
Deploying Virtual Network Functions

You can orchestrate VNFs within a virtual infrastructure domain—either on OpenStack, VMware vCenter or
AWS. A VNF deployment is initiated as a service request through northbound interface or the ESC portal.
The service request comprises of templates that consist of XML payloads and deployment parameters. This
chapter describes the procedures to deploy VNFs (OpenStack or VMware vCenter), and the operations that
you can perform during a deployment. For more information on deployment parameters, see Configuring
Deployment Parameters.

You can assign a static IP address to connect the network to the VNF. The deployment datamodel introduces
a new ip_address attribute to specify the static IP address. See the Cisco Elastic Services Controller Deployment
Attributes for more details.

Important

• Deploying Virtual Network Functions on OpenStack, on page 1
• Deploying Virtual Network Functions on VMware vCenter, on page 8
• Deploying Virtual Network Functions on VMware vCloud Director (vCD), on page 13
• Deploying Virtual Network Functions on Amazon Web Services, on page 16
• Unified Deployment, on page 20
• Undeploying Virtual Network Functions, on page 21

Deploying Virtual Network Functions on OpenStack
This section describes several deployment scenarios for Elastic Services Controller (ESC) and the procedure
to deploy VNFs. The following table lists the different deployment scenarios:

AdvantagesResourcesDescriptionScenarios

• The images and
flavors can be used
in multiple VNF
deployments.

• You can delete
resources (images,
flavors, and
volumes) created by
ESC.

Images and Flavors are
created through ESC
using NETCONF/REST
APIs.

The deployment data
model refers to the images
and flavors created and
then deploys VNFs.

Deploying VNFs on a
single VIM by creating
images and flavors
through ESC

Deploying Virtual Network Functions
1

http://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html

AdvantagesResourcesDescriptionScenarios

• The images, flavors,
volumes, ports can
be used in multiple
VNF deployments.

• You cannot delete
resources that are not
created by through
ESC.

Images, Flavors,
Volumes, and Ports are
not created through ESC.

The deployment data
model refers to the
out-of-band images,
flavors, volumes, and
ports in OpenStack and
then deploys VNFs.

Deploying VNFs on a
single VIM using
out-of-band images,
flavors, volumes, and
ports

You can specify the VIM
(to deploy VMs) that
needs to be configured in
ESCwithin a deployment.

Images, Flavors, VIM
projects (specified in the
locators) and Networks
are not created through
ESC. They must exist
out-of-band in the VIM.

The deployment data
model refers to
out-of-band images,
flavors, networks and
VIM projects and then
deploys VNFs.

Deploying VNFs on
multiple VIMs using
out-of-band resources

To deploy VNFs on multiple OpenStack VIMs, see Deploying VNFs on Multiple OpenStack VIMs.

Deploying VNFs on a Single OpenStack VIM
The VNF deployment is initiated as a service request either originating from the ESC portal or the northbound
interfaces. The service request comprises of XML payloads. ESC supports the following deployment scenarios:

• Deploying the VNFs by creating images, and flavors through ESC

• Deploying the VNFs using out-of-band images, flavors, volumes, and ports

Before you deploy the VNFs, you must ensure that the images, flavors, volumes, and ports are available on
OpenStack, or you must create these resources. For more details on creating images, flavors, and volumes
see Managing Resources Overview.

In a deployment, the out-of-band port must be created by the same tenant as the deployment. For more details
on configuring ports, see Interface Configurations.

To deploy VMs on multiple VIMs, see Deploying VNFs on Multiple OpenStack VIMs.

During a deployment, ESC looks for the deployment details in the deployment datamodel. Formore information
on the deployment data model, see Cisco Elastic Services Controller Deployment Attributes. If ESC is unable
to find the deployment details for a particular service, it uses the existing flavors and images under the vm_group
to continue the deployment. If ESC is unable to find the image and flavor details, the deployment fails.

You can also specify the subnet that is used for a network. The deployment data model introduces a new
subnet attribute to specify the subnet. See the Cisco Elastic Services Controller Deployment Attributes for
more details.

Important

Deploying Virtual Network Functions
2

Deploying Virtual Network Functions
Deploying VNFs on a Single OpenStack VIM

Cisco-Elastic-Services-Controller-User-Guide-4-4_chapter9.pdf#nameddest=unique_74
http://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html

When a SERVICE_UPDATE configuration fails, the minimum andmaximum number of VMs change causing
a scale in or scale out. ESC cannot rollback the minimum or maximum number of VMs in the configuration
because of errors caused on OpenStack. The CDB (an ESC DB) would be out of synchronization. In this case,
another SERVICE_UPDATE configuration must be performed to do a manual rollback.

Note

For deployments on OpenStack, the UUID or name can be used to refer to the image and flavor. The name
has to be unique on the VIM. If there are multiple images with the same name, the deployment cannot identify
the right image and the deployment fails.

All deployment and ESC event notifications show tenant UUID. For example:

<?xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2016-01-22T15:14:52.484+00:00</eventTime>
<escEvent xmlns="http://www.cisco.com/esc/esc">
<status>SUCCESS</status>
<status_code>200</status_code>
<status_message>VIM Driver: VM successfully created,
VM Name:

[SystemAdminxyz_abc_NwDepMod1_0_5e6b7957-20e7-4df9-9113-e5fc8c047e91]</status_message>
<depname>test_NwDepModVmGrp1</depname>
<tenant>admin</tenant>
<tenant_id>62cd11f560b44bf5815eaad41fc94c80</tenant_id>

</event>

Reboot Time Parameter

A reboot time parameter is introduced in the deployment request. This provides more granular control to the
reboot wait time of recovery in a deployment. In a deployment, when the VM reboots, the monitor is set with
the reboot time. If the reboot time expires before receiving the VM ALIVE event, the next action such as
VM_RECOVERY_COMPLETE, or undeploy is performed.

The bootup time is used, if the reboot time is not provided.Note

The data model change is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">

<tenants>
<tenant>

<name>tenant</name>
<deployments>

<deployment>
<name>depz</name>
<vm_group>

<name>g1</name>

<flavor>Automation-Cirros-Flavor</flavor>
<reboot_time>30</reboot_time>
<recovery_wait_time>10</recovery_wait_time>
<interfaces>

<interface>
<nicid>0</nicid>

Deploying Virtual Network Functions
3

Deploying Virtual Network Functions
Deploying VNFs on a Single OpenStack VIM

<port>pre-assigned_IPV4_1</port>
<network>my-network</network>

</interface>
</interfaces>
<kpi_data>

<kpi>
<event_name>VM_ALIVE</event_name>
<metric_value>1</metric_value>
<metric_cond>GT</metric_cond>
<metric_type>UINT32</metric_type>
<metric_collector>

<nicid>0</nicid>
<type>ICMPPing</type>
<poll_frequency>3</poll_frequency>
<polling_unit>seconds</polling_unit>
<continuous_alarm>false</continuous_alarm>

</metric_collector>
</kpi>

</kpi_data>
<rules>

<admin_rules>
<rule>

<event_name>VM_ALIVE</event_name>
<action>ALWAYS log</action>
<action>TRUE servicebooted.sh</action>
<action>FALSE recover autohealing</action>

</rule>
</admin_rules>

</rules>
<config_data />
<scaling>

<min_active>1</min_active>
<max_active>2</max_active>
<elastic>true</elastic>

</scaling>
<recovery_policy>

<recovery_type>AUTO</recovery_type>
<action_on_recovery>REBOOT_ONLY</action_on_recovery>
<max_retries>1</max_retries>

</recovery_policy>
</vm_group>

</deployment>
</deployments>

</tenant>
</tenants>

</esc_datamodel>

Sample notification is as follows:
20:43:48,133 11-Oct-2016 WARN ===== SEND NOTIFICATION STARTS =====
20:43:48,133 11-Oct-2016 WARN Type: VM_RECOVERY_INIT
20:43:48,134 11-Oct-2016 WARN Status: SUCCESS
20:43:48,134 11-Oct-2016 WARN Status Code: 200
20:43:48,134 11-Oct-2016 WARN Status Msg: Recovery event for
VM [dep-12_CSR1_c_0_37827511-be08-4702-b0bd-1918cb995118] triggered.
20:43:48,134 11-Oct-2016 WARN Tenant: gilan-test-5
20:43:48,134 11-Oct-2016 WARN Service ID: NULL
20:43:48,134 11-Oct-2016 WARN Deployment ID: f6ff8164-fe6d-4589-84fa-f39d676e9231
20:43:48,134 11-Oct-2016 WARN Deployment name: dep-12
20:43:48,134 11-Oct-2016 WARN VM group name: CSR1_cirros
20:43:48,134 11-Oct-2016 WARN VM Source:
20:43:48,134 11-Oct-2016 WARN VM ID: 90d2066c-9a07-485b-8f72-b51026a62922
20:43:48,134 11-Oct-2016 WARN Host ID:
69c3fba0a5b5ffff211bd05b9da7e2130d98d005a9bef71ace7d09ff
20:43:48,134 11-Oct-2016 WARN Host Name: my-server

Deploying Virtual Network Functions
4

Deploying Virtual Network Functions
Deploying VNFs on a Single OpenStack VIM

20:43:48,134 11-Oct-2016 WARN [DEBUG-ONLY] VM IP: 192.168.0.75;
20:43:48,135 11-Oct-2016 WARN ===== SEND NOTIFICATION ENDS =====
20:43:56,149 11-Oct-2016 WARN
20:43:56,149 11-Oct-2016 WARN ===== SEND NOTIFICATION STARTS =====
20:43:56,149 11-Oct-2016 WARN Type: VM_RECOVERY_REBOOT
20:43:56,149 11-Oct-2016 WARN Status: SUCCESS
20:43:56,149 11-Oct-2016 WARN Status Code: 200
20:43:56,150 11-Oct-2016 WARN Status Msg: VM
[dep-12_CSR1_c_0_37827511-be08-4702-b0bd-1918cb995118] is rebooted.
20:43:56,150 11-Oct-2016 WARN Tenant: gilan-test-5
20:43:56,150 11-Oct-2016 WARN Service ID: NULL
20:43:56,150 11-Oct-2016 WARN Deployment ID: f6ff8164-fe6d-4589-84fa-f39d676e9231
20:43:56,150 11-Oct-2016 WARN Deployment name: dep-12
20:43:56,150 11-Oct-2016 WARN VM group name: CSR1_cirros
20:43:56,150 11-Oct-2016 WARN VM Source:
20:43:56,151 11-Oct-2016 WARN VM ID: 90d2066c-9a07-485b-8f72-b51026a62922
20:43:56,151 11-Oct-2016 WARN Host ID:
69c3fba0a5b5ffff211bd05b9da7e2130d98d005a9bef71ace7d09ff
20:43:56,151 11-Oct-2016 WARN Host Name: my-server
20:43:56,152 11-Oct-2016 WARN [DEBUG-ONLY] VM IP: 192.168.0.75;
20:43:56,152 11-Oct-2016 WARN ===== SEND NOTIFICATION ENDS =====
20:44:26,481 11-Oct-2016 WARN
20:44:26,481 11-Oct-2016 WARN ===== SEND NOTIFICATION STARTS =====
20:44:26,481 11-Oct-2016 WARN Type: VM_RECOVERY_COMPLETE
20:44:26,481 11-Oct-2016 WARN Status: FAILURE
20:44:26,481 11-Oct-2016 WARN Status Code: 500
20:44:26,481 11-Oct-2016 WARN Status Msg: Recovery: Recovery completed with errors

Deploying VNFs on Multiple OpenStack VIMs
You can deploy VNFs on multiple VIMs of the same type using ESC. ESC supports deploying VNFs on
multiple OpenStack VIMs. To deploy VMs on a single instance of OpenStack, see Deploying Virtual Network
Functions on OpenStack, on page 1.

To deploy VNFs on multiple VIMs, you must:

• Configure the VIM connector and its credentials

• Create a tenant within ESC

AVIM connector registers the VIM to ESC. To deploy VNFs on multiple VIMs, you must configure the VIM
connector and its credentials for each instance of the VIM. You can configure a VIM connector either at the
time of installation using the bootvm.py parameters, or using the VIM connector APIs. A default VIM connector
is used for a single VIM deployment. For multi VIM deployment, the locator attribute is used to specify the
VIM connector.

Typically an ESC, which supports multi VIM deployment has,

• a default VIM on which ESC creates and manages resources,

• and a non-default VIM on which only deployments are supported.

For more details, see Managing VIM Connectors.

A root tenant in the data model hierarchy, which is a tenant within ESC (with the vim_mapping attribute set
to false), and an out-of-band VIM tenant placed within the locator attribute must be available for deploying
VNFs on multiple VIMs. If the root tenant does not exist, ESC can create a tenant during the multiple VIM
deployment itself. You can create more than one ESC tenant. A user can use more than one tenant for multiple
VIMs. For more information, see Managing Tenants.

Deploying Virtual Network Functions
5

Deploying Virtual Network Functions
Deploying VNFs on Multiple OpenStack VIMs

Cisco-Elastic-Services-Controller-User-Guide-4-4_chapter6.pdf#nameddest=unique_46
Cisco-Elastic-Services-Controller-User-Guide-4-4_chapter3.pdf#nameddest=unique_31

In a multiple VIM deployment, you can specify the target VIM for each VM group. You can deploy each VM
group on a different VIM, but the VMs within the VM group are deployed on the same VIM.

You must add a locator attribute to the VM group in the data model to enable multiple VIM deployment. The
locator node consists of the following attributes:

If the locator attribute is present in the deployment, then the VMs are deployed on the VIM specified in the
locator. If the locator attribute is not present in the deployment, then the VMs are deployed on the default
VIM. If the default VIM is also not present, then the request is rejected.

Note

• vim_id—the vim id of the target VIM. ESC defines the vim_id and maps it to the vim_connector id. The
vim connector must exist before deploying to the VIM specified by the vim_id.

• vim_project—the tenant name created in target VIM. This is an out-of-band tenant or project existing
in OpenStack.

ESC supports only out-of-band resources (pre-existing resources) such as ports, images, flavors and volumes
in a multi VIM deployment. The out of band port must be created by the same tenant as the deployment.

However, multi VIM deployment supports creating only ephemeral volumes using the locator attribute on a
non-default VIM. Other resources cannot be created on a non-default VIM.

Recovery of VMs, scale in and scale out of VMs are supported within the same VIM on which the VMs are
deployed. The VMs cannot scale or recover on different VIMs.

Note

In the example below, the esc-tenant is a tenant within ESC. There is no mapping to the VIM tenant, and the
VMs are not deployed on this esc-tenant. The vim_project, project-test-tenant (within the locator attribute),
which is created out-of-band is the tenant on which the VMs are deployed.

<tenants>
<tenant>

<name>esc-tenant</name>
<deployments>

<deployment>
<name>dep-1</name>
<vm_group>

<name>group-1</name>
<locator>

<vim_id>vim-1</vim_id>
<vim_project>project-test-tenant</vim_project>

</locator>
</vm_group>

</deployment>
</deployments>

</tenant>
</tenants>

You can deploy VNFs on a single VIM as well with the locator attribute. That is, the datamodel with the
locator attribute can also be used for deploying VMs on a single OpenStack VIM. To deploy without the
locator attribute (ESC Release 2.x data model), see Deploying VNFs on a Single OpenStack VIM, on page
2.

The deployment data model is as follows:

Deploying Virtual Network Functions
6

Deploying Virtual Network Functions
Deploying VNFs on Multiple OpenStack VIMs

<?xml version="1.0" encoding="UTF-8"?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc" xmlns:ns0="http://www.cisco.com/esc/esc"
xmlns:ns1="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:ns2="urn:ietf:params:xml:ns:netconf:notification:1.0"
xmlns:ns3="http://www.cisco.com/esc/esc_notifications">

<tenants>
<tenant>

<name>test-esc-tenant1</name>
<deployments>

<deployment>
<name>dep-1</name>
<vm_group>

<name>g1</name>
<locator>

<vim_id>vim1</vim_id>
<vim_project>project-test</vim_project>

</locator>
<bootup_time>150</bootup_time>
<recovery_wait_time>30</recovery_wait_time>
<flavor>Automation-Cirros-Flavor</flavor>

<interfaces>

<interface>
<nicid>0</nicid>
<network>my-network</network>

</interface>
</interfaces>
<scaling>

<min_active>1</min_active>
<max_active>1</max_active>
<elastic>true</elastic>

</scaling>
<kpi_data>

<kpi>
<event_name>VM_ALIVE</event_name>
<metric_value>1</metric_value>
<metric_cond>GT</metric_cond>
<metric_type>UINT32</metric_type>
<metric_collector>

<type>ICMPPing</type>
<nicid>0</nicid>
<poll_frequency>3</poll_frequency>
<polling_unit>seconds</polling_unit>
<continuous_alarm>false</continuous_alarm>

</metric_collector>
</kpi>

</kpi_data>
<rules>

<admin_rules>
<rule>

<event_name>VM_ALIVE</event_name>
<action>ALWAYS log</action>
<action>TRUE servicebooted.sh</action>
<action>FALSE recover autohealing</action>

</rule>
</admin_rules>

</rules>
<config_data />

</vm_group>
</deployment>

</deployments>
</tenant>

</tenants>
</esc_datamodel>

Deploying Virtual Network Functions
7

Deploying Virtual Network Functions
Deploying VNFs on Multiple OpenStack VIMs

A sample multiple VIM deployment data model using out-of-band resources, and creating a root tenant as
part of the deployment:
<esc_datamodel>

<tenants>
<tenant>

<!-- This root level tenant is an ESC tenant either previously created or created
here marked by vim_mapping atrribute. -->

<name>esc-tenant-A</name>
<vim_mapping>false</vim_mapping>
<deployments>

<deployment>
<name>dep-1</name>
<vm_group>

<name>Grp-1</name>
<locator>

<vim_id>SiteA</vim_id>
<!-- vim_project: OOB project/tenant that should already exist

in the target VIM -->
<vim_project>Project-X</vim_project>

</locator>
<!-- All other details in vm group remain the same. -->
<flavor>Flavor-1</flavor>


...

...
</vm_group>

</deployment>
</deployments>

</tenant>
</tenants>

</esc_datamodel>

All the VIMs specified in amulti VIM deployment must be configured and in CONNECTION_SUCCESSFUL
status for the request to be accepted by ESC. If a VIM specified in the deployment is unreachable or in any
other status, the request is rejected.

You can apply the affinity and anti-affinity rules for VMs in a multiple VIM deployment. For more information,
see Affinity and Anti-Affinity Rules on OpenStack.

Multi VIM deployment supports recovery using the Lifecycle Stages (LCS). For more information on supported
LCS, see Recovery Policy (Using the Policy Framework). You can update an existing multi VIM deployment.
However, the locator attribute within the VM group cannot be updated. For more information on updating an
existing deployment, see Updating an Existing Deployment.

Deploying Virtual Network Functions on VMware vCenter
This section describes the deployment scenario for Elastic Services Controller (ESC) and the procedure to
deploy VNFs on VMware. You can deploy VNFs using out-of-band image definitions. The following table
lists the deployment scenarios:

Deploying Virtual Network Functions
8

Deploying Virtual Network Functions
Deploying Virtual Network Functions on VMware vCenter

Cisco-Elastic-Services-Controller-User-Guide-4-4_chapter9.pdf#nameddest=unique_75
Cisco-Elastic-Services-Controller-User-Guide-4-4_chapter15.pdf#nameddest=unique_76
Cisco-Elastic-Services-Controller-User-Guide-4-4_chapter10.pdf#nameddest=unique_77

AdvantagesImagesdata model
templates

DescriptionScenarios

• The images can
be used in
multiple VNF
deployments.

• You can add or
delete image
definitions
through ESC.

Images are created
through ESC using
REST APIs.

• deployment
data model

• image data
model

The process of VNF
deployment is as
follows:

1. VNF
Deployment-
The deployment
data model
refers to the
images created
and then
deploys VNFs.

Deploying VNFs on
a single VIM by
creating Images
through ESC

Images
are also
referred
to as
Templates
on
VMware
vCenter.

Important

• The images can
be used in
multiple VNF
deployments.

• You can view
images through
ESC portal.

• During out-of
-band
deployment,
you can choose
images.

Images cannot be
created or deleted
through ESC.

• deployment
data model

• Image on
VMware
vCenter

1. VNF
Deployment-
The deployment
data model
refers to the
out-of-band
images on
VMware
vCenter and
then deploys
VNFs.

Deploying VNFs on
a single VIM using
out-of-band images

Deploying VNFs on Single VMware vCenter VIM
The VNF deployment is initiated as a service request either originating from the ESC portal or the northbound
interfaces. The service request comprises of XML payloads. ESC supports the following deployment scenarios:

• Deploying the VNFs by creating resources through ESC

• Deploying the VNFs using out-of-band resources

Before you deploy the VNFs, you must ensure that the resources are available on VMware vCenter, or you
must create these resources. See Managing Resources Overview. During a deployment, ESC looks for the
deployment details in the deployment data model. For more information on the deployment data model, see
Cisco Elastic Services Controller Deployment Attributes.

Deploying VNFs on multiple VIMs is not supported on VMware vCenter.Note

Deploying Virtual Network Functions
9

Deploying Virtual Network Functions
Deploying VNFs on Single VMware vCenter VIM

http://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html

A single ESC instance only supports one vCenter Distributed Switch (vDS):

• A vDS contains one or many ESXi hosts that are clustered.

• If the ESXi hosts are under one compute cluster, the VMware vCenter HA and DRS capabilities must
be disabled.

• Clustered Data stores are not supported.

• If the hosts are clustered, only flat data stores under the cluster or under the datacenter are supported.

ESC only supports a default resource pool. You cannot add or create resource pools. When you see the error
message "Networking Configuration Operation Is Rolled Back and a Host Is Disconnected from vCenter
Server", it is due to a vCenter's limitation. The auto-select for datastore works as follows:

• ESC selects a host first. If deployment is cluster targeted, host will be selected based on the ratio of
number of VMs against computing-host’s capacity. Otherwise, host is selected as requested for host
targeted deployment.

• From the host, datastore is picked based on its free space.

After every redeploy as part of recovery on VMware vCenter, the VM’s interface(s) will have different MAC
addresses.

Note

Passing OVF Properties to a VM

As a part of deploying a VNF on VMware vCenter, you can pass the name value pair as OVF property to the
VM. To pass these configurations while deploying a VNF, you must include additional arguments in the
deployment data model template.

A sample configuration is as follows:

<esc_datamodel ...>
...
<config_data>
<configuration>

<dst>ovfProperty:mgmt-ipv4-addr</dst>
<data>$NICID_1_IP_ADDRESS/24</data>

</configuration>
<configuration>

<dst>ovfProperty:com.cisco.csr1000v:hostname</dst>
<data>$HOSTNAME</data>
<variable>

<name>HOSTNAME</name>
<val>csrhost1</val>
<val>csrhost2</val>

</variable>
</configuration>

</config_data>
...

</esc_datamodel>

Deploying Virtual Network Functions
10

Deploying Virtual Network Functions
Deploying VNFs on Single VMware vCenter VIM

Deploying VNFs on Multiple Virtual Data Centers (Multi-VDCs)

A Virtual Data Center (VDC) combines virtual resources, operational details, rules, and policies to manage
specific group requirements. A group canmanagemultiple VDCs, images, templates, and policies. This group
can allocate quotas and assign resource limits for individual groups at the VDC level.

To view the list of VDCs that are available and on the ESC portal, choose Datacenters.

Before you Begin

Before you deploy VNFs on multiple VDCs, ensure that the following conditions are met:

• Verify that a standard external network spanning both VDCs is available for the ESC to ping the deployed
VMs.

• Verify that at least one management interface on the VMs is connected to the external network.

• Verify that the VDC is present in the vCenter.

• ESC assumes all required resources to be created in VDC are out of band and present in the VDC.

• Currently, ESC can deploy in any VDC present in a vCenter. There is no scoping or restriction of VDCs
that ESC can deploy in.

Note

When you deploy a VNF, you must specify the virtual datacenter locator name on which the VNF needs to
be provisioned.

A locator element is introduced in deployment request to create and delete resources.

The locator element contains:

• a datacenter name tag—to specify the target VDC for the resource (Deployment, Image, Network and
Subnets).

• switch_name—to specify the target VDS to associate the network with.

Using the locator element,

• An image or a template can be created on another VDC by providing the datacenter attribute within the
locator. For example,
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">

<images>

</images>

</esc_datamodel>

• A network can be created and deleted from a VDC.

Deploying Virtual Network Functions
11

Deploying Virtual Network Functions
Deploying VNFs on Single VMware vCenter VIM

If the network is part of unified deployment, then the datacenter attribute is taken
from the deployment attribute in deployment request.

Note

<network>
<locators>

<datacenter>DC-03</datacenter>
<switch_name>dvSwitch</switch_name>

</locators>
<name>test-yesc-net-u</name>
<shared>false</shared>
<admin_state>true</admin_state>

</network>

Cisco Elastic Services Controller Portal allows you to choose the VDC on which the VM is provisioned.
When you are creating a service request, you can choose the VDC on which this VM is provisioned. For more
information on deploying VNFs on a VDC, see .

The default_locators container in ESC operational data shows default locators configured in ESC.

The default_locators container is not displayed if there are no locators configured.Note

Sample operational data is as follows:

Operational Data
/opt/cisco/esc/confd/bin/netconf-console --port=830 --host=172.16.0.1 --user=admin
--privKeyFile=/var/confd/homes/admin/.ssh/confd_id_dsa --privKeyType=dsa --get -x
"esc_datamodel/opdata"
<?xml version="1.0" encoding="UTF-8"?><rpc-reply
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">

<data>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">

<opdata>
<status>OPER_UP</status>
<stats>

<hostname>test-ESC-host</hostname>
<os_name>Linux</os_name>
<os_release>2.6.32-573.22.1.el6.x86_64</os_release>
<arch>amd64</arch>
<uptime>9481</uptime>
<cpu>

<cpu_num>4</cpu_num>
</cpu>

</stats>
<system_config>

<active_vim>VMWARE</active_vim>
<vmware_config>

<vcenter_ip>172.16.1.0</vcenter_ip>
<vcenter_port>80</vcenter_port>
<vcenter_username>root</vcenter_username>

</vmware_config>
</system_config>
<default_locators>

<datacenter>DC-4</datacenter>
</default_locators>
<tenants>

Deploying Virtual Network Functions
12

Deploying Virtual Network Functions
Deploying VNFs on Single VMware vCenter VIM

<tenant>
<name>admin</name>
<tenant_id>SystemAdminTenantId</tenant_id>

</tenant>
</tenants>

</opdata>
</esc_datamodel>

</data>
</rpc-reply>
[admin@test-ESC-host esc-cli]$

Deploying Virtual Network Functions on VMware vCloud
Director (vCD)

This section describes the deployment scenario for Elastic Services Controller (ESC) and the procedure to
deploy VNFs on VMware vCloud Director (vCD). To install ESC on vCD, see the Cisco Elastic Services
Controller Install and Upgrade Guide.

Resources such as organization, and organization VDC and so on must be created on vCD before deployment.
For more information, see Managing Resources on vCloud Director (vCD).

ESC supports VMware vCloud Director 8.2.Note

To deploy the VNF, you must:

1. Add a VIM connector, with the organization and organization user details preconfigured in the VMware
vCD. See VIM Connector Configuration for VMware vCloud Director (vCD).

The vim_vdc leaf under the locator refers to the vDC, the deployment is targeted to.

2. Deploy the VNF with organization VDC, catalog and vApp template parameters preconfigured in the
VMware vCD.

See the VMware vCloud Director Documentation to create these resources.

You must set the following key parameters, before deploying the VNFs on vCD:

• VMWARE_VCD_PARAMS—Specify the VMWARE_VCD_PARAMS parameter in the extensions
section of the datamodel under each deployment section. The VMWARE_VCD_PARAMS parameter
includes CATALOG_NAME and VAPP_TEMPLATE_NAME.

• CATALOG_NAME—Specify the name of the preconfigured catalog that contains references to vApp
templates and the media images.

• VAPP_TEMPLATE_NAME—Specify the name of the preconfigured vApp template that contains virtual
machine image that is loaded with an operating system, application, and data, it ensure that virtual
machines are consistently configured across an entire organization.

A sample deployment is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc" xmlns:ns0="http://www.cisco.com/esc/esc"
xmlns:ns1="urn:ietf:params:xml:ns:netconf:base:1.0"

Deploying Virtual Network Functions
13

Deploying Virtual Network Functions
Deploying Virtual Network Functions on VMware vCloud Director (vCD)

Cisco-Elastic-Services-Controller-User-Guide-4-4_chapter5.pdf#nameddest=unique_43

xmlns:ns2="urn:ietf:params:xml:ns:netconf:notification:1.0"
xmlns:ns3="http://www.cisco.com/esc/esc_notifications">

<tenants>
<tenant>

<!-- ESC scope tenant -->
<name>esc-tenant</name>
<vim_mapping>false</vim_mapping>
<deployments>

<deployment>
<!-- vApp instance name -->
<name>vapp-inst1</name>
<policies>

<placement_group>
<name>placement-anti-affinity</name>
<type>anti_affinity</type>
<enforcement>strict</enforcement>
<vm_group>g1</vm_group>
<vm_group>g2</vm_group>

</placement_group>
</policies>
<extensions>

<extension>
<name>VMWARE_VCD_PARAMS</name>
<properties>

<property>
<name>CATALOG_NAME</name>
<value>catalog-1</value>

</property>
<property>

<name>VAPP_TEMPLATE_NAME</name>
<value>uLinux_vApp_Template</value>

</property>
</properties>

</extension>
</extensions>
<vm_group>

<name>g1</name>
<locator>

<!-- vCD vim connector id -->
<vim_id>vcd_vim</vim_id>
<!-- vCD organization corresponding to the vim connector -->
<vim_project>organization</vim_project>
<!-- vDC pre-preconfigured in organization -->
<vim_vdc>VDC-1</vim_vdc>

</locator>
<!-- VM name in vAppTemplate -->

<bootup_time>150</bootup_time>
<recovery_wait_time>30</recovery_wait_time>
<interfaces>

<interface>
<nicid>0</nicid>
<network>MgtNetwork</network>
<ip_address>172.16.0.0</ip_address>

</interface>
</interfaces>
<scaling>

<min_active>1</min_active>
<max_active>1</max_active>
<elastic>true</elastic>
<static_ip_address_pool>

<network>MgtNetwork</network>
<ip_address>172.16.0.0</ip_address>

</static_ip_address_pool>

Deploying Virtual Network Functions
14

Deploying Virtual Network Functions
Deploying Virtual Network Functions on VMware vCloud Director (vCD)

</scaling>
<kpi_data>

<kpi>
<event_name>VM_ALIVE</event_name>
<metric_value>1</metric_value>
<metric_cond>GT</metric_cond>
<metric_type>UINT32</metric_type>
<metric_collector>

<type>ICMPPing</type>
<nicid>0</nicid>
<poll_frequency>3</poll_frequency>
<polling_unit>seconds</polling_unit>
<continuous_alarm>false</continuous_alarm>

</metric_collector>
</kpi>

</kpi_data>
<rules>

<admin_rules>
<rule>

<event_name>VM_ALIVE</event_name>
<action>"ALWAYS log"</action>
<action>"TRUE servicebooted.sh"</action>
<action>"FALSE recover autohealing"</action>

</rule>
</admin_rules>

</rules>
<config_data>

<configuration>
<dst>ovfProperty:mgmt-ipv4-addr</dst>
<data>$NICID_0_IP_ADDRESS/24</data>

</configuration>
</config_data>

</vm_group>
<vm_group>

<name>g2</name>
<locator>

<!-- vCD vim connector id -->
<vim_id>vcd_vim</vim_id>
<!-- vCD organization corresponding to the vim connector -->
<vim_project>organization</vim_project>
<!-- vDC pre-preconfigured in organization -->
<vim_vdc>VDC-1</vim_vdc>

</locator>
<!-- VM name in vAppTemplate -->

<bootup_time>150</bootup_time>
<recovery_wait_time>30</recovery_wait_time>
<interfaces>

<interface>
<nicid>0</nicid>
<network>MgtNetwork</network>
<ip_address>172.16.0.1</ip_address>

</interface>
</interfaces>
<scaling>

<min_active>1</min_active>
<max_active>1</max_active>
<elastic>true</elastic>
<static_ip_address_pool>

<network>MgtNetwork</network>
<ip_address>172.16.0.1</ip_address>

</static_ip_address_pool>
</scaling>
<kpi_data>

Deploying Virtual Network Functions
15

Deploying Virtual Network Functions
Deploying Virtual Network Functions on VMware vCloud Director (vCD)

<kpi>
<event_name>VM_ALIVE</event_name>
<metric_value>1</metric_value>
<metric_cond>GT</metric_cond>
<metric_type>UINT32</metric_type>
<metric_collector>

<type>ICMPPing</type>
<nicid>0</nicid>
<poll_frequency>3</poll_frequency>
<polling_unit>seconds</polling_unit>
<continuous_alarm>false</continuous_alarm>

</metric_collector>
</kpi>

</kpi_data>
<rules>

<admin_rules>
<rule>

<event_name>VM_ALIVE</event_name>
<action>"ALWAYS log"</action>
<action>"TRUE servicebooted.sh"</action>
<action>"FALSE recover autohealing"</action>

</rule>
</admin_rules>

</rules>
<config_data>

<configuration>
<dst>ovfProperty:mgmt-ipv4-addr</dst>
<data>$NICID_0_IP_ADDRESS/24</data>

</configuration>
</config_data>

</vm_group>
</deployment>

</deployments>
</tenant>

</tenants>
</esc_datamodel>

Deploying Virtual Network Functions on Amazon Web Services
This section describes the deployment scenario for Elastic Services Controller (ESC) and the procedure to
deploy VNFs on Amazon Web Services (AWS). To install ESC on AWS, see the Cisco Elastic Services
Controller Install and Upgrade Guide.

The following AWS resources must be created on AWS before deployment:

• Amazon Machine Images (AMI)

• Key Pairs

• Elastic IPs

• Security Groups

• Network Elements (such as VPCs, subnets, ACLs, gateways, routes and so on)

See the AWS documentation to create these resources.

For information onVIM connector configuration prior to AWSdeployment, see "VIMConnector Configurations
for AWS".

Deploying Virtual Network Functions
16

Deploying Virtual Network Functions
Deploying Virtual Network Functions on Amazon Web Services

AdvantagesResourcesDescriptionScenarios

• You can specify the
VIM (to deploy
VMs) that needs to
be configured in
ESC within a
deployment.

• The images and
flavors can be used
in multiple VNF
deployments.

• You can delete
resources created by
ESC.

AmazonMachine Images
(AMI), flavors, AWS
regions, key pairs,
security groups, network
interfaces, VIM projects
(specified in the locators)
and Networks created
through ESC.

The deployment data
model refers to Amazon
Machine Images (AMI),
flavors, AWS regions, key
pairs, security groups,
network interfaces and
VIM projects created, and
then deploys VNFs.

Deploying VNFs on a
single VIM by creating
Amazon Machine Image
(AMI) and regions
through ESC

You can specify the VIM
(to deploy VMs) that
needs to be configured in
ESCwithin a deployment.

Images, Flavors, VIM
projects (specified in the
locators) and Networks
created through ESC.

The deployment data
model refers to Amazon
Machine Images (AMI),
flavors, AWS regions, key
pairs, security groups,
network interfaces and
VIM projects created and
then deploys VNFs.

Deploying VNFs on
multiple VIMs by creating
AMIs and regions through
ESC

For more details, see Deploying VNFs on a Single or Multiple AWS Regions, on page 17.

Deploying VNFs on a Single or Multiple AWS Regions
You can deploy VNFs on a single or multiple AWS regions or VIMs of the same type using ESC.

AWS is a Virtual Infrastructure Manager (VIM) for ESC. Further in this document, the terms AWS region
and AWS VIM are used interchangeably.

Note

To deploy VNFs on a single or multiple VIMs, you must:

• Configure the VIM connector and its credentials using the VIM connector API

• Create a tenant within ESC

A VIM connector registers the VIM to ESC. To deploy VNFs on a single or multiple AWS VIMs, you must
configure the VIM connector and its credentials for each region of the VIM. You can configure a VIM
connector using the VIM connector APIs. For more information, see VIMConnector Configurations for AWS.

A default VIM connector is not supported for AWS deployment.Note

Deploying Virtual Network Functions
17

Deploying Virtual Network Functions
Deploying VNFs on a Single or Multiple AWS Regions

ESC creates a tenant within ESC with the vim_mapping attribute set to false. This tenant is independent of
any VIM.

<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<tenants>

<tenant>
<name>aws-sample-tenant</name>
<vim_mapping>false</vim_mapping>

</tenant>
</tenants>

</esc_datamodel>

For a single or multiple AWS VIM deployment, you must specify the target region for each VM group.

You must add a locator attribute to the VM group in the datamodel to enable AWS VIM deployment. The
locator node consists of the following attributes:

• vim_id—the vim id of the target VIM. ESC defines the vim_id and maps it to the vim_connector id. The
vim connector must exist before deploying to the VIM specified by the vim_id.

• vim_project—the tenant name created in the target VIM. This is an out-of-band tenant or project existing
in OpenStack.

• vim_region—the AWS region in which the VM groups are deployed. This is optional. If the vim region
is not specified, then the VMs are deployed in the aws_default_region specified in the VIM connector.

<locator>
<vim_id>AWS_EAST_2</vim_id>
<vim_region>us-east-1</vim_region>
<!-- the deployment is going into

North Virginia -->
</locator>

If the vim region is not specified,

<locator>
<vim_id>AWS_EAST_2</vim_id>
<!-- the deployment is going into the default region Ohio (us-east-2)

as defined in the VIM Connector example above -->
</locator>

After configuring the VIM connectors and locators, you must pass certain resources as extensions to the
deployment. In the example below, the elastic IP, key pair and source destination are passed as extensions to
the AWS deployment.

<extensions>
<extension>

<name>AWS_PARAMS</name>
<properties>

<property>
<name>elastic_ip</name>
<value>13.56.148.25</value>

</property>
<property>

<name>source_dest_check</name>
<value>true</value>

</property>

Deploying Virtual Network Functions
18

Deploying Virtual Network Functions
Deploying VNFs on a Single or Multiple AWS Regions

<property>
<name>key_pair_name</name>
<value>esc-us-east-1</value>

</property>
</properties>

</extension>
</extensions>

A sample AWS deployment is as follows:

<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<tenants>

<tenant>
<name>aws-east-1-tenant</name>
<vim_mapping>false</vim_mapping>
<deployments>

<deployment>
<name>aws-east-1-dep</name>
<vm_group>

<name>aws-vm-east-1</name>
<locator>

<vim_id>AWS_US_EAST_1</vim_id>
</locator>
<bootup_time>600</bootup_time>
<recovery_wait_time>33</recovery_wait_time>
<flavor>t2.micro</flavor>

<extensions>

<extension>
<name>AWS_PARAMS</name>
<properties>

<property>
<name>key_pair_name</name>
<value>esc-us-east-1</value>

</property>
</properties>

</extension>
</extensions>
<interfaces>

<interface>
<nicid>0</nicid>
<network>vpc-d7ee1bac</network>
<security_groups>

<security_group>esc-sg-us-east-1</security_group>
</security_groups>

</interface>
</interfaces>
<kpi_data>

<kpi>
<event_name>VM_ALIVE</event_name>
<metric_value>1</metric_value>
<metric_cond>GT</metric_cond>
<metric_type>UINT32</metric_type>
<metric_collector>

<type>ICMPPing</type>
<nicid>0</nicid>
<poll_frequency>3</poll_frequency>
<polling_unit>seconds</polling_unit>
<continuous_alarm>false</continuous_alarm>
<monitoring_public_ip>true</monitoring_public_ip>

</metric_collector>
</kpi>

</kpi_data>

Deploying Virtual Network Functions
19

Deploying Virtual Network Functions
Deploying VNFs on a Single or Multiple AWS Regions

<rules>
<admin_rules>

<rule>
<event_name>VM_ALIVE</event_name>
<action>ALWAYS log</action>
<action>FALSE recover autohealing</action>
<action>TRUE servicebooted.sh</action>

</rule>
</admin_rules>

</rules>
<config_data />
<scaling>

<min_active>1</min_active>
<max_active>1</max_active>
<elastic>true</elastic>

</scaling>
</vm_group>

</deployment>
</deployments>

</tenant>
</tenants>

</esc_datamodel>

Unified Deployment
ESC creates OpenStack resources such as tenants, networks, and subnetworks before deploying a VNF.

During unified deployment, you send a single combined request to create or delete the OpenStack resources,
and deploy a VNF. You can create multiple networks and subnetworks, but can create only a single VNF and
a single tenant using unified deployment.

A unified deployment request is defined as a new deployment request, and any number of networks and
subnetworks located directly inside the deployment definition. Networks and subnets located directly inside
the tenant are not considered part of a unified deployment request, and will not be removed during a subsequent
undeploy request.

Update the deployment data model and the files with the necessary information such as the service
and deployment ID, tenant, network and subnetwork ids and so on. You can either use NETCONF or REST
APIs. For example, send POST REST and DELETE REST calls.

A single NETCONF request can be used to perform multiple actions, such as creating networks and
subnetworks; creating images, flavors and deploying VNFs.

Note

See the Elastic Services Controller Deployment Attributes for a list of deployment attributes.

• To create a deployment datamodel with a single deployment request, send POST REST call to:
http://[ESC_IP]:8080/v0/deployments/[internal_dep_id]

• To delete a single deployment request, send DELETE REST call to:
http://[ESC_IP]:8080/v0/deployments/[internal_dep_id]

The VNF will be undeployed, and the network and subnet will be deleted in the specified order.

Deploying Virtual Network Functions
20

Deploying Virtual Network Functions
Unified Deployment

http://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html

If tenant creation fails as part of a unified deployment request, a manual rollback is needed to clean up ESC.
As part of manual rollback, first an undeploy request is required to clean up the deployment, followed by a
delete tenant request to clean up the failed tenant creation.

During an undeploy request, any network and subnetwork created as part of the unified deployment request
will be deleted along with the VNF. However, the tenant created through unified deployment request will not
be deleted.

Note

Undeploying Virtual Network Functions
You can undeploy an already deployed VNF. Use the REST or NETCONF / YANG APIs to undeploy the
VNF.

You can also undeploy VNFs using the ESC portal. For more information, see ESC Portal Dashboard.Important

Sample undeploy request is as follows:

DELETE /v0/deployments/567 HTTP/1.1
Host: client.host.com
Content-Type: application/xml
Accept: application/xml
Client-Transaction-Id: 123456
Callback:/undeployservicecallback

For more details, see Cisco Elastic Services Controller API Guides.

Reboot Parameter

A reboot time parameter is introduced in the deployment request. This provides more flexibility to the operation
time of the deployment. In a deployment, when the VM reboots, the monitor is set with the reboot time. If
the reboot time expires before the VM alive event, the next action such as vm_recovery_complete, or undeploy
is performed.

Deploying Virtual Network Functions
21

Deploying Virtual Network Functions
Undeploying Virtual Network Functions

http://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-programming-reference-guides-list.html

Deploying Virtual Network Functions
22

Deploying Virtual Network Functions
Undeploying Virtual Network Functions

	Deploying Virtual Network Functions
	Deploying Virtual Network Functions on OpenStack
	Deploying VNFs on a Single OpenStack VIM
	Deploying VNFs on Multiple OpenStack VIMs

	Deploying Virtual Network Functions on VMware vCenter
	Deploying VNFs on Single VMware vCenter VIM

	Deploying Virtual Network Functions on VMware vCloud Director (vCD)
	Deploying Virtual Network Functions on Amazon Web Services
	Deploying VNFs on a Single or Multiple AWS Regions

	Unified Deployment
	Undeploying Virtual Network Functions

