins": "10",

"vim.asyncpoller.snapshot.delete.poll.secs": "10",

"vim.asyncpoller.snapshot.delete.timeout.mins": "60",

"vmware.ovitool.params": "--acceptAllEulas --disableVerification --noSSLVerify
--allowExtraConfig",

"vmware.powerOnRetry": "8"

}

In an HA setup, the application properties file will need to be copied to both nodes.

Alternatively, the values can be set dynamically (although their values will not be persisted after a restart),
using the escadm script:

[admin@loclhost] sudo escadm vimmanager set --config
vim.asyncpoller.snapshot.create.poll.secs=200
vim.asyncpoller.snapshot.create.timeout.mins=1

VimManager configuration [vim.asyncpoller.snapshot.create.poll.secs] has updated to [200].
VimManager configuration [vim.asyncpoller.snapshot.create.timeout.mins] has updated to [1].

Snapshots of VNFs with Bootable Volumes

If a snapshot is taken of an ESC managed VNF which has a boot volume, then both an image snapshot and a
volume snapshot are created within OpenStack.

)

Note

The image snapshot name will be the snapshot name specified in the snapshot payload. The volume snapshot
name (if applicable) will be be prepended with snapshot for .

For example, if a snapshot is taken on an ESC VM of a VNF with a bootable volume, and the snapshot was
named my-snapshot-name, then the following would hold true:

[admin@localhost]$ openstack volume snapshot list | grep my-snapshot-name

52a96891-£22d-4863-bb47-bd9%442calcbl | snapshot for my-snapshot-name | None | available

[admin@localhost]$ openstack image list | grep my-snapshot-name

c8846cl14-48e4-45db-88a0-£838fc3ac29d | my-snapshot-name | active |

Volume snapshots cannot be used directly either within ESC or natively on OpenStack in a restore operation:
a bootable volume must be created from the snapshot first. ESC supports creating bootable volumes from
volume snapshots. For more information, see VNF Restore Operations.

. Virtual Network Function Operations

| Virtual Network Function Operations

VNF Restore Operations .

VNF Restore Operations

Snapshot of VNFs Without Bootable Volumes

If ESC takes a snapshot of a VNF with a non-bootable volume, then that snapshot is stored in OpenStack as
a snapshot image, and that snapshot image can be used to restore from via ESC's service update functionality.
A service update XML can be created identical to the original deployment XML but with the snapshot image
name. Once this service update XML is deployed to ESC using the REST or esc_nc_c1i interfaces, ESC will
internally update its image name for the VNF, and upon the next redeployment (typically triggered manually
using the REST or esc_nc_c1i interfaces), a new deployment will be created with the new image.

Snapshots of VNFs With Bootable Volumes

If ESC takes a snapshot of a VNF with a bootable volume, then that snapshot is stored in OpenStack as both
a snapshot image and a volume snapshot. The volume snapshot cannot be used directly within the restore
process of a VNF, either by ESC or by OpenStack. A bootable volume must first be created from the volume
snapshot which is considered out-of-band from ESC's perspective (i.e. not managed directly by ESC). Once
the bootable volume is created and available, then it can be used to restore from via ESC's service update
functionality. A service update XML can be created identical to the original deployment XML, but with a
delete operation against the named original volume, and a create operation specifying the new, bootable
volume. Once this service update XML is deployed to ESC using the REST or esc_nc_c11i interfaces, ESC
will automatically swap out the original volume for the new volume without the need for a VNF redeployment,
thus preserving all OpenStack UUIDs and resources.

The original volume (which was detached from the VNF) will still remain in OpenStack and must be cleaned
up manually.

Create Bootable Volume from Volume Snapshot

If ESC takes a snapshot of a VNF with a bootable volume, then a volume snapshot is created in OpenStack,
and ESC can then be used to create a bootable volume from the volume snapshot. Creating a bootable volume
from the volume snapshot is required for any restoration operations, either within ESC or the OpenStack APIs
directly. The volume name can be specified in the payload of the ESC REST API invocation. The esc_nc_c1i
script does not support creating a bootable volume from a volume snapshot. Volume names do not have to
be unique, as a unique ID is generated alongside the name which can be used as a reference when specifying
ESC restore operation payloads. The end result of a successfully created volume from volume snapshot will
be a new, bootable volume in OpenStack

)

Note
an Orchestrator directly.

The new, bootable volume on OpenStack is not managed by ESC. It is out-of-band and must be managed by

Create Bootable Volume from Volume Snapshot Using REST API

To create a volume from a volume snapshot, an HTTP POST operation can be specified to the snapshot
endpoint of the ESCManager API:

POST: /ESCManager/v0/snapshots/<snapshot-id>/volumes

The payload must contain a name value which will be the new volume's name, but can volume_type, multiattach
and bootable can be optionally specified.

operation: snapshot
name: <snapshot-name>

Virtual Network Function Operations .

Virtual Network Function Operations |
. VNF Restore Operations

volume type: <valid-volume-type> # defaults to the OpenStack default volume type
multiattach: <truel|false> # defaults to false
bootable: <true|false> # defaults to true

If successful, an HTTP 202 code is returned (indicating that the operation has bee successfully submitted to
OpenStack), and there is no payload. If unsuccessful (validation error or OpenStack API error), an appropriate
HTTP error code and error message are returned.

The following shows the API invocation to create a snapshot after listing it within ESC first to determine the
snapshot id:

[admin@localhost]$ curl -s
"http://localhost:8080/ESCManager/v0/snapshots?internalTenantId=dave-2000" | xmllint --format
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<snapshots>
<snapshot xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<id>171ffa7d-8318-47dl-acab-b01db4501a39</id>
<name>my-snapshot-name</name>
<creation start date>2021-09-20T08:29:22.074+01:00</creation start date>
<creation end date>2021-09-20T08:33:41.193401:00</creation_end date>
<status>active</status>
<status_message>Snapshot image for
[new-dep-4 new-gr 0 34b9da8a-af64-4452-a8a3-8972e23e4e98] is active.</status message>

<created from generated vm name>new—dep-4 new—gr 0 34o9da8a—af64-4452-a8a3-8972e23e4e98</created from generated vm name>

<vim_id>my-snapshot-vim</vim id>
<tenant>dave-2000</tenant>
<volume snapshot id>c4548ba4-0480-4b42-8229-ad98ded44b3ea</volume snapshot id>
</snapshot>
</snapshots>

[admin@localhost]$ cat volume from volume snapshot.json
{
"name": "my-bootable-volume-from-snapshot-volume",

"multiattach": true

}
[admin@localhost]$ curl -X POST -d @volume from volume snapshot.json -H 'Content-Type:
application/json' -H 'callback: http://localhost:9009' -H 'Callback-ESC-Events:
http://localhost:9009"
"http://localhost:8080/ESCManager/v0/snapshots/171ffa7d-8318-47dl-acab-b01db4501a39/volume"
[admin@localhost]$ openstack volume list | grep my-bootable-volume
| c4548bad4-0480-4b42-8229-ad98ded4b3ea | my-bootable-volume-from-snapshot-volume | available

21 |
The ESC REST API applies the following validation:

* Volume names must be less than or equal to 255 characters in length.

* The snapshot id must be for a snapshot that ESC managed (i.e. it must be one of the snapshots that a list
snapshot operation would return).

» name must be specified in the payload - all other attributes can optionally be set.
» Non-supported attribute names in the payload are ignored.

* The snapshot must have been taken for a VNF which had a bootable volume.

Notifications

Only ESC REST callback messages are generated for this operation.

. Virtual Network Function Operations

| Virtual Network Function Operations
VNF Restore Operations .

Two callback messages are generated: VM_VOLUME_ ACCEPTED EVENT and
VM_VOLUME_CREATED EVENT.

Following is an example of the VM_VOLUME CREATED EVENT ESC REST callback message:

{
"escTransactionId": "5acac790-9213-45c0-8fde-9dd7d3111£fdb",

"eventType": "VM_VOLUME_CREATED_EVENT" ,
"eventSourceContext": null,
"eventTargetContext": null,
"message": "Create volume snaphot request completed",
"stateMachineEventNBInfo": {
"id": "de9440c0-1342-441d-al6e-5c8267231laeb",
"message": {},
"logNames": [],
"keywords": {},
"actionInfo": {},
"stackTrace":
} 4
"escParameter": {
"external volume id": "c3cd5d13-63bf-49f0-b864-df3bc024d5e4",
"size": "2",
"sizeunit": null,
"bus": "virtio",
"type": "LVM",
"outOfBand": "false",
"bootIndex": null,
"name": "daves-ooband-bootable-volume-for-restore",
"format": null,
"deviceType": null,
"storageLocation": null,
"external tenant id": null,
"internal tenant id": null,
"internal volume id": null,
"volid": null,
"event type": null,
"image": null
} 4
"vmUpdateType": null,
"requestDetails": null,
"statusCode": "201",
"notificationOnlyEvent": false

Polling Configuration Parameters

Vim Manager configuration properties can be used to control the interval between calls to OpenStack to check
the status of the create volume operation, along with the maximum number of minutes an operation is allowed

before timing out with an error.

These properties are:

» vim.asyncpoller.volume.create.poll.secs # default 15, the number of seconds between polls

* vim.asyncpoller.volume.create.timeout.mins # default 20, maximum number of minutes for the create
volume operation

[admin@localhost]$ sudo cat /opt/cisco/esc/vimmanager/application.properties
vim.asyncpoller.volume.create.poll.secs=5
vim.asyncpoller.volume.create.timeout.mins=10

[admin@localhost]$ sudo escadm vimmanager restart

Virtual Network Function Operations .

Virtual Network Function Operations |
. Managing Individual and Composite VNFs

Stopping vimmanager service: [OK]
Starting vimmanager service: [OK]

[admin@localhost]$ sudo escadm vimmanager show
VimManager System Configurations.

{

"ccp.pollRetries™: "200",

"ccp.pollRetryDelaySecs": "15",

"vim.asyncpoller.volume.create.poll.secs": "5",

"vim.asyncpoller.volume.create.mins": "10",

"vmware.ovitool.params": "--acceptAllEulas --disableVerification --noSSLVerify
--allowExtraConfig",

"vmware.powerOnRetry": "8"

}

\)

Note In an HA setup, the application properties file will need to be copied to both nodes.

Managing Individual and Composite VNFs

An individual service consists of a single VNF. A coupled service or a composite VNF consists of several
VMs of different types. The ESC interface receives VM interdependency information from the northbound
system, and uses this information during VM and VNF creation, and life cycle management. Interdependency
could include VM specific workflow in the group of VMs in a single VNF, VNF monitoring and scalability
and so on.

Create, read, update and delete operations are allowed on the VMs. To add more VM instances to a deployed
VNF using static IP, you must provide additional IP addresses into the static IP pool. If you are using an
existing static IP deployment, the minimum number of VMs is altered.

If the new minimum value, which is the number of VMs is greater than the active VMs, a new VM is added
to the service. If the value is greater than the max value, the update is rejected.

. Virtual Network Function Operations

	Virtual Network Function Operations
	VNF Operations
	VNF Backup and Restore Operations
	VNF Backup Operations
	VNF Restore Operations

	Managing Individual and Composite VNFs

