
Upgrading the VNF Software Using LCS

ESC supports upgrading the VNF software application while updating a deployment. Using the policy
datamodel, new Lifecycle Stages (conditions) are introduced to support the VNF upgrade. The VNF upgrade
policies can be different for different VM groups. These policies are applicable for a group of VMs, and can
be specified under <vm_group> rather than the entire deployment.

• Upgrading VNF Software, on page 1
• Upgrading VNF Software with Volume, on page 2
• Upgrading VNF in a Deployment, on page 10

Upgrading VNF Software
ESC supports upgrading the initial or base image in a deployment. The ESC policy framework provides
custom scripts to upgrade the software for new and existing VMs. Incremental updates are supported for the
VMs, provided the ESC policy frameworks are up-to-date.

• Upgrading Existing VMs—The following ESC policy framework triggers script for upgrading existing
VMs already deployed before the software version update.
LCS::DEPLOY_UPDATE::POST_VM_SOFTWARE_VERSION_UPDATED

• Upgrading New VMs—The following ESC policy framework triggers script for upgrading new VMs
when deployed, being recovered, or when scaling out.
LCS::DEPLOY::POST_VM_ALIVE

For information on VNF Upgrade with Volume, see Upgrading VNF Software with Volume.

Updating VNF Software Version and triggering Software Upgrade
The scenario explains the procedure to trigger a software upgrade using the custom script. A CSR VM is
upgraded in the example below. The service update using the csr_dep2.xml triggers the custom script action
LCS::DEPLOY_UPDATE::POST_VM_SOFTWARE_VERSION_UPDATED. The LCS first disables
monitoring of that VM, and then calls the csr_upgrade.exp script. The script connects to the CSR, scp's the
specified upgrade .bin to the boot flash of the CSR, points the boot loader to that new bin file, and reboots
the CSR VM. It then resets the bootup_time and enables monitoring. The bootup_time allows the CSR to
finish rebooting without being redeployed by ESC.

Upgrading the VNF Software Using LCS
1



Procedure

Step 1 Deploy the ESC VM.
Step 2 Upload the Day 0 configuration to the ESC VM as /var/tmp/csp-csr-day0-config.
Step 3 Upload the custom upgrade script to the ESC VM. For example, upload csr_upgrade.exp script to the ESC

VM as /var/tmp/csr_upgrade.exp.
Step 4 Execute chmod +x /var/tmp/csr_upgrade.exp.
Step 5 Edit the initial deployment data model, for example dep.xml to include relevant IPs, username, password, and

the upgrade version of the CSR.
Step 6 Edit the deployment data model's (dep.xml's) software version to reflect the upgraded CSR version.
Step 7 Upload the CSR upgrade to the home directory of the ESC user.
Step 8 Upgrade the deployedCSRVM.Run the command: esc_nc_cli --user <username> --password <password>

edit-config csr_dep2.xml

Upgrading VNF Software with Volume
When a service is initially deployed, the data model has the policies configured for future software upgrade.
When a deployment update request is received, VM upgrade is initiated as part of deployment update.
LCS::DEPLOY_UPDATE::VM_PRE_VOLUME_DETACH is triggered before ESC detaches a volume. A
script is supported at this lifecycle stage to unmount the volume before it is detached. ESC detaches and deletes
the old volume which contains the old version of the software. After the volume is detached successfully,
LCS::DEPLOY_UPDATE::VM_POST_VOLUME_DETACHED is triggered. A script is run at this LCS for
further clean ups. When the new volume with a newer software version is attached,
LCS::DEPLOY_UPDATE::VM_VOLUME_ATTACHED is triggered. ESC creates and attaches the new
volume which contains the new version of the software. A script is run to mount the volume and trigger
software installation. Once the volume is attached,
LCS::DEPLOY_UPDATE::VM_SOFTWARE_VERSION_UPDATED is triggered after ESC has updated
the software version of the VM. A script is run at this stage to complete the configuration for the software
upgrade.

Data model for VNF Software Upgrade:

<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<tenants>
<tenant>
<name>test</name>
<deployments>
<deployment>
<name>dep</name>
<vm_group>
<name>Group1</name>
<volumes>
<volume nc:operation="delete">
<name>v1.0</name>
<volid>0</volid>

</volume>
<volume>
<name>v2.0</name>
<volid>1</volid>

Upgrading the VNF Software Using LCS
2

Upgrading the VNF Software Using LCS
Upgrading VNF Software with Volume



<sizeunit>GiB</sizeunit>
<size>2</size>
<bus>virtio</bus>
<type>lvm</type>


</volume>
</volumes>
<software_version>2.0</software_version>
<policies>
<policy>
<name>SVU1</name>
<conditions>
<condition>
<name>LCS::DEPLOY_UPDATE::PRE_VM_VOLUME_DETACH</name>

</condition>
</conditions>
<actions>
<action>
<name>LOG</name>
<type>pre_defined</type>

</action>
</actions>

</policy>
<policy>
<name>SVU2</name>
<conditions>
<condition>
<name>LCS::DEPLOY_UPDATE::POST_VM_VOLUME_ATTACHED</name>

</condition>
</conditions>
<actions>
<action>
<name>LOG</name>
<type>pre_defined</type>

</action>
</actions>

</policy>
<policy>
<name>SVU3</name>
<conditions>
<condition>
<name>LCS::DEPLOY_UPDATE::POST_VM_SOFTWARE_VERSION_UPDATED</name>

</condition>
</conditions>
<actions>
<action>
<name>LOG</name>
<type>pre_defined</type>

</action>
</actions>

</policy>
</policies>

</vm_group>
</deployment>

</deployments>
</tenant>

</tenants>
</esc_datamodel>

In this data model, the existing volume v1.0 with volid of 0 is deleted. A new volume v2.0 with volid of 1 is
added. The software version, <software_version> value is changed from 1.0 to 2.0. Three policies are added
for the VNF software upgrade.

Upgrading the VNF Software Using LCS
3

Upgrading the VNF Software Using LCS
Upgrading VNF Software with Volume



• Instead of deleting and creating a new volume, you can update the volume properties. You can retain the
name, vol_id, and image properties. If any of the above three properties change, then the volume will be
deleted and created again.

• The volume size can be extended, and the bootable property can be changed. Other properties such as
volume type, and image properties that are changed will trigger the volume to be created again.

• To update the volume id, you must remove the volume and add the volume again with a different volume
id.

• The volume created by ESC cannot be updated by an out of band volume with same volume id, and vice
versa.

Note

Supported Lifecycle Stages (LCS) for VNF Software Upgrade with Volume
Each lifecycle stage has a condition and an action. Based on the condition, the action is executed. For
information on policy driven data model, see Policy-Driven Data model. The following three conditions are
configured for the VNF software upgrade:

DescriptionScopeCondition Name

Triggered just before the
ESC detaches a volume

DeploymentLCS::DEPLOY_UPDATE::VM_PRE_VOLUME_DETACH

Triggered immediately after
ESC has detached a volume

DeploymentLCS::DEPLOY_UPDATE::POST_VM_VOLUME_DETACHED

Triggered immediately after
ESC has attached a new
volume

DeploymentLCS::DEPLOY_UPDATE::POST_VM_VOLUME_ATTACHED

Triggered immediately after
ESC has updated the
software version of the VM

DeploymentLCS::DEPLOY_UPDATE::POST_VM_SOFTWARE_VERSION_UPDATED

LCS::DEPLOY_UPDATE::PRE_VM_VOLUME_DETACH

This LCS condition is triggered before ESC detaches the volume. A script is run to unmount the volume
before it is detached.
<policy>

<name>SVU1</name>
<conditions>

<condition>
<name>LCS::DEPLOY_UPDATE::PRE_VM_VOLUME_DETACH</name>

</condition>
</conditions>
<actions>

<action>
<name>LOG</name>
<type>pre_defined</type>

</action>

Upgrading the VNF Software Using LCS
4

Upgrading the VNF Software Using LCS
Supported Lifecycle Stages (LCS) for VNF Software Upgrade with Volume



</actions>
</policy>

LCS::DEPLOY_UPDATE::POST_VM_VOLUME_ATTACHED

This LCS is triggered after the ESC has attached a new volume. A script is run to mount the volume and install
new applications on the new volume.
<policy>

<name>SVU2</name>
<conditions>

<condition>
<name>LCS::DEPLOY_UPDATE::POST_VM_VOLUME_ATTACHED</name>

</condition>
</conditions>
<actions>

<action>
<name>LOG</name>
<type>pre_defined</type>

</action>
</actions>

</policy>

LCS::DEPLOY_UPDATE::POST_VM_SOFTWARE_VERSION_UPDATED

This LCS is triggered after the ESC has updated the software version of the VM. A Script is run to perform
final configurations to complete the software upgrade.

<policy>
<name>SVU3</name>
<conditions>

<condition>
<name>LCS::DEPLOY_UPDATE::POST_VM_SOFTWARE_VERSION_UPDATED</name>

</condition>
</conditions>
<actions>

<action>
<name>LOG</name>
<type>pre_defined</type>

</action>
</actions>

</policy>

All three policies above show LOG action as the predefined action in the data model sample. If a script
execution is needed, then a SCRIPT action can be added. See the Script action section below for a sample
script.

Note

Script Action

In the above examples, all the actions are pre-defined logs. You can have custom scripts instead.

<action>
<name>unmount_volume</name>
<type>SCRIPT</type>
<properties>

<property>
<name>script_filename</name>
<value>/opt/cisco/esc/esc-scripts/unmount.sh</value>

</property>

Upgrading the VNF Software Using LCS
5

Upgrading the VNF Software Using LCS
Supported Lifecycle Stages (LCS) for VNF Software Upgrade with Volume



<property>
<name>user_param</name>
<value>value</value>

</property>
</properties>

</action>

All the property name and value pairs are passed to the script as space separated parameters. In the above
example, the unmount.sh value will be be called by the scripts as follows:

/opt/cisco/esc/esc-scripts/unmount.sh user_param value

Prebuilt property names can be set to pass the ESC internal ids to the specified script. The prebulit property
names are as follows:

<property>
<name>internal_deployment_id</name>

</property>
<property>
<name>external_deployment_id</name>

</property>
<property>
<name>deployment_name</name>

</property>
<property>
<name>internal_tenant_id</name>

</property>
<property>
<name>external_tenant_id</name>

</property>

Here is an example of a script with the prebuilt property names and values, which ESC generates.
script_name.sh deployment_name my-deployment-name external_deployment_id
18fbcfd5-8b63-44e0-97ec-68de25902917
external_tenant_id my-tenant-id internal_deployment_id my-tenant-idmy-deployment-name
internal_tenant_id my-tenant-id

By default, ESC allows 15 minutes for the script execution to complete. Some scripts may take longer time
to complete. An optional property can be specified to extend the timeout value in seconds. In the example
below, the timeout of the script is set to 3600 seconds.

<property>
<name>wait_max_timeout</name>
<value>3600</value>

</property>

Notifications for Virtual Network Function Software Upgrade
Notifications are triggered at each stage of the VNF Software upgrade.

Volume Detached

status SUCCESS
status_code 200
status_message Detached 1 volume: [Volume=test-esc-1,volid=1]
depname dep
tenant test
tenant_id 9132cc90b8324a1c95a6c00975af6206
depid eb4fe3b5-138d-41a3-b6ff-d6fa9035ca6c

Upgrading the VNF Software Using LCS
6

Upgrading the VNF Software Using LCS
Notifications for Virtual Network Function Software Upgrade



vm_group Group1
vm_source {

vmid cd4eeb61-61db-45a6-9da1-793be08c4de6
hostid 8e96b8830d7bfbb337ce665586210fcca9644cbe238240e207350735
hostname my-server-5
software_version 1.0
interfaces {

interface {
nicid 0
type virtual
port_id 26412180-45cf-4f0b-ab45-d05bb7ca7091
network 943fda9e-79f8-400c-b442-3506f102721a
subnet e313b95c-ca1f-4c81-8d60-c9e721a85d0b
ip_address 192.168.0.56
mac_address fa:16:3e:18:90:1e
netmask 255.255.255.0
gateway 192.168.0.1

}
}
volumes {

volume {
display_name test-esc-1__v0_0_0_1
external_id 5d008a12-6fb1-492a-b648-4cf7fc8c68b1
bus virtio
type lvm
size 2

}
}

}
vm_target {
}
event {

type VM_UPDATED
}

}
}

Volume Removed

notification {
eventTime 2016-11-24T00:27:25.457+00:00
escEvent {

status SUCCESS
status_code 200
status_message Removed 1 volume: [Volume=test-esc-3,volid=1]
depname dep
tenant test
tenant_id 9132cc90b8324a1c95a6c00975af6206
depid f938ca24-d0c2-42b3-a757-66b0543fe0a6
vm_group Group1
vm_source {

vmid 91379ad1-1cfc-4a10-abaf-068d01ae92b9
hostid 101f55110748903af4844a2517e854f64843b9ac8d880ad68be8af59
hostname my-server-4
software_version 1.0
interfaces {

interface {
nicid 0
type virtual
port_id a8201c3e-2c6e-4313-94d0-1b4eee14f08a
network 943fda9e-79f8-400c-b442-3506f102721a
subnet e313b95c-ca1f-4c81-8d60-c9e721a85d0b
ip_address 192.168.0.220
mac_address fa:16:3e:eb:bd:77

Upgrading the VNF Software Using LCS
7

Upgrading the VNF Software Using LCS
Notifications for Virtual Network Function Software Upgrade



netmask 255.255.255.0
gateway 192.168.0.1

}
}

}
vm_target {
}
event {

type VM_UPDATED
}

}
}

Volume Attached

notification {
eventTime 2016-11-23T19:54:48.105+00:00

status_message Attached 1 volume: [Volume=test-esc-2,volid=0]
depname dep
tenant test
tenant_id 9132cc90b8324a1c95a6c00975af6206
depid eb4fe3b5-138d-41a3-b6ff-d6fa9035ca6c
vm_group Group1
vm_source {

vmid cd4eeb61-61db-45a6-9da1-793be08c4de6
hostid 8e96b8830d7bfbb337ce665586210fcca9644cbe238240e207350735
hostname my-server-5
software_version 1.1
interfaces {

interface {
nicid 0
type virtual
port_id 26412180-45cf-4f0b-ab45-d05bb7ca7091
network 943fda9e-79f8-400c-b442-3506f102721a
subnet e313b95c-ca1f-4c81-8d60-c9e721a85d0b
ip_address 192.168.0.56
mac_address fa:16:3e:18:90:1e
netmask 255.255.255.0
gateway 192.168.0.1

}
}
volumes {

volume {
display_name test-esc-2__v0_0_0_1
external_id bf5c9a01-e9fb-42fa-89ee-73699d6c519c
bus virtio
type lvm
size 2

}
}

}
vm_target {
}
event {

type VM_UPDATED
}

}
}

Software Version Updated

notification {
eventTime 2016-11-23T20:06:56.75+00:00

Upgrading the VNF Software Using LCS
8

Upgrading the VNF Software Using LCS
Notifications for Virtual Network Function Software Upgrade



escEvent {
status SUCCESS
status_code 200
status_message VM Software Updated. VM name:

[dep_Group1_0_c9edef63-4d9d-43ea-af1b-16527ed2edae], previous version: [1.0], current
version: [1.1]

depname dep
tenant test
tenant_id 9132cc90b8324a1c95a6c00975af6206
depid eb4fe3b5-138d-41a3-b6ff-d6fa9035ca6c
vm_group Group1
vm_source {

vmid cd4eeb61-61db-45a6-9da1-793be08c4de6
hostid 8e96b8830d7bfbb337ce665586210fcca9644cbe238240e207350735
hostname my-server-5
software_version 1.1
interfaces {

interface {
nicid 0
type virtual
port_id 26412180-45cf-4f0b-ab45-d05bb7ca7091
network 943fda9e-79f8-400c-b442-3506f102721a
subnet e313b95c-ca1f-4c81-8d60-c9e721a85d0b
ip_address 192.168.0.56
mac_address fa:16:3e:18:90:1e
netmask 255.255.255.0
gateway 192.168.0.1

}
}
volumes {

volume {
display_name test-esc-2__v0_0_0_1
external_id bf5c9a01-e9fb-42fa-89ee-73699d6c519c
bus virtio
type lvm
size 2

}
}

}
vm_target {
}
event {

type VM_SOFTWARE_VERSION_UPDATED
}

}
}

Service Updated

notification {
eventTime 2016-11-23T20:06:56.768+00:00
escEvent {

status SUCCESS
status_code 200
status_message Service group update completed successfully
depname dep
tenant test
tenant_id 9132cc90b8324a1c95a6c00975af6206
depid eb4fe3b5-138d-41a3-b6ff-d6fa9035ca6c
vm_source {
}
vm_target {
}
event {

Upgrading the VNF Software Using LCS
9

Upgrading the VNF Software Using LCS
Notifications for Virtual Network Function Software Upgrade



type SERVICE_UPDATED
}

}
}

Upgrading VNF in a Deployment
ESC allows upgrading the VNF software in an already existing deployment in any of the following lifecycle
stages.

• LCS—PRE SOFTWARE UPGRADE-SCRIPT ACTION

• LCS—POST SOFTWARE UPGRADE-SCRIPT ACTION

The NB can choose to use PRE, POST or BOTH to execute the custom action script.

For details on custom scripts, see custom scripts in Script Actions. For lifecycle stages, see Lifecycle Stage
(LCS) Policy Conditions Defined at Different Stages.

The LCS_NOTIFY notification can be turned on or off for each of the lifecycle stage. For any software_version
change, the final notification for each VM is VM_SOFTWARE_VERSION_UPDATED. ESC receives the
SERVICE_UPDATED notification for each of the deployment update.

ESC supports the following VNF software upgrade scenarios in an existing deployment.

• VNF upgrade after deployment

• VNF deployment and application upgrade in an existing deployment

For details on updating other resources in an existing deployment, see Updating an Existing Deployment.

VNF Upgrade After Deployment

The VNF upgrade can happen in a single or staged transaction.

ESC adds the LCS policy and changes the software version in a single transaction.

In the two staged transaction, ESC adds the LCS policy in the first transaction, and triggers the software
upgrade with the software version change in the second transaction.

Notifications

• LCS_NOTIFY—LCS::DEPLOY_UPDATE::PRE_VM_SOFTWARE_VERSION_UPDATE

• LCS_NOTIFY—LCS::DEPLOY_UPDATE::POST_VM_SOFTWARE_VERSION_UPDATED

• VM_SOFTWARE_VERSION_UPDATED

• SERVICE_UPDATED

Error

ESC performs an early validation on the VNF upgrade process. An error occurs if the custom script file does
not exist. The transaction is rejected and no notifications are sent to the NFVO.

An error occurs if the custom script times out. The following notifications are sent to the NFVO.

• LCS::DEPLOY_UPDATE::PRE_VM_SOFTWARE_VERSION_UPDATE

Upgrading the VNF Software Using LCS
10

Upgrading the VNF Software Using LCS
Upgrading VNF in a Deployment

Cisco-Elastic-Services-Controller-User-Guide-5-4_chapter22.pdf#nameddest=unique_120
Cisco-Elastic-Services-Controller-User-Guide-5-4_chapter24.pdf#nameddest=unique_129
Cisco-Elastic-Services-Controller-User-Guide-5-4_chapter24.pdf#nameddest=unique_129
Cisco-Elastic-Services-Controller-User-Guide-5-4_chapter30.pdf#nameddest=unique_88


• LCS::DEPLOY_UPDATE::PRE_VM_SOFTWARE_VERSION_UPDATE

• VM_SOFTWARE_VERSION_UPDATED

• SERVICE_UPDATED

VNF Deployment and Application Upgrade in an Existing Deployment

During the VNF deployment and application upgrade, ESC sends the following notifications to the NFVO.

• VM_DEPLOYED

• LCS_NOTIFY-LCS::DEPLOY::POST_VM_ALIVE

• VM_ALIVE

• SERVICE_ALIVE

Error

An error occurs when the custom script times out. The following notifications are sent to the NFVO.

• VM_DEPLOYED

• LCS::VM::POST_VM_ALIVE

• VM_DEPLOYED

• SERVICE_ALIVE

Upgrading the VNF Software Using LCS
11

Upgrading the VNF Software Using LCS
Upgrading VNF in a Deployment



Upgrading the VNF Software Using LCS
12

Upgrading the VNF Software Using LCS
Upgrading VNF in a Deployment


	Upgrading the VNF Software Using LCS
	Upgrading VNF Software
	Updating VNF Software Version and triggering Software Upgrade

	Upgrading VNF Software with Volume
	Supported Lifecycle Stages (LCS) for VNF Software Upgrade with Volume
	Notifications for Virtual Network Function Software Upgrade

	Upgrading VNF in a Deployment


