
Managing Resources

• Managing Resources, on page 1
• Resource Definitions for ETSI API, on page 1
• OAuth (Open Authorization) 2.0 Authentication, on page 6

Managing Resources

Resource Definitions for ETSI API
Cisco Elastic Services Controller (ESC) resources comprise of images, flavours, tenants, volumes, networks,
and subnetworks. These resources are the ones that ESC requests to provision a Virtual Network Function.

For ETSI MANO, these resource definitions are created by NFVO either at the time of onboarding the VNF
package or onboarding the tenant, and represented by the VIM identifiers in the request to ESC.

For information on managing resources using NETCONF or REST APIs, see Managing Resources Overview
in the Cisco Elastic Services Controller User Guide.

ETSI API Documentation

You can access the ETSI API documentation directly from the ESC VM:

http://[ESC VM IP]:8250/API

The ETSI API documentation provides details about all the various operations supported through the ESTI
MANO interface.You can also see the Cisco ETSI API Guide for more information.

The following table lists the resource definitions on the VIM that must be made available before VNF
instantiation.

Managing Resources
1

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-programming-reference-guides-list.html

Table 1: Resource Definitions on VIM

OpenStackResource Definitions

Out of band tenants

You can create a tenant using NETCONF API, REST
API, or the ESC portal. You can also create a tenant
directly on the VIM. The tenant is then referred to
within the vimConnectionInfo data structure. Formore
information, see VIM Connectors Overview.

Tenants

Out of band images

The NFVO onboards a VNF package, extracts and
then onboards the image contained within the VNF
package on to the VIM. Though the VNFD refers to
the image file, because of the size of the image file,
instead of onboarding the image at the time of
deployment, the vimAssets in the Grant stipulates the
image to be used.

Images

Out of band flavors

During onboarding of the VNF package, the NFVO
looks at each cisco.nodes.nfv.Vdu.Compute node's
capabilities in the VNFD to determine the flavor to
be created. This is available later at the time of
instantiation, or optionally overriden by a VIM flavor
supplied at instantiation time as an additional
parameter.

ETSI deployment flavour is a different
concept than OpenStack compute flavor.
For more information, see Terms and
Definitions in About This Guide.

Note

Flavors

ESC supports out-of-band volumes as a Cisco
extension to the ETSI specification.

Volumes

External networks are specified in the instantiation
payload to which external connection points will
connect.

External Networks (Virtual Link)

External networks specified in the instantiation
payload to which internal virtual links will be bound
instead of creating ephemeral networks.

Externally Managed Internal Virtual Links

Out-of-band subnetsSubnetworks

For information on onboarding VNF packages and lifecycle operations using the ETSI API, see Managing
the VNF Lifecycle.

Managing Resources
2

Managing Resources
Resource Definitions for ETSI API

Cisco-Elastic-Services-Controller-ETSI-User-Guide-5-3_chapter3.pdf#nameddest=unique_11
Cisco-Elastic-Services-Controller-ETSI-User-Guide-5-3_chapter5.pdf#nameddest=unique_12
Cisco-Elastic-Services-Controller-ETSI-User-Guide-5-3_chapter5.pdf#nameddest=unique_12

Updating Resource Definitions
This section provides details about updating ETSI API resource definitions.

Updating the VNF Flavour

You can define the alternate VNF nodes and deployment flavours for a single VNFD using the following
TOSCA parameters:

• Import statements—The import statement allows a single, parent VNFD yaml file to conditionally
include other files based on an input value which can be specified dynamically, at run time.

• Substitution mappings—The substitution mapping applies only to the node types derived from the
tosca.nodes.nfv.VNF. You cannot substitute values of other node types that is, Connection Points, Virtual
Links and so on.

Example1:

In this example, the yaml file contains three import files.

All three files must exist in the VNFD ZIP archive file in the same location as the parent file importing them.

The requirements and capabilities are not defined in the derived tosca.nodes.nfv.VNF node. These aremandatory
for defining characteristics of VNFs instantiated using this VNFD. They are defined within the imported files.
tosca_definitions_version: tosca_simple_yaml_1_2
description: Substitution Mapping Example

imports:
- df_default.yaml
- df_silver.yaml
- df_gold.yaml

. . .

node_types:
my-vnf:
derived_from: tosca.nodes.nfv.VNF

. . .

topology_template:

. . .

########################
Substitution Mapping
########################
substitution_mappings:
node_type: my-vnf
requirements:
None

node_templates:

vnf:
type: my-vnf
properties:
descriptor_id: 8717E6CC-3D62-486D-8613-F933DE1FB3A0

. . .

Managing Resources
3

Managing Resources
Updating Resource Definitions

flavour_id: default
flavour_description: Default VNF Deployment Flavour

Example 2:

When the VNF is instantiated, the required flavour is sent in the Instantiate request to the VNFM. The TOSCA
parser tries to match the flavour and the VNF node name with the defined substitution mappings. These may
be imported or defined within the VNFD itself. For example, the df_silver.yaml contains the following:

tosca_definitions_version: tosca_simple_yaml_1_2

description: Silver Deployment Flavour

imports:

topology_template:
substitution_mappings:
node_type: my-vnf
properties:
flavour_id: silver
flavour_description: Silver VNF Deployment Flavour
requirements:
- virtual_link: [vm1_nic1, virtual_link]

silver is the flavourId passed in the Instantiate Request payload. The parent yaml shown above has its empty
requirements section updated with the requirements from the silver profile, and the existing flavour_id and
flavour_description properties are updated as well.

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0
description: Deployment Flavour SILVER
topology_template:
substitution_mappings:
node_type: tosca.nodes.nfv.VNF.CiscoESC
requirements:
virtual_link: [anECP, external_virtual_link]

capabilities:
deployment_flavour:
properties:
flavour_id: silver
description: 'SILVER Deployment Flavour'
vdu_profile:
vdu_node_1:
min_number_of_instances: 2
max_number_of_instances: 2

instantiation_levels:
default:
description: 'Default Instantiation Level'
vdu_levels:
vdu_node_1:
number_of_instances: 1

scale_info:
default_scaling_aspect:
scale_level: 2

silver_level:
description: 'SILVER Instantiation Level'
vdu_levels:
vdu_node_1:
number_of_instances: 2

scale_info:
default_scaling_aspect:
scale_level: 2

default_instantiation_level_id: default
vnf_lcm_operations_configuration: {}

Managing Resources
4

Managing Resources
Updating Resource Definitions

scaling_aspect:
- default_scaling_aspect

cisco_esc_properties:

description: "SILVER: This is substituted if not already defined"

ESC sends a POST request to update the VNF flavour:

Method Type:

POST

VNFM Endpoint:

/vnflcm/v1/vnfinstances/{vnfInstanceId}/change_flavour

Updating the External VNF Connectivity

You can update the external VNF connectivity in an existing deployment. The API supports the following
changes:

• Disconnect the existing connection points (CPs) to the existing external virtual link and connect to a
different virtual link.

• Change the connectivity parameters of the existing external CPs, including changing the addresses.

ESC sends a POST request to update the VNF external connectivity:

Method Type

POST

VNFM Endpoint

/vnflcm/v1/vnfinstances/{vnfInstanceId}/change_ext_conn

Request Payload (Data structure = ChangeExtVnfConnectivityRequest)

{
"extVirtualLinks": [
{
"id": "extVL-98345443-7797-4c6d-a0ed-e18771dacf1c",
"resourceId": "node_1_ecp",
"extCps": [
{
"cpdId": "node_1_ecp",
"cpConfig": [
{
"cpProtocolData": [
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"numDynamicAddresses": 2,
"subnetId": "esc-subnet"

}
]

}
}

]
}

Managing Resources
5

Managing Resources
Updating Resource Definitions

]
}

]
}

]
}

The id in the extVirtualLinks, extVL-98345443-7797-4c6d-a0ed-e18771dacf1c in the above example, must
also exist in the instantiatedVnfInof in the vnfInstance.

Note

Merging Policy

The substitution merges the new values into the VNFD.

1. For regular scalar properties such as name=joe, the value is replaced in the VNFD.

2. Arrays such as [list, of, strings] are merged. The new values are added into the array, if they do not exist.

3. Objects such as where a key is indented under another key, are replaced. The configurable_properties
object in the matched substitution will overwrite that defined in the VNFD.

Parser Behaviour

• After the substitution mappings are made, the parser tries to populate any additionalParams provided.
Note that the command fails if the input parameters do not match those in the template.

For more information on VNF lifecycle operations, see Managing the VNF Lifecycle.

OAuth (Open Authorization) 2.0 Authentication
The ETSI NFVMANO supports OAuth 2.0 authentication for SOL003 Or-Vnfm reference point. The NFVO
makes a token request to ESC providing the client credentials such as client id and client secret for
authentication. In turn, ESC verifies the request and returns the access token.

The NFVO makes a POST request providing the clientId and secret as primary authentication.

Method Type

POST

URL
{apiRoot}/oauth2/token

Header

Authorization: Basic {base 64 encoded CLIENT_ID:CLIENT_SECRET}
Accept: application/json
Content-Type: application/x-www-form-urlencoded

Body
grant_type=client_credentials

Managing Resources
6

Managing Resources
OAuth (Open Authorization) 2.0 Authentication

Cisco-Elastic-Services-Controller-ETSI-User-Guide-5-3_chapter5.pdf#nameddest=unique_12

ESC returns the access token in response.

Example:
{

"access_token":
"eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJjaHJpcyIsImlzcyI6IkVUU0ktVk5GTSIsImlhdCI6MTU1ODYwMzk2NiwiZXhwIjoxNTU4NjA0NTY2f

Q.lAtre7vdCKJjgzNs7p9P3NS2qMcXegC-oWXmy5Kakn0AL95gLWF6liOqPViMZNnWZLOsG5r1kPnGoBWnN0tgIw",
"token_type": "bearer",
"expires_in": 600

}

The access token is then used to access the or_vnfm endpoints.

Example:

Method

GET

URL
{apiRoot}/vnflcm/v1/subscriptions

Headers
Authorization: Bearer eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJjaHJpcyIsImlzcyI6IkVUU0k
tVk5GTSIsImlhdCI6MTU1ODYwMzk2NiwiZXhwIjoxNTU4NjA0NTY2fQ.lAtre7vdCKJjgzNs
7p9P3NS2qMcXegC-oWXmy5Kakn0AL95gLWF6liOqPViMZNnWZLOsG5r1kPnGoBWnN0tgIw

The existing tokens become invalid if the ETSI service is restarted.Note

Accessing and Updating the OAuth Properties File

ESC stores the client id and secret in the new etsi-production.yaml properties file in the same location as the
etsi-production.properties file. The new escadm etsi commands are available to maintain the client id and
secret values. The client secret is encrypted the same way as the existing rest username.

To add or update a client id

sudo escadm etsi oauth2_clients --set <CLIENT_ID>:<CLIENT_SECRET>

To remove a client id

sudo escadm etsi oauth2_clients --remove <CLIENT_ID>

Restart the ETSI services after updating the OAuth 2.0 values.Note

For information on other properties, see ETSI Production Properties.

OAuth Calls from ETSI to the NFVO

ESC supports OAUTH 2.0 calls from ETSI to the NFVO.

The following properties are added to the etsi-production.properties file:

Managing Resources
7

Managing Resources
OAuth (Open Authorization) 2.0 Authentication

Cisco-Elastic-Services-Controller-ETSI-User-Guide-5-3_appendix1.pdf#nameddest=unique_15

nfvo.clientID=<YourClientID>
nfvo.clientSecret=<YourClientSecret>
nfvo.tokenEndpoint=<Your NFVO Token Endpoint>
nfvo.authenticationType=OAUTH2

The Client id, ClientSecret and TokenEndpoint must match that of the OAUTH 2.0 Server. The authentication
type determines authentication of the outgoing calls from ESC to the NFVO. The authentication type must
be either BASIC, or OAUTH2.

The tokens from the NFVO are stored against the token endpoint in the properties file.

When the NFVO sends a call request, ETSI checks for the tokens stored against the token endpoint. If the
token has not expired, then ETSI adds the old token to the header of the request and executes the call. A new
token is required if the token fails to execute.

If there are no tokens against the token endpoint, then new tokens are required to execute the call.

OAuth 2.0 Notification and Subscription

The subscription payloads must add the following to enable OAuth 2.0 authentication with the notifications:

{
"authentication": {
"authType": [
"OAUTH2_CLIENT_CREDENTIALS"

],
"paramsOauth2ClientCredentials": {
"clientId": <client_id>,
"clientPassword": <client_secret>,
"tokenEndpoint": <token_endpoint>

}
}

}

Managing Resources
8

Managing Resources
OAuth (Open Authorization) 2.0 Authentication

	Managing Resources
	Managing Resources
	Resource Definitions for ETSI API
	Updating Resource Definitions

	OAuth (Open Authorization) 2.0 Authentication

