Understanding Virtual Network Function
Descriptors

» Virtual Network Function Descriptor Overview, on page 1
* Defining Extensions to the Virtual Network Function Descriptor, on page 1

Virtual Network Function Descriptor Overview

ESC supports a TOSCA-based Virtual Network Function Descriptor (VNFD) to describe the VNF
characteristics. The VNFD conforms to the GSNFV-SOL 001 v.2.7.1 specifications and standard specified
by ETSI (which in turn implements TOSCA Smple Profilein YAML Version 1.2).

The VNFD file describes the instantiation parameters and operational behaviors of the VNFs. It contains KPIs,
and other key requirements that can be used in the process of onboarding and managing the lifecycle of a
VNF.

For VNF Lifecycle operations, see VNF Lifecycle Operations.

Defining Extensions to the Virtual Network Function Descriptor

ESC implements extensions to the VNFD defined by Cisco to expose the more advanced concepts supported
by ESC, are not explicitly defined in the ETSI standards. These extensions have been implemented in an
ETSI-compliant way to ensure maximum compatibility with other ETSI MANO components.

If there is a requirement to control these properties on a per-deployment basis, then replace the hard-coded
values with inputs in the VNFD that can be supplied as additionalParams in the incoming request.

VNFCs (tosca.nodes.nfv.Vdu.Compute)

The Compute node allows for many of the ESC features to be exposed via the extended
tosca.datatypes.nfv.VnfcAdditionalConfigurableProperties. This includes the fOllOWing:

* Overriding the automatically generated name for a VNFC on the VIM.
* VIM flavor (overriding the ETSI capabilities specified for a VNFC).

* Supplying ESC with an expected bootup time to prevent further actions being taken until this timer has
expired.

Understanding Virtual Network Function Descriptors .

Cisco-Elastic-Services-Controller-ETSI-User-Guide-5-4_chapter5.pdf#nameddest=unique_23

Understanding Virtual Network Function Descriptors |
Defining Extensions to the Virtual Network Function Descriptor

* Providing Day-0 configuration blocks to execute/store on the VNFC once deployed.
* Specifying KPI parameters and associated rules to configure the monitoring agent.

* Intra-VM Group placement rules.

Here is the data type extension definition:

data types:
cisco.datatypes.nfv.VnfcAdditionalConfigurableProperties:
derived from: tosca.datatypes.nfv.VnfcAdditionalConfigurableProperties
properties:
vim flavor:
type: string
required: true
bootup time:
type: integer
required: true
vm_name override:
type: string
required: false
recovery action:
type: string
required: true
recovery wait time:
type: integer
required: true
monitor on error:
type: boolean
description: Continue monitoring of VNFC on error state.
required: false
max_retries:
type: integer
description: The number of recovery attempts
required: false
kpi data:
type: map # key: event name
description: The different KPIs applicable to this VDU
required: false
entry schema:
type: cisco.datatypes.nfv.data.Kpi
description: A single KPI
admin rules:
type: map # key: event name
description: Actions for events
required: false
entry schema:
type: cisco.datatypes.nfv.data.Admin rules
description: Define actions for events
name override:
type: string
description: An optional custom name that be be configured on the VIM
required: false
vendor section:
type: cisco.datatypes.nfv.VendorExtension
required: false

cisco.datatypes.nfv.VnfcConfigurableProperties:
derived from: tosca.datatypes.nfv.VnfcConfigurableProperties
properties:
additional vnfc configurable properties:
type: cisco.datatypes.nfv.VnfcAdditionalConfigurableProperties
required: false

. Understanding Virtual Network Function Descriptors

| Understanding Virtual Network Function Descriptors

node_types:

cisco.nodes.nfv.vVdu.Compute:
.nfv.vdu.Compute

derived from: tosca.nodes
properties:

configurable properties:
.nfv.vnfcConfigurableProperties

type: cisco.datatypes

Defining Extensions to the Virtual Network Function Descriptor .

description: Describes the configurable properties of all VNFC instances based on

this VDU
required: false

For example:

vdul:

type: tosca.nodes.nfv.Vdu.Compute

properties:
name: Example VDUL

description: Example VDU

boot order:

- bootl-volume

configurable properties:

additional vnfc configurable properties:
vim flavor: Automation-Cirros-Flavor
bootup_time: 1800
vm_name_override: my-vdu-1
recovery action: REBOOT_THEN REDEPLOY
recovery wait time: 100
monitor on error: false
max retries: 2
kpi data:
VM_ALIVE—I:
event name: 'VM ALIVE-1'
metric_value: 1
metric_cond: 'GT'
metric_type: 'UINT32'
metric_occurrences_true: 1
metric_occurrences false: 30
metric_collector:
type: 'ICMPPing'
nicid: 1
poll frequency: 10
polling unit: 'seconds'
continuous_alarm: false
admin_rules:

VM_ALIVE—I:
event name: 'VM ALIVE-1'
action:
- 'ALWAYS log'

- 'FALSE recover autohealing'

- '"TRUE esc_vm alive notification'
placement type: zone
placement target: nova
placement enforcement: strict
vendor_section:

cisco_esc:
config data:
example.txt:

file: ../Files/Scripts/example.txt
variables:
DOMAIN NAME: { get input: DOMAIN NAME }
NAME_SERVER: { get_input: NAME_SERVER }
VIP ADDR: { get input: VIP_ADDR }
VIP_PREFIX: { get_input: VIP_PREFIX }

vdu_profile:

min number of instances: 1

Understanding Virtual Network Function Descriptors .

Understanding Virtual Network Function Descriptors |
Defining Extensions to the Virtual Network Function Descriptor

max number of instances: 1
capabilities:
virtual compute:
properties:
virtual cpu:
num virtual cpu: 8
virtual memory:
virtual mem size: 16
requirements:
- virtual storage: cdrl-volume
- virtual storage: bootl-volume

If vm_name_override is not specified, ESC will auto generate the VM names.

ESC stores the VNFC specific value in
Vnflnstance.instanti atedVnfl nfo.vnfcResourcel nfo.metadata.vim _vm_name for the VNFC identified by the
vduld, which matches the label given to the Compute node representing the VNFC.

Note You can supply a high number of input parameters, allowing the use of a single template for multiple
deployments.

Connection Points (cisco.nodes.nfv.VduCp)

The Cisco extensions to the VduCp node type mainly allows for defining the interface requirements map. The
features added to the connection point are as follows:

* Overriding the automatically generated name for a port on the VIM

* Identification of whether the port is a management port (i.e. used for monitoring)
« Allowed Address Pairs!

* Support for specific network card types and interface types, e.g. SR-IOV

* Support for port binding profiles

» Whether port security is enabled

For example:

vdul nicO:
type: cisco.nodes.nfv.VduCp
properties:
layer protocols: [ipvé6]
protocol:
- associated layer protocol: ipvé
trunk mode: false
order: Oallowed address pairs:
- ip address: { get input: VDUl NICO_ AADR PAIRS }
virtual network interface requirements:
- support mandatory: true
network interface requirements:

nw_card model: virtio

iface type: direct
management: true

name override: my-vdul-nicO

! currently too complex to include in the map and is therefore an extension outside of the specification

. Understanding Virtual Network Function Descriptors

Understanding Virtual Network Function Descriptors
Defining Extensions to the Virtual Network Function Descriptor .

port security enabled: false
binding profile:
trusted: true
requirements:
- virtual binding: vdul

ESC ETSINFV MANO supports SR-IOV properties using the Cisco network requirements. You can configure
the interface to associate the VNFC with an SR-IOV pass through adapter by specifying the type as direct, as
per the previous example.

If there is a requirement to control these properties on a per-deployment basis, then replace the hard-coded
values with inputs in the VNFD that can be supplied as additionalParams in the incoming request.

\}

Note The port binding profile is available for Pike and later versions of OpenStack.

Volumes (tosca.nodes.nfv.Vdu.VirtualBlock Stor age)

ESC supports out-of-band volumes as a Cisco extension. This allows the specification of the persistent volume
UUID as the resourceId property against the virtualBlockStorage node to be used in place of the ephemeral
volume defined in the VNFD. Instead of adding extra properties, ESC allows to override the volume specified
in the VNFD and supplies its own persistent (deployed out-of-band) storage by identifying it with a UUID
from the VIM.

For example:

bootl-volume:
type: tosca.nodes.nfv.Vdu.VirtualBlockStorage
properties:
virtual block storage data:
size of storage: 4GB
vdu_storage requirements:
resource_id: { get_input: VDUl _BOOT VOL_UUID }
vol id: 1
bus: ide
type: LUKS
sw_image_ data:
name: 'Automation Cirros'
version: '1.0'
checksum: 9af30fce37a4c5c831e095745744d6d2
container format: bare
disk_format: gcow2
min_disk: 2 GB
size: 2 GB

artifacts:
sw_image:
type: tosca.artifacts.nfv.Swlmage
file: ../Files/Images/Automation-Cirros.gcow2

Note The VNFD accepts the volume or software image size in mebibyte-based units such as MiB, GiB or TiB
equivalent. If the volume or software image size is in megabyte-based units such as MB, GB or TB, ESC
converts the size to mebibyte-based equivalent and adjusts to the nearest value. Ensure you use mebibyte-based
units for volume or software image size for clarity.

Security Group Rule (cisco.nodes.nfv.VduCp)

Understanding Virtual Network Function Descriptors .

Understanding Virtual Network Function Descriptors |
Defining Extensions to the Virtual Network Function Descriptor

As per the handling a persistent of the volume above, ESC provides the ability to specify an out-of-band
security group instead of configuring one in the VNFD. This is because the verbs used to describe the security
group in the standards documentation are too simplistic for a very complicated configuration. Since the security
group is being specified for use on a connection point, this is where it is defined in the VNFD.

For example:

cl nic0:
type: cisco.nodes.nfv.vVduCp
properties:
order: 0
layer protocols: [ipv6]
protocol:
- associated layer protocol: ipvé6
trunk mode: false
virtual network interface requirements:
- support mandatory: true
network interface requirements:

management: "false"
name override: { get input: Cl _SRIOV_A INT NAME }
iface_type: "direct"
metadata:
security groups: { get input: VIM NETWORK SEC GRP_0 }
requirements:

- virtual binding: cl
Virtual Links (tosca.nodes.nfv.VnfVirtualLink)
The virtual links defined in the VNFD can be used to define those physical provider networks.
Example VNFD:

vpc-di-internall:
type: tosca.nodes.nfv.VnfVirtuallLink

properties:
connectivity type:
layer protocols: [ipv4]
description: DI Internal 1 Network VL
vl profile:

max bitrate requirements:
root: 100000
min bitrate requirements:
root: 0
virtual link protocol data:
- associated layer protocol: ethernet
12 _protocol data:
network type: vlan
segmentation id: { get input: VL1 SEG ID }
physical network: vlan network

They can also be used to specify the IP subnets that an internal connection point may use when using DHCP
to assign an address to them.

Example VNFD

vpc-di-internal?2:
type: tosca.nodes.nfv.VnfVirtuallLink

properties:
connectivity type:
layer protocols: [ipv4]
description: DI Internal 1 Network VL
vl profile:

max bitrate requirements:
root: 100000

. Understanding Virtual Network Function Descriptors

| Understanding Virtual Network Function Descriptors
Defining Extensions to the Virtual Network Function Descriptor .

min bitrate requirements:
root: 0
virtual link protocol data:
- associated layer protocol: ipv4
13 _protocol data:
ip version: ipvi4
cidr: 1.180.10.0/29
dhcp_enabled: true

For information on lifecycle management operations, see Managing the VNF Lifecycle.

\}

Note The previous versions of ESC supported Cisco-only extensions to support the above functionality. These
extensions were outside of the specification and although now these extensions are largely conformant with
the SOLO001 standard, the previous definitions are still supported by ESC for backwards compatibility. For
more information, see the Cisco Elastic Services Controller 5.4 documentationlf vm_name.

Understanding Virtual Network Function Descriptors .

https://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/5-4/etsi/guide/Cisco-Elastic-Services-Controller-ETSI-User-Guide-5-4/managing_vnf_lifecycle_using_etsi_api.html#concept_u3j_mtf_2cb

Understanding Virtual Network Function Descriptors |
. Defining Extensions to the Virtual Network Function Descriptor

. Understanding Virtual Network Function Descriptors

	Understanding Virtual Network Function Descriptors
	Virtual Network Function Descriptor Overview
	Defining Extensions to the Virtual Network Function Descriptor

