
Configuring Deployment Parameters

A VNF deployment is initiated as a service request through the northbound interface or the ESC portal. The
service request comprises of templates that consist of XML payloads and deployment parameters. Deployment
parameters are rules, policies or day 0 configuration that determine properties of the VNF and its lifecycle.
The table below lists the complete list of deployment parameters and how they interoperate on OpenStack or
VMware vCenter:

VMware vCenterOpenStackDeployment
Parameters

Day 0 configuration is done in one of the
following ways:

• NETCONF API

• REST API

• ESC Portal

Day 0 configuration is done in one of the
following ways:

• NETCONF API

• REST API

• ESC Portal

Day 0
Configuration

Configuration of Individual and Composite
VNFs is done in one of the following ways:

• NETCONF API

• REST API

• ESC Portal (You can configure the VNF
settings through the Deployment Form,
or the Deployment Template.)

Configuration of Individual and Composite
VNFs is done in one of the following ways:

• NETCONF API

• REST API

• ESC Portal (You can deploy using the
Deployment Template.)

Deploying
VNFs

Undeploying VNFs is done in one of the
following ways:

• NETCONF API

• REST API

• ESC Portal

Undeploying is done in one of the following
ways:

• NETCONF API

• REST API

• ESC Portal

Undeploy
Virtual
Network
Functions

Configuring Deployment Parameters
1

VMware vCenterOpenStackDeployment
Parameters

Creating and deleting affinity rule definition
in one of the following ways:

• NETCONF API

• REST API

• ESC Portal (You can set up affinity and
anti-affinity using theDeployment Form.)

Creating and deleting affinity and
anti-affinity rule definitions is done in one
of the following ways:

• NETCONF API

• REST API

Affinity and
anti-affinity
Rule

VNF Operations are done in one of the
following ways:

• REST API

• NETCONF API

• ESC Portal

For more information, see the Elastic Services
Controller Portal.

VNF Operations are done in one of the
following ways:

• REST API

• NETCONF API

• ESC Portal

VNF
Operations

Multi Cluster configuration is done in one of
the following ways:

• REST API

• ESC Portal

For more information, see the Deploying
VNFs on VMware vCenter using ESC Portal.

Not applicableMulti Cluster

Multiple Virtual Datacenter selection is done
in one of the following ways:

• REST API

• ESC Portal

Not applicableMultiple
Virtual
Datacenter
(Multi VDC)

Not applicableHardware Acceleration is supported in one
of the following ways:

• NETCONF API

• REST API

For more information, see the Hardware
Acceleration Support (OpenStack Only), on
page 53.

Hardware
Acceleration

Configuring Deployment Parameters
2

Configuring Deployment Parameters

Cisco-Elastic-Services-Controller-User-Guide-4-2_chapter2.pdf#nameddest=unique_19
Cisco-Elastic-Services-Controller-User-Guide-4-2_chapter2.pdf#nameddest=unique_19

VMware vCenterOpenStackDeployment
Parameters

Configuration of Single Root I/O
Virtualization is done in one of the following
ways:

• NETCONF API

• REST API

Configuration of Single Root I/O
Virtualization is done in one of the following
ways:

• NETCONF API

• REST API

Single Root
I/O
Virtualization

This chapter describes the procedures to configure the deployment customization. For more information on
VNF deployment, see "Deploying Virtual Network Functions".

• Day Zero Configuration, on page 3
• KPIs, Rules and Metrics, on page 8
• Policy-Driven Data model, on page 22
• Affinity and Anti-Affinity Rules, on page 27
• Configuring Custom VM Name, on page 36
• Interface Configurations, on page 38
• Hardware Acceleration Support (OpenStack Only), on page 53

Day Zero Configuration
The initial or day 0 configuration of a VNF is based on the VM type. A VNF administrator configures the
initial template for each VM type at the time of VNF deployment. The same configuration template is applied
to all deployed and new VMs of that VM type. The template is processed at the time of individual VM
deployment. The day 0 configuration continues to persists, so that all initial deployment, healing and scaling
of VMs have the same day 0 template.

Some of the day 0 configuration tasks include bringing up the interface, managing the network, support for
static or dynamic IP (DHCP, IPAM), SSH keys, and NetConf enabled configuration support on VNF.

ESC does not support day 0 configuration of interfaces added during service update. In case of recovery for
day 0 configuration, all the interfaces with Network Interface Card IDs will be configured.

Note

Day Zero in the configuration data model

The day 0 configuration file can be specified in different ways in the data model, but you can use only one
of the options at a time.

• <file> url </file>—The url specifies a file on the ESC VM file system or file hosted on report http server.
ESC downloads the file specified by the URL. This file is used as a template to replace the tokens specified
in this template with the values specified in the variables section. This template is used to generate the
day 0 configuration.

• <data> inline config content </data>—Specifies URL for the template. This allows the use of inline text
as the template.

Configuring Deployment Parameters
3

Configuring Deployment Parameters
Day Zero Configuration

• <encrypted_data> inline config content</encrypted_data>—The inline configuration content will be
encrypted based on the data.

• <file_locators> list of file locators </file_locators>—Similar to file, a file_locator defines file to download
from a remote server with basic authentication (if required).

The <file_locators> is deprecated in ESC Release 4.0.Note

• <file_locator_name> deployment defined file_locator </file_locator_name>—Similar to file, the
file_locator_name is used to download the file from a remote server with basic authentication (if required).

Day 0 configuration is defined in the datamodel under the config_data tag. Each user data and the configuration
drive file is defined under the configuration tag. The contents are in the form of a template. ESC processes
the template through the Apache Velocity Template Engine before passing to the VM.

The config_data tag is defined for each vm_group. The same configuration template is applied to all VMs in
the vm_group. The template file is retrieved and stored at deployment initialization. Template processing is
applied at time of VM deployment. The content of the config file can be retrieved from the file or data .
<file> url </file>
<data> inline config content </data>

A destination name is assigned to the config by <dst>. User Data is a treated as a special case with
<dst>--user-data</dst>.

A sample config data model,
<config_data>

<configuration>
<file>file://cisco/userdata_file.txt</file>
<dst>--user-data</dst>
<variable>

<name>CUSTOM_VARIABLE_FOR_USERDATA</name>
<val>SOME_VALUE_XXX</val>

</variable>
</configuration>
<configuration>

<file>file://cisco/config.sh</file>
<dst>config.sh</dst>
<variable>

<name>CUSTOM_VARIABLE_FOR_CONFIG</name>
<val>SOME_VALUE_XXX</val>

</variable>
</configuration>

</config_data>

Custom variable can be specified in the variables tag within the configuration. Zero or more variables can be
included in each configuration. Each variable can have multiple values. Multiple values are only useful when
creating more than one VM per vm_group. Also, when performing scale-in and scale-out, additional VMs
can be added and removed from the VM group.

Configuring Deployment Parameters
4

Configuring Deployment Parameters
Day Zero Configuration

Note the following while providing multiple values for the variable tag.

• The variable values assigned to the initially deployed VMs are unique and from the pool. There is no
order followed for assigning the values from the pool. That is, the first VM can use the second value
from the pool.

• A scaled out VM should have a unique variable value and from the pool.

• A recovered VM (after undeploy or redeploy) must retain the same value it had before.

Note

The contents of <file> are a template that is processed by the Velocity Template Engine. ESC populates a set
of variables for each interface before processing the configuration template:

string containing FIXED | DHCPNICID_n_IP_ALLOCATION_TYPE

string containing neutron network uuidNICID_n_NETWORK_ID

ipv4 or ipv6 addressNICID_n_IP_ADDRESS

stringNICID_n_MAC_ADDRESS

ipv4 or ipv6 gateway addressNICID_n_GATEWAY

ipv4 or ipv6 cidr prefix addressNICID_n_CIDR_ADDRESS

integer with prefix-lengthNICID_n_CIDR_PREFIX

If an ipv4 CIDR address and prefix are present, ESC
will automatically calculate and populate the netmask
variable. This is not substituted in the case of an IPv6
address and should not be used.

NICID_n_NETMASK

string with ipv4 or ipv6NICID_n_ANYCAST_ADDRESS

string with last 2 octets of ip address, such as 16.66,
specific to CloudVPN

NICID_n_IPV4_OCTETS

Where n is the interface number from the data model, for example, 0, 1, 2, 3

The interface number, n starts with 0 for OpenStack, and 1 for VMware.Note

Example
NICID_0_IP_ALLOCATION_TYPE: FIXED
NICID_0_NETWORK_ID: 9f8d9a97-d873-4a1c-8e95-1a123686f038
NICID_0_IP_ADDRESS: 2a00:c31:7fe2:1d:0:0:1:1000
NICID_0_MAC_ADDRESS: null
NICID_0_GATEWAY: 2a00:c31:7fe2:1d::1
NICID_0_CIDR_ADDRESS: 2a00:c31:7fe2:1d::
NICID_0_CIDR_PREFIX: 64
NICID_0_ANYCAST_ADDRESS: null
NICID_0_IPV4_OCTETS: 16.0

Configuring Deployment Parameters
5

Configuring Deployment Parameters
Day Zero Configuration

NICID_1_IP_ALLOCATION_TYPE: DHCP
NICID_1_NETWORK_ID: 0c468d8e-2385-4641-b1db-9080c170cb1a
NICID_1_IP_ADDRESS: 6.0.0.2
NICID_1_MAC_ADDRESS: null
NICID_1_GATEWAY: 6.0.0.1
NICID_1_CIDR_ADDRESS: 6.0.0.0
NICID_1_CIDR_PREFIX: 24
NICID_1_ANYCAST_ADDRESS: null
NICID_1_NETMASK: 255.255.255.0

By default, ESC substitutes the $ variable in the day 0 configuration file with the actual value during
deployment. You can enable or disable the $ variable substitution for each configuration file.

Add the following field to the configuration data model:

<template_engine>VELOCITY | NONE</template_engine> field to configuration

where,

• VELOCITY enables variable substitution.

• NONE disables variable substitution.

If no value is set the default option is VELOCITY, and the $ variable substitution takes place. When set to
NONE, the $ variable substitution does not take place.

You must follow these tips while processing the template through the velocity template engine.

• To escape dollar sign in the template insert,
#set ($DS = "$")

then replace the variable with
passwd: ${DS}1${DS}h1VxC40U${DS}uf2qLUwGTjHgZplkP78xA

• To escape a block in the template, insert #[[and #]]. For example,
#[[passwd: 1h1VxC40U$uf2qLUwGTjHgZplkP78xA]]#

File locator

To fetch external configuration files, a file locator is added to the day 0 configuration. The file locator contains
a reference to the file server, and the relative path to the file to be downloaded.

The file locator attribute is defined at the deployment level, that is, directly under the deployment container
instead of policy actions and day 0 configuration sections. For updated data model see Fetching Files From
Remote Server.

Note

Example of day 0 configuration with a file locator:
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">

<tenants>
<tenant>

<name>sample-tenant</name>
<deployments>

<deployment>
<name>sample-deployment</name>
<vm_group>

<name>sample-vm-group</name>
<config_data>

Configuring Deployment Parameters
6

Configuring Deployment Parameters
Day Zero Configuration

<!-- exisiting configuration example - remains valid -->
<configuration>

<file>file:///cisco/config.sh</file>
<dst>config.sh</dst>

</configuration>
<!-- new configuration including use of file locators -->
<configuration>

<dst>ASA_config_0</dst>
<file_locators>

<file_locator>
<name>configlocator-1</name>
<!-- unique name -->
<remote_file>

<file_server_id>server-1</file_server_id>

<remote_path>/share/users/configureScript.sh</remote_path>
<!-- optional user specified local silo directory

-->

<local_target>day0/configureScript.sh</local_target>
<!-- persistence is an optional parameter -->
<persistence>FETCH_ALWAYS</persistence>
<!-- properties in the file_locator are only

used for
fetching the file not for running scripts -->

<properties>
<property>

<!-- the property name
"configuration_file" with value "true" indictates this is the

script to be used just as using the <file> member case of
the configuration -->

<name>configuration_file</name>
<value>true</value>

</property>
<property>

<name>server_timeout</name>
<value>120</value>

<!-- timeout value in seconds, overrides
the file_server property -->

</property>
</properties>

</remote_file>
<!-- checksum is an optional parameter.

The following algorithms are supported: SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512 -->

<checksum>SHA256 (configureScript.sh) =
dd526bb2c0711238ec2649c4b91598fb9a6cf1d2cb8559c337c5f3dd5ea1769e</checksum>

</file_locator>
<file_locator>

<name>configlocator-2</name>
<remote_file>

<file_server_id>server-2</file_server_id>

<remote_path>/secure/requiredData.txt</remote_path>
<local_target>day0/requiredData.txt</local_target>

<persistence>FETCH_ALWAYS</persistence>
<properties />

</remote_file>
</file_locator>

</file_locators>
</configuration>

</config_data>
</vm_group>

Configuring Deployment Parameters
7

Configuring Deployment Parameters
Day Zero Configuration

</deployment>
</deployments>

</tenant>
</tenants>

</esc_datamodel>

The file locator parameters include:

• name—used as the key and identifier for a file locator.

• local_file or remote_file—choice of file location. Local file is used to specify a file existing on the ESC
VM file system already. The remote_file is used to specify a file to fetch from a remote server.

• file_server_id—id of the File Server object to fetch the file from.

• remote_path—path of the file from the base_url defined in the file server object.

• local_target—optional local relative directory to save the file.

• properties—name-value pairs of of information that may be required.

• persistence—options for file storage. Values include CACHE, FETCH_ALWAYS and
FETCH_MISSING (default).

• checksum—optional BSD style checksum value to use to validate the transferred file's validity.

For more information, see Fetching Files From Remote Server.

To encrypt the files see, "Encrypting Configuration Data".

KPIs, Rules and Metrics
Cisco Elastic Services Controller VNFmonitoring is done through the definition of Key Performance Indicators
(KPIs) metrics. Core metrics are preloaded with ESC, a programmable interface gives to the end-user the
ability to add and remove metrics, but also to define the actions to be triggered on specified conditions.These
metrics and actions are defined at the time of deployment.

The ESC metrics and actions datamodel is divided into 2 sections:

1. KPI—Defines the type of monitoring, events, polling interval and other parameters. This includes the
event_name, threshold and metric values. The event_name is user defined. The metric_values specify
threshold conditions and other details. An event is triggered when the threshold condition is reached.

2. Rule—Defines the actions when the KPI monitoring events are triggered. The action element defines the
actions to be performed when an event corresponding to the event_name is triggered.

Rules
The ESC object model defines for each vm_group a section where the end-user can specify the administrative
rules to be applied based on the outcome of the KPIs selected metric collector.
<rules>

<admin_rules>
<rule>

<event_name>VM_ALIVE</event_name>
<action>TRUE esc_vm_alive_notification</action>
<action>FALSE recover autohealing</action>

Configuring Deployment Parameters
8

Configuring Deployment Parameters
KPIs, Rules and Metrics

</rule>
: : : : : : : : : : : : : : : :

</admin_rules>
</rules>

As mentioned within the KPIs section, correlation between KPIs and Rules is done based on the value of the
<event_name> tag.

In the Rules section above, if the outcome of the KPIs defining event_name is VM_ALIVE, and the selected
metric collector is TRUE, then the action identified by the key, TRUE esc_vm_alive_notification is selected
for execution.

If the outcome of the KPIs defining event_name is VM_ALIVE, and the selected metric collector is FALSE,
then the action identified by the key, FALSE recover autohealing is selected for execution.

For information on updating KPIs and Rules, see Updating the KPIs and Rules.

Metrics and Actions
ESCMetrics and Actions (Dynamic Mapping) framework is the foundation of the kpis and rules sections. As
described in the KPIs section the metric type uniquely identifies a metric and its metadata.

The metrics and actions is as follows:
<metrics>

<metric>
<name>ICMPPING</name>
<userLabel>ICMP Ping</userLabel>
<type>MONITOR_SUCCESS_FAILURE</type>
<metaData>

<type>icmp_ping</type>
<properties>

<property>
<name>ip_address</name>
<value />

</property>
<property>

<name>enable_events_after_success</name>
<value>true</value>

</property>
<property>

<name>vm_gateway_ip_address</name>
<value />

</property>
<property>

<name>enable_check_interface</name>
<value>true</value>

</property>
</properties>

</metaData>
</metric>
: : : : : : : :

</metrics>

The above metric is identified by its unique name ICMPPING. The <type> tag identifies the metric type.

Currently ESC supports two types of metrics:

• MONITOR_SUCCESS_FAILURE

• MONITOR_THRESHOLD

Configuring Deployment Parameters
9

Configuring Deployment Parameters
Metrics and Actions

Cisco-Elastic-Services-Controller-User-Guide-4-2_chapter9.pdf#nameddest=unique_72/unique_72_Connect_42_section_ibz_x4l_jx

The <metadata> section defines the attributes and properties that is processed by the monitoring engine.

The metric_collector type in the KPI show the following behavior:

At regular intervals of 3 seconds the behavior associated with the ICMPPING identifier is triggered. The
ICMPPINGmetric is of typeMONITOR_SUCCESS_FAILURE, that is the outcome of the monitoring action
is either a success or a failure. In the sample above, an icmp_ping is performed using the <ip_address> field
defined in the <metadata> section. In case of SUCCESS the rule action(s) with the TRUE prefix will be
selected for execution. In case of FAILURE the rule action(s) with the FALSE prefix is selected for execution.
<actions>

<action>
<name>TRUE servicebooted.sh esc_vm_alive_notification</name>
<type>ESC_POST_EVENT</type>
<metaData>

<type>esc_post_event</type>
<properties>

<property>
<name>esc_url</name>
<value />

</property>
<property>

<name>vm_external_id</name>
<value />

</property>
<property>

<name>vm_name</name>
<value />

</property>
<property>

<name>event_name</name>
<value />

</property>
<property>

<name>esc_event</name>
<value>SERVICE_BOOTED</value>

</property>
</properties>

</metaData>
</action>
: : : : : : : :

</actions>

The action sample above describes the behavior associated with the SUCCESS value. The ESC rule action
name TRUE servicebooted.sh esc_vm_alive_notification specifies the action to be selected. Once selected
the action <type> ESC_POST_EVENT identifies the action that the monitoring engine selects.

Metrics and Actions APIs
In Cisco ESC Release 2.1 and earlier, mapping the actions and metrics defined in the datamodel to the valid
actions and metrics available in the monitoring agent was enabled using the dynamic_mappings.xml file. The
file was stored in the ESC VM and was modified using a text editor. ESC 2.2 and later do not have an
esc-dynamic-mapping directory and dynamic_mappings.xml file. However, if you have an existing
dynamic_mapping xml file that you want to add to the ESC VM, do the following:

1. Backup this file to a location outside of ESC, such as, your home directory.

2. Create esc-dynamic-mapping directory on your ESC VM. Ensure that the read permissions are set.

3. Install on your ESC VM using the following bootvm argument:

Configuring Deployment Parameters
10

Configuring Deployment Parameters
Metrics and Actions APIs

--file
root:root:/opt/cisco/esc/esc-dynamic-mapping/dynamic_mappings.xml:<path-to-local-copy-of-dynamic-mapping.xml>

The CRUD operations for mapping the actions and the metrics are available through REST API. Refer to the
API tables below for mapped metrics and actions definition.

To update an existing mapping, delete and add a new mapping through the REST API.

While upgrading any earlier version of ESC to ESC 2.2 and later, to maintain the VNF monitoring rules, you
must back up the dynamic_mappings.xml file and then restore the file in the upgraded ESC VM. For more
information upgrading monitoring rules, see Upgrading VNF Monitoring Rules section in the Cisco Elastic
Services Controller Install and Upgrade Guide.

Cisco ESC Release 2.3.2 and later, the dynamic mapping API is accessible locally only on the ESC VM.

Note

Table 1: Mapped Actions

DescriptionResponsePayloadHTTP
Operation

PathUser
Operation

Get action by
name

Action XMLN/AGETinternal/dynamic_mapping/actions/

<action_name>

Read

Get all actions
defined

Action XMLN/AGETinternal/dynamic_mapping/actionsRead All

Create one or
multiple actions

Expected
Action XML

Actions
XML

POSTinternal/dynamic_mapping/actionsWrite

Delete action by
name

N/AN/ADELETEinternal/dynamic_mapping/actions/

<action_name>

Delete

Delete all
non-core actions

N/AN/ADELETEinternal/dynamic_mapping/actionsClear All

The response for the actions APIs is as follows:
<actions>

<action>
<name>{action name}</name>
<type>{action type}</type>
<metaData>

<type>{monitoring engine action type}</type>
<properties>

<property>
<name />
<value />

</property>
: : : : : : :

</properties>
</metaData>

</action>
: : : : : : : :

</actions>

Configuring Deployment Parameters
11

Configuring Deployment Parameters
Metrics and Actions APIs

Where,

{action name}:Unique identifier for the action. Note that in order to be compliant with the ESC object model,
for success or failure actions, the name must start with either TRUE or FALSE.

{action type}: Action type in this current release can be either ESC_POST_EVENT, SCRIPT or
CUSTOM_SCRIPT.

{monitoring engine action type}: The monitoring engine type are the following: icmp_ping, icmp4_ping,
icmp6_ping, esc_post_event, script, custom_script, snmp_get. See Monitoring the VNFs for more details.

Core and Default Actions List

Table 2: Core and Default Actions List

DescriptionTypeName

Start ServiceCoreTRUE esc_vm_alive_notification

Start ServiceCore/LegacyTRUE servicebooted.sh

Recover ServiceCoreFALSE recover autohealing

Scale OutCore/LegacyTRUE servicescaleup.sh

Scale OutCoreTRUE esc_vm_scale_out_notification

Scale InCore/LegacyTRUE servicescaledown.sh

Scale InCoreTRUE esc_vm_scale_in_notification

Apply Netscaler LicenseDefaultTRUE apply_netscaler_license.py

The core actions and metrics are defined by ESC and cannot be removed or updated.

The default actions or metrics are defined by ESC and exist to supplement core actions or metrics for more
complex monitoring capabilities. These can be deleted and modified by the user. The default actions or metrics
are reloaded on ESC startup every time an action or a metric with the same name cannot be found in the
database.

Metric APIs

Table 3: Mapped Metrics

DescriptionResponsePayloadHTTP
Operation

PathUser
Operation

Get metrics by
name

Metric XMLN/AGETinternal/dynamic_mapping/actions/

<metric_name>

Read

Get all metrics
defined

Metric XMLN/AGETinternal/dynamic_mapping/metrics/Read All

Create one or
multiple metrics

Expected
Metrics
XML

Metrics XMLPOSTinternal/dynamic_mapping/metrics/Write

Configuring Deployment Parameters
12

Configuring Deployment Parameters
Metrics and Actions APIs

DescriptionResponsePayloadHTTP
Operation

PathUser
Operation

Delete metric by
name

N/AN/ADELETEinternal/dynamic_mapping/actions/

<metric_name>

Delete

Delete all
non-core metrics

N/AN/ADELETEinternal/dynamic_mapping/metricsClear All

The response for the Metric APIs is as follows:

<metrics>
<metric>

<name>{metric name}</name>
<type>{metric type}</type>
<metaData>

<type>{monitoring engine action type}</type>
<properties>

<property>
<name />
<value />

</property>
: : : : : : :

</properties>
</metaData>

</metric>
: : : : : : : :

</metrics>

Where,

{metric name}: Unique identifier for the metric.

{metric type}: Metric type can be either MONITOR_SUCCESS_FAILURE, MONITOR_THRESHOLD or
MONITOR_THRESHOLD_COMPUTE.

{monitoring engine action type}: The monitoring engine type are the following: icmp_ping, icmp4_ping,
icmp6_ping, esc_post_event, script, custom_script, snmp_get. See Monitoring for more details.

Core and Default Metrics List

Table 4: Core and Default Metrics List

DescriptionTypeName

ICMP PingCoreICMPPING

Memory compute percent usageDefaultMEMORY

CPU compute percent usageDefaultCPU

CPU 1 Minute Average LoadDefaultCPU_LOAD_1

CPU 5 Minutes Average LoadDefaultCPU_LOAD_5

CPU 15 Minutes Average LoadDefaultCPU_LOAD_15

CSR Processing LoadDefaultPROCESSING_LOAD

Configuring Deployment Parameters
13

Configuring Deployment Parameters
Metrics and Actions APIs

DescriptionTypeName

CSR Total Bit RateDefaultOUTPUT_TOTAL_BIT_RATE

CSR Subscriber SessionDefaultSUBSCRIBER_SESSION

ESC Service Deployment

The KPI section defines the new KPI using the monitoring metrics.
<kpi>

<event_name>DEMO_SCRIPT_SCALE_OUT</event_name>
<metric_value>20</metric_value>
<metric_cond>GT</metric_cond>
<metric_type>UINT32</metric_type>
<metric_collector>

<type>custom_script_count_sessions</type>
<nicid>0</nicid>
<poll_frequency>15</poll_frequency>
<polling_unit>seconds</polling_unit>
<continuous_alarm>false</continuous_alarm>

</metric_collector>
</kpi>
<kpi>

<event_name>DEMO_SCRIPT_SCALE_IN</event_name>
<metric_value>1</metric_value>
<metric_cond>LT</metric_cond>
<metric_type>UINT32</metric_type>
<metric_occurrences_true>1</metric_occurrences_true>
<metric_occurrences_false>1</metric_occurrences_false>
<metric_collector>

<type>custom_script_count_sessions</type>
<nicid>0</nicid>
<poll_frequency>15</poll_frequency>
<polling_unit>seconds</polling_unit>
<continuous_alarm>false</continuous_alarm>

</metric_collector>
</kpi>

In the above sample, in the first KPI section, the metric identified by custom_script_count_sessions is executed
at regular interval of 15 seconds. If the value returned by the metric is greater than 20, then the event name
DEMO_SCRIPT_SCALE_OUT is triggered to be processed by the rules section.

In the above sample, in the second KPI section,The metric identified by custom_script_count_sessions is
executed at regular interval of 15 seconds. If the value returned by the metric is less than 1, then the event
name DEMO_SCRIPT_SCALE_IN is triggered to be processed by the rules section.

The rules section defines rules using the event_name that have been used by kpis. The action tag will define
an action that will be executed when the event_name is triggered. In the example below, the action identified
by the TRUE ScaleOut identifier is executed when the event DEMO_SCRIPT_SCALE_OUT is triggered.

<rule>
<event_name>DEMO_SCRIPT_SCALE_OUT</event_name>
<action>ALWAYS log</action>
<action>TRUE ScaleOut</action>

</rule>
<rule>

<event_name>DEMO_SCRIPT_SCALE_IN</event_name>
<action>ALWAYS log</action>

Configuring Deployment Parameters
14

Configuring Deployment Parameters
Metrics and Actions APIs

<action>TRUE ScaleIn</action>
</rule>

Script Actions
There are two types of actions supported:

1. Pre-Defined actions

2. Script actions

You can specify script execution as part of the Policy-driven data model. The script_filename property is
mandatory to script actions, which specifies the absolute path to the script on the ESC VM. The following
XML snippet shows a working example of a script action:
<action>

<name>GEN_VPC_CHASSIS_ID</name>
<type>SCRIPT</type>
<properties>

<property>
<name>script_filename</name>
<value>/opt/cisco/esc/esc-scripts/esc_vpc_chassis_id.py</value>

</property>
<property>

<name>CHASSIS_KEY</name>
<value>164c03a0-eebb-44a8-87fa-20c791c0aa6d</value>

</property>
</properties>

</action>

The script timeout is 15 minutes by default. However, you can specify a different timeout value for each script
by adding a wait_max_timeout property to the properties section. The following example shows how to set
the timeout to 5 minutes only for this script:
<action>

<name>GEN_VPC_CHASSIS_ID</name>
<type>SCRIPT</type>
<properties>

<property>
<name>script_filename</name>
<value>/opt/cisco/esc/esc-scripts/esc_vpc_chassis_id.py</value>

</property>
<property>

<name>CHASSIS_KEY</name>
<value>164c03a0-eebb-44a8-87fa-20c791c0aa6d</value>

</property>
<property>

<name>wait_max_timeout</name>
<value>300</value>

</property>
</properties>

</action>

In the above example, GEN_VPC_CHASSIS_ID will have a timeout value of 300 seconds, i.e. 5 mins. ESC
also has a global parameter specifying the default timeout time for all the scripts that are being executed,
called SCRIPT_TIMEOUT_SEC in the MONA category. This serves as the default value unless a
wait_max_timeout property is defined in the script.

Configuring Deployment Parameters
15

Configuring Deployment Parameters
Script Actions

Triggering Pre-defined Actions

ESC introduces a new REST API to trigger the existing (pre-defined) actions defined through the Dynamic
Mapping API, when required. For more information on theMetrics and Actions APIs, seeMetrics and Actions,
on page 9.

A sample predefined action is as follows:
<actions>

<action>
<name>SaidDoIt</name>
<userlabel>My Friendly Action</userlabel>
<type>SCRIPT</type>
<metaData>

<type>script</type>
<properties>

<property>
<name>script_filename</name>
<value>/opt/cisco/esc/esc-scripts/do_somethin.py</value>

</property>
<property>

<name>arg1</name>
<value>some_val</value>

</property>
<property>

<name>notification</name>
<value>true</value>

</property>
</properties>

</metaData>
</action>

</actions>

A script file located on a remote server is also supported. You must provide the details in the <value> tag, for
example,

<value>http://myremoteserverIP:80/file_store/do_somethin.py</value>

Note

The pre-defined action mentioned above is triggered using the trigger API.

Execute the following HTTP or HTTPS POST operation:

POST http://<IP_ADDRESS>:8080/ESCManager/v0/trigger/action/

POST https://<IP_ADDRESS>:8443/ESCManager/v0/trigger/action/

The following payload shows the actions triggered by the API, and the response received:
<triggerTarget>
<action>SaidDoIt</action>
<properties>
<property>
<name>arg1</name>
<value>real_value</value>

</property>
</properties>

</triggerTarget>

The response,
<triggerResponse>

<handle>c11be5b6-f0cc-47ff-97b4-a73cce3363a5</handle>

Configuring Deployment Parameters
16

Configuring Deployment Parameters
Script Actions

<message>Action : 'SAIDDOIT' triggered</message>
</triggerResponse>

ESC accepts the request, and returns a response payload and status code.

An http status code of 200 indicates that the action triggered exists, and is triggered successfully. An http
status codes of 400 or 404 indicate that the action to be triggered is not found.

You can determine the status using the custom script notifications sent to NB at various lifecycle stages.

ESC sends the MANUAL_TRIGGERED_ACTION_UPDATE callback event to NB with a status message
that describes the success or failure of the action execution.

The notification is as follows:

<esc_event xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<event_type>MANUAL_TRIGGERED_ACTION_UPDATE</event_type>
<properties>

<property>
<name>handle</name>
<value>c11be5b6-f0cc-47ff-97b4-a73cce3363a5</value>

</property>
<property>

<name>message</name>
<value>Action execution success</value>

</property>
<property>

<name>exit_code</name>
<value>0</value>

</property>
<property>

<name>action_name</name>
<value>SAIDDOIT</value>

</property>
</properties>

</esc_event>

The script_filename property cannot be overwritten by the trigger API request. The trigger API must not
contain any additional properties that do not exist in the predefined action.

Note

The new API allows to overrides some of the special properties (of the actions) listed below:

• Notification—Set this if your script generates progress notifications at run time. The default value is
false. This value can be set to true in the action or trigger payload.

• wait_max_timeout—Wait for the script to complete the execution before terminating. The default wait
timeout is 900 seconds.

• The trigger API supports only script type actions.

• Ensure that the script action located on the ESC VM is copied to the same path on both the Master and
Backup HA instances. For more information, see the High Availability chapter in the Cisco Elastic
Services Controller Install and Upgrade Guide.

• The script execution terminates if there is a failover, shutdown, or reboot of the ESC services.

Note

Configuring Deployment Parameters
17

Configuring Deployment Parameters
Script Actions

Configuring Custom Script Metric Monitoring KPIs and Rules
Custom Script Metric Monitoring can be performed as follows:

1. Create Script

2. Add Metric

3. Add Action

4. Define Deployment

5. Update KPI data or Rules

6. Authenticating Remote Server Using KPIs and Rules

The script to be executed has to be compliant with the rules specified for a MONITOR_THRESHOLD action.
Threshold crossing evaluation will be based on the exit value from the script execution. In the sample script
below, the return value is the number of IP sessions.

#!/usr/bin/env python
import pexpect
import re
import sys
ssh_newkey = 'Are you sure you want to continue connecting'
Functions
def get_value(key):

i = 0
for arg in sys.argv:

i = i + 1
if arg == key:

return sys.argv[i]
return None

def get_ip_addr():
device_ip = get_value("vm_ip_address")
return device_ip

Main
CSR_IP = get_ip_addr()

p=pexpect.spawn('ssh admin@' + CSR_IP + ' show ip nat translations total')
i=p.expect([ssh_newkey,'assword:',pexpect.EOF])
if i==0:

p.sendline('yes')
i=p.expect([ssh_newkey,'assword:',pexpect.EOF])

if i==1:
p.sendline("admin")
p.expect(pexpect.EOF)

elif i==2:
pass

n = p.before
result = re.findall(r'\d+', n)[0]
sys.exit(int(result))

The ESC monitoring and action engine processes the script exit value.

The script has to be installed into the following ESC VM directory: /opt/cisco/esc/esc-scripts/

The following payload describes a metric using a custom_script defined in the script

<!-- Demo Metric Counting Sessions -->
<metrics>

Configuring Deployment Parameters
18

Configuring Deployment Parameters
Configuring Custom Script Metric Monitoring KPIs and Rules

<metric>
<name>custom_script_count_sessions</name>
<type>MONITOR_THRESHOLD</type>
<metaData>

<properties>
<property>

<name>script_filename</name>
<value>/cisco/esc-scripts/countSessions.py</value>

</property>
<property>

<name>for_threshold</name>
<value>true</value>

</property>
</properties>
<type>custom_script_threshold</type>

</metaData>
</metric>

</metrics>
<!-- -->

The metric payload has to be added to the list of supported ESC metrics by using the Mapping APIs.

Execute a HTTP POST operation on the following URI:

http://<my_esc_ip>:8080/ESCManager/internal/dynamic_mapping/metrics

The following payload describes custom actions that can be added to the list of supported ESC actions by
using the Mapping APIs.

<actions>
<action>

<name>TRUE ScaleOut</name>
<type>ESC_POST_EVENT</type>
<metaData>

<type>esc_post_event</type>
<properties>

<property>
<name>esc_url</name>
<value />

</property>
<property>

<name>vm_external_id</name>
<value />

</property>
<property>

<name>vm_name</name>
<value />

</property>
<property>

<name>event_name</name>
<value />

</property>
<property>

<name>esc_event</name>
<value>VM_SCALE_OUT</value>

</property>
<property>

<name>esc_config_data</name>
<value />

</property>
<properties />

</properties>
</metaData>

</action>

Configuring Deployment Parameters
19

Configuring Deployment Parameters
Configuring Custom Script Metric Monitoring KPIs and Rules

<action>
<name>TRUE ScaleIn</name>
<type>ESC_POST_EVENT</type>
<metaData>

<type>esc_post_event</type>
<properties>

<property>
<name>esc_url</name>
<value />

</property>
<property>

<name>vm_external_id</name>
<value />

</property>
<property>

<name>vm_name</name>
<value />

</property>
<property>

<name>event_name</name>
<value />

</property>
<property>

<name>esc_event</name>
<value>VM_SCALE_IN</value>

</property>
<properties />

</properties>
</metaData>

</action>
</actions>

Execute a HTTP POST operation on the following URI:

http://<IP_ADDRESS>:8080/ESCManager/internal/dynamic_mapping/actions

Custom Script Notification
ESC now supports sending notification to northbound about customized scripts run as part of the deployment
at a certain lifecycle stage. You can also determine the progress of the script executed through this notification.
To execute a custom script with notification, define action type attribute as SCRIPT, and property attribute
name as notification, and set the value to true.

For example, in the datamodel below, the action is to run a customized script located at
/opt/cisco/esc/esc-scripts/senotification.py with notification, when the deployment
reaches POST_DEPLOY_ALIVE stage.
<policies>

<policy>
<name>PCRF_POST_DEPLOYMENT</name>
<conditions>

<condition>
<name>LCS::POST_DEPLOY_ALIVE</name>

</condition>
</conditions>
<actions>

<action>
<name>ANY_NAME</name>
<type>SCRIPT</type>
<properties>

<property>
<name>script_filename</name>
<value>/opt/cisco/esc/esc-scripts/senotification.py</value>

Configuring Deployment Parameters
20

Configuring Deployment Parameters
Custom Script Notification

</property>
<property>

<name>notification</name>
<value>true</value>

</property>
</properties>

</action>
</actions>

</policy>
</policies>

You can notify northbound about the script execution progress using the following outputs:

• Standard JSON output

• REST API call

Standard JSON Output

The standard JSON output follows the MONA notification convention. MONA captures entries in this to
generate notification.

{"esc-notification":{"items":{"properties":

[{"name":"name1","value":"value1"},{"name":"name2","value":"value2"}...]}}}

The items are listed in the table below.

Table 5: Item list

DescriptionName

Describes the type of notification.

progress_steps | progress_percentage | log | alert | error

type

For progress-steps type,

{current_step}|{total_steps}

progress

Progress item is
required only when the
type is progress-steps
or
progress-percentage.

Note

For progress-percentage type,

{percentage}

Notification message.msg

Example JSON output is as follows:

{"esc-notification":{"items":{"properties": [{"name":"type",

"value":"progress_percentage"},{"name":"progress","value":"25"},{"name":"msg","value":"Installation

in progress."}]}}}

Configuring Deployment Parameters
21

Configuring Deployment Parameters
Custom Script Notification

If the custom script is written in Python, because standard output is buffered by default, after each notification
print statement, the script is required to call sys.stdout.flush() to flush the buffer (for pre Python 3.0). Otherwise
MONA cannot process the script stdout in a real-time.

print '{"esc-notification":{"items":{"properties": [{"name":"type",

"value":"progress_percentage"},{"name":"progress","value":"25"},{"name":"msg","value":"Installation

in progress."}]}}}'sys.stdout.flush()

Note

REST API Call

http://localhost:8090/mona/v1/actions/notification

For REST API, the script must accept a script handle as the last parameter. The script handle can be UUID,
MONA action or execution job Id. For example, if the script originally accepts 3 command line parameters,
to support MONA notification, the script considers an additional parameter for the handle UUID. This helps
MONA to identify the notification source. For every notification, the script is responsible for constructing a
POST REST call to MONA's endpoint inside the script:

The payload is as follows:
{
"esc-notification" : {
"items" : {
"properties" : [{
"name" : "type",
"value" : "log",
"hidden" : false
}, {
"name" : "msg",
"value" : "Log info",
"hidden" : false
}
]
},
"source" : {
"action_handle" : "f82fe86d-6625-4b13-99f7-89d169e427ad"
}
}
}

The action_handle value is the handle UUID MONA passes into the script.Note

Policy-Driven Data model
ESC supports a new policy-driven datamodel. A new <policy> section is introduced under <policies> at both
deployment and VM group level.

Using the Policy Data model, a user can perform actions based on conditions. ESC supports predefined actions,
or customized scripts during a deployment based on certain Lifecycle Stage (LCS). For example, the
redeployment policy uses predefined actions based on lifecycle stages (LCS) to redeploy VMs. For more
information, see Redeployment Policy.

Configuring Deployment Parameters
22

Configuring Deployment Parameters
Policy-Driven Data model

Cisco-Elastic-Services-Controller-User-Guide-4-2_chapter14.pdf#nameddest=unique_57

Policy Data model

The policy data model consists of conditions and actions. The condition is a Lifecycle Stage (LCS) in a
deployment. The action is predefined or custom script.

• Predefined action—The action is predefined and executed when the condition is met.

In the datamodel below, when condition2 is met, Action2 is performed. The action <type> is predefined.

• Custom Script—The action is a custom script, and executed when the condition is met.

In the datamodel below, when condition1 is met, Action1-1 and Action 1-2 are executed. The action
<type> is script.
<policies>

<policy>
<name>Name1</name>
<conditions>

<condition>
<name>Condition1</name>

</condition>
</conditions>
<actions>

<action>
<name>Action1-1</name>
<type>SCRIPT</type>

</action>
<action>

<name>Action1-2</name>
<type>SCRIPT</type>

</action>
</actions>

</policy>
<policy>

<name>Name2</name>
<conditions>

<condition>
<name>Condition2</name>

</condition>
</conditions>
<actions>

<action>
<name>Action2</name>
<type>PRE-DEFINED</type>

</action>
</actions>

</policy>
</policies>

For more information on Predefined actions, and scripts, see Recovery and Redeployment Policies.

The table below shows the LCS in a deployment, and its description. The recovery and redeployment policies,
and VNF software upgrade policies use the policy-driven data model. These policies are supported on both
single deployment and multi VIM deployment. For more information, see "Deploying Virtual Network
Functions". For details on configuring the recovery and redeployment policies using the policy framework,
see Recovery and Redeployment Policies. For details on upgrading the VNF software upgrade policies, see
Upgrading the Virtual Network Function Software Using Lifecycle Stages.

Configuring Deployment Parameters
23

Configuring Deployment Parameters
Policy-Driven Data model

Cisco-Elastic-Services-Controller-User-Guide-4-2_chapter14.pdf#nameddest=unique_91
Cisco-Elastic-Services-Controller-User-Guide-4-2_chapter14.pdf#nameddest=unique_91
Cisco-Elastic-Services-Controller-User-Guide-4-2_chapter9.pdf#nameddest=unique_92

Supported Lifecycle Stages (LCS)
Table 6:

DescriptionScopeCondition Name

Occurs just before deploying VMs of the
deployment.

DeploymentLCS::PRE_DEPLOY

Occurs immediately after the deployment
is active.

DeploymentLCS::POST_DEPLOY_ALIVE

Occurs immediately after the deployment
fails.

DeploymentLCS::DEPLOY_ERR

Occurs immediately after the recovery of
one VM fails.

(This is specified at deployment level and
applies to all VM groups)

DeploymentLCS::POST_DEPLOY::
VM_RECOVERY_ERR

Occurs immediately after the redeployment
of one VM fails.

(This is specified at deployment level and
applies to all VM groups)

DeploymentLCS::POST_DEPLOY:: VM_RECOVERY

_REDEPLOY_ERR

Triggered just before the ESC detaches a
volume.

(This is specified for a group of individual
VMs and specified under <vm_group>
rather than the entire deployment.)

DeploymentLCS::DEPLOY_UPDATE::VM_

PRE_VOLUME_DETACH

Triggered immediately after ESC has
attached a new volume

(This is specified for a group of individual
VMs and specified under <vm_group>
rather than the entire deployment.)

DeploymentLCS::DEPLOY_UPDATE::

VM_VOLUME_ATTACHED

Triggered immediately after ESC has
updated the software version of the VM

(This is specified for a group of individual
VMs and specified under <vm_group>
rather than the entire deployment.)

DeploymentLCS::DEPLOY_UPDATE::

VM_SOFTWARE_VERSION_UPDATED

Fetching Files From Remote Server Using LCS Actions

Prior to ESc Release 4.0, a file locator is added to the LCS action scripts to fetch external configuration files.
The file locator contains a reference to the file server, and the relative path to the file to be downloaded.
Starting from ESC Release 4.0, the file locator attribute is defined at the deployment level, that is, directly
under the deployment container instead of policy actions and day 0 configuration sections.
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<tenants>

Configuring Deployment Parameters
24

Configuring Deployment Parameters
Supported Lifecycle Stages (LCS)

<tenant>
<name>test-tenant</name>
<deployments>
<deployment>
<name>test-deployment</name>
<file_locators>
<file_locator>
<name>custom_bool_action</name>
<remote_file>
<file_server_id>http-my-ucs-42</file_server_id>
<remote_path>share/qatest/custom_bool_action.sh</remote_path>

</remote_file>
</file_locator>
<file_locator>
<name>custom_bool_metric</name>
<remote_file>
<file_server_id>http-my-ucs-42</file_server_id>
<remote_path>/share/qatest/custom_bool_metric.sh</remote_path>

</remote_file>
</file_locator>

</file_locators>
<!-- truncated for brevity -->
<vm_group>
<name>ASA-group</name>
<!-- truncated for brevity -->
<kpi_data>
<kpi>
<event_name>MY_CUSTOM_BOOL_ACTION</event_name>
<metric_value>5</metric_value>
<metric_cond>LT</metric_cond>
<metric_type>UINT32</metric_type>
<metric_occurrences_true>1</metric_occurrences_true>
<metric_occurrences_false>1</metric_occurrences_false>
<metric_collector>
<type>MY_CUSTOM_BOOL_METRIC</type>
<nicid>0</nicid>
<poll_frequency>3</poll_frequency>
<polling_unit>seconds</polling_unit>
<continuous_alarm>false</continuous_alarm>
<properties>
<!-- Add file locator reference here -->
<property>
<name>file_locator_name</name>
<value>custom_bool_action</value>

</property>
</properties>

</metric_collector>
</kpi>

</kpi_data>
<rules>
<admin_rules>
<rule>
<event_name>MY_CUSTOM_BOOL_ACTION</event_name>
<action>ALWAYS log</action>
<action>TRUE my_custom_bool_action</action>
<properties>
<!-- Add file locator reference here -->
<property>
<name>file_locator_name</name>
<value>custom_bool_action</value>

</property>
</properties>

</rule>
</admin_rules>

Configuring Deployment Parameters
25

Configuring Deployment Parameters
Supported Lifecycle Stages (LCS)

</rules>
</vm_group>

</deployment>
</deployments>

</tenant>
</tenants>

</esc_datamodel>

See Fetching Files From Remote Server for more information.

To encrypt the files see, "Encrypting Configuration Data".

Lifecycle Stage (LCS) Policy Conditions Defined at Different Stages

The tables below shows all policy conditions defined in the data model.

Table 7: LifeCycle Stages

ScopeCondition Name

VMLCS::VM::PRE_VM_DEPLOY

VMLCS::VM::POST_VM_DEPLOYED

VMLCS::VM::POST_VM_ALIVE

Lifecycle Stages in Deployment

VM / DeploymentLCS::PRE_DEPLOY

VMLCS::DEPLOY::

POST_VM_DEPLOYED

DeploymentLCS::POST_DEPLOY_ALIVE

DeploymentLCS::DEPLOY_ERR

Lifecycle Stages in Deployment Update

VMLCS::DEPLOY_UPDATE::POST_VM_ALIVE

VMLCS::DEPLOY_UPDATE::

VMLCS::DEPLOY_UPDATE::

POST_VM_VOLUME_DETACHED

VMLCS::DEPLOY_UPDATE::

POST_VM_VOLUME_ATTACHED

VMLCS::DEPLOY_UPDATE::

PRE_VM_SOFTWARE_VERSION_UPDATED

Lifecycle Stages in Recovery

Configuring Deployment Parameters
26

Configuring Deployment Parameters
Supported Lifecycle Stages (LCS)

ScopeCondition Name

VMLCS::POST_DEPLOY::

POST_VM_RECOVERY_COMPLETE

VMLCS::POST_DEPLOY::

VM_RECOVERY_ERR

Lifecycle Stages in Recovery and Redeploy

VMLCS::POST_DEPLOY::

VM_RECOVERY_REDEPLOY_ERR

Affinity and Anti-Affinity Rules
Affinity and anti-affinity rules create relationship between virtual machines (VMs) and hosts. The rule can
be applied to VMs, or a VM and a host. The rule either keeps the VMs and hosts together (affinity) or separated
(anti-affinity).

Policies are applied during individual VM deployment. You can deploy a single VNF or multiple VNFs
together through ESC portal by uploading an existing deployment datamodel or by creating a new deployment
datamodel. For more information, see ESC Portal Dashboard.

Affinity and anti-affinity policy streamlines the deployment process.

Affinity and anti-affinity rules are created and applied on VMs at the time of deployment. VM receives the
placement policies when the deploy workflow is initialized.

During a composite VNF deployment, if a couple of VMs need to communicate with each other constantly,
they can be grouped together (affinity rule) and placed on the same host.

If two VMs are over-loading a network, they can be separated (anti-affinity rule) and placed on different hosts
to balance the network.

Grouping or separating VMs and hosts at the time of deployment helps ESC to manage load across the VMs
and hosts in the network. Recovery and scale out of these VMs do not impact the affinity and anti-affinity
rules.

The anti-affinity rule can also be applied between VMs within the same group and on a different host. These
VMs perform similar functions and support each other. When one host is down, the VM on the other host
continues to run preventing any loss of service.

The table shows the types of affinity and anti-affinity policies in a deployment.

Table 8: Intra and Inter group affinity and anti-affinity policies

ZoneHostVM groupPolicyPolicy

same zonesame hostsame VM groupIntra group affinityaffinity

same zonesame hostdifferent VM groupInter group affinity

Configuring Deployment Parameters
27

Configuring Deployment Parameters
Affinity and Anti-Affinity Rules

ZoneHostVM groupPolicyPolicy

same zonedifferent hostsame VM groupIntra group
anti-affinity

anti-affinity

same zonedifferent hostdifferent VM groupInter group
anti-affinity

If the zone is not specified on OpenStack, VMs will be placed on different hosts and different zones for inter
and intra group anti-affinity rules.

Note

Affinity and Anti-Affinity Rules on OpenStack
The following sections describe affinity and anti-affinity policies with examples.

Intra Group Affinity Policy

The VNFs within the same VM group can either be deployed on the same host, or into the same availability
zone.

Example for Intra Group Affinity Policy:
<vm_group>

<name>affinity-test-gp</name>
<placement>

<type>affinity</type>
<enforcement>strict</enforcement>

</placement>
...

In ESC Release 2.0 and later, the type zone-host is used to deploy VNFs in the same host, or into the same
availability zone.

Zone or Host Based Placement

The VNFs are within the same VM group and deployed on the same host or the same available zone. The
host tag is used to deploy VMs on the same host and the zone tag is used to deploy VMs in the same available
zone. Before deploying, you need to make sure that the host exists in OpenStack. ESC validates the specified
host on OpenStack. The zone-host tag specifies the type of placement. Hence, if a host or a zone is not specified
during a deployment, the deployment fails.

You cannot specify both the host and zone tags to deploy VM on the same host or the same available zone.Important

Example for host placement:
<vm_group>

<name>zone-host-test-gp1</name>
<placement>

<type>zone_host</type>
<enforcement>strict</enforcement>
<host>my-ucs-4</host>

Configuring Deployment Parameters
28

Configuring Deployment Parameters
Affinity and Anti-Affinity Rules on OpenStack

</placement>
...

Example for zone placement:

<vm_group>
<name>zone-host-test-gp2</name>
<placement>

<type>zone_host</type>
<enforcement>strict</enforcement>

<zone>dt-zone</zone>
</placement>

...

Intra Group Anti-Affinity Policy

The VNFs within the same VM group are explicitly deployed on different hosts. For example, back-up VNFs.

Example for Intra Group anti-affinity Policy:

<vm_group>
<name>anti-affinity-test-gp</name>
<placement>

<type>anti_affinity</type>
<enforcement>strict</enforcement>

</placement>
...

Inter Group Affinity Policy

The VNFs in the same deployment but different VM groups can be explicitly deployed in the same host. For
example VNF bundles. Multiple VM groups can follow this policy by adding the vm_group_ref tag and
providing the VM group name as the value.

You can use one or more vm_group_ref tag, type tag and enforcement tag under the placement tag. The host
or zone cannot be specified.

Note

Example for Inter Group Affinity Policy:

<deployments>
<deployment>
<name>intergroup-affinity-dep</name>
<policies>
<placement>
<target_vm_group_ref>affinity-test-gp1</target_vm_group_ref>
<type>affinity</type>
<vm_group_ref>affinity-test-gp2</vm_group_ref>
<enforcement>strict</enforcement>
</placement>

</policies>
…

Configuring Deployment Parameters
29

Configuring Deployment Parameters
Affinity and Anti-Affinity Rules on OpenStack

Inter Group Anti-Affinity Policy

The VNFs in the same deployment but different VM Groups can be explicitly deployed in different hosts.
For example back-up VNFs or High-availability VNFs. Multiple VM groups can follow this policy by adding
the vm_group_ref tag, and providing the VM group name as the value.

You can only use one <target_vm_group_ref> tag, type tag and enforcement tag under the placement tag. The
host or zone cannot be specified.

You can use multiple <vm_group_ref> tags, however the anti-affinity policy only applies between each
<vm_group_ref> and their <target_vm_group_ref>, which means that 2 or more <vm_group_ref> can be
deployed on the same host, as long as each of them are deployed on a different host from their
<target_vm_group_ref> that is acceptable.

Note

Example for Inter Group anti-affinity Policy:

<deployments>
<deployment>
<name>intergroup-anti_affinity-dep</name>
<policies>
<placement>

<target_vm_group_ref>affinity-test-gp1</target_vm_group_ref>
<type>anti_affinity</type>
<vm_group_ref>affinity-test-gp2</vm_group_ref>
<enforcement>strict</enforcement>

</placement>
</policies>

…

In a multiple VIM deployment, the VM groups of a placement policy must belong to the same VIM. That is,
the VIM connector must be the same for the VM groups (specified in the vim_id attribute in the locator tag
of the VM group). ESC rejects a deployment if the affinity and anti-affinity policies between VM groups are
on different VIMs. For more details on deploying VMs on multiple deployments, see "Deploying VNFs
onMultiple OpenStack VIMs".

A placement group tag is added under policies. Each <placement_group> contains the following:

• name—name unique per deployment.

• type—affinity or anti_affinity

• enforcement—strict

• vm_group—the content of each vm_group must be a vm group name listed under the same deployment.

The placement group tag is placed within the placement policy. The placement policy describes the relationship
between the target vm group and the vm group members. The placement_group policy describes mutual
relationship among all vm group members. The placement group policy is not applicable for target vm group.

The datamodel is as follows:

<policies>
<placement_group>
<name>placement-affinity-1</name>
<type>affinity</type>
<enforcement>strict</enforcement>
<vm_group>t1g1</vm_group>

Configuring Deployment Parameters
30

Configuring Deployment Parameters
Affinity and Anti-Affinity Rules on OpenStack

<vm_group>t1g2</vm_group>
<vm_group>t1g7</vm_group>
</placement_group>
<placement_group>
<name>placement-affinity-2</name>
<type>affinity</type>
<enforcement>strict</enforcement>
<vm_group>t1g3</vm_group>
<vm_group>t1g4</vm_group>
</placement_group>
<placement_group>
<name>placement-affinity-3</name>
<type>affinity</type>
<enforcement>strict</enforcement>
<vm_group>t1g5</vm_group>
<vm_group>t1g6</vm_group>
</placement_group>
<placement_group>
<name>placement-anti-affinity-1</name>
<type>anti_affinity</type>
<enforcement>strict</enforcement>
<vm_group>t1g1</vm_group>
<vm_group>t1g3</vm_group>
<vm_group>t1g5</vm_group>
</placement_group>
</policies>

In the new placement group tag under policies, the <target_vm_group_ref> and <vm_group_ref> are replaced
with <vm_group>. The ref based affinity and antiaffinity tags are deprecated.

The placement group policy is applicable for inter group affinity and anti-affinity policies only.

You cannot use both placement and placement group tags together in the inter group affinity and anti-affinity
policies.

The placement group name tag must be unique for each placement group policy.

Note

Inter Deployment Anti-Affinity Policy

Inter Deployment anti-affinity rules define relationships between different deployments with respect to the
host placement. Anti-affinity between deployments is defined such that any VM from one deployment is not
co-located on the same host as any other VM from the other deployment.

Inter Deployment anti-affinity is supported on OpenStack only.

Inter Deployment anti-affinity does not work with host-placement (affinity or anti-affinity) as the latter takes
precedence over inter deployment anti-affinity rules.

Note

In the ESC datamodel, inter deployment anti-affinity is defined using anti-affinity groups. All member
deployments of an anti-affinity group have an anti-affinity relationship between them. For example, in an
anti-affinity group called default-anti with 3 deployments dep-1, dep-2 and dep-3, dep-1 is anti-affinity to
dep-2 and dep-3 deployments, dep-2 is anti-affinity to dep-1 and dep-3 deployments, dep-3 is anti-affinity
dep-1 and dep-2. A deployment specifies its membership in an anti-affinity group by referencing to all group
names it pertains to as shown below.

Configuring Deployment Parameters
31

Configuring Deployment Parameters
Affinity and Anti-Affinity Rules on OpenStack

<deployment>
<name>VPC-dep</name>
<deployment_groups>
<anti_affinity_group>VPC-ANTI-AFFINITY</anti_affinity_group>
<anti_affinity_group>VPNAAS-ANTI-AFFINITY</anti_affinity_group>
</deployment_groups>
….
</deployment>

In the above example, VPC-dep is in 2 anti-affinity groups; any other deployment that references one of these
2 groups will have an anti-affinity relationship with VPC-dep.

Inter-deployment Placement Groups

Anti-affinity group is an example of placement group. Anti-affinity group has the following properties in
ESC:

• The placement group need not be created or deleted.

• Placement groups can be referenced for the first time by one deployment as well as multiple deployments
in parallel.

• Placement rules are applicable during any deployment phase of a service including

• Initial deployment

• Scale out

• VM group update addition

• VM group minimum scaling update (increasing minimum scaling to add VMs)

• Recovery

A multiple VIM deployment, supports Inter-deployment anti-affinity. However, ESC rejects a deployment

• If the inter-deployment anti-affinity policy is defined between a multiple VIM deployment (with locators
within VM groups) and a default VIM deployment (without locators).

• If all the deployments of an inter-deployment anti-affinity group are not deployed on the sameVIM (with
same vim_id). For more details on a multiple VIM deployment, see Deploying VNFs on Multiple
OpenStack VIMs.

Affinity and Anti-Affinity Rules on VMware vCenter
The affinity and anti-affinity rules for VMware vCenter is explained with examples. These rules are created
for a cluster and a targeted host.

All VMware vCenter deployments must always be accompanied with zone-host placement policy. The
zone-host defines the target VM group which is either the cluster or the host.

Intra Group Affinity Policy

The VNFs with the same VM group can be deployed on the same host.

Configuring Deployment Parameters
32

Configuring Deployment Parameters
Affinity and Anti-Affinity Rules on VMware vCenter

Cisco-Elastic-Services-Controller-User-Guide-4-2_chapter7.pdf#nameddest=unique_69
Cisco-Elastic-Services-Controller-User-Guide-4-2_chapter7.pdf#nameddest=unique_69

During deployment, ESC deploys the first VM as an anchor VM for affinity. All the other VMs that follow
the same affinity rule will be deployed to the same host as the anchor VM. The anchor VM deployment helps
to optimize the resource usage.

Example for Intra Group Affinity Policy:
…
<vm_group>
<name>vm-gp</name>
…
<placement>
<type>zone_host</type>
<enforcement>strict</enforcement>
<zone>cluster1</zone>
</placement>
<placement>
<type>affinity</type>
<enforcement>strict</enforcement>
</placement>
…

Only strict attribute is supported for enforcement.Note

Affinity and anti-affinity policy with a host placement policy is incorrect and may cause deployment failure.Note

Host placement alone (without affinity and anti-affinity placement policy within a VM group) can be used to
achieve intra group affinity.

Note

Intra Group Anti-Affinity

The VNFs with the same VM group can be deployed in different hosts. During deployment ESC deploys
VNFs with the same VM group one after the other. At the end of each VNF deployment, ESC records its host
to a list. At the beginning of each VNF’s deployment, ESC deploys the VNF to a computing-host that is not
in the list. If all the available computing-host(s) are in the list, ESC fails the whole deployment.

Example for Intra Group Anti-Affinity Policy:
…
<vm_group>
<name>vm-gp</name>
…
<placement>
<type>zone_host</type>
<enforcement>strict</enforcement>
<zone>cluster1</zone>
</placement>
<placement>
<type>anti_affinity</type>
<enforcement>strict</enforcement>
</placement>

Configuring Deployment Parameters
33

Configuring Deployment Parameters
Affinity and Anti-Affinity Rules on VMware vCenter

Cluster Placement

All VMs in a VM group can be deployed to a cluster. For example, all VMs in a vm group CSR-gp1 can be
deployed to cluster ott-cluster2.

The VMware vCenter cluster must be created by the administrator.Note

Example for cluster placement:

<name>CSR-gp1</name>
<placement>

<type>zone_host</type>
<enforcement>strict</enforcement>
<zone>ott-cluster2</zone>

</placement>

Host Placement

All VMS in a VM group can be deployed to a host. For example, all VMs in the vm group CSR-gp1 will be
deployed to host 10.2.0.2.
<name>CSR-gp1</name>

<placement>
<type>zone_host</type>
<enforcement>strict</enforcement>
<host>10.2.0.2</host>

</placement>

Inter Group Affinity Policy

The VMs in different VM groups can be deployed to the same host. For example, all VMs in the VM group
ASA-gp1 can be deployed to the same host as the VMs in the VM group CSR-gp1.

During deployment ESC deploys the first VM as an anchor VM. All other VMs that follow the same affinity
rule will be deployed to the same host as the anchor VM.

To ensure that the inter-group affinity rules are applied within a single cluster, verify that all VM groups in
a deployment are specified to the same cluster (<zone> in esc data_model).

Note

Example for Inter Group Affinity Policy:

<deployment>
<deployment>
<name>test-affinity-2groups</name>
<policies>
<placement>
<target_vm_group_ref>CSR-gp1</target_vm_group_ref>
<type>affinity</type>
<vm_group_ref>CSR-gp2</vm_group_ref>
<vm_group_ref>ASA-gp1</vm_group_ref>
<enforcement>strict</enforcement>
</placement>
</policies>

Configuring Deployment Parameters
34

Configuring Deployment Parameters
Affinity and Anti-Affinity Rules on VMware vCenter

Inter Group Anti-Affinity Policy

The VNFs are in the same deployment, but different VM groups can be explicitly deployed in different hosts.
During deployment, ESC deploys the first VNF of the target VM group, and records its host to a list at the
end. ESC then deploys the first VNF of each reference VM groups, ensure the VNFs are not deployed to the
host in the list. Then, the second VNF of the target VM group, the second VNF of each reference VM group,
and rest of the VNFs accordingly.

Example for Inter Group Anti-Affinity Policy:

<deployment>
<deployment>
<name>vm-groups</name>
<policies>
<placement>
<target_vm_group_ref>CSR-gp1</target_vm_group_ref>
<type>anti_affinity</type>
<vm_group_ref>CSR-gp2</vm_group_ref>
<vm_group_ref>ASA-gp1</vm_group_ref>
<enforcement>strict</enforcement>
</placement>
</policies>

A placement group tag is added under policies. Each <placement_group> contains the following:

• name—name unique per deployment.

• type—affinity or anti_affinity

• enforcement—strict

• vm_group—the content of each vm_group must be a vm group name listed under the same deployment.

The placement group tag is placed within the placement policy. The placement policy describes the relationship
between the target vm group and the vm group members. The placement_group policy describes mutual
relationship among all vm group members. The placement group policy is not applicable for target vm group.

The datamodel is as follows:

<policies>
<placement_group>
<name>placement-affinity-1</name>
<type>affinity</type>
<enforcement>strict</enforcement>
<vm_group>t1g1</vm_group>
<vm_group>t1g2</vm_group>
<vm_group>t1g7</vm_group>
</placement_group>
<placement_group>
<name>placement-affinity-2</name>
<type>affinity</type>
<enforcement>strict</enforcement>
<vm_group>t1g3</vm_group>
<vm_group>t1g4</vm_group>
</placement_group>
<placement_group>
<name>placement-affinity-3</name>
<type>affinity</type>
<enforcement>strict</enforcement>
<vm_group>t1g5</vm_group>
<vm_group>t1g6</vm_group>

Configuring Deployment Parameters
35

Configuring Deployment Parameters
Affinity and Anti-Affinity Rules on VMware vCenter

</placement_group>
<placement_group>
<name>placement-anti-affinity-1</name>
<type>anti_affinity</type>
<enforcement>strict</enforcement>
<vm_group>t1g1</vm_group>
<vm_group>t1g3</vm_group>
<vm_group>t1g5</vm_group>
</placement_group>
</policies>

In the new placement group tag under policies, the <target_vm_group_ref> and <vm_group_ref> are replaced
with <vm_group>. The ref based affinity and antiaffinity tags are deprecated.

The placement group policy is applicable for inter group affinity and anti-affinity policies only.

You cannot use both placement and placement group tags together in the inter group affinity and anti-affinity
policies.

The placement group name tag must be unique for each placement group policy.

Note

Limitations

Following are the limitations when affinity and anti-affinity rules are applied on VMware vCenter:

• All Affinity rules defined on VMware vCenter are implemented in a cluster.

• DPM, HA and vMotion must be turned off.

• VM deployment and recovery are managed by ESC.

• DRS must be set to manual mode if it is turned on.

• To leverage DRS deployment, shared storage is required.

• Supported value for <enforcement> tag should be 'strict'.

• <zone_host> must be used for any VM group.

Configuring Custom VM Name
You can customize VM names if you do not want ESC to auto-generate VM names. To customize VM names,
specify the vim_vm_name in the VMgroup section of the deployment datamodel. If vim_vm_name is not specified,
ESC will auto-generate the VM names.

While specifying a custom name, if a VM group has more than one VM, an "_<index>" is appended to the
custom VM name in the output. For example, the first VM in the group is named as specified in the
vim_vm_name, and second VM onwards an index "_1", "_2" is appended to the custom name. For a custom
name specified as ABC, the output will display the VM names as VMname, VMname_1, VMname_2, and
so on. If a VM group only has a single VM, then there is no "_<index>" appended to the custom VM name.

A single deployment can contain multiple VM groups, and each individual VM group can specify a different
vim_vm_name value, if required. For example, a deployment could have two VM groups: the first group

Configuring Deployment Parameters
36

Configuring Deployment Parameters
Configuring Custom VM Name

specifies a vim_vm_name and all VMs have their names generated as described above. The second VM group
does not specify a vim_vm_name, therefore all VM names created from this group are auto generated.

Custom VM names only have to be unique within the deployment and tenant for an OpenStack deployment.
In other words, custom VM names can be duplicated across different tenants - or even duplicated within the
same tenant as long as it is for a different deployment. For a VMware deployment, the custom VM name must
be unique throughout the entire vCenter server. In other words, no duplicate VM names are permitted.

You can use a maximum of 63 characters for the custom name. A VM name should not contain special
characters and can only contain alphanumeric characters and "_" and "-".

Note

<esc_datamodel xmlns="http://www.cisco.com/esc/esc"> <tenants><tenant>
<name>Admin</name>
<deployments>
<deployment>
<deployment_name>NwDepModel_nosvc</deployment_name>

<vm_group>
<name>CIRROS</name>

<flavor>Automation-Cirros-Flavor</flavor>
<vim_vm_name>VMname</vim_vm_name>
<scaling>

<min_active>1</min_active>
<max_active>2</max_active>
<elastic>true</elastic>

</scaling>
</vm_group>

• The ESC Portal does not display the VM Name that was configured during the deployment time.

• Duplicate VM Names are not supported on VMWare.

• VM names cannot be modified after a deployment is complete.

Note

The following are some output samples with the custom VM name. If the vim_vm_name was set during the
deployment, the same value will be shown in the output. If this value was not set during the deployment, ESC
will auto-generate the VM name.

• Below is an example of the output operational data fetched using the esc_nc_cli script after adding a
custom VM name. A new element called <vmname> will be shown under the vm_group element. The
value in the <status_message> field is also updated to reflect the custom VM name.

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">
<data>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<opdata>
<tenants>
<tenant>
<name>xyzzy</name>
<deployments>
<deployment_name>my-deployment-123</deployment_name>
<deployment_id>78d48bf8-5f67-45fc-8d92-5ad4676yf57</deployment_id>

Configuring Deployment Parameters
37

Configuring Deployment Parameters
Configuring Custom VM Name

<vm_group>
<name>Grp1</name>
<vm_instance>
<vm_id>df108144-ec4f-4d66-a62f-98096ecddef0</vm_id>
<name>VMname</name>

</vm_group>

• Below is an example output operational data fetched using a REST API.

curl -k -X GET --header "Accept: application/xml"
"http://localhost:8080/ESCManager/v0/deployments/example-deployment-123"
| xmllint --format -
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployment xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<datacenter>
<default>false</default>

</datacenter>
<deployment_details>
<host_uuid>8623f1476302a5815608dbd4c2f836c570e8c74cbfbaff41c78564b1</host_uuid>
<host_name>my-ucs-65</host_name>
<vm_uuid>e7e5a905-e0c7-4652-ae1f-23a409a58219</vm_uuid>
<interfaces>
<interface>

</interface>
</interfaces>
<vm_group_name>Grp1</vm_group_name>
<vm_name>VMname_1</vm_name><-- ##### custom vm name, single VM in the VM group, so

no appended "_<index>" -->
<vm_state_machine_state>VM_ALIVE_STATE</vm_state_machine_state>

</deployment_details>
</deployment>

Interface Configurations
The Interface configuration allows to choose various configuration for the interface including network, subnet,
ip address, mac address, vim interface name, model, and so on. This section describes these basic and advance
interface configurations for Elastic Services Controller (ESC) and procedures to configure these.

Basic Interface Configurations
In ESC Datamodel, Interface refers to the VNIC attached to the VM. We can add one or more Interface under
a VM Group. The interface section will have details to configure the VNIC. This section describes basic
interface configurations for Elastic Services Controller (ESC).

Configuring Basic Interface Settings
This section describes basic interface configurations, such as Network, Subnet, IP address, MAC address,
VIM interface name, and so on for Elastic Services Controller (ESC).

Configuring an Interface Name

To configure VIM interface name, specify attribute <vm_interface_name> for an interface in the Deployment
XML file. Use <vm_interface_name> to use a specific name when generating an interface name. If these

Configuring Deployment Parameters
38

Configuring Deployment Parameters
Interface Configurations

attribute is not specified, ESC will auto-generate an interface name, which is a combination of the
deployment_name, group_name, and a random UUID string. For example:
my-deployment-na_my-gro_0_8053d7gf-hyt33-4676-h9d4-9j4a5599472t.

This feature is currently supported only on OpenStack.Note

If the VM group is elastic and a vim_interface_name has been specified, a numeric index is added after the
interface name for the second interface name onwards (the first one remains unchanged). For example, if the
specified interface name is set as <vim_interface_name>interface_1</vim_interface_name> and scaling
is set to 3, three VMs are created with three different interface name, interface_1, interface_1_1, and
interface_1_2. If a VM group only has a single VM, then there is no "_<index>" appended to the custom
interface name. A single deployment can contain multiple VM groups, and each individual VM group can
specify a different vim_interface_name value, if required. For example, a deployment could have two VM
groups: the first group specifies a vim_interface_name and all VMs have their names generated as described
above. The second VM group does not specify a vim_interface_name, therefore all VM names created from
this group are auto generated. The same interface name can be used in separate interface sections within the
same VM group, or in separate VM groups within a deployment, or in different deployments if required.

If attributes <vim_interface_name> or <port> are used for the same interface, the vim_interface_name value
will be ignored and the value in the port attribute will be used.

<esc_datamodel xmlns="http://www.cisco.com/esc/esc"> <tenants><tenant>
<name>Admin</name>
<deployments>
<deployment>
<deployment_name>NwDepModel_nosvc</deployment_name>
<interface>
<nicid>0</nicid>
<vim_interface_name>interface_1</vim_interface_name>
<network>esc-net</network>
</interface>

Configuring Deployment Parameters
39

Configuring Deployment Parameters
Configuring an Interface Name

You can use a maximum of 61 characters for an interface name should not contain special characters and can
only contain alphanumeric characters and "_" and "-". The following are some output samples with the custom
port name. If the vim_interface_name was set during the deployment, the same value will be shown in the
output. If this value was not set during the deployment, ESC will auto-generate the port name.

• Below is an example of the output operational data fetched using the esc_nc_cli script after adding a
custom interface name. A new element called vim_interface_name will be shown under the interface
element.

[admin@esc-3-1-xxx]$ esc_nc_cli get esc_datamodel/opdata
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">
. . .

<interface>
<nicid>0</nicid>
<type>virtual</type>
<port_id>e4111069-5d00-493b-8ea9-1a2ca134b5c8</port_id>
<vim_interface_name>interface_1</vim_interface_name> <!-- NEW IN OUTPUT

-->
<network>c7fafeca-aa53-4349-9b60-1f4b92605420</network>
<subnet>255.255.255.0</subnet>
<ip_address>192.0.2.1</ip_address>
<mac_address>fa:16:3e:d7:5e:da</mac_address>
<netmask>255.255.240.0</netmask>
<gateway>192.0.2.255</gateway>

</interface>

• Below is an example output operational data fetched using a REST API.

curl -k -X GET --header "Accept: application/xml"
"http://localhost:8080/ESCManager/v0/deployments/example-deployment-123"
| xmllint --format -
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployments>
. . .

<interface>
<network_uuid>c7fafeca-aa53-4349-9b60-1f4b92605420</network_uuid>
<gateway>152.16.0.1</gateway>
<ip_address>152.16.12.251</ip_address>
<mac_address>fa:16:3e:30:0c:99</mac_address>
<netmask>255.255.240.0</netmask>
<nic_id>0</nic_id>
<port_forwarding/>
<port_uuid>1773cdbf-fe5f-4af1-adff-3a9c1dd1c47d</port_uuid>
<vim_interface_name>interface_1</vim_interface_name> <!-- NEW IN OUTPUT

-->
<security_groups/>
<subnet_uuid>7b2ce63b-eb20-4ff8-8d49-e46ee8dde0f5</subnet_uuid>
<type>virtual</type>

</interface>

In all the above scenarios, if vim_interface_name is not specified in the deployment.xml, the output
will still contain this element, however with an internally generated interface name. For example:
<vim_interface_name>vm-name-deployme_Grp1_1_0f24cd7e-cae7-402e-819a-5c84087103ba</vim_interface_name>

Note

Configuring Deployment Parameters
40

Configuring Deployment Parameters
Configuring an Interface Name

Assigning the MAC Address

ESC deployment on VMware vCenter supports assigning MAC address using the MAC address range, or
MAC address list from the MAC address pool to deploy VMs to the network.

You can assign MAC address in the following ways:

Using the Interface
<interfaces>

<interface>
<nicid>1</nicid>
<network>MANAGEMENT_NETWORK</network>
<ip_address>10.88.0.11</ip_address>
<mac_address>fa:16:3e:73:19:a0</mac_address>

</interface>
</interfaces>

During scaling, you can assign the MAC address list or MAC address range from the MAC address pool.
<scaling>
<min_active>2</min_active>
<max_active>2</max_active>
<elastic>true</elastic>
<static_ip_address_pool>
<network>MANAGEMENT_NETWORK</network>
<ip_address>10.88.0.11</ip_address>
<ip_address>10.88.0.12</ip_address>
<ip_address>10.88.0.13</ip_address>
</static_ip_address_pool>
<static_mac_address_pool>
<network>MANAGEMENT_NETWORK</network>
<mac_address>fa:16:3e:73:19:a0</mac_address>
<mac_address>fa:16:3e:73:19:a1</mac_address>
<mac_address>fa:16:3e:73:19:a2</mac_address>
</static_mac_address_pool>
</scaling>

Assign MAC address using MAC address range.
<scaling>
<min_active>2</min_active>
<max_active>2</max_active>
<elastic>true</elastic>
<static_ip_address_pool>
<network>MANAGEMENT_NETWORK</network>
<ip_address_range>
<start>10.88.0.25</start>
<end>10.88.0.27</end>
</ip_address_range>
</static_ip_address_pool>
<static_mac_address_pool>
<network>MANAGEMENT_NETWORK</network>
<mac_address_range>
<start>fa:16:3e:73:19:b0</start>
<end>fa:16:3e:73:19:b2</end>
</mac_address_range>
</static_mac_address_pool>
</scaling>

Configuring Deployment Parameters
41

Configuring Deployment Parameters
Assigning the MAC Address

You cannot change the MAC or IP pool in an existing deployment, or during scaling (when min and max
value are greater than 1) of VM instances in a service update.

In VMware vCenter, while assigning the MAC address, the server might override the specified value for
"Generated" or "Assigned" if it does not fall in the right ranges or is determined to be a duplicate. Because of
this, if ESC is unable to assign the MAC address the deployment fails.

Note

Configuring Subnet for an Interface

Subnets can be passed through the datamodel. Subnet within interfaces can be specified in the Interface section
of the Deployment XML file. If there is no subnet specified in the datamodel, ESC will let OpenStack select
the subnet for interface creation and will use the subnet from the port created by OpenStack.

<interface>
<nicid>0</nicid>
<network>esc-net</network>
<subnet>esc-subnet</subnet>
</interface>

The no_gateway attribute allows ESC to create a subnet with the gateway disabled. In the example below,
the no_gateway attribute is set to true to create a subnet without gateway.

<networks>
<network>
<name>mgmt-net</name>
<subnet>
<name>mgmt-net-subnet</name>
<ipversion>ipv4</ipversion>
<dhcp>false</dhcp>
<address>10.20.0.0</address>
<no_gateway>true</no_gateway><!-- DISABLE GATEWAY -->
<gateway>10.20.0.1</gateway>
<netmask>255.255.255.0</netmask>
</subnet>
</network>
</networks>

Configuring an Out-of-Band Port

ESC also allows you to attach an out-of-band port to a VNF. To do this, pass the UUID or the name of the
port in the deployment request file while initiating a service request.

While undeploying or restoring a VNF, the ports attached to that VNF will only be detached and not deleted.

ESC does not allow scaling while using OOB port for a VM group. You can configure only one instance of
VM for the VM group.

Updating the scaling value for a VM group, while using the out of band port is not allowd during a deployment
update.

Note

<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<name>tenant</name>
<deployments>

<deployment>

Configuring Deployment Parameters
42

Configuring Deployment Parameters
Configuring Subnet for an Interface

<name>depz</name>
<vm_group>

<name>g1</name>

<flavor>Automation-Cirros-Flavor</flavor>
<bootup_time>100</bootup_time>
<reboot_time>30</reboot_time>
<recovery_wait_time>10</recovery_wait_time>
<interfaces>

<interface>
<nicid>0</nicid>
<port>057a1c22-722e-44da-845b-a193e02807f7</port>
<network>esc-net</network>

</interface>
</interfaces>

</vm_group>
</deployment>

</deployments>
</esc_datamodel>

IPv6 Support

ESC supports end-to-end IPv6 support for OpenStack deployments.

Dual Stack Support

A dual stack network allows you to assign multiple IP addresses. These multiple IP addresses can be assigned
on different subnets to a given interface within a VNF deployment using ESC.

ESC supports the following for dual stack:

• Configuring the network and list of subnet

• Configuring the network and list of subnet and ip address

• Configuring the network and list of ip address (no subnet)

• Specifying the network and list of subnet/ip (same subnet but different ip)

Currently, ESC supports dual stack only on OpenStack.Note

A new container element named addresses is added to the Interface. This container holds a list of address
elements. An address element must have an address_id (key). The subnet and fixed-ip address fields are
optional, but you must specify either one.

The container address is as follows:

container addresses {
list address {
key "address_id";
leaf address_id {
description "Id for the address in address list.";
type uint16;
mandatory true;

}
leaf subnet {
description "Subnet name or uuid for allocating IP to this port";
type types:escnetname;

Configuring Deployment Parameters
43

Configuring Deployment Parameters
IPv6 Support

}
leaf ip_address {
description "Static IP address for this specific subnet";
type types:escipaddr;
must "../../../../../scaling/max_active = 1"
{

error-message "Only single VM per group supported with multiple address option.";
}

}
}

}

Dual stack now supports KPI monitoring. A new child element address_id has been added to the
metric_collector element. This accepts a value which points to an address within the specified nicid to be used
for KPI monitoring. That is, it allows one of the addresses defined beneath an interface to be used for KPI
monitoring.
…

<interface>
<nicid>1</nicid>
<network>demo-net</network>
<addresses>

<address>
<address_id>0</address_id>
<subnet>demo-subnet</subnet>

</address>
</addresses>

</interface>
<kpi_data>

<kpi>
<event_name>VM_ALIVE</event_name>
<metric_value>1</metric_value>
<metric_cond>GT</metric_cond>
<metric_type>UINT32</metric_type>

<metric_occurrences_true>5</metric_occurrences_true>
<metric_occurrences_false>5</metric_occurrences_false>
<metric_collector>

<type>ICMPPing</type>
<nicid>1</nicid>
<address_id>0</address_id>
<poll_frequency>10</poll_frequency>
<polling_unit>seconds</polling_unit>
<continuous_alarm>false</continuous_alarm>
</metric_collector>

</kpi>
</kpi_data>

...

The address_id under the metric_collector element must be the same as one of the address_id beneath the
interface.

Note

Dual stack interfaces can now be used in day-0 variable substitution. This means the ability to substitute the
values from the multiple addresses defined under a single interface. Day 0 configuration is defined in the
datamodel under the config_data tag.

In case of dual stack with multiple IP addresses, the variables are in the formNICID_<n>_<a>_<PROPERTY>
where:

• <n> is the nicid for the interface.

Configuring Deployment Parameters
44

Configuring Deployment Parameters
Dual Stack Support

• <a> is the address_id of an address within that interface.

The list of possible day-0 substitution variables from dual stack is:

ipv4 or ipv6string containing FIXED | DHCPNICID_n_a_IP_ALLOCATION_TYPE

ipv4 or ipv6IP addressNICID_n_a_IP_ADDRESS

ipv4 or ipv6Gateway addressNICID_n_a_GATEWAY

ipv4 or ipv6CIDR prefix addressNICID_n_a_CIDR_ADDRESS

ipv4 or ipv6Integer with CIDR prefix-lengthNICID_n_a_CIDR_PREFIX

ipv4 onlyIf an ipv4 CIDR address and prefix
are present, ESCwill automatically
calculate and populate the netmask
variable. This is not substituted in
the case of an IPv6 address and
should not be used.

NICID_n_a_NETMASK

For information on day-0 confirguration for single IP address, see Day Zero Configuration, on page 3.

The template file defined in the config_data with day-0 configurations is as follows:
NICID_0_NETWORK_ID=${NICID_0_NETWORK_ID}
NICID_0_MAC_ADDRESS=${NICID_0_MAC_ADDRESS}

NICID_0_0_IP_ALLOCATION_TYPE=${NICID_0_0_IP_ALLOCATION_TYPE}
NICID_0_0_IP_ADDRESS=${NICID_0_0_IP_ADDRESS}
NICID_0_0_GATEWAY=${NICID_0_0_GATEWAY}
NICID_0_0_CIDR_ADDRESS=${NICID_0_0_CIDR_ADDRESS}
NICID_0_0_CIDR_PREFIX=${NICID_0_0_CIDR_PREFIX}
NICID_0_0_NETMASK=${NICID_0_0_NETMASK}

NICID_0_1_IP_ALLOCATION_TYPE=${NICID_0_1_IP_ALLOCATION_TYPE}
NICID_0_1_IP_ADDRESS=${NICID_0_1_IP_ADDRESS}
NICID_0_1_GATEWAY=${NICID_0_1_GATEWAY}
NICID_0_1_CIDR_ADDRESS=${NICID_0_1_CIDR_ADDRESS}
NICID_0_1_CIDR_PREFIX=${NICID_0_1_CIDR_PREFIX}

The datamodel is as follows:

<?xml version="1.0" encoding="ASCII"?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<tenants>
<tenant>
<name>dep-tenant</name>
<deployments>
<deployment>
<name>cirros-dep</name>
<vm_group>
<name>Grp1</name>
<bootup_time>600</bootup_time>
<recovery_wait_time>30</recovery_wait_time>
<flavor>Automation-Cirros-Flavor</flavor>

<interfaces>

<interface>
<!-- No dual stack support on mgmt interface in ESC 4.1 -->

Configuring Deployment Parameters
45

Configuring Deployment Parameters
Dual Stack Support

<nicid>0</nicid>
<network>esc-net</network>

</interface>
<interface>
<nicid>1</nicid>
<network>ent-network1</network>
<addresses>
<address>
<!-- IPv4 Dynamic -->
<address_id>0</address_id>
<subnet>v4-subnet_A</subnet>

</address>
<address>
<!-- IPv6 Dynamic -->
<address_id>1</address_id>
<subnet>v6-subnet_B</subnet>

</address>
</addresses>

</interface>
<interface>
<nicid>2</nicid>
<network>ent-network2</network>
<addresses>
<address>
<!-- IPv4 Static -->
<address_id>0</address_id>
<subnet>v4-subnet_C</subnet>
<ip_address>10.87.87.8</ip_address>

</address>
<address>
<!-- IPv6 Static -->
<address_id>1</address_id>
<subnet>v6-subnet_D</subnet>
<ip_address>fd07::110</ip_address>

</address>
</addresses>

</interface>
<interface>
<nicid>3</nicid>
<network>ent-network3</network>
<addresses>
<address>
<!-- Only ip config - ipv6 but no subnet -->
<address_id>0</address_id>
<ip_address>fd07::110</ip_address>

</address>
<address>
<!-- Only ip config - ipv4 but no subnet -->
<address_id>1</address_id>
<ip_address>10.87.88.9</ip_address>

</address>
</addresses>

</interface>
<interface>
<nicid>4</nicid>
<network>ent-network4</network>
<addresses>
<address>
<!-- ipv4 same subnet as address_id 6 -->
<address_id>0</address_id> //
<subnet>v4-subnet_F</subnet>
<ip_address>10.87.86.10</ip_address>

</address>
<address>

Configuring Deployment Parameters
46

Configuring Deployment Parameters
Dual Stack Support

<!-- ipv4 same subnet as id 5 -->
<address_id>1</address_id>
<subnet>v4-subnet_F</subnet>
<ip_address>10.87.86.11</ip_address>

</address>
</addresses>

</interface>
</interfaces>
<kpi_data>

...

After successful deployment using multiple IPs, ESC provides a list of addresses as notification, or opdata.

A list of multiple <address> elements under the parent <interface> element containing the following:

• address_id—the address id specified in the input XML

• subnet element—subnet name or uuid

• ip_address element—the port's assigned IP on that subnet

• prefix—the subnet CIDR prefix

• gateway—the subnet gateway address

• ESC Static IP support

Notification:

<vm_id>1834124d-b70b-41b9-9e53-fb55d7c901f0</vm_id>
<name>jenkins-gr_g1_0_e8bc9a81-4b9a-437a-807a-f1a9bbc2ea3e</name>

<generated_name>jenkins-gr_g1_0_e8bc9a81-4b9a-437a-807a-f1a9bbc2ea3e</generated_name>
<host_id>dc380f1721255e2a7ea15932c1a7abc681816642f75276c166b4fe50</host_id>

<hostname>my-ucs-50</hostname>
<interfaces>
<interface>
<nicid>0</nicid>
<type>virtual</type>

<vim_interface_name>jenkins-gr_g1_0_e8bc9a81-4b9a-437a-807a-f1a9bbc2ea3e</vim_interface_name>

<port_id>4d57d4a5-3150-455a-ad39-c32fffbb10b1</port_id>
<mac_address>fa:16:3e:d2:50:a5</mac_address>
<network>45638651-2e92-45fb-96ce-9efdd9ea343e</network>
<address>
<address_id>0<address_id>
<subnet>6ac36430-4f58-454b-9dc1-82f7a796e2ff</subnet>
<ip_address>142.18.0.22</ip_address>
<prefix>24</prefix>
<gateway>142.18.0.1</gateway>

</address>
<address>
<address_id>1<address_id>
<subnet>8dd9f501-19d4-4782-8335-9aa9fbd4dab9</subnet>
<ip_address>2002:dc7::4</ip_address>
<prefix>48</prefix>
<gateway>2002:dc7::1</gateway>

</address>
<address>
<address_id>2<address_id>
<subnet>a234501-19d4-4782-8335-9aa9fbd4caf6</subnet>

Configuring Deployment Parameters
47

Configuring Deployment Parameters
Dual Stack Support

<ip_address>10.87.87.8</ip_address>
<prefix>20</prefix>
<gateway>10.87.87.1</gateway>

</address>
</interface>

Sample opdata:

<interfaces>
<interface>

<nicid>0</nicid>
<type>virtual</type>

<vim_interface_name>jenkins-gr_g1_0_e8bc9a81-4b9a-437a-807a-f1a9bbc2ea3e</vim_interface_name>

<port_id>4d57d4a5-3150-455a-ad39-c32fffbb10b1</port_id>
<mac_address>fa:16:3e:d2:50:a5</mac_address>
<network>45638651-2e92-45fb-96ce-9efdd9ea343e</network>
<address>

<address_id>0</address_id>
<subnet>6ac36430-4f58-454b-9dc1-82f7a796e2ff</subnet>
<ip_address>142.18.0.22</ip_address>
<prefix>24</prefix>
<gateway>142.18.0.1</gateway>

</address>
<address>

<address_id>1</address_id>
<subnet>8dd9f501-19d4-4782-8335-9aa9fbd4dab9</subnet>
<ip_address>2002:dc7::4</ip_address>
<prefix>48</prefix>
<gateway>2002:dc7::1</gateway>

</address>
</interface>

</interfaces>

You can also see that the day-0 substitution values are replaced in the output data. Sample output data with
the values populated in the day-0 configuration is as follows:
NICID_0_NETWORK_ID=45638651-2e92-45fb-96ce-9efdd9ea343e
NICID_0_MAC_ADDRESS=fa:16:3e:d2:50:a5

NICID_0_0_IP_ALLOCATION_TYPE=DHCP
NICID_0_0_IP_ADDRESS=142.18.0.22
NICID_0_0_GATEWAY=142.18.0.1
NICID_0_0_CIDR_ADDRESS=142.18.0.0
NICID_0_0_CIDR_PREFIX=24
NICID_0_0_NETMASK=255.255.255.0

NICID_0_1_IP_ALLOCATION_TYPE=DHCP
NICID_0_1_IP_ADDRESS=2002:dc7::4
NICID_0_1_GATEWAY=2002:dc7::1
NICID_0_1_CIDR_ADDRESS=2002:dc7::/48
NICID_0_1_CIDR_PREFIX=48

Dual Stack with Static IP Support

ESC supports dual stack with static IP support. As part of the initial configuration the user can provide the
subnet and IP to be configured.

Configuring Deployment Parameters
48

Configuring Deployment Parameters
Dual Stack Support

ESC supports static IP only when the scaling is false or minimum /maximum =1.Note

When you create a VMwith out-of-band network, and specify a list of subnets with static IP (the network has
multiple subnets), then ESC applies both subnet and the corresponding static IP.

In the example below, two subnets (ipv4 and ipv6) are added to a single interface.

<?xml version="1.0" encoding="ASCII"?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<tenants>
<tenant>
<name>dep-tenant</name>
<deployments>
<deployment>
<name>cirros-dep</name>
<vm_group>
<name>Grp1</name>
<bootup_time>600</bootup_time>
<recovery_wait_time>30</recovery_wait_time>
<flavor>Automation-Cirros-Flavor</flavor>

<interfaces>
<interface>
<nicid>0</nicid>
<network>ent-network2</network>
<addresses>
<address>
<!-- IPv4 Static -->
<address_id>0</address_id>
<subnet>v4-subnet_C</subnet>
<ip_address>10.87.87.8</ip_address>

</address>
<address>
<!-- IPv6 Static -->
<address_id>1</address_id>
<subnet>v6-subnet_D</subnet>
<ip_address>fd07::110</ip_address>

</address>
</addresses>

</interface>
</interfaces>

<kpi_data>

For information on deploying VNFs, see Deploying Virtual Network Functions on OpenStack.

Advanced Interface Configurations
This section describes several interface configurations for Elastic Services Controller (ESC) and the procedure
to configure the hardware interfaces.

Configuring Advance Interface Settings

Configuring SR-IOV in ESC

Single Root I/O Virtualization (SR-IOV) allows multiple VMs running a variety of guest operating systems
to share a single PCIe network adapter within a host server. It also allows a VM to move data directly to and

Configuring Deployment Parameters
49

Configuring Deployment Parameters
Advanced Interface Configurations

from the network adapter, bypassing the hypervisor for increased network throughput and lower server CPU
burden.

Configuring SR-IOV in ESC for OpenStack

Before you configure SR-IOV in ESC for OpenStack, configure the hardware and OpenStack with the correct
parameters.

To enable SR-IOV in ESC for OpenStack, specify the interface type as direct. The following snippet shows
a sample datamodel:

<interfaces>
<interface>
<nicid>0</nicid>
<network>esc-net</network>
<type>direct</type>
</interface>

</interfaces>
...

Configuring SR-IOV in ESC for VMware

Before you configure SR-IOV in ESC for VMware, consider the following:

• Enable SR-IOV Physical Functions on desired ESXi hosts. For more information, see VMware
documentation.

• Consider the following important points before enabling SR-IOV:

• Review the list of physical network adaptors that VMware supports for SR-IOV. See VMware
documentation.

• Review the list of VM features that are not supported on a VM with SR-IOV configured. See
VMware documentation.

• In a cluster deployment (defined by "zone" in the datamodel) with SR-IOV, make sure that each
ESXi host has identical Physical Functions enabled for SR-IOV selection. For example, if a VM is
going to use vmnic7 as the Physical Function, make sure that each host has vmnic7 and SR-IOV
status for each vmnic7 is enabled.

To enable SR-IOV in ESC for VMware, specify interface<type> as direct and also extension
<name> as sriov_pf_selection in the deployment datamodel. Interface Type directindicates an
SR-IOV device and extension name sriov_pf_selection indicates the physical function. The
following snippet shows a sample datamodel:

<vm_group>
...
<interface>
<nicid>2</nicid>
<network>MgtNetwork</network>
<type>direct</type>

</interface>
<interface>
<nicid>3</nicid>
<network>MgtNetwork</network>
<type>direct</type>

</interface>
...
<extensions>
<extension>
<name>sriov_pf_selection</name>

Configuring Deployment Parameters
50

Configuring Deployment Parameters
Configuring SR-IOV in ESC

<properties>
<property>
<name>nicid-2</name>
<value>vmnic1,vmnic2</value>
</property>
<property>
<name>nicid-3</name>
<value>vmnic3,vmnic4</value>
</property>
</properties>
</extension>
</extensions>
</vm_group>

Configuring Allowed Address Pair

Cisco Elastic Services Controller allows you to specify the address pairs in the deployment datamodel to pass
through a specified port regardless of the subnet associated with the network.

The address pair is configured in the following ways:

• List of Network—When a list of network is provided on a particular interface, ESC will get the subnet
details from the OpenStack for these networks and add them to the corresponding port or interface. The
following example explains how to configure address pairs as a list of network:

<interface>
<nicid>1</nicid>
<network>network1</network>
<allowed_address_pairs>
<network>
<name>bb8c5cfb-921c-46ea-a95d-59feda61cac1</name>
</network>
<network>
<name>6ae017d0-50c3-4225-be10-30e4e5c5e8e3</name>
</network>
</allowed_address_pairs>
</interface>

</interfaces>

• List of Address—When a list of address is provided, ESC will add these addresses to the corresponding
interface. The following example explains how to configure address pairs as a list of address:

<interface>
<nicid>0</nicid>
<network>esc-net</network>
<allowed_address_pairs>
<address>
<ip_address>10.10.10.10</ip_address>
<netmask>255.255.255.0</netmask>
</address>
<address>
<ip_address>10.10.20.10</ip_address>
<netmask>255.255.255.0</netmask>
</address>
</allowed_address_pairs>

</interface>

Configuring Deployment Parameters
51

Configuring Deployment Parameters
Configuring Allowed Address Pair

Configuring Port Security

The attribute port_security_enabled in the deployment datamodel allows you to add or modify the port or
interface security status. You can specify this parameter during an initial VNF deployment or also while
modifying an existing VNF deployment. Setting this parameter as 'true' will enable the port security. If the
value is set to 'false', ESC will not allow you to configure Security Groups and the Allowed Address Pairs for
the VNF instances. You can also configure the port security parameter through both REST and NETCONF .

Enable the port security on the OpenStack before enabling it in Cisco Elastic Services Controller.Note

<esc_datamodel xmlns="http://www.cisco.com/esc/esc"> <tenants><tenant>
<vm_group>

<interfaces>
<interface>
<nicid>1</nicid>
<network>Net-1</network>
<port_security_enabled>false</port_security_enabled>
</interface>
</interfaces>
</vm_group>

Configuring Security Group Rules
Cisco Elastic Services Controller (ESC) allows you to associate security group rules to the deployed instances
on OpenStack. These security group rules are configured by specifying the necessary parameters in the
deployment datamodel. In addition to configuring security group rules, if any VNF instance fails, ESC recovers
the instance and applies the security group rules for the redeployed VNF.

To configure security group rules, do the following:

Before you begin

• Make sure you have created a tenant through ESC.

• Make sure you have security groups created.

• Make sure you have the security group name or UUID.

Procedure

Step 1 Log in to the ESC VM as a root user.
Step 2 Run the following command to check the UUIDs of a given security group:

nova --os-tenant-name <NameOfTheTenant> secgroup-list

Step 3 Pass the following arguments in the deployment data model:

<interfaces>
<interface>
<nicid>0</nicid>
<network>esc-net</network><!-- depends on network name -->
<security_groups>

Configuring Deployment Parameters
52

Configuring Deployment Parameters
Configuring Port Security

<security_group>0c703474-2692-4e84-94b9-c29e439848b8</security_group>
<security_group>bbcdbc62-a0de-4475-b258-740bfd33861b</security_group>
</security_groups>

</interface>
<interface>
<nicid>1</nicid>
<network>sample_VmGrpNet</network><!--depends on network name -->
<security_groups>
<security_group>sample_test_SQL</security_group>
</security_groups>
</interface>

Step 4 Run the following command to verify whether the security groups are associated with the VM instance:

nova --os-tenant-name <NameOfTenant> show <NameOfVMinstance>

Hardware Acceleration Support (OpenStack Only)
You can configure hardware acceleration features on OpenStack using the flavor data model. The following
hardware acceleration features can be configured:

• vCPU Pinning—enables binding and unbinding of a process to a vCPU (Virtual Central Processing
Unit) or a range of CPUs, so that the process executes only on the designated CPU or CPUs rather than
any CPU.

• OpenStack performance optimization for large pages and non-uniform memory access
(NUMA)—enables improvement of system performance for large pages and NUMA i.e., system's ability
to accept higher load and modify the system to handle a higher load.

• OpenStack support for PCIe Passthrough interface—enables assigning a PCI device to an instance
on OpenStack.

The following example explains how to configure hardware acceleration features using flavor data model:
$ cat fl.xml
<?xml version='1.0' encoding='ASCII'?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<flavors>
<flavor>
<name>testfl6</name>
<vcpus>1</vcpus>
<memory_mb>2048</memory_mb>
<root_disk_mb>10240</root_disk_mb>
<ephemeral_disk_mb>0</ephemeral_disk_mb>
<swap_disk_mb>0</swap_disk_mb>
<properties>
<property>
<name>pci_passthrough:alias</name>
<value>nic1g:1</value>

</property>
</properties>

</flavor>
</flavors>

</esc_datamodel>
$ /opt/cisco/esc/esc-confd/esc-cli/esc_nc_cli edit-config ./fl.xml

Configuring Deployment Parameters
53

Configuring Deployment Parameters
Hardware Acceleration Support (OpenStack Only)

Configuring PCI or PCIe Device Passthrough on VMware vCenter

ESC supports VMware vCenter PCI or PCIe device passthrough (VMDirectPath I/O). This enables VM access
to physical PCI functions on platforms with an I/O memory management unit.

Before You Begin

For the PCI / PCIe devices of a host VM to enable passthrough, the vSphere administrator must mark these
devices in the vCenter.

You must reboot the host after PCI settings. Put the host to maintenance mode, power off or migrate all VMs
to other hosts.

Note

To specify PCI device passthrough request in ESC deployments include the <type> attribute with value set
to passthru. The data model is as follows:
<tenants>
<tenant>
<name>admin</name>
<deployments>
<deployment>
<name>test</name>

<vm_group>
<name>test-g1</name>

<bootup_time>300</bootup_time>
<recovery_wait_time>10</recovery_wait_time>
<interfaces>
<interface>
<nicid>1</nicid>
<network>MgtNetwork</network>
<ip_address>10.79.0.102</ip_address>
</interface>
<interface>
<nicid>2</nicid>
<network>VM Network</network>
<type>passthru</type>
<ip_address>172.16.0.0</ip_address>
</interface>
<interface>
<nicid>3</nicid>
<network>VM Network</network>
<type>passthru</type>
<ip_address>10.84.46.117</ip_address>
</interface>
</interfaces>

After successful deployment, the passthru value is set in the interface section of the notification as well as in
the operational data.

Auto Selecting PCI or PCIe PassThrough Device

ESC needs one or more PCI or PCIe passthrough devices to be attached to each deployment without a particular
PCI ID. ESC first selects a host. ESC selects the next available PCI or PCIe passthrough enabled device and
attaches it during the deployment. If there is no PCI or PCIe passthrough enabled device available, ESC fails
the deployment. The vSphere administrator has to ensure all computing-host within the target computing-cluster
have enough number of PCI or PCIe passthrough enabled devices.

Configuring Deployment Parameters
54

Configuring Deployment Parameters
Hardware Acceleration Support (OpenStack Only)

• PCI or PCIe passthrough is not considered by ESC placement algorithm. For example, ESC does not
select a host because it has available resources to complete the PCI or PCIe passthrough requests.

• ESC selects the PCI or PCIe passthrough device randomly. ESC does not consider the type or specification
of the device. It selects the next available PCI or PCIe device from the list.

• Recovery fails if the VNF is recovered to a computing-host that ESC has selected based on the ESC
placement algorithm, and if that computing-host does not have any PCI or PCIe passthrough enabled
devices available.

• DRS must be turned off for the passthrough to work.

Note

Configuring Deployment Parameters
55

Configuring Deployment Parameters
Hardware Acceleration Support (OpenStack Only)

Configuring Deployment Parameters
56

Configuring Deployment Parameters
Hardware Acceleration Support (OpenStack Only)

	Configuring Deployment Parameters
	Day Zero Configuration
	KPIs, Rules and Metrics
	Rules
	Metrics and Actions
	Metrics and Actions APIs

	Script Actions
	Configuring Custom Script Metric Monitoring KPIs and Rules
	Custom Script Notification

	Policy-Driven Data model
	Supported Lifecycle Stages (LCS)

	Affinity and Anti-Affinity Rules
	Affinity and Anti-Affinity Rules on OpenStack
	Affinity and Anti-Affinity Rules on VMware vCenter

	Configuring Custom VM Name
	Interface Configurations
	Basic Interface Configurations
	Configuring Basic Interface Settings
	Configuring an Interface Name
	Assigning the MAC Address
	Configuring Subnet for an Interface
	Configuring an Out-of-Band Port
	IPv6 Support
	Dual Stack Support

	Advanced Interface Configurations
	Configuring Advance Interface Settings
	Configuring SR-IOV in ESC
	Configuring Allowed Address Pair
	Configuring Port Security

	Configuring Security Group Rules

	Hardware Acceleration Support (OpenStack Only)

