KPIs, Rules and Metrics

* KPIs, Rules and Metrics, on page 1

KPIs, Rules and Metrics

Rules

Cisco Elastic Services Controller VNF monitoring is done through the definition of Key Performance Indicators
(KPIs) metrics. Core metrics are preloaded with ESC, a programmable interface gives to the end-user the
ability to add and remove metrics, but also to define the actions to be triggered on specified conditions.These
metrics and actions are defined at the time of deployment.

The ESC metrics and actions datamodel is divided into 2 sections:

1. KPI—Defines the type of monitoring, events, polling interval and other parameters. This includes the
event_name, threshold and metric values. The event_name is user defined. The metric_values specify
threshold conditions and other details. An event is triggered when the threshold condition is reached.

2. Rule—Defines the actions when the KPI monitoring events are triggered. The action element defines the
actions to be performed when an event corresponding to the event name is triggered.

The ESC object model defines for each vim_group a section where the end-user can specify the administrative
rules to be applied based on the outcome of the KPIs selected metric collector.

<rules>
<admin_rules>
<rule>
<event name>VM ALIVE</event name>
<action>TRUE esc_vm alive notification</action>
<action>FALSE recover autohealing</action>

</rule>
</admin_rules>
</rules>

As mentioned within the KPIs section, correlation between KPIs and Rules is done based on the value of the
<event name> tag.

In the Rules section above, if the outcome of the KPIs defining event name is VM_ALIVE, and the selected
metric collector is TRUE, then the action identified by the key, TRUE esc_vm_alive notification is selected
for execution.

KPIs, Rules and Metrics .

KPIs, Rules and Metrics |
. Metrics and Actions

If the outcome of the KPIs defining event name is VM_ALIVE, and the selected metric collector is FALSE,
then the action identified by the key, FALSE recover autohealing is selected for execution.

For information on updating KPIs and Rules, see Updating the KPIs and Rules.

Metrics and Actions

ESC Metrics and Actions (Dynamic Mapping) framework is the foundation of the kpis and rules sections. As
described in the KPIs section the metric type uniquely identifies a metric and its metadata.

The metrics and actions is as follows:

<metrics>
<metric>
<name>ICMPPING</name>
<userLabel>ICMP Ping</userLabel>
<type>MONITOR SUCCESS FAILURE</type>
<metaData>
<type>icmp ping</type>
<properties>
<property>
<name>ip address</name>
<value />
</property>
<property>
<name>enable events after success</name>
<value>true</value>
</property>
<property>
<name>vm gateway ip address</name>
<value />
</property>
<property>
<name>enable check interface</name>
<value>true</value>
</property>
</properties>
</metaData>
</metric>

</metrics>
The above metric is identified by its unique name ICMPPING. The <type> tag identifies the metric type.
Currently ESC supports two types of metrics:

* MONITOR SUCCESS FAILURE

« MONITOR_THRESHOLD

The <metadata> section defines the attributes and properties that is processed by the monitoring engine.
The metric_collector type in the KPI show the following behavior:

At regular intervals of 3 seconds the behavior associated with the ICMPPING identifier is triggered. The
ICMPPING metric is of type MONITOR SUCCESS_FAILURE, that is the outcome of the monitoring action
is either a success or a failure. In the sample above, an icmp_ping is performed using the <ip_address> field
defined in the <metadata> section. In case of SUCCESS the rule action(s) with the TRUE prefix will be
selected for execution. In case of FAILURE the rule action(s) with the FALSE prefix is selected for execution.

<actions>
<action>

. KPls, Rules and Metrics

Cisco-Elastic-Services-Controller-User-Guide-5-10_chapter31.pdf#nameddest=unique_90/unique_90_Connect_42_section_ibz_x4l_jx

KPls, Rules and Metrics

Metrics and Actions APIs .

<name>TRUE servicebooted.sh esc vm alive notification</name>
<type>ESC_POST EVENT</type>
<metaData>
<type>esc post_ event</type>
<properties>
<property>
<name>esc_url</name>
<value />
</property>
<property>
<name>vm_external id</name>
<value />
</property>
<property>
<name>vm_name</name>
<value />
</property>
<property>
<name>event name</name>
<value />
</property>
<property>
<name>esc_event</name>
<value>SERVICE_BOOTED</value>
</property>
</properties>
</metaData>
</action>
</actions>
The action sample above describes the behavior associated with the SUCCESS value. The ESC rule action

name TRUE servicebooted.sh esc_vm_alive notification specifies the action to be selected. Once selected
the action <type> ESC_POST EVENT identifies the action that the monitoring engine selects.

Metrics and Actions APls

In Cisco ESC Release 2.1 and earlier, mapping the actions and metrics defined in the datamodel to the valid
actions and metrics available in the monitoring agent was enabled using the dynamic_mappings.xml file. The
file was stored in the ESC VM and was modified using a text editor. ESC 2.2 and later do not have an
esc-dynamic-mapping directory and dynamic_mappings.xml file. However, if you have an existing
dynamic_mapping xml file that you want to add to the ESC VM, do the following:

1. Backup this file to a location outside of ESC, such as, your home directory.
2. Create esc-dynamic-mapping directory on your ESC VM. Ensure that the read permissions are set.

3. Install on your ESC VM using the following bootvm argument:

--file
root : root: /opt/cisco/esc/esc-dynamic-mapping/dynamic mappings.xml:<path-to-local-copy-of-dynamic-mapping.xml>

The CRUD operations for mapping the actions and the metrics are available through REST API. Refer to the
API tables below for mapped metrics and actions definition.

To update an existing mapping, delete and add a new mapping through the REST APIL

KPIs, Rules and Metrics .

KPIs, Rules and Metrics |
. Metrics and Actions APIs

\)

Note While upgrading any earlier version of ESC to ESC 2.2 and later, to maintain the VNF monitoring rules, you
must back up the dynamic_mappings.xml file and then restore the file in the upgraded ESC VM. For more
information upgrading monitoring rules, see Upgrading VNF Monitoring Rules section in the Cisco Elastic
Services Controller Install and Upgrade Guide. Cisco ESC Release 2.3.2 and later, the dynamic mapping
API is accessible locally only on the ESC VM.

Table 1: Mapped Actions

User Path HTTP Payload |Response Description

Operation Operation

Read internal/dynamic_mapping/actions/ GET N/A Action XML | Get action by
name

<action_name>

Read All |internal/dynamic_mapping/actions GET N/A Action XML | Get all actions
defined
Write internal/dynamic_mapping/actions POST Actions | Expected Create one or

XML Action XML | multiple actions

Delete internal/dynamic_mapping/actions/ DELETE |N/A N/A Delete action by

. name
<action_name>

Clear All |internal/dynamic_mapping/actions DELETE |N/A N/A Delete all
non-core actions

The response for the actions APIs is as follows:

<actions>
<action>
<name>{action name}</name>
<type>{action type}</type>

<metaData>
<type>{monitoring engine action type}</type>
<properties>
<property>
<name />
<value />
</property>
</properties>
</metaData>
</action>
</actions>

Where,

{action name}: Unique identifier for the action. Note that in order to be compliant with the ESC object model,
for success or failure actions, the name must start with either TRUE or FALSE.

{action type}: Action type in this current release can be either ESC_POST_EVENT, SCRIPT or
CUSTOM_SCRIPT.

. KPls, Rules and Metrics

| KPIs, Rules and Metrics

Metrics and Actions APIs .

{monitoring engine action type}: The monitoring engine type are the following: icmp_ping, icmp4_ping,
icmp6_ping, esc_post_event, script, custom_script, snmp_get. See Monitoring the VNFs for more details.

Coreand Default ActionsList

Table 2: Core and Default Actions List

Name Type Description

TRUE esc_vm_alive notification Core Start Service

TRUE servicebooted.sh Core/Legacy Start Service

FALSE recover autohealing Core Recover Service

TRUE servicescaleup.sh Core/Legacy Scale Out

TRUE esc_vm_scale out notification Core Scale Out

TRUE servicescaledown.sh Core/Legacy Scale In

TRUE esc_vm_scale_in_notification Core Scale In

TRUE apply netscaler license.py Default Apply Netscaler License

The core actions and metrics are defined by ESC and cannot be removed or updated.

The default actions or metrics are defined by ESC and exist to supplement core actions or metrics for more
complex monitoring capabilities. These can be deleted and modified by the user. The default actions or metrics
are reloaded on ESC startup every time an action or a metric with the same name cannot be found in the

database.

Metric APIs

Table 3: Mapped Metrics

User Path HTTP Payload Response Description
Operation Operation
Read internal/dynamic_mapping/actions/ | GET N/A Metric XML | Get metrics by
. name
<metric_name>
Read All |internal/dynamic_mapping/metrics/ | GET N/A Metric XML | Get all metrics
defined
Write internal/dynamic_mapping/metrics/ | POST Metrics XML | Expected Create one or
Metrics multiple metrics
XML
Delete internal/dynamic_mapping/actions/ | DELETE | N/A N/A Delete metric by
. name
<metric_name>
Clear All |internal/dynamic_mapping/metrics | DELETE |N/A N/A Delete all
non-core metrics

KPIs, Rules and Metrics .

. ESC Service Deployment

The response for the Metric APIs is as follows:

<metrics>
<metric>

<name>{metric name}</name>
<type>{metric type}</type>

<type>{monitoring engine action type}</type>

<metaData>
<properties>
<property>
<name />
<value />
</property>
</properties>
</metaData>
</metric>
</metrics>
Where,

{metric name}: Unique identifier for the metric.

KPIs, Rules and Metrics |

{metric type}: Metric type can be either MONITOR_SUCCESS FAILURE, MONITOR THRESHOLD or
MONITOR_THRESHOLD COMPUTE.

{monitoring engine action type}: The monitoring engine type are the following: icmp_ping, icmp4_ping,
icmp6_ping, esc_post event, script, custom_script, snmp_get. See Monitoring for more details.

Coreand Default MetricsList

Table 4: Core and Default Metrics List

Name Type Description

ICMPPING Core ICMP Ping

MEMORY Default Memory compute percent usage
CPU Default CPU compute percent usage
CPU_LOAD 1 Default CPU 1 Minute Average Load
CPU LOAD 5 Default CPU 5 Minutes Average Load
CPU _LOAD 15 Default CPU 15 Minutes Average Load
PROCESSING LOAD Default CSR Processing Load
OUTPUT TOTAL BIT RATE |Default CSR Total Bit Rate
SUBSCRIBER SESSION Default CSR Subscriber Session

ESC Service Deployment

The KPI section defines the new KPI using the monitoring metrics.

<kpi>

<event_ name>DEMO_SCRIPT_SCALE_OUT</event name>

. KPls, Rules and Metrics

| KPIs, Rules and Metrics
Script Actions .

<metric value>20</metric value>
<metric cond>GT</metric cond>
<metric type>UINT32</metric type>
<metric collector>
<type>custom script count sessions</type>
<nicid>0</nicid>
<poll frequency>15</poll frequency>
<polling unit>seconds</polling unit>
<continuous_alarm>false</continuous_alarm>
</metric collector>
</kpi>
<kpi>
<event name>DEMO_SCRIPT SCALE IN</event name>
<metric value>l</metric value>
<metric cond>LT</metric cond>
<metric type>UINT32</metric type>
<metric_ occurrences_true>l</metric occurrences_true>
<metric occurrences_false>l</metric occurrences_ false>
<metric collector>
<type>custom script count sessions</type>
<nicid>0</nicid>
<poll frequency>15</poll frequency>
<polling unit>seconds</polling unit>
<continuous_alarm>false</continuous_alarm>
</metric collector>
</kpi>

In the above sample, in the first KPI section, the metric identified by custom script_count_sessionsis executed

at regular interval of 15 seconds. If the value returned by the metric is greater than 20, then the event name
DEMO_SCRIPT SCALE_OUT is triggered to be processed by the rules section.

In the above sample, in the second KPI section, The metric identified by custom_script_count sessions is
executed at regular interval of 15 seconds. If the value returned by the metric is less than 1, then the event
name DEMO_SCRIPT SCALE IN is triggered to be processed by the rules section.

The rules section defines rules using the event name that have been used by kpis. The action tag will define
an action that will be executed when the event_name is triggered. In the example below, the action identified
by the TRUE ScaleOut identifier is executed when the event DEMO_SCRIPT SCALE OUT is triggered.

<rule>
<event_ name>DEMO_SCRIPT_SCALE_OUT</event_ name>
<action>ALWAYS log</action>
<action>TRUE ScaleOut</action>

</rule>

<rule>
<event_name>DEMO_SCRIPT_SCALE_IN</event name>
<action>ALWAYS log</action>
<action>TRUE ScalelIn</action>

</rule>

Script Actions

There are two types of actions supported:

1. Pre-Defined actions

2. Script actions

KPIs, Rules and Metrics .

. Script Actions

KPIs, Rules and Metrics |

You can specify script execution as part of the Policy-driven data model. The script_filename property is
mandatory to script actions, which specifies the absolute path to the script on the ESC VM. The following
XML snippet shows a working example of a script action:

<action>
<name>GEN_VPC_CHASSIS_ID</name>
<type>SCRIPT</type>
<properties>
<property>
<name>script_filename</name>
<value>/opt/cisco/esc/esc-scripts/esc _vpc chassis id.py</value>
</property>
<property>
<name>CHASSIS_KEY</name>
<value>164c03a0-eebb-44a8-87fa-20c791claabd</value>
</property>
</properties>
</action>

The script timeout is 15 minutes by default. However, you can specify a different timeout value for each script
by adding a wait_max_timeout property to the properties section. The following example shows how to set
the timeout to 5 minutes only for this script:

<action>
<name>GEN_VPC CHASSIS ID</name>
<type>SCRIPT</type>
<properties>
<property>
<name>script filename</name>
<value>/opt/cisco/esc/esc-scripts/esc _vpc chassis id.py</value>
</property>
<property>
<name>CHASSIS KEY</name>
<value>164c03a0-eebb-44a8-87fa-20c791clOaabd</value>
</property>
<property>
<name>wait max timeout</name>
<value>300</value>
</property>
</properties>
</action>

In the above example, GEN_VPC_CHASSIS _ID will have a timeout value of 300 seconds, i.e. 5 mins. ESC
also has a global parameter specifying the default timeout time for all the scripts that are being executed,
called SCRIPT_TIMEOUT _SEC in the MONA category. This serves as the default value unless a
wait_max_timeout property is defined in the script.

Triggering Pre-defined Actions

ESC introduces a new REST API to trigger the existing (pre-defined) actions defined through the Dynamic
Mapping API, when required. For more information on the Metrics and Actions APIs, see Metrics and Actions
APIs, on page 3.

A sample predefined action is as follows:

<actions>
<action>
<name>SaidDoIt</name>
<userlabel>My Friendly Action</userlabel>
<type>SCRIPT</type>
<metaData>
<type>script</type>
<properties>

. KPls, Rules and Metrics

| KPIs, Rules and Metrics
Script Actions .

<property>
<name>script filename</name>
<value>/opt/cisco/esc/esc-scripts/do_somethin.py</value>

</property>

<property>
<name>argl</name>
<value>some val</value>

</property>

<property>
<name>notification</name>
<value>true</value>

</property>

</properties>
</metaData>
</action>
</actions>

\)

Note A script file located on a remote server is also supported. You must provide the details in the <value> tag, for
example,
http://myremoteserverIP:80/file store/do samethin.py</value>http://myremoteserverIP:80/file store/do samethin.py</value>

The pre-defined action mentioned above is triggered using the trigger APL

Execute the following HTTP or HTTPS POST operation:

POST http://<IP_ADDRESS>:8080/ESCManager/v0/trigger/action/
POST https://<IP_ADDRESS>:8443/ESCManager/v0/trigger/action/

The following payload shows the actions triggered by the API, and the response received:

<triggerTarget>
<action>SaidDoIt</action>
<properties>
<property>
<name>argl</name>
<value>real value</value>
</property>
</properties>
</triggerTarget>

The response,

<triggerResponse>
<handle>cllbe5b6-f0cc-47ff-97b4-a73cce3363a5</handle>
<message>Action : 'SAIDDOIT' triggered</message>

</triggerResponse>
ESC accepts the request, and returns a response payload and status code.

An http status code of 200 indicates that the action triggered exists, and is triggered successfully. An http
status codes of 400 or 404 indicate that the action to be triggered is not found.

You can determine the status using the custom script notifications sent to NB at various lifecycle stages.

ESC sends the MANUAL TRIGGERED ACTION UPDATE callback event to NB with a status message
that describes the success or failure of the action execution.

The notification is as follows:

<esc_event xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

KPIs, Rules and Metrics .

KPIs, Rules and Metrics |
. Configuring Custom Script Metric Monitoring KPIs and Rules

<event_type>MANUAL_TRIGGERED_ACTION_UPDATE</event_type>
<properties>
<property>
<name>handle</name>
<value>cllbebb6-£f0cc-47ff-97b4-a73cce3363a5</value>
</property>
<property>
<name>message</name>
<value>Action execution success</value>
</property>
<property>
<name>exit code</name>
<value>0</value>
</property>
<property>
<name>action name</name>
<value>SAIDDOIT</value>
</property>
</properties>
</esc_event>

\)

Note The script_filename property cannot be overwritten by the trigger API request. The trigger API must not
contain any additional properties that do not exist in the predefined action.

The new API allows to overrides some of the special properties (of the actions) listed below:

* Notification—Set this if your script generates progress notifications at run time. The default value is
false. This value can be set to true in the action or trigger payload.

» wait_max_timeout—Wait for the script to complete the execution before terminating. The default wait
timeout is 900 seconds.

)

Note * The trigger API supports only script type actions.

* Ensure that the script action located on the ESC VM is copied to the same path on both the active and
standby HA instances. For more information, see the High Availability chapter in the Cisco Elastic
Services Controller Install and Upgrade Guide.

* The script execution terminates if there is a failover, shutdown, or reboot of the ESC services.

Configuring Custom Script Metric Monitoring KPls and Rules
Custom Script Metric Monitoring can be performed as follows:

1. Create Script

2. Add Metric

3. Add Action

4. Define Deployment

5. Update KPI data or Rules

. KPls, Rules and Metrics

| KPIs, Rules and Metrics

Configuring Custom Script Metric Monitoring KPIs and Rules .

6. Authenticating Remote Server Using KPIs and Rules

The script to be executed has to be compliant with the rules specified fora MONITOR_THRESHOLD action.
Threshold crossing evaluation will be based on the exit value from the script execution. In the sample script
below, the return value is the number of IP sessions.

#!/usr/bin/env python

import pexpect

import re

import sys

ssh _newkey = 'Are you sure you want to continue connecting'
Functions

def get value (key) :

i=0

for arg in sys.argv:
i=1+1
if arg == key:

return sys.argv[i]
return None
def get ip_addr():
device ip = get value("vm ip_address")
return device ip
Main
CSR_IP = get ip addr()

p=pexpect.spawn ('ssh admin@' + CSR_IP + ' show ip nat translations total')
i=p.expect ([ssh_newkey, 'assword:', pexpect.EOF])
if i==

p.sendline('yes")

i=p.expect ([ssh_newkey, 'assword:', pexpect.EOF])
if i==

p.sendline ("admin")

p.expect (pexpect.EOF)
elif i==2:

pass
n = p.before
result = re.findall(r'\d+', n) [0]
sys.exit (int (result))

The ESC monitoring and action engine processes the script exit value.
The script has to be installed into the following ESC VM directory: /opt/cisco/esc/esc-scripts/

The following payload describes a metric using a custom_script defined in the script

<!-- Demo Metric Counting Sessions -->
<metrics>
<metric>

<name>custom script count sessions</name>
<type>MONITOR THRESHOLD</type>
<metaData>
<properties>
<property>
<name>script filename</name>
<value>/cisco/esc-scripts/countSessions.py</value>
</property>
<property>
<name>for_ threshold</name>
<value>true</value>
</property>
</properties>

KPIs, Rules and Metrics .

KPIs, Rules and Metrics |
Configuring Custom Script Metric Monitoring KPIs and Rules

<type>custom script threshold</type>
</metaData>
</metric>
</metrics>
<l== ==>

The metric payload has to be added to the list of supported ESC metrics by using the Mapping APIs.
Execute a HTTP POST operation on the following URI:
http://<my_esc_ip>:8080/ESCManager/internal/dynamic_mapping/metrics

The following payload describes custom actions that can be added to the list of supported ESC actions by
using the Mapping APIs.

<actions>
<action>
<name>TRUE ScaleOut</name>
<type>ESC_POST EVENT</type>
<metaData>
<type>esc post_ event</type>
<properties>
<property>
<name>esc_url</name>
<value />
</property>
<property>
<name>vm_external id</name>
<value />
</property>
<property>
<name>vm_ name</name>
<value />
</property>
<property>
<name>event name</name>
<value />
</property>
<property>
<name>esc_event</name>
<value>VM SCALE Out</value>
</property>
<property>
<name>esc_config data</name>
<value />
</property>
<properties />
</properties>
</metaData>
</action>
<action>
<name>TRUE ScaleIn</name>
<type>ESC_POST EVENT</type>
<metaData>
<type>esc post_ event</type>
<properties>
<property>
<name>esc_url</name>
<value />
</property>
<property>
<name>vm_external id</name>
<value />
</property>

. KPls, Rules and Metrics

| KPIs, Rules and Metrics
Custom Script Notification .

<property>
<name>vm name</name>
<value />

</property>

<property>
<name>event name</name>
<value />

</property>

<property>
<name>esc_event</name>
<value>VM SCALE IN</value>

</property>

<properties />

</properties>
</metaData>
</action>
</actions>

Execute a HTTP POST operation on the following URI:
http://<IP_ ADDRESS>:8080/ESCManager/internal/dynamic_mapping/actions

Custom Script Notification

ESC now supports sending notification to northbound about customized scripts run as part of the deployment
at a certain lifecycle stage. You can also determine the progress of the script executed through this notification.
To execute a custom script with notification, define action type attribute as SCRIPT, and property attribute
name as notification, and set the value to true.

For example, in the datamodel below, the action is to run a customized script located at
/var/tmp/esc-scripts/senotification.py with notification, when the deployment reaches
POST DEPLOY_ ALIVE stage.

<policies>
<policy>
<name>PCRF_POST_DEPLOYMENT</name>
<conditions>
<condition>
<name>LCS::POST_DEPLOY_ ALIVE</name>
</condition>
</conditions>
<actions>
<action>
<name>ANY NAME</name>
<type>SCRIPT</type>
<properties>
<property>
<name>script filename</name>
<value>/var/tmp/esc-scripts/senotification.py</value>
</property>
<property>
<name>notification</name>
<value>true</value>
</property>
</properties>
</action>
</actions>
</policy>
</policies>

You can notify northbound about the script execution progress using the following outputs:

* Standard JSON output

KPIs, Rules and Metrics .

. Custom Script Notification

KPIs, Rules and Metrics |

* REST API call

* NETCONF Notification

Standard JSON Output

The standard JSON output follows the MONA notification convention. MONA captures entries in this to
generate notification.

{"esc-notification":{"items":{"properties":

[{"name" :"namel", "value":"valuel"}, {"name":"name2", "value":"value2"}...1}}}

Table 5: Item list

Name Description
type Describes the type of notification.
progress_steps | progress percentage | log | alert | error

progress For progress-steps type,
Note Progress item is {current step}|{total steps}

reqUired Only When For progress-percentage c

the type is prog p ge type,

progress-steps or {percentage}

progress-percentage.

msg Notification message.

Example JSON output is as follows:

{"esc-notification":{"items":{"properties": [{"name":"type",
"value":"progress percentage"}, {"name":"progress","value":"25"}, {"name":"msg", "value":"Installation
in progress."}]}}}

\}

Note Ifthe custom script is written in Python, because standard output is buffered by default, after each notification
print statement, the script is required to call sys.stdout.flush() to flush the buffer (for pre Python 3.0). Otherwise

MONA cannot process the script stdout in a real-time. print

'{"esc-notification":{"items":{"properties": [{"name":"type",

"value":"progress percentage"}, {"name":"progress","value":"25"}, {"name":"msg", "value":"Installation

in progress."}]}}}'sys.stdout.flush()

REST API Call

http://localhost:8090/mona/vl/actions/notification

For REST API, the script must accept a script handle as the last parameter. The script handle can be UUID,

MONA action or execution job Id. For example, if the script originally accepts 3 command line parameters,
to support MONA notification, the script considers an additional parameter for the handle UUID. This helps
MONA to identify the notification source. For every notification, the script is responsible for constructing a
POST REST call to MONA's endpoint inside the script:

The payload is as follows:

. KPls, Rules and Metrics

KPIs, Rules and Metrics
Custom Script Notification .

{

"esc-notification"™ : {
"items" : {

"properties" : [{
"name" : "type",
"value" : "log",
"hidden" : false

oo A
"name" : "msg",
"value" : "Log info",
"hidden" : false
}

1

}I

"source" : {

"action_handle" : "f82fe86d-6625-4b13-99f7-89d169e427ad"

}
}

\)

Note The action_handle value is the handle UUID MONA passes into the script.

KPIs, Rules and Metrics .

KPIs, Rules and Metrics |
. Custom Script Notification

. KPls, Rules and Metrics

	KPIs, Rules and Metrics
	KPIs, Rules and Metrics
	Rules
	Metrics and Actions
	Metrics and Actions APIs
	ESC Service Deployment

	Script Actions
	Configuring Custom Script Metric Monitoring KPIs and Rules
	Custom Script Notification

