CONTENTS

Preface xi
 Audience i-xi
 Conventions i-xii
 Related Documentation i-xiii
 Obtaining Documentation and Submitting a Service Request i-xiii

Product Overview 1-1
 Supported Interfaces 1-3
 Cisco IOS Dependencies 1-3
 Third-Party Software 1-3
 Modes of Operation 1-3
 Modes of User Authentication 1-3
 Directory 1-4
 Configuration Service 1-4
 Event Service 1-5
 NameSpace Mapper 1-5
 Event Gateway 1-5
 Event Gateway Port Automatic Assignment 1-6
 Dynamic Template and Object 1-6
 Data Structures 1-6
 Image Service 1-7
 imageInventoryResponse Message 1-7
 Image Update Criteria 1-8
 Distribution Decision Keys 1-8
 PIX Firewall Support 1-9
 ASA Firewall Support 1-10
 Intelligent Modular Gateway 1-10
 Restrictions 1-10
 IMGW Device Module Toolkit 1-11
 Modular Router Support 1-11
 Encryption 1-12
Contents

Adding Non-agent Enabled Devices 3-31
 Hop Tables 3-36
Adding Agent Enabled Devices 3-39
Adding PIX Firewall Devices 3-44
Adding ASA Firewall Devices 3-47
Discovering Devices 3-50
Editing Devices 3-53
 Editing Non-agent Enabled Device Information 3-55
 Editing Agent Enabled Device Information 3-56
 Editing PIX Device Information 3-57
 Editing ASA Device Information 3-58
 Editing Device Templates 3-59
 Editing Device Parameters 3-61
 Editing Contact Information 3-61
 Editing Subdevices 3-61
 Editing Image Association Information 3-61
Resynchronizing Devices 3-62
Cloning Devices 3-62
Deleting Devices 3-64
Updating Device Configurations and Images 3-64
 Updating Device Configurations 3-64
 Updating Device Images 3-67
Customize Job Template 3-69
 Configuration Control Template 3-70
Working with Subdevices 3-71
 Viewing Subdevices 3-71
 Adding Subdevices 3-72
 Editing Subdevices 3-73
 Editing Subdevice Information 3-74
 Editing Subdevice Template 3-74
 Editing Subdevice Parameters 3-75
 Editing Contact Information 3-75
 Cloning Subdevices 3-75
 Deleting Subdevices 3-77
Querying Device Inventory 3-78
Delete Files on Device 3-80
Dynamic Operations 3-82
Contents

User Account Manager 4-85
 Adding User Account 4-85
 Editing User Account 4-87
 Deleting User Account 4-89
 Changing User Password 4-89
 Changing Account Privilege Level 4-90

Configuration and Image Update Jobs Manager 5-91
 Querying Jobs 5-91
 Canceling or Stopping Jobs 5-92
 Restarting Jobs 5-92
 Deleting Completed Jobs 5-93

Groups 6-95
 Viewing Groups 6-95
 Creating Groups 6-96
 Editing Groups 6-97
 Cloning Groups 6-97
 Moving Groups 6-98
 Deleting Groups 6-98
 Creating Groups Using Search 6-98

Namespace Manager 7-101
 Viewing Events 7-101
 Adding Events 7-102
 Editing Events 7-104
 Deleting Events 7-105

Query Manager 8-107
 Viewing Queries 8-107
 Creating Queries 8-108
 Editing Queries 8-109
 Deleting Queries 8-110

Data Manager 9-111
 Scheduling Data Backup 9-111
 Updating Product List 9-113
 Managing Disk Space 9-114
Directory Manager 10-117
 Editing Schema 10-117
 Importing Schema 10-118

Parameter Manager 11-121
 Parameter Validations 11-121
 Edit Fetch Process 11-122
 Edit Save Process 11-123
 Import Script File 11-123

Templates 12-125
 Sample Template 12-125
 Configuration Control Templates 12-127
 Dynamic Flow Control Template 12-127
 Inventory Operations 12-127
 Other Operations 12-130
 Notes 12-130
 Sample1 12-131
 Sample 2 12-131
 Sample 3 12-131
 Templates for Modular Routers 12-131
 Sample Templates for Modular Router 12-133
 Main Device Template 12-133
 FastEthernet Template 12-134
 Voice-port Template 12-134
 Modular Router Events 12-135
 Dynamic Templates 12-135
 Control Structures 12-136
 Managing Templates 12-137
 Adding a Template 12-138
 Editing a Template 12-139
 Deleting a Template 12-140
 Importing a Template 12-141
 Exporting Template 12-142
 Importing Local Template 12-143
Contents

Security Manager 13-145
 Changing Bootstrap Password 13-145

Log Manager 14-147
 Viewing Log Files 14-147
 Clearing Logs 14-149
 Exporting Logs 14-150
 Changing Log Level 14-151

Service Manager 15-153
 Editing Service Properties 15-153
 Editing IMGW Device and Hop Types 15-155

Bulk Data Manager 16-157
 XML DTD 16-157
 Uploading Bulk Data 16-159
 Command-Line Upload of Bulk Data 16-160
 Using Data Converter Utility 16-160
 Creating Sample Data 16-160
 NSM Data Without Image Info 16-161
 NSM Data Sample With Image Info 16-163
 Image Sample Data 16-166

Email Manager 17-169
 Editing Email SMTP Host 17-169

Image Service 18-171
 Working with Images 18-171
 Viewing an Image 18-171
 Adding an Image 18-172
 Editing an Image 18-175
 Deleting an Image 18-177
 Associating Images with Devices 18-177
 Search Parameters 18-179
 Viewing Search Parameters 18-179
 Creating Search Parameters 18-180
 Editing Search Parameters 18-181
 Deleting Search Parameters 18-181
Upgrade or Downgrade Cisco IOS Image 19-183

Things to Know 19-183

12.0 -> 12.2 19-183

Procedure 19-184

12.0 -> 12.3(3) or later 19-185

12.2 -> 12.3(3) or later 19-185

Procedure 19-185

12.3(3) or later -> 12.3(3) or later 19-186

Procedure 19-186

12.3(3) or later -> 12.2 19-186

12.3(3) or later -> 12.0 19-187

Backup and Restore 20-189

Backup Procedure 20-189

Data Restore Procedure 20-191

Definitions 20-192

PIX Firewall Device Support 21-193

PIX Device Polls for Updates 21-194

Configuration Processing 21-194

Image Processing 21-194

Error Processing 21-195

Processing a DeviceDetails Request from PIX Device 21-195

PIX DeviceID 21-196

Security Considerations 21-196

PIX Device Polling Setup 21-196

Configuration and Restrictions 21-197

ASA Firewall Device Support 22-199

ASA Device Polls for Updates 22-200

Configuration Processing 22-200

Image Processing 22-200

Error Processing 22-201

Processing a DeviceDetails Request from ASA Device 22-201

ASA DeviceID 22-202

Security Considerations 22-202

ASA Device Polling Setup 22-202

Configuration and Restrictions 22-203
IMGW Device Module Development Toolkit 23-205

User Types 23-205

Toolkit Usage 23-205

Plug Device Module Into Cisco Configuration Engine 23-206
Update Device Module on Cisco Configuration Engine 23-206
Unplug Device Module from Cisco Configuration Engine 23-206

IMGW Southbound Interface 23-206

User Designed Device Module Specifications 23-207

Config Event 23-207
Exec Event 23-207
Hop Test 23-207
Parameter Descriptions 23-207
Exit Codes 23-209

How to Develop Plug-in Device Module 23-210

Development Guidelines 23-210
Device Configuration Update 23-210
Command Execution 23-211
Hop Test 23-211

Installing Plug-in Device Module 23-211

Registering Plug-in Device Module 23-212

End User Interface 23-212

Configuration and Restrictions 23-212

Device Module Restrictions 23-212
Registration Utility Restriction 23-212

Contacting Cisco TAC A-1

Checking the Version Number of Cisco Configuration Engine A-1

Cannot Log in to the System A-2

System Cannot Connect to the Network A-2

Cannot Connect to the System Using a Web Browser A-3

Problems Connecting to the System with Secure Shell A-4

Cannot Connect to the System Using Telnet A-4

Backup and Restore Not Working Properly A-5

Cannot Back Up Jobs A-5

Using the cns-send and cns-listen Commands A-5

cns-send A-6
cns-listen A-6
Preface

This preface describes the audience and conventions of the Cisco Configuration Engine Administration Guide. It also describes the available product documentation and provides information on how to obtain documentation and technical assistance. It contains the following sections:

- Audience
- Conventions
- Related Documentation
- Obtaining Documentation and Submitting a Service Request

Note

This product contains cryptographic features and is subject to US and local laws governing import, export, transfer, and use.

Audience

This guide is intended primarily for:

- System administrators familiar with installing high-end networking equipment
- System administrators responsible for installing and configuring internetworking equipment who are familiar with Cisco IOS software
Conventions

This guide uses the following conventions:

<table>
<thead>
<tr>
<th>Item</th>
<th>Convention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commands and keywords.</td>
<td>boldface font</td>
</tr>
<tr>
<td>Variables for which you supply values.</td>
<td>italic font</td>
</tr>
<tr>
<td>Optional command keywords. You do not</td>
<td>[enclosed in brackets]</td>
</tr>
<tr>
<td>have to select any options.</td>
<td></td>
</tr>
<tr>
<td>Required command keyword to be selected</td>
<td>{options enclosed in braces</td>
</tr>
<tr>
<td>from a set of options. You must choose one option.</td>
<td></td>
</tr>
<tr>
<td>Displayed session and system information.</td>
<td>screen font</td>
</tr>
<tr>
<td>Information you enter.</td>
<td>boldface screen font</td>
</tr>
<tr>
<td>Variables you enter.</td>
<td>italic screen font</td>
</tr>
<tr>
<td>Menu items and button names.</td>
<td>boldface font</td>
</tr>
<tr>
<td>Choosing a menu item.</td>
<td>Option > Network Preferences</td>
</tr>
</tbody>
</table>

Note

Means reader take note.

Tip

Means the following information will help you solve a problem.

Caution

Means reader be careful. In this situation, you might perform an action that could result in equipment damage or loss of data.

Timesaver

Means the described action saves time. You can save time by performing the action described in the paragraph.

Warning

Means reader be warned. In this situation, you might perform an action that could result in bodily injury.
Related Documentation

Table 1 describes the related documentation available for Cisco Configuration Engine.

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Available Formats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Configuration Engine Installation and</td>
<td>This document is available on Cisco.com and can be</td>
</tr>
<tr>
<td>Configuration Guide 3.5.4</td>
<td>accessed without an account.</td>
</tr>
<tr>
<td>Cisco Configuration Engine Administration Guide 3.5.4</td>
<td>This document is available on Cisco.com and can be</td>
</tr>
<tr>
<td></td>
<td>accessed without an account.</td>
</tr>
<tr>
<td>Cisco Configuration Engine Software Development</td>
<td>This document is available on Cisco.com and can be</td>
</tr>
<tr>
<td>Kit API Reference and Programmer Guide 3.5.3</td>
<td>accessed without an account.</td>
</tr>
<tr>
<td>Troubleshooting Guide for Cisco Configuration Engine</td>
<td>This document is available on Cisco.com and can be</td>
</tr>
<tr>
<td>3.5.3</td>
<td>accessed without an account.</td>
</tr>
<tr>
<td>Cisco Configuration Engine 3.5.4 Open Source</td>
<td>This document is available on Cisco.com and can be</td>
</tr>
<tr>
<td>Documentation</td>
<td>accessed without an account.</td>
</tr>
<tr>
<td>Release Notes for Cisco Configuration Engine 3.5.4</td>
<td>This Release Note document is available on Cisco.com</td>
</tr>
<tr>
<td></td>
<td>and can be accessed without an account.</td>
</tr>
</tbody>
</table>

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the What’s New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.
Product Overview

This chapter provides a high-level overview of the Cisco Configuration Engine 3.5.4. It is organized as follows:

- Cisco IOS Dependencies
- Modes of Operation
- Modes of User Authentication
- Configuration Service
- Event Service
- Dynamic Template and Object
- Image Service
- PIX Firewall Support
- ASA Firewall Support
- Intelligent Modular Gateway
- IMGW Device Module Toolkit
- Modular Router Support
- Encryption
- How the Cisco Configuration Engine Works
- Dynamic ConfigID and EventID Change Synchronization
- Common Log File Location

The Cisco Configuration Engine is a network management application that acts as a configuration service for automating the deployment and management of network devices and services (see Figure 1-1).

The Cisco Configuration Engine runs on Linux hardware platforms. For information about the supported hardware platforms, see Cisco Configuration Engine Installation and Configuration Guide 3.5.4.
Each Cisco Configuration Engine manages a group of Cisco devices and services they deliver, storing their configurations and delivering them as needed. The Cisco Configuration Engine automates initial configurations and configuration updates by generating device-specific configuration changes, sends them to the device, executes the configuration change, and logs the results.

Note
If you are running devices that use an earlier version of Cisco IOS, or a different operating system, such as Catalyst, you should invoke the Intelligent Modular Gateway for communicating with the device. For more information about Intelligent Modular Gateway, see “Intelligent Modular Gateway” section on page 1-10.

The Cisco Configuration Engine utilizes the following popular industry standards and technologies:
- eXtensible Markup Language (XML)
- Java naming directory interface (JNDI)
- Hypertext Transport Protocol (HTTP)
- Java servlets
- Lightweight Directory Access Protocol (LDAP)

The Cisco Configuration Engine supports two modes of operation (Internal Directory and External Directory) and it includes the following Cisco Configuration Engine components:
- Configuration service (web server, file manager, and namespace mapping server)
- Image Service (Cisco IOS images)
- Event service (event gateway)
- Data service directory (data models and schema)
- Intelligent Modular Gateway (IMGW)
The Cisco Configuration Engine can be used as the runtime component for deployment of customer-developed applications. These applications can be developed using the *Cisco Configuration Engine Software Development Kit API Reference and Programmer Guide*.

Supported Interfaces

The software external interfaces for Cisco Configuration Engine include:

- Linux login
- Telnet
- Secure Shell (SSH)

Cisco IOS Dependencies

Table 1-1 shows Cisco IOS versions with corresponding versions of Cisco Configuration Engine including feature limitations associated with each version.

<table>
<thead>
<tr>
<th>Cisco IOS</th>
<th>Cisco Configuration Engine</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3</td>
<td>1.3.2 or later</td>
<td>—</td>
</tr>
<tr>
<td>12.2(11)T</td>
<td>1.2 or later</td>
<td>—</td>
</tr>
<tr>
<td>12.2(2)T</td>
<td>1.2 or later with no authentication.</td>
<td>Applications will be unable to use exec commands or point-to-point messaging.</td>
</tr>
</tbody>
</table>

Third-Party Software

For information on the third-party software license, see the *Cisco Configuration Engine 3.5.4 Open Source Documentation*.

Modes of Operation

There are two modes of system operation for the Cisco Configuration Engine:

- Internal Directory Mode
- External Directory Mode

Modes of User Authentication

There are two modes of user authentication for the Cisco Configuration Engine:

- Authenticate user internally
- Authenticate user externally
The Cisco Configuration Engine user can be authenticated internally or externally. The Cisco Configuration Engine user who logs in is authenticated against the external application. If the external authentication fails, the user is authenticated internally against the Cisco Configuration Engine LDAP Server. For more information about user authentication, see User Authentication, page 1-20.

Directory

Cisco Configuration Engine uses OpenLDAP for Directory services. OpenLDAP can be configured to use internal or external database as data repository for the Directory. When configured to use external database (External Directory Mode), OpenLDAP stores data in relational tables using ODBC library. OpenLDAP can also be configured to act as a proxy to forward incoming LDAP requests to another external LDAP server, which provides another possibility for string data in external LDAP server, for example, iPlanet.

Note

GUI access to User Manager and Directory Manager is not available when operating in External Directory mode.

Configuration Service

The Configuration Service is the core component of the Cisco Configuration Engine. It consists of a configuration server that works in conjunction with configuration agents located at each router. The Configuration Service delivers device and service configurations to Cisco IOS devices for initial configuration and mass reconfiguration by logical groups. Routers receive their initial configuration from the Configuration Service when they start up on the network the first time.

The Configuration Service uses Event Service to send events required to apply configuration changes and receive success and failure notifications.

The configuration server consists of a web server that uses configuration templates and the device-specific configuration information stored in the embedded (Internal Directory mode) or remote (External Directory mode) directory.

Configuration templates are text files containing static configuration information in the form of command-line interface (CLI) commands. In the templates, variables are specified using (LDAP) URLs that reference the device-specific configuration information stored in the directory.

The configuration template includes additional features that allow simple conditional control structures and modular sub-templates in the configuration template (see Chapter 12, “Templates.”).

The configuration server uses HTTP to communicate with the Configuration Agent running on the managed Cisco IOS device. The configuration server transfers data in XML format. The configuration agent in the router uses its own XML parser to interpret the configuration data and remove the XML tags from the received configuration.

The configuration agent can also perform a syntax check on received configuration files. The configuration agent can also publish events through the event gateway to indicate the success or failure of the syntax check.
Event Service

The Cisco Configuration Engine uses the Event Service for receipt and generation of events. The Event Agent resides on Cisco IOS devices and facilitates communication between routers and the Event Gateway on the Cisco Configuration Engine.

The Event Service is a highly-scalable publish and subscribe communication method. The Event Service uses subject-based addressing to help messages reach their destination. Subject-based addressing conventions define a simple, uniform namespace for messages and their destinations.

NameSpace Mapper

The Namespace Mapping Service (NSM) allows you to address multiple network devices by a single posting of a publish or subscribe event. NSM also allows your network administrator to map Cisco-standardized event names to names of your choice.

For example, in a network of 100 routers, there might be 10 that the administrator wants to configure as a VPN (Virtual Private Network). In order to load a configuration into each of these devices, your client application could either publish 10 cisco.mgmt.cns.config.load.<deviceId> events, or the administrator could associate the 10 devices with a common group name and your client application can post the event once. The associated administration steps are:

1. Using the device management interface, define all the device objects (see Chapter 3, “Device and Subdevice Manager”).

2. Using NSM administration interface, remap both the subscribe and publish map of cisco.mgmt.cns.mgmt.config.load subject to application.load (see Chapter 7, “Namespace Manager”).

3. For example, using the group management interface, group all the devices in the West Coast under a group called “westcoast” (see Chapter 6, “Groups”).

4. The client application would publish the mapped subject application.load/config/westcoast on the event bus and the devices in the “westcoast” group would get the event. The mapped subject is returned to the client application by the NSM’s operational API when querying for the publish mapping for the event cisco.mgmt.cns.config.load.

Event Gateway

The Event Gateway acts as a relay between the Integration Bus and agent-enabled devices, which enables event-based communication. The Event Gateway uses NSM to map subjects.

Each Event Gateway process can support a maximum of 500 devices. To support more than 500 devices, you should run multiple gateway processes.

During the Setup, you can set the number of concurrent gateway processes to start with either one or both of the following prompts, depending on how you want to setup your Secure Socket Layer (SSL) (see “Encryption” section on page 1-12) communications:

Enter number of Event Gateways that will be started with crypto operation:
Enter number of Event Gateways that will be started with plaintext operation:

Event Gateways that listen on port 11011 and 11012 are Dispatcher Event Gateways which redirect a device connection to a regular plain-text or crypto enabled Event Gateway respectively. For more information see Chapter 6 “Scalability among Event Gateways” in Cisco Configuration Engine Installation and Configuration Guide.
Event Gateway Port Automatic Assignment

Each event gateway can support a maximum of 500 devices. During Zero Touch Deployment (ZTD), the deployment engineer needs to update the bootstrap configuration file for every 500 devices. The event gateway port automatic assignment process helps to eliminate the manual process. When the Cisco Configuration Engine server is configured as the previous section, all the 30,000 devices can be deployed using the same bootstrap configuration file. The following is the sample bootstrap configuration file. The bolded lines are the required commands to support the port automatic assignment.

```
cns trusted-server all-agents ce-host
  cns id hardware-serial
  cns id hardware-serial event
  cns config initial ce-host status http://ce-host/cns/PostStatus
  cns event ce-host keepalive 120 1 reconnect 10
  cns config partial ce-host
```

When a network element connects to Cisco Configuration Engine through the dispatcher event gateway, the Cisco Configuration Engine automatically assigns a port to the network element. The network element saves that information and connects to the designated Cisco Configuration Engine port. The Cisco Configuration Engine can manage a device after the device connects to a none-Cisco Configuration Engine well-known port (ports other than 11011 and 11012).

Dynamic Template and Object

The original servlet, `com.cisco.cns.config.Config`, gets the configuration template from the attribute value of the Device Object in the configuration server data store (LDAP server), parses the template, and does string substitution on parameters inside the template. It is tightly coupled with the template that is assigned to the device and the attributes of device object.

The new servlet, `DynaConfig`, loosens the restriction so that the template can be assigned dynamically and the parameter values can be obtained from other objects in data store.

This servlet gets `PathInfo` information by means of `HttpServletRequest.getPathInfo()`, parse it, and gets the related template name and object reference. The structure of `PathInfo` is:

```
/argument name=value[/object=value]
```

For more information about Dynamic Template and Object, see `Cisco Configuration Engine Software Development Kit API Reference and Programmer Guide`.

Data Structures

The feature of dynamic template and object utilizes `PathInfo`, which is passed from the client side to the servlets. The structure of `PathInfo`, which the servlet can understand is in following format:

```
[/<argument name>=<value>]*
```

The argument and format for dynamic template and object is:

```
[<cfgtpl=value[/object=value]]
```

For more information about Dynamic Template and Object, see `Cisco Configuration Engine Software Development Kit API Reference and Programmer Guide`.
Image Service

The Image Service is an automated, scalable, and secure mechanism designed to distribute Cisco IOS images and related software updates to Cisco IOS devices that have Cisco Intelligence Agents. All the image upgrading decisions are made by the image server. These decisions are based on the inventory response information returned by the image agent.

imageInventoryResponse Message

The imageInventoryResponse message contains an imageInventoryReport XML document. This report contains information about:

- The running image on the system
- The systems hardware resources
- The various file systems and files on the device.

The imageInventoryResponse is a response to an imageInventoryRequest. The resources requested by the tags in the request are sent in the imageInventoryResponse message. The messageID element from the request is included in the messageID element of the response message.

For the devices hardware resources, the minimum information reported is:

- Size of the system RAM available to run an image
- Name(s) of the system (hostname and, imageID)
- Type of the device hardware
- Serial numbers of various hardware components
- Currently running system image on the managed device provides the following information:
 - Image file name and location, for example flash:/c2600-is-mz
 - MD5 hash of image file if it can be calculated
 - Version string, for example IOS (tm) C2600 Software (C2600-IS-M) Version 12.2(10.7)T, MAINTENANCE INTERIM SOFTWARE
- The date and time that the image was booted
- In addition, for each local persistent file system on the device, the following information is reported:
 - Name of file system
 - Type of the file system
 - Size of file system
 - Free space available
 - Read/Write protect flags
- For each file in each of the reported file systems, the following information is reported:
 - Name (both file name, and the complete fully qualified path name)
 - Size
 - R/W permission flags
 - Modification date
- For each directory in the file system, the following information is reported:
- Name (both directory name and the complete fully qualified path name)
- R/W permission flags

Image Update Criteria

When Image Service is instructed to evaluate a given device for distribution and/or activation, an ImageCheckServer message is sent over the Event Bus to get Inventory and analyze the inventory content to decide what attributes should be used for the comparison.

Currently, the following values are used from Inventory to determine which comparison class to use:

- MD5
- ImageFile
- File System

Distribution Decision Keys

File System Activation decision keys:

- ImageFile
- MD5
- Version String

Image Service makes decisions in the following order:

1. If MD5 and File System exist:
 a. Distribution:
 - If Destination in Distribution object exists on File System in Inventory, it is not necessary to distribute this file if Overwrite flag is not set. For example, Destination is slot0:pf-1.img4, if inventory return by device has a file pf-1.img4 on slot0, Server decides this distribution is not needed.
 - If Destination does not exist in File System in Inventory, it starts to check if there is enough space left for this file on that location.
 If Erase is checked, server gets total size of that file system (that is, slot0) to see if the file can fit into this file system. For example, if slot0 has 1000 bytes free, 2000 bytes total size, and file size on distribution is 100 bytes, server does 2000 - 100 to check if the result is >0. If >0, it is okay to distribute.
 If Overwrite, server gets remaining free space size of that file system and adds the original file size on Inventory back, then it sees if the file will fit into this file system. For example, if slot0 has 1000 bytes free, the file is 100 bytes on inventory, the file size on distribution is 200 bytes and Overwrite is set, server does 1000 + 100 - 200 to check if slot0 remaining free size is > 0. If >0, it is okay to distribute.
 b. Activation:
 Server uses MD5 to compare between RunningImageInfo from Inventory and ImageObject on server side. If they are the same, Activation is not necessary.

2. If ImageFile and File System exists:
 a. Distribution: (The same as 1a)
 b. Activation:
Server compares ImageFile in RunningImageInfo from Inventory with Destination attribute on Distribution Object on server side. If they are the same, Activation is not necessary.

3. If Version String and File System exists:
 a. Distribution: (The same as 1a)
 b. Activation:
 Server compares Version String in RunningImageInfo from Inventory with Description on Image Object from server side. If they are the same, Activation is not necessary.

4. If Only ImageFile exists:
 a. Distribution:
 Server always thinks Distribution is necessary. (Because server uses ImageStatus message to verify if the result of Distribution is successful.)
 b. Activation: (The same as 2b)

5. If Only Version String exists:
 a. Distribution: (The same as 4a)
 b. Activation: The same as 3b)

6. If Only File System exists:
 a. Distribution: (The same as 1a)
 b. Activation:
 Server always thinks Activation is not necessary. (Because there is no way to verify if the result of Activation is successful.)

7. If none of those attributes exists in Inventory:
 a. Distribution:
 Server always thinks Distribution is not necessary.
 b. Activation:
 Server will always think Activation is not necessary.

For more information about how to use the Image Service, see Chapter 18, “Image Service.”

For those devices that do not have a Cisco image agent, non-Cisco IOS devices, and non-Cisco devices, you can use the IMGW Toolkit to create scripts that support SSH sessions between these devices and the Cisco Configuration Engine.

For more information about the IMGW Device Module Toolkit, see Chapter 23, “IMGW Device Module Development Toolkit.”

PIX Firewall Support

Cisco Configuration Engine provides configuration management and image service to Cisco PIX firewall devices (PIX device).

For more information about PIX firewall support, see Chapter 21, “PIX Firewall Device Support.”
ASA Firewall Support

Cisco Configuration Engine provides configuration management and image service to Cisco adaptive Security Appliance devices (ASA device).
For more information about PIX firewall support, see Chapter 22, “ASA Firewall Device Support.”

Intelligent Modular Gateway

Intelligent Modular Gateway (IMGW) allows you to run the Cisco Configuration Engine for automatically distributing configuration files to Cisco IOS network devices running Cisco IOS versions earlier than 12.2(2)T, as well as to Catalyst switches, CCS 11k devices, Cache Engines, and PIX firewalls.

Note

If you are running devices that use Cisco IOS version 12.2(2)T or later, you should use the Event Gateway.

The IMGW accomplishes this task by adding the ability to use alternate access methods (Telnet and SSH) to connect to devices that do not have Cisco Configuration Engine agents in their software.

The interface to the IMGW is the same as that of the Event Gateway. It responds to the same events. The NSM operates in the same way. Therefore, after some initial setup work is done, applications need not know the difference between communicating with agent-enabled devices by way of the Event Gateway and non-agent devices by way of the IMGW.

Restrictions

Using the IMGW with an SSH transport creates some restrictions in terms of how the Cisco Configuration Engine architecture is used.

• When using SSH as a transport, no syntax checking can be done on the configurations before they are applied.

Syntax checking in the Cisco Configuration Engine architecture is accomplished by an intelligent agent in the device that has access to internal parser functions. An SSH interface does not provide any means to access this functionality. Therefore, any syntax checking attributes are ignored. Errors are only detected when the configuration is actually applied and applications must deal with the fact that configuration lines prior to the error were executed.

• Because all logic is external to the device, there is no way to watch for configuration changes that are done outside the scope of the network management software.

For example, if a network administrator uses a standard SSH client to directly access a network element and changes the configuration, that element would not be synchronized with the network management infrastructure, and depending on the change, might become unmanageable. This is especially true if the login mechanisms (usernames and passwords) are changed. Login mechanism changes should be handled during a maintenance window, during which event-based configuration is not occurring, so that race conditions do not occur. Any such changes must be reflected on the provisioning system’s device information screen so that the Device Information Database is properly updated before any new partial configurations are sent.

• The scope of error checking upon configuration load is limited to syntax checking.
Semantic errors cannot be detected. The output is returned in a buffer that applications should log. In a case where something is not operating properly, a network administrator can manually look at the log of what the device was reporting and determine if a semantic error occurred.

- The initial configuration mechanism as defined in the Cisco Configuration Engine architecture is not supported.

This mechanism allows a router to be preconfigured with the `cns config initial` command, causing it to contact the configuration server to retrieve its initial configuration. However, because the legacy devices do not have the agent code in them, they can never contact the configuration server (they do not understand the configuration command). Therefore, this mechanism does not make sense when using SSH as a transport. If an initial configuration needs to be delivered by the Cisco Configuration Engine, it has to be done through the partial configuration mechanism.

- Aside from the device information database, the gateway is stateless.

There is no read back of configurations to make sure they were applied, nor is there automatic rollback of configurations if a failure occurs.

- If a device is not directly connected to the management network, it must be attached through a Cisco communication servers.

The API allows you to set up an arbitrary network topology to reach the device. However, this release only supports two possible topologies: direct connection to one of the device network interfaces, or console access by way of a Cisco access server, such as a 2511.

- Device failures are only detected within a user-specified polling interval.

This is because while the standard Event Gateway requires that routers maintain a connection to the Event Gateway (so any breakage of that connection would signal a problem), the SSH interface is implemented through a transient connection. Therefore, the gateway must poll all devices at some user-specified interval to make sure they are responding, so failure detection is not immediate.

- When both agent-enabled and legacy devices are present on the same network, it is recommended that both gateways be run at the same time.

The standard Event Gateway talks to the agent-enabled devices and the Intelligent Modular Gateway talks to the legacy devices.

Note

Do not put an entry in the Device Information Database for a router that is already agent-enabled because both gateways will try to control the router and unpredictable results might occur.

IMGW Device Module Toolkit

The IMGW Device Module Toolkit allows you to develop your own device modules, plug them into Cisco Configuration Engine, then use them to configure devices.

For more information about the IMGW Device Module Toolkit, see Chapter 23, “IMGW Device Module Development Toolkit.”

Modular Router Support

Cisco Configuration Engine supports modular routers. A modular router chassis includes slots in which you can install line and network interface cards.
For a modular router, a subdevice configuration object and configuration template is defined for every network module whose interfaces need to be configured and for which the interface number can be variable; based on the slot. Then, a device configuration object and a template is defined for the main device. Fixed interface numbers can be configured in the main device template.

Modular router events are published to the event bus and are accessible to applications connected to the bus. The Cisco IOS device publishes the system hardware configuration in the `cisco.mgmt.cns.inventory.device-details` event after hardware discovery. The Cisco Configuration Engine is configured to listen for this event, retrieve it and extract the hardware configuration of the device.

Encryption

The SSL method has been adopted as the encryption mechanism for HTTP sessions between the configuration agent and the configuration server, and the TCP session between the Event Gateway and the event agent.

To use encryption, the Cisco IOS devices must be running a crypto image and version 12.2(11)T of the Cisco IOS.

Device Authentication

The configuration server and Event Gateway are supplied with a X.509 certificate generated by a certificate authority (CA) server. It is the responsibility of the network administrator to have a CA server and to control certificate generation and revocation.

To be configured, the Cisco IOS device must be recognized by the CA. There is no client-side certificate in the Cisco IOS device.

For the configuration server, after the Cisco IOS device has validated the certificate, it sends a password over the encrypted pipe. The device uses the password to be authenticated by the Cisco Configuration Engine.

Note

Authentication is also done when the links are in clear text.

A server configured for secure connections is also able to enact non-secure (clear-text) sessions. The password check is done regardless of whether encryption is used or not.

After the server is secured, it is no longer be able to process requests that do not have a password. It cannot tell the difference between a clear text request from a device in a secure environment or from a device in an non-secure environment.

For the Event Gateway, after the Cisco IOS device has validated the certificate, it sends a DeviceID control message over the encrypted pipe that has the Cisco Configuration Engine password of the device. The `event_id:cns_password` is validated using the authentication API. If it is not matched, the SSL session is terminated and an entry is made to the security log. This ensures only authorized customer premises equipment (CPE) devices connect to the Event Gateway and are able to use the Integration Bus.
Bootstrap Password

Cisco Configuration Engine provides a bootstrap password for use where multiple devices are deployed in a batch. In this case, all devices in a particular batch are given the same (bootstrap) password to use when they each start up on the network for the first time.

The bootstrap password can be changed for different batches of devices by using the BootStrap function under Security Manager in the user interface (see Chapter 13, “Security Manager”).

Resynchronize cns_password

If the password of a device becomes corrupted so that there is a mismatch between the device and the corresponding password information held in the Cisco Configuration Engine directory, you can resynchronize the device with the Cisco Configuration Engine by using the Resync Device function in the user interface (see “Resynchronizing Devices” section on page 3-62).

How the Cisco Configuration Engine Works

The Cisco Configuration Engine dynamically generates Cisco IOS configuration files (documents), packages these file in XML format, and distributes them by means of Web/HTTP (see Figure 1-2). This takes place in response to a pull (get) operation.

Figure 1-2 Configuration Engine Functional Diagram
A Cisco IOS device initiates a get operation when it first appears on the network (cns config init...) or when notified (by subscribed event) of a configuration update (cns config partial...).

For more information about these and other related CLI commands, see the Cisco IOS configuration guide and command reference publications.

When a Cisco IOS device issues a request for a device configuration file, the request includes a unique identifier (configID = hostname) used to help locate the relevant configuration file parameters for this device on the directory server. Figure 1-3 shows the process flow for a configuration load operation.

Figure 1-3 Configuration Load Process Flow

When the web server receives a request for a configuration file, it invokes the Java Servlet and executes the embedded code. This directs the web server to access the directory server and file system to read the configuration reference for this device and template. The configuration server prepares an instantiated configuration file by substituting all the parameter values specified in the template with valid values for this device. The configuration server forwards the configuration file to the web server for transmission to the Cisco IOS device.

The configuration agent at the router accepts the configuration file from the web server, performs XML parsing, syntax checking (optional), and loads the configuration file. The router reports the status of the configuration load as an event that can be subscribed to by a network monitoring or workflow application.

Load Initial Configuration

1. The Cisco Configuration Engine reads the template files.
2. The Cisco Configuration Engine does the parameter substitution.
3. The Cisco Configuration Engine sends the device configuration to the Cisco IOS device.
4. The Cisco IOS device tries to load the initial configuration.
5. The Cisco IOS device publishes the load configuration status event to the event gateway.

Modular Router

1. The modular router posts an HTTP request containing the hardware configuration to the Cisco Configuration Engine for the initial configuration.
2. The Cisco Configuration Engine reads the hardware configuration of the device from the HTTP request and updates the directory server with the latest configuration.
3. The Cisco Configuration Engine reads the template files.
4. The Cisco Configuration Engine does the parameter substitution.
5. The Cisco Configuration Engine sends the device configuration to the Cisco IOS device.
6. The modular router tries to load the initial configuration.
7. The modular router publishes the load configuration status event to the event gateway.

Load Partial Configuration

1. The user modifies a template in the Cisco Configuration Engine user interface.
2. The template contents are passed to the Cisco Configuration Engine.
3. The Cisco Configuration Engine stores the template in the file system.
4. The user clicks the update device button in the user interface.
5. The Cisco Configuration Engine publishes a cisco.mgmt.cns.config.load event.
6. The Cisco IOS device receives the cisco.mgmt.cns.config.load event and in response to this event requests its configuration by contacting the server.
7. The Cisco Configuration Engine reads the template files.
8. The Cisco Configuration Engine sends the device configuration to the Cisco IOS device.
9. The Cisco IOS device tries to load the partial configuration.
10. The Cisco IOS device publishes the load configuration status event to the event gateway.

Modular Router

1. The user modifies a template in the Cisco Configuration Engine user interface.
2. The template contents are passed to the Cisco Configuration Engine.
3. The Cisco Configuration Engine stores the template in the file system.
4. The user clicks the update device button in the user interface.
5. The Cisco Configuration Engine publishes a cisco.mgmt.cns.config.load event.
6. The modular router retrieves the cisco.mgmt.cns.config.load event and in response to this event requests its configuration by contacting the server.
7. The Cisco IOS device posts an HTTP request containing the hardware configuration to the Cisco Configuration Engine for the partial configuration.
8. The Cisco Configuration Engine reads the hardware configuration of the device from the HTTP request and updates the directory server with the latest configuration. The Cisco Configuration Engine does the parameter substitution.
9. The Cisco Configuration Engine reads the template files.
10. The Cisco Configuration Engine does the parameter substitution.
11. The Cisco Configuration Engine sends the device configuration to the modular router.
12. The modular router tries to load the partial configuration.
13. The modular router publishes the load configuration status event to the event gateway.

EventIDs and ConfigIDs

The Cisco Configuration Engine intersects two name space domains:
- Configuration Domain
- Event Domain

The Cisco Configuration Engine uses the Configuration Domain when a device communicates with the configuration server. It uses the Event Domain when a device communicates with the Cisco Configuration Engine using the publish and subscribe mechanism of the Integration Bus.

The device must be uniquely identified in these namespaces. The ConfigID uniquely identifies the device in the Configuration Domain. The EventID uniquely identifies the device in the Event Domain.

Because the Cisco Configuration Engine uses both the Integration Bus (event bus) and the configuration server to provide configurations to devices, both EventID and ConfigID must be defined for each configured Cisco IOS device.

The values for EventID and ConfigID for each device can be identical, or you can make them different when you add or edit device information using the user interface (see “Editing Devices” section on page 3-53).

Dynamic ConfigID and EventID Change Synchronization

The Cisco IOS, version 12.2.(11)T, was enhanced with new CLI ID commands that can modify the EventID and ConfigID, then reconnect the device to the Cisco Configuration Engine with the new IDs.

Common Log File Location

In Cisco Configuration Engine, all log files go into /var/log/CNSCE/<modulename>. For all Cisco Configuration Engine logs, this feature also includes custom logrotate scripts, located in the /etc/logrotate.d/cnsce directory.

Logrotate is a system utility that can rotate specified log files according to the conditions specified in a config file. There is a config file defined for each module (see “Sample Logrotate Config File” section on page 1-17). An Administrator-level user can make use of these config files to rotate logs of any module at any time.

For example, the command `logrotate -f /etc/logrotate.d/cnsce/imgw` rotates all IMGW logs and backs up all existing logs in the /var/log/CNSCE_ROTATED_Logs directory. This is a common backup directory where all the rotated logs for all the modules are dumped.

Having a common directory allows you to set aside separate partition, or space, for backup logs.
Sample Logrotate Config File

```bash
#!/usr/bin/env Bourne Shell!
# Copyright (c) 2002, 2003, 2004 by Cisco Systems, Inc.
# All rights reserved.

/var/log/CNSCE/imgw/* {
daily
  missingok
  copytruncate
  compress
  olddir /var/log/CNSCE_ROTATED_LOGS
}
```

Dynamic Log level Update

With this release, you can now change the log level programmatically using Web Services. A new API has been defined in Admin Web Service: `setLogLevel(int level, Token token)`.

```java
/**
 * Changes the logging level of CE components.
 * @param level, the logging level. Allowed values debug, info, warn, error
 * @param token a Token object.
 * @return int, the new Log level.
 * @throws AdminServiceException if there is an error setting the log level.
 * @throws RemoteException if there is an error communicating with the service.
 */
int setLogLevel(int level, Token token)
throws AdminServiceException, RemoteException;
```

For debug, set `level = 1`.
For info, set `level = 2`.
For warn, set `level = 3`.
For error, set `level = 4`.
For fatal, set `level = 5`.

Monitoring Service

A wrapper monitoring service is provided in this release to monitor the various Cisco Configuration Engine services. If any of the Cisco Configuration Engine processes die, the monitoring service exits.

Other applications can monitor this single Cisco Configuration Engine process, rather than all dependent Cisco Configuration Engine services. In the case of failure, they can take appropriate action, such as invoking the restart script.

Other applications can check for the existence of this wrapper monitoring process to make sure that all Cisco Configuration Engine services are up. If the process is not running, it will signify that one or more of Cisco Configuration Engine services are down.

This service report the health of the various Cisco Configuration Engine processes in a log file. If there is a failure, the service reports the error and exits. A time stamp is appended to each report.
There is a provision to start, stop, or check the status of this service. The following Cisco Configuration Engine processes are monitored:

- HTTP/Tomcat
- Event Gateway
- IMGW
- Web Services
- Tibco Rendezvous Daemon

Health Checking Utility

A wrapper resource health checking utility is provided in release 3.5 to monitor the health of the Event Gateways and Tibco Rendezvous Daemon. If any of the processes stops, the health checking utility restarts the process and logs a message in \texttt{/var/log/CNSCE/ce_resource/ce_resource.log} file. This utility (resource_monitor_daemon) starts during the Cisco Configuration Engine setup and stops when the Cisco Configuration Engine server stops.

Software Architecture

The monitoring service is a single process running as a daemon on the Cisco Configuration Engine host system. This daemon checks the state of various Cisco Configuration Engine processes at regular interval of time. This time interval is configurable. If any of the process in Cisco Configuration Engine dies, the daemon exits. A shell script is provided to start, stop, or check the status of this daemon. Applications can check the Cisco Configuration Engine health using this shell script.

Daemon Start/Stop script

The \texttt{MonitorCE} shell script starts and stops the daemon. This script also provides the status of the daemon script. Integrating applications use this shell script to monitor the state of Cisco Configuration Engine services.

This script is registered as a start up script on the local OS using the \texttt{chkconfig} utility. In this way, the script is started automatically after the host system is restarted. The script is located in the \texttt{/etc/rc.d/init.d} directory.

Logging

The daemon checks for the health of each Cisco Configuration Engine process and reports it in a log file. The log files are located in \texttt{/var/log/CNSCE/ce_health/ce_monitor.log}. A time stamp is appended with each report.

Here is an example of the log file:

\begin{verbatim}
07/14/2005-06:53 HTTP/Tomcat is UP in plain-text mode.
07/14/2005-06:53 HTTP/Tomcat is UP in ssl mode.
07/14/2005-06:53 Event Gateway (plaintext operation) at port 11011 is UP.
07/14/2005-06:53 Event Gateway (plaintext operation) at port 11013 is UP.
07/14/2005-06:53 Event Gateway (plaintext operation) at port 11015 is UP.
07/14/2005-06:53 Event Gateway (plaintext operation) at port 11017 is UP.
07/14/2005-06:53 Event Gateway (crypto operation) at port 11012 is UP.
\end{verbatim}
07/14/2005-06:53 Event Gateway (crypto operation) at port 11014 is UP.
07/14/2005-06:53 Event Gateway (crypto operation) at port 11016 is UP.
07/14/2005-06:53 IMGW is UP.
07/14/2005-06:53 Cisco-CE Event Bus is UP.
07/14/2005-06:53 CEAdminService web service is UP in plain-text mode.
07/14/2005-06:53 CEConfigService web service is UP in plain-text mode.
07/14/2005-06:53 CEImageService web service is UP in plain-text mode.
07/14/2005-06:53 CEEexecService web service is UP in plain-text mode.

When HTTP is Down

Here is an example when HTTP is down:

07/14/2005-06:53 HTTP/Tomcat is DOWN in plain-text mode.
HTTP GET failed on URL http://infystorm5:80/cns/Config
Connection refused

07/14/2005-06:53 HTTP/Tomcat is DOWN in ssl mode.
HTTP GET failed on URL https://infystorm5:444/cns/Config
Connection refused

07/14/2005-06:53 Event Gateway (plaintext operation) at port 11011 is UP.
07/14/2005-06:53 Event Gateway (plaintext operation) at port 11013 is UP.
07/14/2005-06:53 Event Gateway (plaintext operation) at port 11015 is UP.
07/14/2005-06:53 Event Gateway (plaintext operation) at port 11017 is UP.
07/14/2005-06:53 Event Gateway (crypto operation) at port 11012 is UP.
07/14/2005-06:53 Event Gateway (crypto operation) at port 11014 is UP.
07/14/2005-06:53 Event Gateway (crypto operation) at port 11016 is UP.
07/14/2005-06:53 IMGW is UP.
07/14/2005-06:53 Cisco-CE Event Bus is UP.
07/14/2005-06:53 CEAdminService web service is DOWN in plain-text mode.
HTTP GET failed on URL http://infystorm5:80/cns/services/CEAdminService?wsdl
Connection refused

07/14/2005-06:53 CEConfigService web service is DOWN in plain-text mode.
HTTP GET failed on URL http://infystorm5:80/cns/services/CEConfigService?wsdl
Connection refused

07/14/2005-06:53 CEImageService web service is DOWN in plain-text mode.
HTTP GET failed on URL http://infystorm5:80/cns/services/CEImageService?wsdl
Connection refused

07/14/2005-06:53 CEEexecService web service is DOWN in plain-text mode.
HTTP GET failed on URL http://infystorm5:80/cns/services/CEExecService?wsdl
Connection refused

07/14/2005-06:54 Exiting the CE-Health Beep Daemon.

Also, a configuration file (/etc/logrotate.d/cnsce/ce_health) is provided to rotate the above log file.

End User Interface

You can start, stop, and check the status of the daemon using the script called MonitorCE. This script is located in /etc/rc.d/init.d. To know the status of Cisco Configuration Engine services, integrating applications have to issue the command:

/etc/rc.d/init.d/MonitorCE status
Usage

MonitorCE {start|stop|restart|reload|status}

- **start** – starts MonitorCE service. If MonitorCE service is already started, it does nothing.
- **stop** – stops MonitorCE service.
- **restart** – first stops the service, and then starts it again.
- **reload** – first stops the service, and then starts it again.
- **status** – tells if the service is up or not.

User Authentication

The Cisco Configuration Engine can authenticate a user by using the external authentication application. When a user logs into the Cisco Configuration Engine, instead of authenticating the user by using the Cisco Configuration Engine LDAP server, the Cisco Configuration Engine forwards the authentication request to an external authentication application. The Cisco Configuration Engine can support LDAP based authentication and integrate with the Microsoft Active Directory.

The Cisco Configuration Engine can authenticate the user both internally and externally based on the user selection during the Cisco Configuration Engine setup.

During the Cisco Configuration Engine setup, the administrator can select the authentication mode. The Cisco Configuration Engine prompts for IP address and user credentials for the remote LDAP server.

Choose the authentication mode of the system: 0=internal mode, 1=external mode.

This example shows how to set the external authentication settings.

Enter IP Address of external directory server: 10.1.2.3
Enter port number of external directory server: [389]
Enter prefix for user name in external directory server: [cn]
Enter suffix for user name in external directory server: o=myorg,c=us

Also, the user can enable or disable the authorization.

This example shows how to set the external authorization settings:

Do you want to enable authorization? (y/n) [n]. y
Enter UserDN for external directory server: cn=simpleuser,o=myorg,c=us
Enter password for the above user: ******
Re-enter password for the above user: ******
Enter role attribute name in user objectclass which defines the role: description
Enter role attribute value which defines the role of an administrator: administrator

Authorization

The Cisco Configuration Engine does not support task or resource-based authorization. However, the Cisco Configuration Engine GUI have Admin and Operator user levels. Depending on the role of the user, the appropriate GUI screens are displayed to the user. For more information about level of access, see Chapter 2, “Levels of Access”.
Backup Authentication-Authorization

To support existing the Cisco Configuration Engine users, backup authentication and authorization is supported for the external authentication mechanism. The Cisco Configuration Engine user who logs in is authenticated against the external application. If the external authentication fails, the user is authenticated against the Cisco Configuration Engine LDAP Server. The fall-back server will be the LDAP directory used by Cisco Configuration Engine (internal or external). If the user chooses internal authentication, Cisco Configuration Engine LDAP is used for authentication and there will be no fall-back authentication server used.

Multizone System Setup

The installation of the Cisco Configuration Engine software does not offer the multizone system setup by default. If you require a multizone system setup, you must enable the multizone feature during the system setup. To setup multiple IP addresses on the Cisco Configuration Engine server, you must manually customize the network parameters of the server to have multiple IP addresses. Multiple IP addresses can be configured by using IP aliasing on the network interface card. For more information see Chapter 6, “Setting Up a Multizone System” in Cisco Configuration Engine Installation and Configuration Guide.
Graphical User Interface

The Cisco Configuration Engine GUI is partially compliant with the Accessibility Design Requirements. This chapter provides general information about the GUI.

Logging In

Step 1
Launch your web browser.
This user interface supports:
- Internet Explorer 6.0 and above

Step 2
Go to the Cisco Configuration Engine URL.
For example: http://<ip_address>

>Note If encryption is set during Setup (see “Encryption” section on page 1-12), use https://<ip_address>.

The login window appears (see Figure 2-1).
Figure 2-1 Logging Into the Configuration Engine

![Configuration Engine Login Screen]

Step 3 Enter your **User ID**.

This is the value for the Configuration Engine login parameter that you entered during setup.

Step 4 Enter your password.

Step 5 Click **LOGIN**.

For an Administrator, the full-function Cisco Configuration Engine Home page appears (see Figure 2-2).

For an Operator, a limited-function Cisco Configuration Engine Home page appears without access to user-related tasks.

Figure 2-2 Administrator-level Home Page

![Administrator-level Home Page]

Important Instructions:
1. Do NOT use the browser back and forward buttons.
2. Please navigate using the links in the pages.
Logging Out

To log out of the system, click **Logout**.

Levels of Access

In Internal Directory mode, there are two categories of users who have access to device information:

- **Administrator**
- **Operator**

An Administrator has full access to system administration tasks. An Operator has access to only limited set of tasks (see “Operator-Level Operations” section on page 2-25).

Operator-Level Operations

After logging into the Cisco Configuration Engine, an Operator has access to the following functions:

- **Device**
 - Add
 - Edit
 - Subdevices
 - Update Device
 - Query Device Inventory
- **Tools**
 - Change Password
 - View Event Log
 - View Image Server Log
- **Jobs**
 - Query Job
 - Cancel/Stop Job
 - Restart Job
- **Image Service**
 - View Image

Administrator-Level Operations

An Administrator can access all of the functions provided by the Cisco Configuration Engine user interface in both Internal Directory mode and External Directory mode.
Feature Operations

The Cisco Configuration Engine GUI (see Figure 2-2) provides the following feature operations:

- Devices – Click this tab to conduct operations on Devices and Subdevices (see Chapter 3, “Device and Subdevice Manager”).
- Users – Click this tab to operate on user accounts (see Chapter 4, “User Account Manager”).
- Jobs – Click this tab to access background update tasks that have been assigned a Job IDs (see Chapter 5, “Configuration and Image Update Jobs Manager”).
- Tools – Click this tab to access the following features:
 - Group Manager (see Chapter 6, “Groups”)
 - Namespace Manager (see Chapter 7, “Namespace Manager”)
 - Query Manager (see Chapter 8, “Query Manager”)
 - Data Manager (see Chapter 9, “Data Manager”)
 - Directory Manager (see Chapter 10, “Directory Manager”)
 - Parameter Manager (see Chapter 11, “Parameter Manager”)
 - Template Manager (see Chapter 12, “Templates”)
 - Security Manager (see Chapter 13, “Security Manager”)
 - Log Manager (see Chapter 14, “Log Manager”)
 - Service Manager (see Chapter 15, “Service Manager”)
 - Bulk Data Manager (see Chapter 16, “Bulk Data Manager”)
 - Email Manager (see Chapter 17, “Email Manager”)
- Image Service – Click this tab to work with Images and Search Parameters (see Chapter 18, “Image Service”).
Device and Subdevice Manager

To access Device tasks, log into the system (see “Logging In” section on page 2-23). Then, from the Home page, click the Devices tab.

The Device Functional Overview page appears showing:
- View Device
- Add Device
- Discover Device
- Edit Device
- Resynchronize Device
- Clone Device
- Delete Device
- Update Device
- Subdevices
- Query Device Inventory
- Delete Files on Device
- Dynamic Operations

Viewing Device Configuration

Step 1 From the Devices Functional Overview page, click View Device.

The Groups list appears.

Step 2 From the Groups list, select the group that holds the device you want to view.

Note You can also use the Advance Search feature on many GUI pages to locate devices based on user-define search parameters (see “Using Advanced Search Feature” section on page 3-30).
Step 3 The View Device list page appears (see Figure 3-1).

Figure 3-1 View Device List

Step 4 Click on the icon for the device you want to view.

The Configuration for that device appears (see Figure 3-2).

Figure 3-2 Device Configuration

Note The device configuration displayed is the configuration as it appears at the configuration server. It might not be the configuration running on the device.
Step 5 To view subdevices (if applicable), in the left navigation pane, click View Subdevices.

Step 6 To view Images associated with this device (if applicable), in the left navigation pane, click View Images.

Previewing Device Configuration

Step 1 From the Devices Functional Overview page, click Edit Device. The Groups list appears.

Step 2 From the Groups list, select the group that holds the device in question. The Edit Device list appears.

Step 3 From the Edit Device list, select the group that holds the device you want to Preview Device Configuration or

Step 4 From the Devices Functional Overview page, click View Device. The Groups list appears (see Figure 3-3).

Figure 3-3 Preview Device Configuration

```
<table>
<thead>
<tr>
<th>Config Preview</th>
<th>Show Line Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Subdevices</td>
<td></td>
</tr>
<tr>
<td>View Images</td>
<td></td>
</tr>
<tr>
<td>&lt;&lt; Up</td>
<td></td>
</tr>
</tbody>
</table>
```

Device: DemoRouter

- 0 version 12.0
- 1 service timestamps debug uptime
- 2 service timestamps log uptime
- 3 no service password-encryption

Step 5 From the Groups list, select the group that holds the device you want to Preview Device Configuration (see Figure 3-4).
Figure 3-4 Device Configuration

Step 6 To preview subdevices configuration (if applicable), in the left navigation pane, click View Subdevices.

Using Advanced Search Feature

Step 1 From the Hierarchal View of groups (for example, see Figure 3-1), click Advanced Search.
Step 2 Use the drop-down arrow to select: Config ID, Event ID, or Device Name for the desired device.
Step 3 Then enter a value that corresponds to the first part of the argument, then click Go.

The results of the search are listed (see Figure 3-5).
Adding Devices

There are three variations to the Add Device procedures based on Device Type:

- Non-Agent Enabled Device (see below).
- Agent Enabled Device (see “Adding Agent Enabled Devices” section on page 3-39).
- PIX Firewall Device (see “Adding PIX Firewall Devices” section on page 3-44).
- ASA Firewall Device (see “Adding ASA Firewall Devices” section on page 3-47).

Adding Non-agent Enabled Devices

Step 1 From the Devices Functional Overview page, click Add Device. The Device Information page appears (see Figure 3-6).

Figure 3-6 Device Information Page

Create Device

Enter device information

- **Device Name:** c7200e6
- **Unique ID:** c7200e6
- **Device Type:** Non-Agent Enabled Device
- **Template File Name:**
 - Select file: DemoRouter.cfg/d1
 - Enter URL: Test URL

Step 2 Enter a valid value (no spaces) in the Device Name field.
Table 3-1 shows valid values for these attributes.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
<td>The name used as cn (common name) of the device.</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period), :(colon)</td>
</tr>
<tr>
<td>Unique ID</td>
<td>Unique ID of the device.</td>
<td>Default or a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period), ,(comma), :(colon), /(forward-slash), (=equal), +(plus)</td>
</tr>
<tr>
<td>Device Type</td>
<td>Type of device</td>
<td>From drop-down list</td>
</tr>
<tr>
<td>Template File Name</td>
<td>Name of the configuration template to associate with the device.</td>
<td>From drop-down list, or user-defined</td>
</tr>
</tbody>
</table>

Step 3
In the Unique ID field, accept the default value that appears or enter another valid value (no spaces).

Step 4
For Device Type, from the drop-down list, select **Non-Agent Enabled Device**.

Step 5
Select the Template file name, then click **Next**.

The Group Membership page appears (see Figure 3-7).

Figure 3-7
Group Membership

Create Device

Select group membership

DEVICETYPE: Agent Enabled Device

Tip
Use the Group Manager to set up groups before you add a device (see “Creating Groups” section on page 6-96).

Step 6
Check to select the group(s) of which you want this device to become a member, then click **Next**.
Adding Devices

The non-agent information (IMGW) page appears (see Figure 3-8).

Figure 3-8 Non-agent (IMGW) Information Page

Create Device

Enter non-agent device information
DEVICE TYPE: Non-Agent Enabled Device

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
<td>The name used as cn (common name) of the IMGW device.</td>
<td>Non-empty string excluding the special characters:</td>
</tr>
<tr>
<td>Gateway ID</td>
<td>Gateway identifier for this device. This value is established during Setup.</td>
<td>Non-empty string excluding the special characters:</td>
</tr>
<tr>
<td>Device Type</td>
<td>Type of IMGW device.</td>
<td>From drop-down list</td>
</tr>
<tr>
<td>Agent Type</td>
<td>Type of agent you want IMGW to simulate.</td>
<td>From drop-down list</td>
</tr>
</tbody>
</table>

Step 7 Enter the name of the device in the Device Name field.

Table 3-2 lists valid values for these fields.

Table 3-2 Valid Values for Add IMGW Device

Step 8 Enter the gateway ID in the Gateway Id field.

Note This value is established during Setup. See Cisco Configuration Engine Installation and Configuration Guide.

Step 9 Enter the appropriate Device and Hop information.
Tip Before you enter Hop information, see “Hop Tables” section on page 3-36.

Table 3-3 shows valid values for these fields.

Table 3-3 Valid Values for IMGW Device Hop Information

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hop Type</td>
<td>Type of IMGW hop.</td>
<td>From drop-down list</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the connecting node in the hop</td>
<td>Valid IP address of the following format: 10.1.14.216</td>
</tr>
<tr>
<td>Port</td>
<td>Port number of the node.</td>
<td>Integer values</td>
</tr>
<tr>
<td>Username</td>
<td>Username to login to the hop node.</td>
<td>String excluding the special characters: !, ", #, $, %, &, ', (,), * , /, <, >, ?, @, , ^, `, ~</td>
</tr>
<tr>
<td>Password</td>
<td>Password to login to the hop node.</td>
<td>Non-null string</td>
</tr>
</tbody>
</table>

Step 10 To add another hop, click **Add Another Hop**, then enter hop information.

Step 11 To go back one page, click **Back**.

Step 12 To end this task, click **Finish**.

Step 13 To continue, click **Next**.

The Confirm IDs page appears

Figure 3-9 Confirm IDs Page

Create Device

Step 14 To go back one page, click **Back**.

Step 15 To end this task, click **Finish**.
Step 16 To continue, click Next.
If you click Next, the Image Association page appears (see Figure 3-10).

Figure 3-10 Create Device > Image Association

Create Device

Step 3 Please Select Image(s) to associate with this device

<table>
<thead>
<tr>
<th>Name</th>
<th>Image Type</th>
<th>Image Locations</th>
<th>OverWrite Erase FileSystem</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>image1</td>
<td>IOS</td>
<td>http://192.168.1.222/c7200-mz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Add Another Row

Step 4 Please select a configuration file that will be sent to the device upon activation of the new image:

<table>
<thead>
<tr>
<th>Template File</th>
<th>Enter URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select file</td>
<td>TestURL</td>
</tr>
</tbody>
</table>

Step 17 Select the image from the **Name** drop-down list.

The **Image Type** field and **Image Location** drop-down box are populated with corresponding information for the image.

Step 18 From the **Image Location** drop-down list, select the desired location.

Step 19 To add another row for image location, click **Add Another Row**.

You can locate multiple copies of an image on separate servers. This allows you to do load-sharing when updating a large number of devices. Each device in a large group can be associated with a copy of the image located at one of many server locations.

Step 20 In the **Destination** field, enter a valid URL where the image will be copied.

For example:

disk0:/c7200-mz

Step 21 To indicate which image is to be activated on the device after distribution, select the radio button in front of each row.

Step 22 Select the **Configuration Control** template file you want to send to this device for activation of a new image:

Tip

Use the Configuration Control template that contains the CLI commands required for image activation for this device (see “Configuration Control Templates” section on page 12-127). If you do not have such a template, see “Adding a Template” section on page 12-138.

a. To select a template file from the drop-down list, click the **Select file** radio button.
b. Use the drop-down list to choose a template file.

OR

To use an external template:

a. Choose **Enter URL**.
b. Enter the full URL for the server, directory, and filename where the template is stored. Currently, only **http** is supported.
c. To test access to the external template, click **Test URL**.

 If the server is unavailable or the external template cannot be accessed, an error appears. You can still save this logical device, but the template is not available until you have access to the external template.

Step 23
To clear this task, click **Cancel**.

Step 24
To go back to the previous page, click **Back**.

Step 25
To finish creating this device, click **Finish**.

Hop Tables

To access devices by means of Telnet, it is necessary to construct hop tables (see “HopInfo Examples” section on page 3-38). These are tables that indicate what network path exists to the device, and all the authentication information necessary at each stage, or hop.

What You Should Know About Device Hop Information

The Hop Information (HopInfo) structure describes one portion of the path between source and destination. HopInfo can be chained together to specify how to login to a device. Examples of uses of this structure include:

- Devices with basic authentication mode requiring IP address, username, and password
- Devices with additional authentication modes such as Cisco IOS enable mode
- Embedded-within-embedded applications such as line cards on a Catalyst switch

The latter two examples require a login, but not a hop to a different device. Therefore, they are referred to as **virtual** hops.

Table 3-4 shows the fields in the HopInfo structure:

Table 3-4 HopInfo Structure

<table>
<thead>
<tr>
<th>Field</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>hop_type</td>
<td>String indicating type of hop.</td>
</tr>
<tr>
<td>ip_address</td>
<td>IP address of device (string)</td>
</tr>
<tr>
<td>port</td>
<td>TCP port on which to access device (integer)</td>
</tr>
<tr>
<td>username</td>
<td>Username with which to login to device (string)</td>
</tr>
<tr>
<td>password</td>
<td>Password with which to login to device (string)</td>
</tr>
</tbody>
</table>

Currently Supported Device Types

Table 3-5 through Table 3-12 on page 3-38 provide the HopInfo list for devices that are directly accessible on the network by IMGW. For accessing devices by way of Commserver, see Table 3-13 on page 3-38.

All the rows in these tables are mandatory. Also, the hop_type fields cannot be NULL or empty. The fields marked with **X** are mandatory in IMGW unless they are not required on the device-side.
Table 3-5 **Cisco IOS Device Directly Connected**

<table>
<thead>
<tr>
<th>hop_type</th>
<th>ip_address</th>
<th>port</th>
<th>username</th>
<th>password</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOS_LOGIN</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IOS_EN</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 3-6 **Cisco IOS Device Directly Connected Supporting SSH**

<table>
<thead>
<tr>
<th>hop_type</th>
<th>ip_address</th>
<th>port</th>
<th>username</th>
<th>password</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOS_LOGIN:SSH</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IOS_EN</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-7 **Catalyst Device Directly Connected**

<table>
<thead>
<tr>
<th>hop_type</th>
<th>ip_address</th>
<th>port</th>
<th>username</th>
<th>password</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATALYST_LOGIN</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CATALYST_EN</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-8 **Catalyst IOS MSFC Blade Directly Connected**

<table>
<thead>
<tr>
<th>hop_type</th>
<th>ip_address</th>
<th>port</th>
<th>username</th>
<th>password</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATALYST_LOGIN</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IOS_CAT_BLADE</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IOS_EN</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 3-9 **Catalyst IOS Device Directly Connected**

<table>
<thead>
<tr>
<th>hop_type</th>
<th>ip_address</th>
<th>port</th>
<th>username</th>
<th>password</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATIOS_LOGIN</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CATIOS_EN</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-10 **CSS Device Directly Connected**

<table>
<thead>
<tr>
<th>hop_type</th>
<th>ip_address</th>
<th>port</th>
<th>username</th>
<th>password</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSS_LOGIN</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CSS_EN</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Adding Devices

When any of the above devices is accessed by way of a Commserver (such as a Cisco 2511 Access Server), the resultant HopInfo list has the following two rows prepended to the respective HopInfo list for that device:

Table 3-13 Partial HopInfo List For Commserver Access

<table>
<thead>
<tr>
<th>hop_type</th>
<th>ip_address</th>
<th>port</th>
<th>username</th>
<th>password</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMSERVER_LOGIN</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMSERVER</td>
<td></td>
<td>X</td>
<td>///////////</td>
<td>X</td>
</tr>
</tbody>
</table>

Note Because the current release does not support port username, the username field of HopInfo structure for COMMSERVER is always ignored by IMGW. Do not set up the port username on the Commserver.

HopInfo Examples

Table 3-14 Cisco IOS Device Directly Connected

<table>
<thead>
<tr>
<th>hop_type</th>
<th>ip_address</th>
<th>port</th>
<th>username</th>
<th>password</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOS_LOGIN</td>
<td>172.28.6.90</td>
<td></td>
<td>Johndoe</td>
<td>Passnow</td>
</tr>
<tr>
<td>IOS_EN</td>
<td></td>
<td></td>
<td>dummy</td>
<td>compass</td>
</tr>
</tbody>
</table>

Table 3-15 Cisco IOS Device Directly Connected Supporting SSH

<table>
<thead>
<tr>
<th>hop_type</th>
<th>ip_address</th>
<th>port</th>
<th>username</th>
<th>password</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOS_LOGIN:SSH</td>
<td>172.28.6.90</td>
<td></td>
<td>Johndoe</td>
<td>Passnow</td>
</tr>
<tr>
<td>IOS_EN</td>
<td></td>
<td></td>
<td>dummy</td>
<td>compass</td>
</tr>
</tbody>
</table>
Adding Agent Enabled Devices

Step 1

From the Devices Functional Overview page, click **Add Device**.

The Device Information page appears (see Figure 3-11).
Figure 3-11 Device Information Page

Create Device

Step 2 Enter a valid value (no spaces) in the **Device Name** field.

Table 3-19 shows valid values for these attributes.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
<td>The name used as cn (common name) of the device.</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
<tr>
<td>Unique ID</td>
<td>Unique ID of the device.</td>
<td>Default or a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
<tr>
<td>Device Type</td>
<td>Type of device</td>
<td>From drop-down list</td>
</tr>
<tr>
<td>Template File Name</td>
<td>Name of the configuration template to associate with the device.</td>
<td>From drop-down list, or user-defined</td>
</tr>
</tbody>
</table>

Step 3 In the **Unique ID** field, accept the default value that appears or enter another valid value (no spaces).

Step 4 For Device Type, from the drop-down list, select **Agent Enabled Device**.

Step 5 Select the Template file name, then click **Next**.

Note To associate an external template to this device, select **Enter URL** with the appropriate path.
The Group Membership page appears (see Figure 3-12).

Figure 3-12 Group Membership Page

Create Device

Select group membership:

DEVICES TYPE: Agent Enabled Device

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tip
Use the Group Manager to set up groups before you add a device (see “Creating Groups” section on page 6-96).

Step 6
Check to select the group(s) of which you want this device to become a member, then click Next.
The device IDs page appears (see Figure 3-13).

Figure 3-13 Device IDs Page

Create Device

Confirm ID:

DEVICES TYPE: Non-Agent Enabled Device

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event ID</td>
<td>C7150e6</td>
</tr>
<tr>
<td>Config ID</td>
<td>C7150e6</td>
</tr>
<tr>
<td>Image ID</td>
<td>C7150e6</td>
</tr>
</tbody>
</table>

Subdevices available: []
Subdevices attached: []

Step 7
Enter the appropriate IDs.

Table 3-20 shows valid values for these attributes.
Table 3-20 Valid Values for Agent Enabled Device IDs

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event ID</td>
<td>Event ID to be associated with this device.</td>
<td>Default, or a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period), , (comma), :(colon), /(forward-slash), =(equal), +(plus)</td>
</tr>
<tr>
<td>Config ID</td>
<td>Configuration ID to be associated with this device.</td>
<td>Default, or a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period), , (comma), :(colon), /(forward-slash), =(equal), +(plus)</td>
</tr>
<tr>
<td>Image ID</td>
<td>Image ID to be associated with this device.</td>
<td>Default, or a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period), , (comma), :(colon), /(forward-slash), =(equal), +(plus)</td>
</tr>
</tbody>
</table>

Step 8 If applicable, select and assign subdevices to this device.
Step 9 To go back one page, click Back.
Step 10 To end this task, click Finish.
Step 11 To continue by associating this device with an image, click Next.

If you click Next, the Image Association page appears (see Figure 3-14).
Figure 3-14 Create Device > Image Association

Create Device

Step 12 Select the image from the Name drop-down list.

The Image Type field and Image Location drop-down box are populated with corresponding information for the image.

Step 13 From the Image Location drop-down list, select the desired location.

Step 14 To add another row for image location, click Add Another Row.

You can locate multiple copies of an image on separate servers. This allows you to do load-sharing when updating a large number of devices. Each device in a large group can be associated with a copy of the image located at one of many server locations.

Step 15 In the Destination field, enter a valid URL where the image will be copied.

For example:

disk0:/c7200-mz

Step 16 To indicate which image is to be activated on the device after distribution, select the radio button in front of each row.

Step 17 Select the Configuration Control template file you want to send to this device for activation of a new image:

<table>
<thead>
<tr>
<th>Tip</th>
</tr>
</thead>
</table>

Use the Configuration Control template that contains the CLI commands required for image activation for this device (see “Configuration Control Templates” section on page 12-127). If you do not have such a template, see “Adding a Template” section on page 12-138.
a. To select a template file from the drop-down list, click the Select file radio button.
b. Use the drop-down list to choose a template file.

OR

To use an external template:

a. Choose Enter URL.
b. Enter the full URL for the server, directory, and filename where the template is stored. Currently, only http is supported.
c. To test access to the external template, click Test URL.

If the server is unavailable or the external template cannot be accessed, an error appears. You can still save this logical device, but the template is not available until you have access to the external template.

Step 18 To clear this task, click Cancel.
Step 19 To go back to the previous page, click Back.
Step 20 To finish creating this device, click Finish.

Adding PIX Firewall Devices

Step 1 From the Devices Functional Overview page, click Add Device.

The Device Information page appears (see Figure 3-15).

Figure 3-15 Device Information Page

Create Device

Device Name:	PIXDevice	
Unique ID:	PIXDevice1	
Device Type:	PIX Firewall Device	
Template File Name:	Select file DemoRouter config	Enter URL: Test URL

Step 18 To clear this task, click Cancel.
Step 19 To go back to the previous page, click Back.
Step 20 To finish creating this device, click Finish.
Step 2 Enter a valid value (no spaces) in the **Device Name** field.

Table 3-21 shows valid values for these attributes.

Table 3-21 Valid Values for Add Device

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
<td>The name used as cn (common name) of the device.</td>
<td>a-z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-(hyphen)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>_ (under-score)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>. (period)</td>
</tr>
<tr>
<td>Unique ID</td>
<td>Unique ID which is configured on the device.</td>
<td>Default or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a-z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-(hyphen)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>_ (under-score)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>. (period)</td>
</tr>
<tr>
<td>Device Type</td>
<td>Type of device</td>
<td>From drop-down list</td>
</tr>
<tr>
<td>Template File Name</td>
<td>Name of the configuration template to associate with the device.</td>
<td>From drop-down list, or user-defined</td>
</tr>
</tbody>
</table>

Step 3 In the **Unique ID** field, accept the default value that appears or enter another valid value (no spaces).

Step 4 For Device Type, from the drop-down list, select **PIX Firewall Device**.

Step 5 Select the Template file name, then click **Next**.

The Group Membership page appears (see *Figure 3-16*).

Figure 3-16 Group Membership Page

Create Device

```
Select group membership

DEVICE TYPE: Agrant Enabled Device
```

Tip Use the Group Manager to set up groups before you add a device (see “Creating Groups” section on page 6-96).
Step 6 Check to select the group(s) of which you want this device to become a member, then click **Next**.
The PixAuthentication Password page appears (see **Figure 3-17**).

Figure 3-17 **PIX Authentication Password Page**

Create Device

Step 2: Enter the Authentication Password for Pix devices

- **Authentication Password**: [Enter password]
- **Confirm Authentication Password**: [Enter password]

The PixAuthentication Password page appears (see **Figure 3-17**).

Step 7 Enter authentication password for PIX devices.
A case-sensitive password of up to 16 alphanumeric and special characters. Any character can be used in the password except a question mark and a space.

Step 8 Click the **Next** button. The **PIX Configuration and Error Actions Type** page appears (see **Figure 3-18**).

Figure 3-18 **PIX Configuration and Error Actions Type Page**

Create Device

Select the Configuration and Error action type for the PIX Firewall Device.

<table>
<thead>
<tr>
<th>Configuration action:</th>
<th>Replace, specifies that the current configuration should be cleared before applying the new configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Merge, allows merging the current configuration with the new configuration data.</td>
</tr>
<tr>
<td></td>
<td>Continue, specifies to continue with applying the new configuration, even if there is a configuration error.</td>
</tr>
<tr>
<td></td>
<td>Revert, specifies to revert to the old configuration from flash without rebooting, if there is a configuration error.</td>
</tr>
<tr>
<td></td>
<td>Step, specifies to immediately stop reading the rest of the configuration when a command causes an error.</td>
</tr>
</tbody>
</table>

Step 9 From the **Configuration and Error Actions Type** page, choose the appropriate options (Replace, Merge, Continue, Revert, and Stop).

Step 10 To go back one page, click **Back**.

Step 11 To end this task, click **Finish**.

Step 12 To continue by associating this device with an image, click **Next**.

Step 13 If you click **Next**, the Image Association page for PIX Firewall Devices appears.

Step 14 Select the image from the **Name** drop-down list.
The **Image Type** field and **Image Location** drop-down box are populated with corresponding information for the image.

Note Only PIX or PDM images can be associated with a PIX device.
Step 15 From the **Image Location** drop-down list, select the desired location.

Step 16 To add another row for image location, click **Add Another Row**.

Note For PIX devices, you can have only one PIX image and one PDM image.

Step 17 To indicate whether the image is to be activated on the device after distribution, check the box in front of each row.

Step 18 To cancel creating a device and return to the Devices main menu, click **Cancel**.

Step 19 To go back to the previous page, click **Back**.

Step 20 To finish creating this device, click **Finish**.

Adding ASA Firewall Devices

Step 1 From the Devices Functional Overview page, click **Add Device**.

The Device Information page appears (see Figure 3-19).

Figure 3-19 Device Information Page

Create Device

Enter device information

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
<td>ASAS1device</td>
</tr>
<tr>
<td>Unique ID</td>
<td>ASdevice1</td>
</tr>
<tr>
<td>Device Type</td>
<td>Agent Enabled Device</td>
</tr>
</tbody>
</table>

Template File Name Select file: **DemoRouter.cfg**

Step 2 Enter a valid value (no spaces) in the **Device Name** field.
Table 3-22 shows valid values for these attributes.

Table 3-22 Valid Values for Add Device

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
<td>The name used as cn (common name) of the device.</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
<tr>
<td>Unique ID</td>
<td>Unique ID which is configured on the device.</td>
<td>Default or a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
<tr>
<td>Device Type</td>
<td>Type of device</td>
<td>From drop-down list</td>
</tr>
<tr>
<td>Template File Name</td>
<td>Name of the configuration template to associate with the device.</td>
<td>From drop-down list, or user-defined</td>
</tr>
</tbody>
</table>

Step 3 In the **Unique ID** field, accept the default value that appears or enter another valid value (no spaces).
Step 4 For Device Type, from the drop-down list, select **ASA Firewall Device**.
Step 5 Select the Template file name, then click **Next**.

The Group Membership page appears (see Figure 3-20).

Figure 3-20 Group Membership Page

Create Device

Select group membership

DEVELOPMENT

Tip Use the Group Manager to set up groups before you add a device (see “Creating Groups” section on page 6-96).

Step 6 Check to select the group(s) of which you want this device to become a member, then click **Next**.

The ASA Authentication Password page appears (see Figure 3-21).
Figure 3-21 ASA Authentication Password Page

Create Device

Enter the Authentication Password for ASA Devices
DEVICE TYPE: ASA Firewall Device

| Authentication Password: | ***** |
| Confirm Authentication Password: | ***** |

Step 7 Enter authentication password for ASA devices.
A case-sensitive password of up to 16 alphanumeric and special characters. Any character can be used in the password except a question mark and a space.

Step 8 Click the Next button. The ASA Configuration and Error Actions Type page appears (see Figure 3-17).

Figure 3-22 ASA Configuration and Error Actions Type Page

Create Device

Select the Configuration and Error actions type for the ASA Firewall Device.

Configuration action:
- Replace, specifies that the current configuration should be cleared before applying the new configuration.
- Merge, all changes are merged into the existing configuration file.

Error action:
- Continue, specifies to continue with applying the new configuration, even if there is a configuration error.
- Revert, the device configuration is restored to the configuration prior to the last change.
- Stop, stops the operation immediately.

Step 9 From the Configuration and Error Actions Type page, choose the appropriate options (Replace, Merge, Continue, Revert, and Stop).

Step 10 To go back one page, click Back.

Step 11 To end this task, click Finish.

Step 12 To continue by associating this device with an image, click Next.

Step 13 If you click Next, the Image Association page for PIX Firewall Devices appears.

Step 14 Select the image from the Name drop-down list.

The Image Type field and Image Location drop-down box are populated with corresponding information for the image.

Note Only ASA or ASDM images can be associated with a ASA device.

Step 15 From the Image Location drop-down list, select the desired location.

Step 16 To add another row for image location, click Add Another Row.
Discovering Devices

Cisco Configuration Engine can discover a device once the device (for this example: router-3460) is configured for CNS. For more information about this, see CNS Image Agent at:

During the execution of setup.sh for the Cisco Configuration Engine host, the settings configured would be:

...
For detail information about the parameters in this setup, refer to “Cisco Configuration Engine Administration Guide.”

...
Encryption settings:

Enable cryptographic (crypto) operation between Event Gateway(s)/Config server and device(s) (y/n)? n
Each Event Gateway process serves 500 devices. Maximum number of Event Gateways allowed is 20.
Enter number of Event Gateways that will be started with crypto operation: [1] 0
Enter number of Event Gateways that will be started with plaintext operation: [5] 2
Enter Cisco-CE Event Bus Network Parameter: [ce_host_hostname or ce_host_ip_address]

For more information about running setup.sh, see the Cisco Configuration Engine Installation and Configuration Guide.

Step 1 Log in to router-3460

Step 2 Using the Cisco IOS CLI command: show running configuration, verify that router-3460 is configured with IP routing. For example:

 hostname router-3460
...
 ip cef
 ip host ce_host 10.1.2.3
...
 interface Ethernet0/0
 ip address 10.1.2.4 255.255.255.0
...
 ip default-gateway 10.1.2.1
...
ip classless
ip route 0.0.0.0 0.0.0.0 10.1.2.1

where:
router-3460 is the hostname identifying the device for Cisco Configuration Engine and 10.1.2.3 is the IP address of the Cisco Configuration Engine.

Step 3 Log in to router-3640 and perform the following operations:

configure terminal
ip host ce_host 10.1.2.3
cns trusted-server all-agents ce_host
cns id string router-3460
cns id string router-3460 event
cns event ce_host 11013
cns config notify all interval 1 old-format
cns config partial ce_host 80
cns exec 80

Note The above configuration will support Discover Device as well as downloading a configuration, which requires cns config partial ce_host 80.

Step 4 Verify IP connectivity between ce_host and router-3640 by issuing the ping command from ce_host to router-3640 and from router-3640 to ce_host.

Step 5 Create a template.
For our example, name it router-3460.
You must insert a minimum of one line in the template. You can add a ! for this.

Note For more information about creating a template, see Chapter 12, “Templates.”

Step 6 On the Device Functional Overview page, choose Discover Device.
When the discovery task completes, the following information appears:

Discover Devices
There are 1 device(s) currently connected to the IE2100 but not yet created in the directory.
Select the devices you want to create and click on 'Create'.

Device Name DeviceID Connected Time Template Name Group Name
router-3640 router-3640 1/19/06 9:46:03 AM
- DemoRouter.cfgtpl
- Acquire Running Config /config/default
- Acquire Startup Config

Step 7 Click on the check box for router-3640, then click on the radio button and move the cursor to router-3640.cfgtpl.

Step 8 Choose Create.

The following information appears:

Status of Discovered Device Creation:
Device Name Template Name Status
router-3640 router-3640.cfgtpl Success

Step 9 On the Device Functional Overview page, choose View Device.
You should see an icon for router-3640.
The icon color should be green indicating communication between ce_host and router-3640 has been established.
Notes:

1. Before a device is discovered or created, we recommend that you configure a template for the device. When Cisco Configuration Engine discovers a device, or you create a device, you then must associate the device with a template. Although Cisco Configuration Engine has a default sample template (DemoRouter.cfgtpl) already created, it is very unlikely that your device will be configured using DemoRouter.cfgtpl. Therefore, create a new template.

2. If Create Device is performed after configuring a template for router-c3460, then Cisco Configuration Engine will not discover this router (you will not see an icon for router-c3460 when Discover Device is selected). If you want Cisco Configuration Engine to discover the device then create only a template for the device—DO NOT use the Create Device operation. If you use Create Device, and you go to Discover Device, you will not see an icon for router-c3460. However, in either case, View Device should show an icon for router-c3460.

3. The Cisco Configuration Engine host uses odd numbered event ports for messages sent in plain text. For example, the default Cisco Configuration Engine setting is 5 event gateway ports without crypto enabled. Devices use ports 11013, 11015, 11017, 11019, 11021 depending on what you configured on the device (for cns event 10.1.2.3 11013 this means event gateway port 11013 is used by router-c3640 to communicate with the Cisco Configuration Engine host, 10.1.2.3).

4. The Cisco Configuration Engine host uses even numbered event ports for messages sent encrypted starting with 11014. For example, if you set the number of event gateways to 2 during setup, then ports 11014 and 11016 would be available for use by a device.

Note

- The ports for Event Gateways with crypto operation are even numbers that start from 11012.
- The ports for Event Gateways with plaintext operation are odd numbers that start from 11011.

Editing Devices

Step 1 From the Devices Functional Overview page, click Edit Device.

The Groups list appears.

Step 2 From the Groups list, select the group that holds the device in question.

The Edit Device list appears (see Figure 3-24).

Figure 3-24 Edit Device List
Step 3 Click on the icon for the device you want to edit. The device configuration appears (see Figure 3-25).

Figure 3-25 Device Configuration

```
Device: dev-1
0  version 12.0
1  service timestamps debug uptime
2  service timestamps log uptime
3  no service password-encryption
4  service udp-small-servers
5  service tcp-small-servers
6  hostname
7  boot system flash c7200-is-mz
8  enable secret 5 $1$cMD$D$3TH540MW2GW5gM0n3/
9  enable password cisco
10  cns trusted-server all-agents imgw-test35
11  cns trusted-server all-agents imgw-test35.cisco.com
12  cns id udi
13  cns id udi event
14  cns id udi image
15  cns event imgw-test35.cisco.com encrypt 11014 keepalive 120.2 reconnect-time 10
16  cns config partial imgw-test35.cisco.com encrypt 443
17  cns inventory
18  cns cisco encrypt 443
20  cns notifications encapsulation.xm1
21  end
22  %Serial 0%
```

Step 4 From the left navigation pane, choose the edit function you want to use.
Editing Non-agent Enabled Device Information

Step 1
From the Edit Device page, click **Edit Information**.
The device information editor page appears (see Figure 3-26).

Figure 3-26 Non-agent Device Information Editor

Step 2
To modify the device name, enter a valid value (no spaces) in the **Device Name** field, then click **Next**.

Step 3
Select Group Membership, then click **Next**.
The Non-agent Edit Device Information page appears (see Figure 3-27).

Figure 3-27 Non-agent Information Page
Step 4 Edit all appropriate fields, then to end this task, click **Finish**.

Step 5 To continue, click **Next**.

The device IDs page appears (see Figure 3-28).

Figure 3-28 Edit Non-agent Device IDs Page

Edit Device

<table>
<thead>
<tr>
<th>Ethernet ID</th>
<th>(required)</th>
<th>c7200t6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config ID</td>
<td>(optional)</td>
<td>c7200t6</td>
</tr>
<tr>
<td>Image ID</td>
<td>(optional, use to create a CIE Device)</td>
<td></td>
</tr>
</tbody>
</table>

Subdevices available:

Subdevices attached:

Step 6 Modify devices IDs as required, then click **Finish**.

Editing Agent Enabled Device Information

Step 1 From the Edit Device page, click **Edit Information**.

The device information editor page appears (see Figure 3-29).

Figure 3-29 Agent Enabled Device Information Page

Edit Device

Device Name

- c7200e2c

Device Type

- Agent Enabled Device

Template File Name

- Select file: DemoRouter.cfgpl

- Enter URL

Step 2 To modify the device name, enter a valid value (no spaces) in the **Device Name** field, then click **Next**.

Step 3 Select Group Membership, then click **Next**.
The device IDs page appears (see Figure 3-30).

Figure 3-30 Agent enabled Device IDs Page

Edit Device

![Device Information](image)

Step 4 Modify device IDs as required, then click **Finish**.

Editing PIX Device Information

Step 1 From the Edit Device page, click **Edit Information**.

The device information editor page appears (see Figure 3-31).

Figure 3-31 PIX Device Information Page

![PIX Device Information](image)

Step 2 To modify the device name and Image ID, if applicable, then click **Next**.
Step 3 Select Group Membership, then click **Next**.

The PIX Device Authentication Password page appears, see Figure 3-32.

![Figure 3-32 PIX Device Authentication Password](image)

Edit Device

Enter the Authentication Password for PIX Devices

DEVICE TYPE: PIX Firewall Device

<table>
<thead>
<tr>
<th>Authentication Password:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter the authentication password here.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Confirm Authentication Password:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter the confirmation password here.</td>
</tr>
</tbody>
</table>

Step 4 Modify the authentication password if required, then click **Finish**.

A case-sensitive password of up to 16 alphanumeric and special characters. Any character can be used in the password except a question mark and a space.

Editing ASA Device Information

Step 1 From the Edit Device page, click **Edit Information**.

The device information editor page appears (see Figure 3-33).

![Figure 3-33 ASA Device Information Page](image)

Edit Device

Enter device information

<table>
<thead>
<tr>
<th>Device Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASASdevice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unique ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASAdevice1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA Firewall Device</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Template File Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select file: DemoRouter.cfgpl</td>
</tr>
<tr>
<td>Enter URL:</td>
</tr>
<tr>
<td>Test URL</td>
</tr>
</tbody>
</table>

Step 2 To modify the device name and Image ID, if applicable, then click **Next**.
Step 3
Select Group Membership, then click **Next**.

The ASA Device Authentication Password page appears, see **Figure 3-34**.

Figure 3-34 ASA Device Authentication Password

Edit Device

Enter the **Authentication Password** for ASA Devices

DECEASE TYPE: ASA Firewall Device

<table>
<thead>
<tr>
<th>Authentication Password:</th>
<th>****</th>
</tr>
</thead>
<tbody>
<tr>
<td>(required)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Confirm Authentication Password:</th>
<th>****</th>
</tr>
</thead>
<tbody>
<tr>
<td>(required)</td>
<td></td>
</tr>
</tbody>
</table>

Step 4
Modify the authentication password if required, then click **Finish**.

A case-sensitive password of up to 16 alphanumeric and special characters. Any character can be used in the password except a question mark and a space.

Editing Device Templates

Step 1
From the Edit Device page, click **Edit Template**.

The template editor appears (see **Figure 3-35**).
Step 2 In the **Attributes** field, click the drop-down arrow.

Step 3 Choose the attribute you want to add to the template, then click **Add**.

Step 4 Repeat Steps 2 and 3 for all attributes you want to add to the template file.

Step 5 Delete all unusable strings from the template file.

Step 6 Edit strings as necessary.

 The default multi-line begin and end tags are `^C` and `^C` respectively. The delimiter for these tags are: `~ ! @ ^ * - = |`. Do not use `#` or `%`.

For example, a multi-line test banner might be:

```
banner exec `^C
  This is a Test Banner
  1. Hi
  2. Hello
  3. Test is 1234567890
`^C
```

Step 7 To save your edits, click **Save**.

Step 8 To save this version as a new template, click **Save as**.
Editing Device Parameters

Step 1 From the Edit Device page:
 a. If you have administrator-level access click Edit Parameter-admin.
 b. To use Operator-level access click Edit Parameter-operator.
 The parameters editor appears.

Step 2 Edit all active lines as required.

Step 3 To save your edits, click Save Parameters.

Editing Contact Information

Step 1 From the Edit Device page, click Edit ContactInfo.
 The contact information appears.

Step 2 Edit all active fields as required.

Step 3 To clear your entries, click Reset.

Step 4 To save your edits, click Update.

Editing Subdevices

For complete information about working with subdevices, including editing (except PIX devices), see “Working with Subdevices” section on page 3-71.

Editing Image Association Information

Step 1 From the Edit Device page, click Edit Images.
 The Edit Device Image page appears.

Step 2 Edit image and configuration information as required.

Step 3 To revert to the previous state, click Cancel.

Step 4 To complete this task, click Finish.
Resynchronizing Devices

If the password of a device becomes corrupted so that there is a mismatch between the device and the corresponding password information held in the directory, you can resynchronize the device with the Cisco Configuration Engine by using the Resync Device function.

Step 1
From the Devices Functional Overview page, click **Resync Device**.

Step 2
From the Resync Device page, click on the icon for the device you want to re-synchronize.

Note
PIX devices will not be visible on this page.

Step 3
In the confirmation window that appears, click **Ok**.

Cloning Devices

Step 1
From the Devices Functional Overview page, click **Clone Device**.

The Groups list appears.

Step 2
From the Groups list, select the group that holds the device you want to clone.

The Clone Device list appears (see **Figure 3-36**).

Figure 3-36 Clone Device List

Clone Device

<table>
<thead>
<tr>
<th>Groups</th>
<th>Group: /config/host</th>
</tr>
</thead>
<tbody>
<tr>
<td>config</td>
<td></td>
</tr>
<tr>
<td>East</td>
<td></td>
</tr>
<tr>
<td>West</td>
<td></td>
</tr>
<tr>
<td>default</td>
<td></td>
</tr>
</tbody>
</table>

Step 3
Select a device to clone.

The Step 1 page appears (see **Figure 3-37**).

Figure 3-37 Clone Device > Number of Copies

Clone Device: c7200c2c

Step 1: Enter Number Of copies

<table>
<thead>
<tr>
<th>Number Of Copies:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Next Finish Cancel
Step 4 Determine the number of copies, then click Next.
The Step 2 page appears (see Figure 3-38).

Figure 3-38 Clone Device > Name and IDs

Clone Device: c7200e2c

Step 2: Create 1 copies of c7200e2c using:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
<td>copyOf</td>
</tr>
<tr>
<td>Event ID</td>
<td>copyOf</td>
</tr>
<tr>
<td>Config ID</td>
<td>copyOf</td>
</tr>
<tr>
<td>Image ID</td>
<td>copyOf</td>
</tr>
</tbody>
</table>

Also Clone:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>SubDevice(s)</td>
<td>copyOf</td>
</tr>
</tbody>
</table>

Step 5 Enter prefix and suffix for each device copy, then click Next.
The Step 3 page appears (see Figure 3-39).

Figure 3-39 Clone Device > Review Parameters

Clone Device: c7200e2c

Step 3: Review parameters

The following Devices will be created:

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Event ID</th>
<th>Config ID</th>
<th>Image ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy0@c7200e2c1</td>
<td>copy0@c7200e2c1</td>
<td>copy0@c7200e2c1</td>
<td>copy0@c7200e2c1</td>
</tr>
</tbody>
</table>

The above devices will be created with the following attributes:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImageRefList</td>
<td>C7200e-1S-MZ</td>
</tr>
<tr>
<td>Template</td>
<td>DemoResource.cqpl</td>
</tr>
<tr>
<td>ActivationTemplate</td>
<td>DemoResource.cqpl</td>
</tr>
<tr>
<td>IOSsubdevices</td>
<td>c2k2</td>
</tr>
<tr>
<td>Group</td>
<td>ou=Location,ou=Domain,ou=CNSApplication,ou=include,ou=classic,ou=uc=uc</td>
</tr>
<tr>
<td>AdvancedDevType</td>
<td>generic_device</td>
</tr>
</tbody>
</table>
Deleting Devices

Step 1 From the Devices Functional Overview page, click **Delete Device**.
The Groups list appears.

Step 2 From the Groups list, select the group that holds the device you want to delete.
The device list appears.

Step 3 Click the check box for the device(s) you want to delete.

Step 4 Click **Submit**.
A list of devices selected for deletion appears.

Step 5 To continue, click **Delete**.

Updating Device Configurations and Images

To send an updated version of the configuration or a new image to a device, from the Devices Functional Overview page, click **Update Device**. The Update Device Functional Overview page appears showing:

- Update Configuration
- Update Image
- Customize

Updating Device Configurations

Step 1 From the Update Devices Functional Overview page, click **Update Config**.
The Groups list appears.

Step 2 From the Groups list, select the group that holds the device you want to update.
Step 3

Click the check box next to the icon for the device(s) you want to update (see Figure 3-40).

Figure 3-40 Update Config Group/Device Selection Page

Note
PIX devices will not be visible on this page.

Step 4

Click Submit.

The update notification page appears (see Figure 3-41).

Figure 3-41 Update Configuration Notification Information

Please mark the notification checkbox and complete the step below if a notification will be sent upon job complete.

Step 5

If you want an email notification sent when the update job completes, fill in the information on this page, then click Next.

Note
This page is optional. You can skip to the next page by clicking Next.
The update task dialog box appears (see Figure 3-42).

Figure 3-42 Update Task

![Update Task](image)

Step 6 For Step 1, select the source of the configuration.

Step 7 For Step 2, choose the **Config Action** task you require.
- Apply to running config – applies the configuration to the current running configuration.
- Apply and save to NVRAM – applies the configuration without causing it to persist in NVRAM.
- Overwrite NVRAM – applies the change and causes it to persists in NVRAM.

Step 8 For Step 3, if required, check the **Syntax Check** check box.

Step 9 For Step 4, if devices are not connected, check this check box to send out triggers.

Step 10 For Step 5, select the date and time to send the configuration update.

Step 11 For Step 6, determine the batch size.

Tip The max batch size for IMGW should be set at 25.

Step 12 For Step 7, if applicable, enter a description for this update job.

Step 13 Click **Update**.
Chapter 3 Device and Subdevice Manager

Updating Device Images

Step 1 From the Update Device Functional Overview page, click Update Image.
The Groups list appears.

Step 2 From the Groups list, select the group that holds the device you want to update.

Step 3 Click the check box next to the icon for the device(s) you want to update (see Figure 3-43).

Figure 3-43 Update Image Group/Device Selection Page

Step 4 Click Submit.
The update notification page appears (see Figure 3-41).

Step 5 If you want a notification sent when the update job completes, fill in the information on this page, then click Next.

Note This page is optional. You can skip to the next page by clicking Next.

The Update Image page appears (see Figure 3-44).

Figure 3-44 Image Selection Page

Step 6 Select the image you want to use for updates, then click Next.
If you select to update the device by selecting an image other than its present image, the next page gives you a list of images from which to select.
The Update Image worksheet appears (see Figure 3-45).

Figure 3-45 Update Image Worksheet

Step 7 To distribute the image, click the check box for **Distribute Image**.

Step 8 To activate the image, click the check box for **Activate Image**.

Tip All three agents (event, partial config, and image) must be running on the device for the activation process to succeed.

Note For the image to become active on the device, you must have a Configuration Control template associated with this device that contains the CLI commands for image activation (see “Configuration Control Templates” section on page 12-127).

Step 9 To update the image immediately, click the radio button for **Immediate**.

Step 10 To update the image at a specified time in the future, click the radio button for **At a future time**:
 a. Enter a time value.
 b. Enter a date value.
Step 11 Set the **Device Batch Size**.
This is the number of concurrent image updates. This feature allows you to limit the number of concurrent requests to a server. When one batch of image update requests has been satisfied, the next batch starts.

Tip The max batch size for IMGW should be set at 25. And for HTTP only (no event agent) mode, the batch size must be same as the number devices in the submitted job.

Note If you are running a device image update session to a mix of IMGW and agent devices, the effective device batch size limit for IMGW devices—concurrent Telnet session limit—is equal to the value (default = 25) set for this attribute in the **Setup** program (see *Cisco Configuration Engine Installation and Configuration Guide*).

Step 12 If applicable, enter a text description of the job.

Step 13 To perform an evaluation rather than an actual update, click the check box at the bottom of this pane.

Step 14 To continue, complete the steps called for, then click **Update**.

The Update Image Status page appears (see Figure 3-46). You can use this Job ID to perform job-related tasks (see Chapter 5, “Configuration and Image Update Jobs Manager”).

Figure 3-46 Job ID for Update Image

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Distributed Image(s)</th>
<th>Activated Image(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device2</td>
<td>img3, img2</td>
<td>img2</td>
</tr>
</tbody>
</table>

Your request has been assigned the job id: 1062710890226

Customize Job Template

Step 1 From the Update Device Functional Overview page, click **Customize**.
The Groups list appears.

Step 2 From the Groups list, select the group that holds the device you want to update.
Step 3 Click the check box next to the icon for the device(s) you want to update (see Figure 3-47).

Figure 3-47 Custom Flow Control Device Update Selection Page

Update Device using Custom Flow Control Template

![Custom Flow Control Device Update Selection Page](image)

Note PIX devices will not be visible on this page.

Step 4 Click **Submit**.

The Update Device using Customized Job Template appears (see Figure 3-48).

Figure 3-48 Customized Job Template Form

Update Device using Customized Job Template

Please complete the steps below to submit a Customized Job:

- **Step 1**: Customized Job Template:
 - Please check here if you want to perform an **Evaluation** and not an actual job submission.

- **Step 2**: Immediate
 - At a future time: 15:00 on **January 1, 2005**

- **Step 3**: Device Batch Size: 2

- **Step 4**: Text Description for Job:

 Submit **Cancel**

Step 5 Complete the Customized Job Template form, then click **Submit**.

The next page shows the Job ID for this update task.

Step 6 To check the status of this job go to Jobs > Query Jobs, then click on the Job ID for this Job.

Configuration Control Template

To restart a device with a new image, you must issue the CLI commands that you would normally enter from the device console to activate a new image.
For example, if you want to restart a Cisco 3600 Series router with an image named `3600.image`, from the device console, you would issue the following CLI commands:

```
no boot system
boot system flash:3600.image
```

you must provide the device with a Configuration Control template that contains the required CLI commands for image activation.

If you do not have such a template, see “Adding a Template” section on page 12-138. Also, you must associate this Configuration Control template with the particular device (see “Adding Devices” section on page 3-31).

The content of the Configuration Control template for image activation should contain the CLI commands that you would normally enter from the device console to activate a new image on the device.

Working with Subdevices

A subdevice is a configuration object for network modules in a modular router. When working with subdevices, it is very important to pick the correct type of interface card or module.

Note

PIX Firewall devices do not have subdevices.

To work with subdevices, from the Devices Functional Overview page, click **Subdevices**.

The Subdevices Functional Overview page appears showing:

- View Subdevice
- Add Subdevice
- Edit Subdevice
- Clone Subdevice
- Delete Subdevice

Viewing Subdevices

Step 1

From the Subdevices Functional Overview page, select **View Subdevice**.

The list of subdevices appears (see Figure 3-49).

Figure 3-49 **View Subdevice**
Step 2 Click on the icon for the device configuration you want to view.
The Configuration for that device appears.

Note The subdevice configuration displayed is the configuration as it appears at the configuration server. It might not be the configuration running on the subdevice.

Adding Subdevices

Step 1 From the Subdevices Functional Overview page, click Add Subdevice.

The Subdevice Information page appears (see Figure 3-50).

Figure 3-50 Subdevice Information Page

Step 2 Enter a valid value (no spaces) in the Device Name field.

Table 3-23 shows valid values for this task.

Table 3-23 Valid Values for Add Subdevice

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
<td>The name used as cn (common name) of the device.</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
<tr>
<td>ConfigID</td>
<td>Configuration ID attribute of the device.</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
</tbody>
</table>
Step 3
Accept the default value that appears or enter another valid value (no spaces) in the **Config ID** field.

Step 4
From the **Device Type** drop-down list, choose the type of device to which this subdevice is associated. Device type is the name of the network module as defined in the Cisco product catalog (price list).

Step 5
Choose a template file.
To use a template on your Cisco Configuration Engine:

a. Choose **Select file**.

b. Use the drop-down list to choose a template.

OR
To use an external template:

a. Choose **Enter URL**.

b. Enter the full URL for the server, directory, and filename where the template is stored. Currently, only **http** is supported.

c. To test access to the external template, click **Test URL**.

If the server is unavailable or the external template cannot be accessed, an error appears. You can still save this logical subdevice, but the template is not available until you have access to the external template.

Step 6
To clear your entries, click **Reset**.

Step 7
To add this device, click **Add**.

Editing Subdevices

Step 1
From the Subdevices Functional Overview page, click **Edit Subdevice**.

Step 2
From the Edit Subdevice page, click on the icon for the subdevice you want to edit.

The subdevice configuration appears with a menu of edit functions in the left navigation pane:

- Edit Information
- Edit Template
- Edit Parameter-Admin – Administrator-level view
- Edit Parameter-Operator – Operator-level view; used by Administrator to verify what Operator can see after Administrator has used **Edit > AttributInfo** under the Template Manager
- Edit ContactInfo
Step 3 From the left navigation pane, choose the edit function you want to use.

Editing Subdevice Information

Step 1 From the Edit Subdevice page, click Edit Information.
The subdevice information editor dialog box appears (see Figure 3-50).
Step 2 Modify all applicable fields.
For valid values, see Table 3-23.
Step 3 To clear your entries, click Reset.
Step 4 To update device information, click Modify.

Editing Subdevice Template

Step 1 From the Edit Subdevice left navigation pane, click Edit Template.
The template editor appears.
Step 2 In the Attributes field, click the drop-down arrow.
Step 3 Choose the attribute you want to add to the template, then click Add.
Step 4 Repeat Steps 2 and 3 for all attributes you want to add to the template file.
Step 5 Delete all unusable strings from the template file.
Step 6 Edit strings as necessary.
The default multi-line begin and end tags are ^C and ^C respectively. The delimiter for these tags are: ~ ! ^ & * - = |. Do not use # or %.
A multi-line test banner might be:
banner exec ^C
 This is a Test Banner
 1. Hi
 2. Hello
 3. Test is 1234567890
 ^C
Step 7 To save your edits, click Save.
Step 8 To save this version as a new template, click Save as.
Editing Subdevice Parameters

Step 1 From the Edit Subdevice left navigation pane, click Edit Parameter-Admin.
The parameters editor appears.

Note Operator-level privileges do not include access to these parameters.

Step 2 Modify parameters values as required.
Step 3 To save your edits, click Save Parameters.

Editing Contact Information

Step 1 From the Edit Device left navigation pane, click Edit ContactInfo.
The contact information appears.

Step 2 Edit all active fields as required.
Step 3 To clear your entries, click Reset.
Step 4 To save your edits, click Update.

Cloning Subdevices

Step 1 From the Subdevices Functional Overview page, click Clone Subdevice.
The Subdevice list appears (see Figure 3-51).

Figure 3-51 Clone Subdevice Device List
Step 2 The Step 1 page appears (see Figure 3-52).

Figure 3-52 Clone Subdevice > Number of Copies

Clone Subdevice: card2b

Step 1: Enter Number Of copies

![Number of Copies](image)

Enter the number of copies you want to make, then click Next.
The Step 2 page appears (see Figure 3-53).

Figure 3-53 Clone Subdevice > Name and IDs

Clone Subdevice: card2b

Step 2: Create 1 copies of card2b using:

![Prefix and Suffix](image)

Enter prefix and suffix for each device copy, click Next.
The Step 3 page appears (see Figure 3-54).

Figure 3-54 Clone Subdevice > Review Parameters

Clone Subdevice: card2b

Step 3: Review parameters

The following Sub-Devices will be created:

<table>
<thead>
<tr>
<th>Sub-Device Name</th>
<th>Unique Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>copyOf_card2b</td>
<td>copyOf_card2b</td>
</tr>
</tbody>
</table>

The above devices will be created with the following attributes:

<table>
<thead>
<tr>
<th>Template</th>
<th>var1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOS/sinecardtype</td>
<td>var2</td>
</tr>
<tr>
<td>AdminDevType</td>
<td>var3</td>
</tr>
</tbody>
</table>

Step 4 Review the parameters you set for this clone.
Step 5 If you want to make changes, click **Back**.
Step 6 To finish this task, click **Finish**.

Deleting Subdevices

Step 1 From the Subdevices Functional Overview page, click **Delete Device**.

The Delete Subdevice page appears (see **Figure 3-55**).

Figure 3-55 Select Subdevices to Delete

```
Delete Subdevice
Please select from the following list:

[ ] LeaveUnAllocated

Next   Reset

Select All Devices in the Page
```

Step 2 Check to select the subdevice(s) you want to delete.

Step 3 To proceed, click **Next**.

A status page appears indicating that the subdevice has been selected for deletion (see **Figure 3-56**).

Figure 3-56 Delete Subdevices Confirmation

The following sub-devices have been selected for deletion.

```
- Text
```

Step 4 To delete this subdevice, click **Delete**.
Querying Device Inventory

You can use the Query Device Inventory feature to get a report from devices about:

- Running image information
- Hardware information
- File system list

Step 1
From the Devices Functional Overview page, click **Query Device Inventory**.

The Query Device Inventory screen appears.

Figure 3-57 Query Device Inventory Page

Step 2
Check the device(s) for which you want to get an inventory report(s), then click **Submit**.

The Query Notification Information page appears (see **Figure 3-58**).

Figure 3-58 Query Notification Information Page

Please mark the notification checkboxes and complete the step below if a notification will be sent upon job complete.

Step 3
If you want an email notification sent when the query completes, fill in the information on this page, then click **Next**.

Note
This page is optional. You can continue by clicking **Next**.
The Query Attributes Page appears (see Figure 3-59).

Figure 3-59 Query Attributes Page.

Query Inventory

Please complete the steps below to perform a Query Inventory:

Step 1:
- Select Immediate
- Select a future time: [00] [16] (hour) on [January] [1] [2005]

Step 2:
- Device Batch Size: [2]

Step 3:
- Timeout (Minute per Device): [0]

Step 4:
- Test Description for Job:

[Submit]

[Cancel]

Step 4
Set all applicable attributes, then click **Query**.

The query is submitted as a **Job**. A page appears indicating the job number for this query.

Step 5
To check the status of this job, go to **Jobs > Query Job**.

Step 6
Use the drop-down arrow to select Completed Jobs.

Step 7
For the Inventory Job you want, click either the job number or the entry in the Status column.

The Job Status page appears (see Figure 3-60).

Figure 3-60 Job Status Page

Job Status

<table>
<thead>
<tr>
<th>Job ID</th>
<th>11199:580322</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Query c7203-bx Inventory</td>
</tr>
<tr>
<td>Schedule Time</td>
<td>Wed Mar 16 09:57:19 MST 2005</td>
</tr>
<tr>
<td>Timeout</td>
<td>0 minutes</td>
</tr>
<tr>
<td>Status</td>
<td>Completed</td>
</tr>
</tbody>
</table>

Total Completed Stepped 0

[View All]

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>c7203-bx3</td>
<td>Completed</td>
</tr>
</tbody>
</table>

[Refresh] [Cancel]
Delete Files on Device

Step 8
To view the inventory report, click View.
Device inventory report appears (see Figure 3-61).

Figure 3-61 Sample Device Inventory Report

<table>
<thead>
<tr>
<th>Running Image Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Version:</td>
</tr>
<tr>
<td>Image File:</td>
</tr>
<tr>
<td>Config Variable:</td>
</tr>
<tr>
<td>Boot Variable:</td>
</tr>
<tr>
<td>Return To ROM Time:</td>
</tr>
<tr>
<td>Started At:</td>
</tr>
<tr>
<td>Reported Time:</td>
</tr>
</tbody>
</table>

Hardware Information

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Platform Name</th>
<th>Memory Size</th>
<th>Processor Type</th>
<th>Main Memory</th>
<th>Processor Serial #</th>
<th>Processor Rev</th>
<th>Hardware Rev</th>
</tr>
</thead>
</table>

File System List

```
[FileSystem name=[namen], type=[namet], size=[namensize], freeSpace=[namefreespace], readable=[1], writeable=[1], directory=0, name=, fullPath=[namewildcard], size=[29588], readable=[1], writeable=[1], modifiedDate=[1999-12-30 14:00:00]]
```

Delete Files on Device

Step 1
From the Devices Functional Overview page, click Delete Files on Device.
The Delete File on Device page appears (see Figure 3-62).
Step 2
Check the device(s) on which you want to delete files, then click Submit.
The Delete Device Files Notification Information page appears (see Figure 3-63).

Step 3
If you want an email notification sent when the query completes, fill in the information on this page, then click Next.
This page is optional. You can continue by clicking Next.
The Delete Files parameter page appears (see Figure 3-64).

Figure 3-64 Delete Files Parameter Page

Delete Files On Device

Please complete the steps below to perform the action:

Step 1 Select Search Parameters:

Available Search Parameters:

- sp1a
- sp1b
- fwo2

Selected Search Parameters:

End of list

Step 2 Apply to:

- localflash
- NVRAM
- Other file systems

Step 3 Immediate

As a future time:

- 00
- 15

(Dates) on:

- January
- 1
- 2006

Step 4 Text Description for Job:

<table>
<thead>
<tr>
<th>Preview</th>
<th>Submit</th>
<th>Cancel</th>
</tr>
</thead>
</table>

Step 4 Complete the steps on this page, then to preview, click **Preview**.

Step 5 When you are satisfied with the task parameters, click **Submit**.

Dynamic Operations

Dynamic Operations allows you to perform operations on devices that all respond to having the same attributes based on the Query used to find them.

To use this feature you must have query objects available before starting Dynamic Operations. If no Queries have been created, you will see a message stating that there are no query objects available.

To create a Query, go to the “Creating Queries” section on page 8-108.

Step 1 From the Devices Functional Overview page, click **Dynamic Operations**.
The Dynamic Operations page appears (see Figure 3-65).

Figure 3-65 Dynamic Operations Page

Dynamic Operations

![Dynamic Operations Page](image)

Step 2 Use the down-arrow key to select the Query you want to use.

Step 3 Select the operation you want to perform on devices that respond to the Query, then click **List Devices**. The result of the Query appears (see Figure 3-66).

Figure 3-66 Devices Responding to Query

Following devices are returned after executing the query:

<table>
<thead>
<tr>
<th>Devices</th>
<th>Associated Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>7200-1</td>
<td>config/default</td>
</tr>
<tr>
<td>7200-2</td>
<td>config/default</td>
</tr>
<tr>
<td>7200-3a</td>
<td>config/default</td>
</tr>
<tr>
<td>7200-3b2</td>
<td>config/default</td>
</tr>
<tr>
<td>7200-4a</td>
<td>config/default</td>
</tr>
<tr>
<td>7200-4b</td>
<td>config/default</td>
</tr>
</tbody>
</table>

Step 4 To continue with the selected operation, click **Next**.
User Account Manager

Note

User accounts can be accessed only when operating in Internal Directory mode.

To access User tasks, log in to the system (see “Logging In” section on page 2-23). Then, from the Home page, click the **Users** tab.

A functional overview of the user administration options appears showing:

- Add User
- Edit User
- Delete User
- Change Password

Adding User Account

Step 1

From the User Administration page, click **Add User**.

The User Information dialog box appears (see **Figure 4-1**).
Figure 4-1 User Information

Table 4-1 shows valid values for these fields.

Table 4-1 Valid Values for Add User Account

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserID</td>
<td>ID that allows user to log in to the user interface.</td>
<td>a-z A-Z 0-9 -(hyphen) _ (under-score) . (period)</td>
</tr>
<tr>
<td>Password</td>
<td>Password</td>
<td>Printable characters with a length of 6 – 12</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Password</td>
<td>Printable characters with a length of 6 – 12</td>
</tr>
<tr>
<td>Last Name</td>
<td>Last name of registered user.</td>
<td>a-z A-Z 0-9 -(hyphen) _ (under-score) . (period)</td>
</tr>
<tr>
<td>First Name</td>
<td>First name of registered user.</td>
<td>a-z A-Z 0-9 -(hyphen) _ (under-score) . (period)</td>
</tr>
</tbody>
</table>

Step 2 Enter a valid value (no spaces) in the UserID field.

Table 4-1 shows valid values for these fields.

Step 3 Enter a password in the Password field.
Step 4 Confirm the password by entering it again in the **Confirm Password** field.

Step 5 Enter the user’s last name in the **Last Name** field.

Step 6 Enter the user’s first name in the **First Name** field.

Step 7 In the Group pane, click the radio button that classifies the privilege level (*Administrator*, *Operator*) of this user.

Step 8 To clear your entries, click **Reset**.

Step 9 To save your entries, click **Save**.

Editing User Account

Step 1 From the User Administration page, click **Edit User**.

A shows of users appears (see **Figure 4-2**).

Figure 4-2 User List

<table>
<thead>
<tr>
<th>Edit User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please select from the following list:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Users</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>admin</td>
</tr>
</tbody>
</table>

Step 2 From the User List, click on the icon for the user account you want to edit.

Note Administrator-level users are shown with a key icon associated with the figure icon.

The User Information page appears (see **Figure 4-3**).
Figure 4-3 User Information

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserID</td>
<td>ops3</td>
</tr>
<tr>
<td>Last Name</td>
<td>Eggoode</td>
</tr>
<tr>
<td>First Name</td>
<td>Johnny</td>
</tr>
</tbody>
</table>

Table 4-2 Valid Values for User Information

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserID</td>
<td>ID that allows user to log in to the user interface.</td>
<td>Information only</td>
</tr>
<tr>
<td>Password</td>
<td>Password</td>
<td>Printable characters with a length of 6 – 12</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Password</td>
<td>Printable characters with a length of 6 – 12</td>
</tr>
<tr>
<td>Group</td>
<td>Administrator or Operator level</td>
<td>Radio Button</td>
</tr>
</tbody>
</table>

Step 3
To modify the user ID, enter a valid value (no spaces) in the **UserID** field. Table 4-2 shows valid values for these fields.

Step 4
To modify the user’s last name, edit the **Last Name** field.

Step 5
To modify the user’s first name, edit the **First Name** field.

Step 6
To modify the user group status, click the appropriate radio button in the **Group** pane.

Step 7
To clear your entries, click **Reset**.

Step 8
To save your entries, click **Save**.
User information update status appears (see **Figure 4-4**).
Deleting User Account

Step 1 From the User Administration page, click **Delete User**.

Step 2 From the user list (see **Figure 4-2**), click on the icon for the user account you want to delete.

Changing User Password

Step 1 From the User Administration page, click **Change Password**.

The Change Password dialog box (see **Figure 4-5**) appears.

Figure 4-5 Change Password

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserID</td>
<td>ID that allows user to log in to the user interface.</td>
<td>a-z A-Z 0-9 -(hyphen) _ (under-score) . (period)</td>
</tr>
<tr>
<td>New password</td>
<td>Password</td>
<td>Printable characters with a length of 6 – 12</td>
</tr>
<tr>
<td>Confirm password</td>
<td>Password</td>
<td>Printable characters with a length of 6 – 12</td>
</tr>
</tbody>
</table>

Step 2 Enter the **UserID** for the user account password you want to change or reset.

Table 4-3 shows valid values for these fields.

Table 4-3 Valid Values for Change Password by Administrator

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Enter the new password in the New password field.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Enter the new password again in the Confirm password field.</td>
</tr>
<tr>
<td>Step 5</td>
<td>To clear your entries, click Reset.</td>
</tr>
</tbody>
</table>
Changing Account Privilege Level

Step 1 From the User Administration page, click Edit User.

Step 2 Choose the user in question from the user list (see Figure 4-2).
 The User Information page appears (see Figure 4-6).

Figure 4-6 User Information

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserID</td>
<td>john.doe</td>
</tr>
<tr>
<td>Last Name</td>
<td>Doe</td>
</tr>
<tr>
<td>First Name</td>
<td>Bill</td>
</tr>
</tbody>
</table>

Step 3 In the Group pane, click the radio button that classifies the privilege level (Administrator, Operator) of this user.

Step 4 To clear your entries, click Reset.

Step 5 To save your entries, click Save.
Configuration and Image Update Jobs Manager

To access tasks for managing configuration and image update Jobs, log into the system (see “Logging In” section on page 2-23). Then, from the Home page, click the Jobs tab.

The Jobs Functional Overview page appears showing:

- Query Job
- Cancel/Stop Job
- Restart Job
- Delete Completed Job

Querying Jobs

Step 1 From the Jobs Functional Overview page, click Query Job.

The Query Job page appears (see Figure 5-1).

Figure 5-1 Query Job

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Description</th>
<th>Start Time</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>11007085014</td>
<td>2005-01-25 19:47:55 PST</td>
<td>In Progress</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 Use the drop-down arrow in the left menu to select available list of jobs:

- Currently Executing
- Stopped
- Completed
Canceling or Stopping Jobs

Step 1 From the Jobs Functional Overview page, click **Cancel/Stop Job**.
The Cancel/Stop Job page appears (see Figure 5-2).

Figure 5-2 Cancel/Stop Job

Cancel/Stop Job

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Start Time</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tue Jan 25 19:47:55 PST 2005</td>
<td>In Progress</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 Check to select the Job you want to cancel or stop, then click **Cancel Jobs**, or **Stop Jobs**.

Restarting Jobs

Step 1 From the Jobs Functional Overview page, click **Restart Job**.
The Restart Job page appears (see Figure 5-3).

Figure 5-3 Restart Job

Restart Job

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Start Time</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tue Jan 25 19:47:55 PST 2005</td>
<td>Stopped</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 Check to select the Job you want to restart, then click **Restart Jobs**.
Deleting Completed Jobs

Step 1 From the Jobs Functional Overview page, click **Delete Completed Jobs**. The Delete Completed Jobs page appears (see Figure 5-4).

Figure 5-4 Completed Jobs List

Delete Completed Job

List of Completed Jobs:

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Start Time</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1107916464254</td>
<td>Tue Feb 06 18:34:24 EST 2005</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>1107917966265</td>
<td>Tue Feb 06 18:39:26 EST 2005</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>1107926261739</td>
<td>Tue Feb 06 20:00:21 EST 2005</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>1107926950487</td>
<td>Tue Feb 06 19:55:19 EST 2005</td>
<td>Submit through WEB SERVICE API. @ 110791110736</td>
<td>Completed</td>
</tr>
<tr>
<td>1107933822767</td>
<td>Wed Feb 07 10:56:32 EST 2005</td>
<td></td>
<td>Completed</td>
</tr>
</tbody>
</table>

Delete Jobs Cancel

Step 2 Check to select the completed jobs you want to delete, then click **Delete Jobs**.
Groups

To access Group management tasks, log into the system (see Logging In, page 2-23). Then, from the Home page, click the Tools tab. The Tools page appears.

From the Tools page, click Group Mgr. The Group Management page appears showing:

- View Groups
- Create Group
- Edit Group
- Clone Group
- Move Group
- Delete Groups
- Create Group Using Search

Viewing Groups

From the Group Management page, click View Groups. The View Groups page appears (see Figure 6-1).

Figure 6-1 View Groups Page
Creating Groups

Step 1 From the Group Management page, click **Create Groups**.
The Create Groups page appears (see Figure 6-2).

Figure 6-2 Create Group

Step 2 Enter the group name.

Step 3 Use the drop-down arrow to select a namespace value (only **config** available), then click **Next**.
The Select Parent Group page appears (see Figure 6-3).

Figure 6-3 Select Parent Group Page

Step 4 Click the radio button(s) to select the parent group with which you want the new group to associated, then click **Next**.
The Select Member Devices page appears (see Figure 6-4).

Figure 6-4 Select Member Devices Page

Step 5 Check to select the devices you want to be in this group, then click **Finish**.
Editing Groups

Step 1 From the Group Management page, click **Edit Group**.

The Group list appears.

Step 2 Click the radio button to select a group to edit, then click **Next**.

The Rename Group page appears.

Step 3 Rename group, if applicable, then click **Finish** to complete the task, or click **Next** to continue (see Figure 6-5).

Figure 6-5 Edit Group Members

<table>
<thead>
<tr>
<th>Edit Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Select Member Device(s)</td>
</tr>
</tbody>
</table>

![Edit Group Members](image)

Step 4 Click the Group you are editing to bring up its members.

Step 5 Modify the members in this group by using the check box next to each member, then click **Finish**.

Cloning Groups

Step 1 From the Group Management page, click **Clone Group**.

The Group list appears.

Step 2 Select a group to clone.

Step 3 Select parent group.

Step 4 Enter new group name. After cloning a group, the devices in the original group will exist in the cloned group.
Moving Groups

Step 1
From the Group Management page, click **Move Group**.
The Group list appears.

Step 2
Select a group to move.

Step 3
Select parent group.

Deleting Groups

Step 1
From the Group Management page, click **Delete Groups**.
The Group list appears.

Step 2
Check to select the group(s) you want to delete.

Note
When you delete a group, the devices associated with that group will not be deleted.

Creating Groups Using Search

Step 1
From the Group Management page, click **Create Group Using Search**.
The search for devices page appears (see Figure 6-6).

Figure 6-6 Search for Devices

Create Group Using Search

Step 1: Search for Devices:
[
Sample Filter: String: ((cm=D*)\&(OSEventID=D*))]

<table>
<thead>
<tr>
<th>Attribute:</th>
<th>Operator:</th>
<th>Value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSEventID</td>
<td>D*</td>
<td></td>
</tr>
</tbody>
</table>

Query:

OSEventID=D*

Step 2
Enter the appropriate arguments for the search, then click **Query**.
Any devices found appear on the next page (see Figure 6-7).
Chapter 6 Groups

Creating Groups Using Search

Figure 6-7 Select Devices to Add to Group

Create Group Using Search

Step 2: Select Devices to be added to the Group

- Select All
- DemoRouter

[Image: Select Devices to Add to Group]

Step 3 Check to select the devices you want to become members of this new group, then click Next.

The next page (see Figure 6-8) gives you the choice to add a new group, or just add the devices found to an existing group.

Figure 6-8 Name Group and Namespace

Create Group Using Search

Step 3: Group Name and Namespace information

- Add Device(s) to existing Group
- Create a new Group

<table>
<thead>
<tr>
<th>Group Name (required)</th>
<th>stageTe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namespace (required)</td>
<td></td>
</tr>
</tbody>
</table>

[Image: Name Group and Namespace]

Step 4 Enter group name.

Step 5 Use the drop-down arrow to select a namespace value, then click Next.

The group list page appears.

Step 6 Select group parent, then click Finish.
Namespace Manager

The Namespace Manager provides a GUI for managing the system namespace known as “config,” which contains the set of Cisco standardized events, such as com.cisco.cns.mgmt.config.load, etc. By default, each event defines a mapping to itself for both the publish and subscribe mapping.

If you are using the Cisco Configuration Engine Software Development Kit API Reference and Programmer Guide to develop your own application, you are free to redefine the map according to your application needs. Additional application-specific namespace values can be defined by means of the Cisco Configuration Engine SDK.

Note

Cisco Configuration Engine supports multiple namespaces and their respective mappings by means of the Cisco Configuration Engine GUI.

The system namespace is guaranteed to return a mapping even for undefined events; in which case, the input map is returned as the output map. This is a requirement for supporting future devices which might depend on new events that are not currently defined.

To access Namespace management tasks, log into the system (see “Logging In” section on page 2-23). Then, from the Home page, click the Tools tab. The Tools page appears.

From the Tools page, click Namespace Mgr. The Namespace Management page appears showing:

- View Events
- Add Events
- Edit Events
- Delete Events

Viewing Events

From the Namespace Manager main page, click View Events. The events list for the current application (config) appears (see Figure 7-1).
Adding Events

The events list for the current application (config) appears (see Figure 7-1).

Step 1

From the Namespace Manager main page, click Add Events.

The Event information page appears (see Figure 7-2).
Step 2 Enter an Event name.

Step 3 Use the drop-down arrow to select the NSM Mode.
- Algorithmic – Mapped events qualified with group name or device name are returned from NSM. This is the preferred mode for all users. It allows you to provision the selected group(s) of device(s).
- Non-Algorithmic – Mapped events are returned from NSM without group name or device name. You are forced to provision all device(s).

Step 4 Enter a valid Event Mapping.
For example: `cisco.mgmt.cns.exec.reload`

Step 5 To define separate parameters for Subscriber Mapping and Publisher Mapping, click Advanced. The advanced event information page appears (see Figure 7-3).

Figure 7-3 Advanced Event Information Page

Add Event to Application: `config`

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Subscriber Default</th>
<th>Publisher Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Algorithmic</td>
<td>Algorithmic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subscriber Mapping</th>
<th>Publisher Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove</td>
<td>Remove</td>
</tr>
<tr>
<td>New Mapping</td>
<td>New Mapping</td>
</tr>
<tr>
<td>Add to list</td>
<td>Add to list</td>
</tr>
</tbody>
</table>

Step 6 Enter information in the appropriate fields, then click Add.
Editing Events

Step 1
From the Namespace Manager main page, click **Edit Events**.
The Event information page appears (see Figure 7-4).

Figure 7-4 Event List to Edit

<table>
<thead>
<tr>
<th>Edit Events in Application: config</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco.mgmt.cns.config-changed</td>
</tr>
<tr>
<td>cisco.mgmt.cns.config-reboot</td>
</tr>
<tr>
<td>cisco.mgmt.cns.config-load</td>
</tr>
<tr>
<td>cisco.mgmt.cns.device.connect</td>
</tr>
<tr>
<td>cisco.mgmt.cns.device.disconnect</td>
</tr>
<tr>
<td>cisco.mgmt.cns.exec.complete</td>
</tr>
<tr>
<td>cisco.mgmt.cns.execl.load</td>
</tr>
</tbody>
</table>

Step 2
Click on the Event you want to edit.
The Edit Event parameters page appears (see Figure 7-5).
Deleting Events

Step 1 From the Namespace Manager main page, click Delete Events. The Delete Event list page appears (see Figure 7-6).

Step 3 Modify all applicable fields, then click Edit.
Step 2
Check to select the Event(s) you want to delete, then click **Delete**.

A confirmation box appears.

Step 3
To Delete the selected Event(s), click **OK**.
Query Manager

To access Query management tasks, log into the system (see “Logging In” section on page 2-23). Then, from the Home page, click the Tools tab. The Tools page appears.

From the Tools page, click Query Mgr. The Query Manager Functional Overview page appears showing:

- View Query
- Create Query
- Edit Query
- Delete Query

Viewing Queries

Step 1
From the Query Manager Functional Overview page, click View Query.

The View Queries page appears (see Figure 8-1).

![Figure 8-1 View Queries Page](image)

Step 2
Click on the Query Name for which you want to view details.

The Query Details page appears (see Figure 8-2).
Creating Queries

Step 1
From the Query Manager Functional Overview page, click Create Query.
The Create Query page appears (see Figure 8-3).

Step 2
Enter a Query Name.

Step 3
Use the drop-down arrow to select Operators and Attributes with which to build a Query String, then for each successive click Add to Query String.

Each time you click Add to Query String, that portion of the argument is added to the query string.

Step 4
If required, enter the remainder of the argument in the User Query string field.

Step 5
To validate this query before you create it, click Validate.
The Query returns a result.

Step 6
To create this query, click Create.
Editing Queries

Step 1
From the Query Manager Functional Overview page, click **Edit Query**.
The Edit Query page appears (see **Figure 8-4**).

![Figure 8-4 Edit Query Page](image)

Step 2
Click on the Query Name you want to edit.
The Edit Query Attributes page appears (see **Figure 8-5**).

![Figure 8-5 Edit Query Attributes Page](image)

Step 3
Modify all applicable fields:

- **a.** Use the drop-down arrow to select Operators and Attributes with which to build a Query String, then for each successive click **Add to Query String**.

 Each time you click **Add to Query String**, that portion of the argument is added to the query string.

- **b.** If required, enter the remainder of the argument in the User Query string field.

- **c.** To validate this query before you create it, click **Validate**.

 The Query returns a result.

Step 4
To save your changes to this query, click **Edit**.

<table>
<thead>
<tr>
<th>Query Name</th>
<th>User Query String</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOSdomain</td>
<td>IOSdomain=cisco.com</td>
</tr>
<tr>
<td>vpn_cfg_tmpl</td>
<td>IOSconfigtemplate=VPN.cfgtmpl</td>
</tr>
</tbody>
</table>

Sample User Query String: (IOSconfigtemplate=VPN.cfgtmpl) & (IOSdomain=cisco.com)
Deleting Queries

Step 1
From the Query Manager Functional Overview page, click **Delete Query**. The Delete Query page appears (see Figure 8-6).

Figure 8-6 Delete Query Page

Delete Query:

<table>
<thead>
<tr>
<th>Select All</th>
<th>Query Name</th>
<th>User Query String</th>
<th>Ldap Query String</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CiscoDomain</td>
<td>cisco.com</td>
<td>(ou=Domain=ciesta.com)</td>
</tr>
<tr>
<td></td>
<td>vlan-config</td>
<td>config-template=VPN.cfg</td>
<td>(ou=Configuration-template=VPN.cfg)</td>
</tr>
</tbody>
</table>

Step 2
Check to select the Query you want to delete, then click **Delete**.
Data Manager

To access Data management tasks, log into the system (see “Logging In” section on page 2-23). Then, from the Home page, click the Tools tab. The Tools page appears.

From the Tools page, click Data Manager. The Data Manager page appears. The Data Manager functions include:

- Schedule Backup
- Update Product List
- Manage Disk Space

Scheduling Data Backup

Step 1 From the Data Manager Overview page, click ScheduleBackup.

The backup information dialog box appears (see Figure 9-1).
Step 2 To specify where you want the backup data to be stored, enter the FTP server name in the FTP Server Name field.

Table 9-1 shows valid values for these fields.

Table 9-1 Valid Values for Backup Schedule Parameters

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP Server name</td>
<td>Server name where all backup files will be put.</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
<tr>
<td>Username</td>
<td>Login username for the FTP server.</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
<tr>
<td>Password</td>
<td>Password for FTP server.</td>
<td>Printable characters with a length of 6 – 12</td>
</tr>
<tr>
<td>Directory</td>
<td>Subdirectory into which all backup files will be put.</td>
<td>Absolute path</td>
</tr>
</tbody>
</table>
Step 3
To specify the username to log into the FTP server, enter a valid username in the **Username** field.

Step 4
To specify the password to use to log into the FTP server, enter a valid value in the **Password** field.

Step 5
To specify the subdirectory where the data file is put, enter the absolute path in the **Directory** field.

Step 6
Choose whether to **Enable Log File Management**.

Step 7
To specify the backup schedule, complete the fields in the **Backup Schedule** pane.

Note
The time base for the host system should be set to Coordinated Universal Time (UTC).

Step 8
To cancel the backup operation, click **Cancel**.

Step 9
To start the backup operation, click **Backup**.

Updating Product List

The product list is a mapping between product name of the network modules as specified in the pricing list and the numeric identification number stored in EPROM. As new products are added, this list grows and hence the need for the Cisco Configuration Engine to update this list whenever new products are added. This list can be downloaded from the Cisco web site at: http://www.cisco.com.

Step 1
From the Data Manager page, click **Update Product List**.

The Update Product List dialog box appears (see Figure 9-2).

Figure 9-2 Update Product List

Select Download Option:
- Download from Specified URL
- Bypass Version Check

URL:

Username:

Password:

![Download Button]

Step 2
Select the appropriate download option.
Table 9-2 shows valid values for these fields.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Download Option</td>
<td>Available download options</td>
<td>Radio Button</td>
</tr>
<tr>
<td>URL</td>
<td>Target URL</td>
<td>Valid URL as per RFC 1738.</td>
</tr>
<tr>
<td>Username</td>
<td>Your username</td>
<td>a-z , A-Z , 0-9 , -(hyphen) , _ (under-score) , . (period)</td>
</tr>
<tr>
<td>Password</td>
<td>Your password</td>
<td>Printable characters with a length of 6 – 12</td>
</tr>
</tbody>
</table>

Step 3 Enter the target URL.
Step 4 Enter your username and password.
Step 5 To download the product list, click Download.

Managing Disk Space

Step 1 From the Data Manager page, click Manage Disk Space.
The Setup Disk Space Notification dialog box appears (see Figure 9-3).

Figure 9-3 Disk Space Notification

Step 2 Set the notification percentage to the value that triggers an e-mail notification.
Table 9-3 shows valid values for these fields.
Step 3 Set the appropriate e-mail address for notification e-mail.

Step 4 To save these entries, click Save.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set notification percentage</td>
<td>Notification percentage that triggers an e-mail notification.</td>
<td>0 – 100</td>
</tr>
<tr>
<td>E-Mail Ids for notification:</td>
<td>E-mail address to send notification.</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
</tbody>
</table>

Table 9-3 Valid Values for Setup Disk Space Notification
Directory Manager

Note
Directory Manager can be accessed only when operating in Internal Directory mode.

To access Directory management tasks, log into the system (see “Logging In” section on page 2-23). Then, from the Home page, click the Tools tab. The Tools page appears.

From the Tools page, click Directory Mgr.

With the directory manager you can:

- Edit the schema
- Import a schema from an XML file

Editing Schema

Step 1
From the Directory Manager page, click Edit Schema.

The schema editor appears (see Figure 10-1).

Figure 10-1 Schema Editor

Name of class to which attribute belongs	IOSConfigClass
Name of the attribute	
Unique ID for this attribute	1.2.840.113549.1.2.3001
Importing Schema

You can import a schema accessible from your computer. However, the file must be in XML format and conform to the definitions specified in the document type definition (DTD) file shown here:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dsml []>
<!ELEMENT attribute EMPTY>
<!ATTLIST attribute
    ref CDATA #REQUIRED
    required CDATA #REQUIRED
>
<!ELEMENT attribute-type (name, object-identifier, syntax)>
<!ATTLIST attribute-type
    id CDATA #REQUIRED
    single-value CDATA #REQUIRED
    obsolete CDATA #REQUIRED
    user-modification CDATA #REQUIRED
>
<!ELEMENT class (name, object-identifier, attribute)>
<!ATTLIST class
    id CDATA #REQUIRED
    superior CDATA #REQUIRED
    type CDATA #REQUIRED
    obsolete CDATA #REQUIRED
>
<!ELEMENT directory-schema (attribute-type, class)>
<!ELEMENT dsml (directory-schema)>```

---

**Step 2** Enter the name of the new attribute.

*Table 10-1* shows valid values for these fields.

#### Table 10-1  Valid Values for Schema Editor

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the attribute</td>
<td>Name of the attribute</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
<tr>
<td>Unique ID for this attribute</td>
<td>Unique ID for this attribute</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
</tbody>
</table>

**Step 3** Accept or modify the **Unique ID** for this attribute.

**Step 4** To clear your entries, click **Reset**.

**Step 5** To add this attribute to the schema, click **Add Entry**.
Example

For example, a valid schema would look like:

```
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dsml SYSTEM "dsml.dtd">
<dsml complete="true">
 <directory-schema>
 <attribute-type id="IOSe1ipaddress" single-value="true" obsolete="false" user-modification="true">
 <name>IOSe1ipaddress</name>
 <object-identifier>1.2.840.113548.3.1.20</object-identifier>
 <syntax>1.3.6.1.4.1.1466.115.121.1.15</syntax>
 </attribute-type>
 <class id="IOSConfigClass" superior="top" type="structural" obsolete="false">
 <name>IOSConfigClass</name>
 <object-identifier>1.2.840.113548.3.2.2.1</object-identifier>
 <attribute ref="1.2.840.113548.3.1.2.20" required="false"/>
 </class>
 </directory-schema>
</dsml>
```

Step 1

From the Directory Manager page, click **Import Schema**. The import schema dialog box appears (see Figure 10-2).

Figure 10-2  Import Schema

![Import Schema](Diagram)

**Import Schema**

**Schema Filename**

Use the browse function to locate the file, if needed.

Step 2

Enter the filename of the schema you want to import in the **Schema Filename** field. Table 10-2 shows valid values for these fields.

Table 10-2  Valid Values for Import Schema

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema Filename</td>
<td>Name of schema file to import.</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
</tbody>
</table>

Use the browse function to locate the file, if needed.
Step 3  To clear your entries, click Reset.
Step 4  To import the file, click Import.
Parameter Manager

To access Parameter management tasks, log into the system (see “Logging In” section on page 2-23). Then, from the Home page, click the Tools tab. The Tools page appears.

From the Tools page, click Parameter Mgr.

With the directory manager you can:

- Parameter Validations
- Edit Fetch Process
- Edit Save Process
- Import Script File

Parameter Validations

Step 1 From the Parameter Manager page, click Parameter Validations.

The Parameter Validations page appears (see Figure 11-1).
Figure 11-1 Parameters Validations Page

Edit Parameters Validations

<table>
<thead>
<tr>
<th>Available Parameter</th>
<th>Validation Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdminDevType</td>
<td>– No Validation –</td>
</tr>
<tr>
<td>IOSname</td>
<td>– No Validation –</td>
</tr>
<tr>
<td>IOShostname</td>
<td>– No Validation –</td>
</tr>
<tr>
<td>IOSipaddress</td>
<td>validate_Domain_Name</td>
</tr>
<tr>
<td>IOSpassword</td>
<td>validate_Password</td>
</tr>
<tr>
<td>IOSprotocol</td>
<td>– No Validation –</td>
</tr>
<tr>
<td>IOSbootingprotocol</td>
<td>– No Validation –</td>
</tr>
<tr>
<td>IOSdevice</td>
<td>– No Validation –</td>
</tr>
<tr>
<td>IOSreturn</td>
<td>– No Validation –</td>
</tr>
<tr>
<td>SW1InterfaceName</td>
<td>– No Validation –</td>
</tr>
<tr>
<td>SW2InterfaceName</td>
<td>– No Validation –</td>
</tr>
</tbody>
</table>

Step 2  
From drop-down list for each available parameter, select the desired validation function, then click **Update**.

A status page appears showing the updates you have made.

---

**Edit Fetch Process**

Step 1  
From the Parameter Manager page, click **Edit Fetch Process**.

The Edit Fetch Process page appears (see Figure 11-2).

Figure 11-2 Edit Fetch Process Page

Edit Fetch Process

Step 2  
Use the drop-down arrow to select the desired fetch process, then click **Update**.

Confirmation of this action is reported.
Edit Save Process

**Step 1**  From the Parameter Manager page, click **Edit Save Process**. The Edit Save Process page appears (see Figure 11-3).

*Figure 11-3  Edit Save Process Page*

**Step 2**  Use the drop-down arrow to select the desired save process, then click **Update**. Confirmation of this action is reported.

---

Import Script File

**Step 1**  From the Parameter Manager page, click **Import Script File**. The Import Script File page appears (see Figure 11-4).

*Figure 11-4  Import Script File Page*

**Step 2**  Enter the desired filename, or click Browse to access your file system, then click **Upload**.
Templates

When creating a template, it is possible to specify variables that will be contextually substituted. Many of these variables are available in the drop-down menu in the Template Editor (see Figure 12-4). It is also possible to create these files offline without the Template Editor and still use these variables.

The basic format of a template file is simply the text of the configuration to be downloaded to your device (see “Sample Template” section on page 12-125). However, you can put variable substitutions of the following form (for example, the variable name could be `iosipaddress`):

Internal directory mode:

```text
${LDAP://this:attrName=iosipaddress}
```

External directory mode:

```text
${LDAP://10.1.2.3/cn=Device1,ou=CNSDevices,o=cisco,c=us:attrName=iosipaddress}
```

It is possible to create segments of templates that can be included in other templates. For example, you might have an Ethernet configuration that would be used by multiple devices. In each device template, you could have:

```text
#include /opt/CSCOcnsie/Templates/ethernet_setup.cfgtpl
```

Now, you could centralize all the administration for Ethernet configuration in one file.

Caution

Circular includes of template files are not allowed.

Sample Template

The following sample is the configuration template for the DemoRouter (`DemoRouter.cfgtpl`), which is pre-loaded on your system:

```text
! version 12.0
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service udp-small-serversservice tcp-small-servers
!
hostname DemoRouter
!
boot system flash c7200-is-mz
enable secret 5 1cMdI$.e37TH540MWB2GWSgMOn3/
enable password cisco
```
! ip subnet-zero

! interface FastEthernet0/0
  no ip address
  no ip directed-broadcast
  no ip route-cache
  no ip mroute-cache
  shutdown
  half-duplex

! interface Ethernet1/0
  ip address 10.10.1.1 255.255.255.240
  no ip directed-broadcast
  no ip route-cache
  no ip mroute-cache

! interface Ethernet1/1
  no ip address
  no ip directed-broadcast
  no ip route-cache
  no ip mroute-cache
  shutdown

! interface Ethernet1/2
  no ip address
  no ip directed-broadcast
  no ip route-cache
  no ip mroute-cache
  shutdown

! interface Ethernet1/3
  no ip address
  no ip directed-broadcast
  no ip route-cache
  no ip mroute-cache
  shutdown

! ip classless
ip route 0.0.0.0 0.0.0.0 10.10.1.1
ip http server

! dialer-list 1 protocol ip permit
dialer-list 1 protocol ipx permit

! line con 0
  transport input none
line aux 0
line vty 0 4
  password cisco
  login

! end
Configuration Control Templates

To restart a device with a new image, you need Configuration Control templates that contain the required CLI commands for image activation on particular devices.

For example, if you want to restart a Cisco 3600 Series router with an image named 3600.image, from the device console, you would issue the following CLI commands:

no boot system
boot system flash:3600.image

The content of the Configuration Control template for image activation should contain the CLI commands that you would normally enter from the device console to activate a new image on the device.

Dynamic Flow Control Template

The inventory information collected from image agents is made available for external users by means of the Dynamic Flow Control Template. This enables you to write templates that can control the flow of configuration and image distribution jobs, based on the inventory information.

Inventory Operations

These are the operations that are exposed to you to access the inventory of the device from the Dynamic Flow Control Templates:

<table>
<thead>
<tr>
<th>Function</th>
<th>$!(invObj.getDram())</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>int (bytes).</td>
</tr>
<tr>
<td>Description</td>
<td>Dram = Main Mem Size + IO Mem Size. Returns the size of the DRAM.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>$!(invObj.getVersionString())</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>String.</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the version string of the current running image from the device inventory.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>$!(invObj.getImageFile())</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>String.</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the current running image file name.</td>
</tr>
<tr>
<td>Function</td>
<td>${invObj.getImageMD5()}</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Return Type</td>
<td>String.</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the MD5 as provided in the device inventory.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>${invObj.getStartedAt()}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>String.</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the time string of when the device started.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>${invObj.getPlatformName()}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>String.</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the platform name.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>${invObj.getFlash()}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>int (bytes).</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the size of the flash.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>${invObj.getFileSysSize(&quot;bootflash&quot;)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>int (bytes).</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the size of the bootflash.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>${invObj.getFileSysFreespace(&quot;bootflash&quot;)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>int (bytes).</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the amount of free space in the bootflash.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>${invObj.getFileSysSize(&quot;nvram&quot;)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>int (bytes).</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the size of the NVRAM.</td>
</tr>
<tr>
<td>Function</td>
<td>$!{invObj.getFileSysFreespace(&quot;nvram&quot;)}</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Return Type</td>
<td>int (bytes).</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the amount of free space in the NVRAM.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>$!{invObj.getFileSysSize(&quot;disk0&quot;)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>int (bytes).</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the size of disk0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>$!{invObj.getFileSysFreespace(&quot;disk0&quot;)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>int (bytes).</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the amount of free space in disk0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>$!{invObj.getFileSysSize(&quot;slot0&quot;)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>int (bytes).</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the size of slot0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>$!{invObj.getFileSysFreespace(&quot;slot0&quot;)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>int (bytes).</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the amount of free space in slot0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>$!{invObj.getFileSysSize(&quot;slot1&quot;)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>int (bytes).</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the size of slot1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>$!{invObj.getFileSysFreespace(&quot;slot1&quot;)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Type</td>
<td>int (bytes).</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the amount of free space in slot1.</td>
</tr>
</tbody>
</table>
Other Operations

These are the operations that are exposed to you to perform an action based on the above criterion from the Dynamic Flow Control Template:

<table>
<thead>
<tr>
<th>Function</th>
<th>$!{cnsceObj.distribute()}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Description</td>
<td>Perform image distribution. The pre-configured image is used.</td>
</tr>
</tbody>
</table>

| Function | $!{cnsceObj.activate("persist" | "nv_overwrite")} |
|----------|-----------------------------|
| Parameters | Sets the config action:  
- “persist” – apply and save configuration to NVRAM.  
- “nv_overwrite” – overwrite NVRAM configuration. |
| Description | Performs image activation. The pre-configured image is used. |

| Function | $!{cnsceObj.updateConfig(true | false, "write" | "persist" | "nv_overwrite")} |
|----------|-----------------------------|
| Parameters | First parameter sets the syntax check:  
- true – syntax check is turned on.  
- false – syntax check is turned off.  
Second parameter is to set the config action:  
- “write” – apply to running configuration.  
- “persist” – apply and save configuration to NVRAM.  
- “nv_overwrite” – overwrite NVRAM configuration. |
| Description | Performs configuration update. The pre-configured template is used. |

Notes

The `invObj.getDram()` operation returns the following:

Dram = Main Mem Size + IO Mem Size

Example

```bash
#set($dram = $!{invObj.getDram()})
##
#if ($dram > 6100)
 $!{cnsceObj.distribute()}
 $!{cnsceObj.activate("persist")}
#end
```
As seen in the example above, you can customize the flow of the job depending on the DRAM size. When a custom job with the above inventory template is submitted, the device is queried for its inventory, and depending on the DRAM size, the decision is made if the image upgrade is to be performed or not. Hence when the above example inventory template is evaluated, if the DRAM size of the device is greater than 6100 bytes the image distribution and image activation will be performed.

Sample 1

```java
#set($dram = $!{invObj.getDram()})
#set($flash = $!{invObj.getFlash()})
###
#if ($dram > 6400000)
 $!{cnsceObj.distribute()}
#if ($flash > 48000000)
 $!{cnsceObj.activate("persist")}
#end
#end
```

Sample 2

```java
#set($disk0free = $!{invObj.getFileSysFreespace("disk0")})
###
#if $disk0free > 3500000
 $!{cnsceObj.distribute()}
 $!{cnsceObj.activate("persist")}
#end
```

Sample 3

```java
#set($flash = $!{invObj.getFlash()})
###
#if ($flash > 65000000)
 $!{cnsceObj.updateConfig(true, "persist")}
#end
```

Templates for Modular Routers

The template mechanism for the devices has been enhanced to support modular routers. A modular router chassis includes slots in which you can install modules. You can install any module into any available slot in the chassis. Some modules like 2 Ethernet 2 WAN card slot module can in turn have sub slots to install interface cards or line cards. Device management has been extended to support subdevices representing line cards.

Additional attributes representing line card number, line card type, and subdevices have been added to the existing device object structure in the directory server in order to have the same structure to represent the main device or the subdevice.

Currently, card type is a string that maps to the product code of the network module. Since the EPROM data in the card stores part numbers only, not product codes, the part numbers are mapped to product codes. The user uses part numbers and the configuration server maps part numbers to product codes.
In the context of main device, the line card number and line card type fields make no sense and hence are set to NULL value. The subdevices field in the sub device (representing the line card) is set to NULL value.

New interface variable support has been added. These variables are included in the templates, which are parameterize with the interface numbers in the template. These are not attributes. They are special format variables that are replaced by the configuration server based on the interface information, which comes from the device. These variables only specify the relative position of the interface on the module and are replaced by the actual slot number, shelf-ID or port number. The interface variables are wrapped in percent sign (%) characters and specify the type, if any, and the relative position. The configuration server replaces these variables with the interface numbers. The interface type still has to be specified in the CLI using the following syntax:

**Interface Variable = [%][InterfaceType][RelativePosition]**

For example:
%

- FastEthernet 0% for interface FastEthernet
- Serial 0% interface Serial
- T1 0% controller T1
- E1 0% controller E1
- voice-port 0% voice-port

**Example 1:**

A network module with two FastEthernet ports plugged in Slot 2 would be referred in the configuration CLI as FastEthernet 2/0 and FastEthernet 2/1 and referred in the template as FastEthernet %FastEthernet 0% and FastEthernet %FastEthernet 1%:

```config
! interface FastEthernet 2/0
 ip address 10.10.1.1 255.255.255.0
!
interface FastEthernet 2/1
 ip address 20.20.1.1 255.255.255.0
!
```

Templates for these CLIs would be:

```config
! interface FastEthernet %FastEthernet 0%
 ip address 10.10.1.1 255.255.255.0
!
interface FastEthernet %FastEthernet 1%
 ip address 20.20.1.1 255.255.255.0
!
```
Example 2 (Voice card with two ports plugged in slot 3):

```plaintext
! voice-port 3/0/0
description 4082224444
!
voice-port 3/0/0
description 4082225555
!

Templates for these CLIs would be:

```plaintext
! voice-port %voice-port 0%
description 4082224444
!
voice-port %voice-port 1%
description 4082225555
!
```

The main device template does not include links to the subdevice templates. The subdevice templates are appended to the main device template. The line card numbers are a parameter in the subdevice templates.

All the CLI commands which reference a line card interface are specified in the subdevice template for that line card. This implies that any command in the global configuration mode, or otherwise, that refers to a particular line card interface is in the template for that subdevice (line card) and not in the main device template.

Only the CLI commands in the global configuration mode, and not pertaining to the any specific interface, are specified in the main device template.

The port number and channel number are not template parameters since these are fixed for a given line card. The network administrator can configure specific channels on the interfaces by explicitly specifying the channels in the subdevice templates.

For example:

```plaintext
interface Serial %Serial 0%:0
```

Sample Templates for Modular Router

The names of the attributes for slot, slot-unit, line card type and so forth, are used for demonstration purposes.

Main Device Template

```plaintext
!
version 12.2
no parser cache
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname 2600
!
```
logging rate-limit console 10 except errors
!
memory-size iomem 25
ip subnet-zero
!
!
no ip dhcp-client network-discovery
lcp max-session-starts 0
!
ip classless
no ip http server
!
call rsrp-sync
!
no mgcp timer receive-rtcp
!
mgcp profile default
!
dial-peer cor custom
!
!
!
!
line con 0
line aux 0
line vty 0 4
 login
line vty 5 15
 login
!

FastEthernet Template

Interface FastEthernet %FastEthernet 0%

ip address 10.0.0.1 255.0.0.0
shutdown
speed auto

Voice-port Template

voice-port %voice-port 0%
playout-delay mode adaptive
!
voice-port %voice-port 1%
!
dial-peer voice 10 pots
destination-pattern 200
port %voice-port 0%
forward-digits all

voice-port %voice-port 0%
!
dial-peer voice 20 pots
destination-pattern 100
port %voice-port 0%
!
voice-port %voice-port 1%
Modular Router Events

Modular router events are published to the event bus and are accessible to applications connected to the bus. The IOS device publishes the system hardware configuration in the `cisco.cns.config.device-details` event after hardware discovery. The Cisco Configuration Engine is configured to listen for this event, retrieve it, and extract the hardware configuration of the device.

Following is the DTD of the `cisco.cns.config.device-details` event that the Cisco IOS device sends:

```xml
<!ELEMENT device-details (config-id, connect-interface?, card-info*)>
<!ELEMENT config-id (#PCDATA)>
<!ELEMENT connect-interface (#PCDATA)>
<!ELEMENT card-info (card-info+)>
<!ELEMENT card-type (#PCDATA)>
<!ELEMENT card-desc (#PCDATA)>
<!ELEMENT slot (#PCDATA)>
<!ELEMENT daughter (#PCDATA)>
<!ELEMENT serial-number (#PCDATA)>
<!ELEMENT part-number (#PCDATA)>
<!ELEMENT hw-version (#PCDATA)>
<!ELEMENT board-revision (#PCDATA)>
<!ELEMENT ports (#PCDATA)>
<!ELEMENT controller (#PCDATA)>
<!ELEMENT rma-number (#PCDATA)>
<!ELEMENT test-history (#PCDATA)>
<!ELEMENT eeprom-version (#PCDATA)>
<!ELEMENT eeprom-data (#PCDATA)>
<!ELEMENT interface (#PCDATA)>
<!ELEMENT controller (#PCDATA)>
<!ELEMENT voice-port (#PCDATA)>
```

Dynamic Templates

There might be times when the actual contents of a template needs to be dynamically generated. To do this, you would use the `#call` mechanism. This executes a JavaScript program whose output becomes part of the template. The program is re-executed each time a device asks for the template.

For example, you might want to distribute the load across the various event gateway processes without permanently assigning a device to a particular event gateway. This is useful because of the limit of 500 devices per event gateway daemon instance.

Let us take the following template as an example:

```plaintext
version 12.0
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service udp-small-servers
service tcp-small-servers
!
hostname DemoRouter

#call /opt/CSCOcnsie/Templates/event_setup.js
```

Here is an example of an `event_setup.js` that one might use:

```javascript
/*
 * An instance of Event Gateway resides on every odd port from 11011 to 11031.
 */
```
* This will choose a random one in this range so that devices are spread out
* evenly among the various ports. Adjust the IP address in the println
* statement to be the address of the IE2100 itself.
*/
var port = Math.floor(Math.random() * 11) * 2 + 11011;
println('cns event 10.1.6.131 " + port.toString());

The result of this combination would be a template that appears as follows:

```
version 12.0
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service udp-small-servers
service tcp-small-servers
!
hostname DemoRouter
cns event 10.1.6.131 11017
```

The last line is programatically determined and recalculated every time the template is requested by
the device. So the next time a device requests this template, the last line might be:

cns event 10.1.6.131 11023

Simple modifications to `event_setup.js` could even be used to distribute devices across multiple host
devices (by dynamically generating the IP address). It could also be used to affect any part of the device
configuration—be it DNS servers or routing tables. Anything that is printed out by the JavaScript
program becomes a dynamic part of the template.

Control Structures

The configuration template can include simple control structures such as, `if`, `else` and `elseif`. By using
these control structures, the user can include or exclude a block of CLI commands based on a parameter
stored in the directory.

The syntax for these `#` preprocessing control structures is as follows:

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>#if <URL> = constant</code></td>
<td>cli-command(s)</td>
</tr>
<tr>
<td><code>#elseif <URL> = constant</code></td>
<td>cli-command(s)</td>
</tr>
<tr>
<td><code>#else</code></td>
<td>cli-command(s)</td>
</tr>
<tr>
<td><code>#endif</code></td>
<td></td>
</tr>
</tbody>
</table>

Where `constant` is an integer, boolean or a string in single quotes and the `<URL>` is a URL pointing to
an attribute in the Directory or Database.

Note

Nested `#if` and `#elseif` is NOT supported.
Usage Guidelines

The configuration template can include `#define` entries to define short names for long URLs.

The syntax for the `#define` preprocessing command is as follows:

```
#define definition-name <URL> [constant]
```

where `<URL>` is a reference to an attribute in the directory.

The configuration template can contain another `#` preprocessing command `#include`, which allows the inclusion of other configuration templates or the results of an ASP page.

The syntax for the `#` preprocessing command is as follows:

```
#include <URL> | '<Filename>' | <Filename>
```

Whenever an `#include` directive is encountered, it is replaced by the content of the file.

The following configuration template sample includes either IP sub-template or ISDN sub-template based on the value of the parameter protocol in the directory or database.

Examples

```
! version 12.0
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service udp-small-servers
service tcp-small-servers
!
hostname ${LDAP://this:attrName=IOSHostname}
#if ${LDAP://this:attrName=IOSIPprotocol} == true then
#include ${LDAP://this:attrName=IPsubTemplate}
#else
#include ${LDAP://this:attrName=ISDNSubTemplate}
#endif
```

The parameter, `$('LDAP://this:attrName=IPsubTemplate')` contains the location of the file.

Managing Templates

To access Template management tasks, log into the system (see “Logging In” section on page 2-23). Then, from the Home page, click the Tools tab. The Tools page appears.

From the Tools page, click Template Mgr. The Template Manager page appears showing:

- Add Template
- Edit Template
- Delete Template
- Import Template
- Export Template
- Import Local Template
Adding a Template

Step 1
From the Template Manager page, click **Add Template**.
The Template Engine page appears (see **Figure 12-1**).

Figure 12-1 Template Engine

Add Template
Please select a template engine for the new template:

<table>
<thead>
<tr>
<th>Template Engine Name</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legacy Template Engine</td>
<td>.cfgpl</td>
</tr>
<tr>
<td>Velocity Template Engine</td>
<td>.xml</td>
</tr>
<tr>
<td>Inventory Template Engine</td>
<td>.inv</td>
</tr>
</tbody>
</table>

Select the Template Engine for the new template, then click **Next**.
A blank template page appears (see **Figure 12-2**).

Figure 12-2 Blank Template Page

Step 2
Enter the filename for this template in the **Template File** field.
Table 12-1 shows valid values for these fields.
Table 12-1 Valid Values for Add Template

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template File</td>
<td>Filename of template</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
<tr>
<td>Attributes</td>
<td>Available attributes</td>
<td>From drop-down list</td>
</tr>
</tbody>
</table>

Step 3 To choose the attributes you want to be included in this template, use the Attributes menu.

Step 4 To save your entries, click Save.

Editing a Template

Step 1 From the Template Manager page, click Edit Template.

The Edit Template list appears (see Figure 12-3).

Figure 12-3 Edit Template List

Step 2 Click on the icon for the template file you want to edit.

The template file appears.

Step 3 To edit parameters (attribute information):
 a. From the template file page, click Edit AttributeInfo.
 b. Edit the desired parameter fields.
 c. To clear your entries, click Reset.
 d. To save your changes, click Save.

Step 4 To save and apply, Save and Apply.

Step 5 To edit template content:
 a. To edit the content of a template, from the template file page, click Edit Content.

 The template content appears (see Figure 12-4).
Managing Templates

Figure 12-4 Template Content

b. Edit the content by adding or deleting attributes.
c. To save your edits, click Save.
d. To save as a new template, click Save as.

Deleting a Template

Step 1 From the Template Manager page, click Delete Template.
The template file list appears.
Step 2 Select the template you want to delete.
Step 3 Delete the desired template file.
Importing a Template

Step 1 From the Template Manager page, click **Import Template**.

Figure 12-5 Importing a Template

Step 2 In the dialog box that appears, enter the FTP or SFTP path of the server name in the **FTP/SFTP** field to which the files have to be exported.

Step 3 Enter the username in the **Username** field.

Step 4 Enter the password in the **Password** field.

Step 5 Reenter the password in the **Confirm Password** field.

Step 6 Enter the subdirectory path in the **Directory** field to which the file should be exported.

Step 7 Enter the name of the template file in the **Filename** field, if known, or browse your directory tree to choose the filename you desire.

Step 8 To clear the field, click **Reset**.

Step 9 To import the template file, click **Submit**.
Managing Templates

Chapter 12 Templates

Exporting Template

Step 1 From the Template Manager page, click Export Template.

Figure 12-6 Exporting a Template

Step 2 In the dialog box that appears, enter the FTP or SFTP path of the server name in the FTP/SFTP field to which the files have to be exported.

Step 3 Enter the username in the Username field.

Step 4 Enter the password in the Password field.

Step 5 Reenter the password in the Confirm Password field.

Step 6 Enter the subdirectory path in the Directory field to which the file should be exported.

Step 7 Enter the name of the template file in the Filename field, if known, or browse your directory tree to choose the filename you desire.

Step 8 To clear the field, click Reset.

Step 9 To import the template file, click Submit.
Importing Local Template

Step 1 From the Template Manager page, click **Import Local Template**.

![Import Local Template](image)

Figure 12-7 Import Local Template

Import Template

- **Filename**
- **Browse**
- **Upload**
- **Reset**

Step 2 Enter the name of the template file in the **Filename** field, if known, or browse your directory tree to choose the filename you prefer.

Step 3 To import the template file, click **Upload**.
Security Manager

With the security manager tool you can change the bootstrap password.
The bootstrap password is used to authenticate a Cisco IOS device before it connects to the Event Gateway. You can set the default bootstarp password by using the Cisco Configuration Engine setup program. For additional information see “Device Authentication” section on page 1-12.

To access Security management tasks, log into the system (see “Logging In” section on page 2-23). Then, from the Home page, click the Tools tab. The Tools page appears. From the Tools page, click Security Mgr.

The Security Manager page appears showing: BootStrap.

Changing Bootstrap Password

The bootstrap password is used where multiple devices are deployed in a batch. In this case, all devices in a particular batch are given the same (bootstrap) password to use when they each start up on the network for the first time. The bootstrap password can be changed for different batches of devices by using the Security Manager.

Step 1
From the Security Management page, click BootStrap.
The Change Bootstrap Password page appears (see Figure 13-1).
Step 2 In the password dialog box, enter the new password.

Table 13-1 shows valid values for these fields.

Table 13-1 Valid Values for Change Bootstrap Password

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>New password</td>
<td>Bootstrap password</td>
<td>Printable characters with a length of 6 – 12</td>
</tr>
<tr>
<td>Confirm password</td>
<td>Bootstrap password</td>
<td>Printable characters with a length of 6 – 12</td>
</tr>
<tr>
<td>Update</td>
<td>Modifies the database copy of the password that is equal to the current bootstrap password. This will require manual intervention on all currently uninstalled devices when they do their initial registration.</td>
<td>Radio button</td>
</tr>
<tr>
<td>Keep</td>
<td>Does not modify the database copy of any password that is equal to the current bootstrap password. This allows all currently uninstalled devices to complete their initial registration without manual intervention.</td>
<td>Radio button</td>
</tr>
</tbody>
</table>

Step 3 Confirm the new password.

Step 4 Choose (Keep, Update radio buttons) the subsequent action to the database regarding any password that is equal to the bootstrap password.

Step 5 To clear all entries, click Reset.

Step 6 To save the new password, click OK.
Log Manager

To access Log management tasks, log into the system (see “Logging In” section on page 2-23). Then, from the Home page, click the Tools tab. The Tools page appears.

From the Tools Page, click Log Manager. The Log Manager page appears showing:

- View Logs
- Clear Logs
- Export Logs
- Change Log Level

Viewing Log Files

Step 1
From the Log Manager page, click View Logs.
The View Log Files dialog box appears (see Figure 14-1).

Figure 14-1 Selecting Log File to View

Step 2
Select the log file you want to view.
Table 14-1 shows valid values for these fields.

Table 14-1 Valid Values for View Log Files

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Log Files</td>
<td>List of available log files.</td>
<td>Radio button</td>
</tr>
<tr>
<td>Number of lines</td>
<td>Number of lines displayed.</td>
<td></td>
</tr>
<tr>
<td>Filter String</td>
<td>Filter string</td>
<td>a-z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-(hyphen)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>_ (under-score)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>. (period)</td>
</tr>
</tbody>
</table>

Step 3 For additional attributes related to viewing Event Logs, click Advanced.

The View Event Log window appears (see Figure 14-2).

Figure 14-2 Event Log Attributes

View Event Log

Step 4 Enter the attributes you want to view a specific Event Log, then click View.

Step 5 In the main View Log Files window (see Figure 14-1), set the number lines you want to display.

Step 6 To limit the report to display only specific entries, set a case-sensitive keyword filter, or leave blank.

Step 7 Click View.

A report displays.
Clearing Logs

Step 1 From the Log Manager page, click **Clear Logs**.
The Clear Log Files dialog box appears (see **Figure 14-1**).

Figure 14-3 Clear Logs

Step 2 Check the log files you want to clear.
Step 3 To cancel this task, click **Cancel**.
Step 4 To clear the selected log files, click **Clear**.
Exporting Logs

Step 1 From the Log Manager page, click **Export Logs**.

The Export Log Files dialog box appears (see Figure 14-4).

Figure 14-4 Export Logs

Export Logs

<table>
<thead>
<tr>
<th>Select Log File:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events Log</td>
</tr>
<tr>
<td>Config Server Log</td>
</tr>
<tr>
<td>HTTP Server Log</td>
</tr>
<tr>
<td>Access Log</td>
</tr>
<tr>
<td>Cfgm Log</td>
</tr>
<tr>
<td>Authentication Errors</td>
</tr>
<tr>
<td>PIX Log</td>
</tr>
<tr>
<td>ASA Log</td>
</tr>
<tr>
<td>Image Server Log</td>
</tr>
<tr>
<td>IMGW Runtime Log</td>
</tr>
<tr>
<td>IMGW Device Log</td>
</tr>
</tbody>
</table>

[Clear logs after export]

Export Cancel

Step 2 Check the log files you want to export.

Step 3 To clear logs after export, check the check box.

Step 4 To cancel this task, click **Cancel**.

Step 5 To export the selected log files, click **Export**.
Changing Log Level

Step 1 From the Log Manager page, click **Change Log Level**.

The Change Log Level dialog box appears (see Figure 14-5):

Figure 14-5 Selecting Log Level

<table>
<thead>
<tr>
<th>Select Log Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Debug</td>
</tr>
<tr>
<td>□ Info</td>
</tr>
<tr>
<td>□ Warn</td>
</tr>
<tr>
<td>□ Error</td>
</tr>
<tr>
<td>□ Fatal</td>
</tr>
</tbody>
</table>

Step 2 Select the desired log level by clicking the appropriate radio button, then click **Submit**.
Service Manager

To access Service management tasks, log into the system (see “Logging In” section on page 2-23). Then, from the Home page, click the Tools tab. The Tools page appears.

From the Tools Page, click Service Manager. The Service Manager page appears showing:

- Edit Service Properties
- Edit IMGW Device and Hop Types

Editing Service Properties

Step 1
From the Service Manager Functional Overview page, click Edit Service Properties. The Edit Service Properties page appears (see Figure 15-1).

![Figure 15-1 Edit Service Properties](image)

Step 2
From the Edit Service Properties page, select Image Service by clicking the associated radio button. The service properties page for Image Service appears (see Figure 15-2).
Step 3 To Edit Image Types: Click the move button (<<) to move an image type to the Removed Image Types column.

Step 4 To Edit Boot Timeout: Enter a new value in the text box.

Step 5 To Edit Check Server Msg Timeout: Enter a new value in the text box.

Step 6 To Edit Check Server Msg Retry: Enter a new value in the text box.

Step 7 To cancel this task, click **Cancel**.

Step 8 To submit the changes, click **OK**.
Editing IMGW Device and Hop Types

Step 1
From the Service Manager Functional Overview page, click Edit IMGW Device and Hop Types. The IMGW Device and Hop Types page appears (see Figure 15-3).

Figure 15-3 IMGW Device and Hop Types
Add and Remove IMGW Device Types and Hop Types:

Step 2
To remove a Device Type or Hop Type, click the item, then click Remove.

Step 3
To add a new Device Type or Hop Type, enter the item in the dialog box, then click Add to list.

Step 4
When complete, so save your changes, click Edit.
Bulk Data Manager

To access Bulk Data management tasks, log into the system (see “Logging In” section on page 2-23). Then, from the Home page, click the Tools tab. The Tools page appears.

From the Tools page, click Bulk Data Mgr. The Bulk Data Page appears showing:

- Upload Bulk Data
- Create Sample Data

XML DTD

The following example shows the Document Type Definition (DTD) for the XML bulk upload:

```xml
<?xml version="1.0" encoding="utf-8"?>
<!--
* BulkUpdload.dtd - dtd for bulk upload
* July 2008, Config Engine
* Copyright (c) 2005-2008, 2011 by cisco Systems, Inc.
* All rights reserved.
--> 

<!ELEMENT cns-bulk-upload (cns-element-data)> 
<!ATTLIST cns-bulk-upload
  stop-on-error (true | false) "false"
  version (2.0 | 3.0) "3.0"
> 
<!ELEMENT cns-element-data (NSM-DATA | IMAGE-DATA)> 
<!ELEMENT cns-device-info*,(cns-sub-device-info*, cns-application-info*,
cns-group-info*)> 
<!ATTLIST cns-device-info
  op-type (add|edit|delete) #REQUIRED
  validate-data (true | false) "false"
> 
<!ELEMENT cns-device-name (#PCDATA)> 
<!ATTLIST cns-device-name
  dev-type (other | imgw | pix | asa) "other"
> 
<!ELEMENT cns-extended-attr (#PCDATA)> 
<!ATTLIST cns-extended-attr
  name CDATA #REQUIRED
> 
```
<!ELEMENT dev-image-information (image-id, activation-template?, dev-image-info*)>
<!ELEMENT image-id (#PCDATA)>
<!ELEMENT activation-template (#PCDATA)>
<!ELEMENT dev-image-info (image-name, distribution)>
<!ELEMENT image-name (#PCDATA)>
<!ELEMENT distribution (destination?, location)>
<!ATTLIST distribution overwrite (yes | no) "no" erase-flash (yes | no) "no" activate (true | false) "false">
<!ELEMENT destination (#PCDATA)>
<!ELEMENT location (#PCDATA)>

<!ELEMENT imgw-data (gateway-id?, device-type?, simulation-agent*, hop-information*)>
<!ELEMENT gateway-id (#PCDATA)>
<!ELEMENT device-type (#PCDATA)>
<!ELEMENT simulation-agent (#PCDATA)>
<!ELEMENT hop-information (hop-type, ip-address?, port?, username?, password?)>
<!ELEMENT hop-type (#PCDATA)>
<!ELEMENT ip-address (#PCDATA)>
<!ELEMENT port (#PCDATA)>
<!ELEMENT username (#PCDATA)>
<!ELEMENT password (#PCDATA)>

<!ELEMENT cns-sub-device-info (cns-sub-device-name, sub-device-id, line-card-type, cns-extended-attr*, main-device-name?)>
<!ELEMENT cns-sub-device-name (#PCDATA)>
<!ELEMENT sub-device-id (#PCDATA)>
<!ELEMENT line-card-type (#PCDATA)>
<!ELEMENT main-device-name (#PCDATA)>

<!ELEMENT cns-application-info (cns-application-name, cns-subject-mapping*)>
<!ELEMENT cns-application-name (#PCDATA)>
<!ELEMENT cns-subject-mapping (cns-original-subject, cns-pub-mapping*, cns-sub-mapping*, cns-pub-default, cns-sub-default)>}
<!ELEMENT cns-original-subject (#PCDATA)>
<!ELEMENT cns-pub-mapping (#PCDATA)>
<!ELEMENT cns-sub-mapping (#PCDATA)>
<!ELEMENT cns-pub-default (#PCDATA)>
<!ELEMENT cns-sub-default (#PCDATA)>

<!ELEMENT cns-group-info (cns-group-name,cns-group-new-name?, cns-group-member*)>
<!ELEMENT cns-group-name (#PCDATA)>
<!ELEMENT cns-group-new-name (#PCDATA)>
<!ELEMENT cns-group-member (#PCDATA)>
<!ATTLIST cns-group-member type (DEV | GRP) "DEV">

<!ELEMENT IMAGE-DATA (image+)>
<!ATTLIST IMAGE-DATA op-type (add|edit|delete) #REQUIRED validate-data (true | false) "false">

<!ELEMENT image (name, image-info)>
<!ELEMENT name (#PCDATA)>
<!ATTLIST image-info image-type (IOS | pix-image | pdm | asa-image | asdm | other) "IOS"
Uploading Bulk Data

Step 1
From the Bulk Data main menu, click **Upload Bulk Data**.
The Upload Bulk Data parameters page appears (see Figure 16-1).

**Figure 16-1 **Upload Bulk Data Parameters

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filename</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
</tbody>
</table>

Step 2
If you know the filename of the data file you want to load, enter it in the **Filename** field, otherwise use the browse function.
Table 16-1 shows the valid values for this field.

Table 16-1 Valid Values for Upload Bulk Data

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filename</td>
<td>Name of the file containing the data to be uploaded.</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
</tbody>
</table>

Step 3
Use the drop-down arrow to select the Data Format:

- XML
- CSV

Step 4
To clear this task, click **Reset**.

Step 5
To upload this data file, click **Upload**.
Command-Line Upload of Bulk Data

You can also upload the XML file to the directory using a command line utility as follows:
FTP the bulk upload XML file to the $CISCO_CE_INSTALL_ROOT/CSCOdat/scripts directory on the host system.

Step 6 Log into the box using Telnet.
Step 7 Go to: $CISCO_CE_INSTALL_ROOT/CSCOdat/scripts.
Step 8 Run the following command to invoke the bulk upload command line utility:

```
./upload.sh <xml filename>
```

For example: `./upload.sh my_bulk_data.xml`
This uploads the data to the LDAP directory.

Using Data Converter Utility

There is a data converter utility that you can use to convert bulk upload data on a system with a release prior to 3.5. This will allow you to do a bulk upload of data to Cisco Configuration Engine.
You can find this utility in `<install base dir>/ConfigEngine/CSCOdat/XMLTransform`.

Creating Sample Data

Even though the DTD (see “XML DTD” section on page 16-157) outlines the structure of the input XML file, it does not convey the information about what values should be given for each tag. By looking at the sample data files in this section, you can get an idea of how the data should be arranged in the Bulk Upload XML file.

Step 1 From the Bulk Data main menu, click Add Bulk Data.
The Upload Bulk Data page appears (see Figure 16-2).

Figure 16-2 Create Sample Data Page

Create Sample Data:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td></td>
</tr>
<tr>
<td>Data Format</td>
<td>XML</td>
</tr>
<tr>
<td>Sample Data</td>
<td>Without ignore</td>
</tr>
</tbody>
</table>

Note: All device/group/application names in the sample data file will start with the prefix entered above.

Step 2 Enter the prefix name for this sample in the Prefix field.
Table 16-2 shows valid values for these fields.
Creating Sample Data

Step 3 Select Sample Data.

Step 4 To create this sample, click **OK**.

NSM Data Without Image Info

The following example shows sample device data in XML format:

```xml
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE cns-bulk-upload (View Source for full doctype...)>
- <cns-bulk-upload stop-on-error="false" version="3.0">
  - <cns-element-data>
    - <NSM-DATA op-type="add" validate-data="false">
      - <cns-device-info dev-type="other">
        <cns-device-name>myDeviceDevice1</cns-device-name>
        <cns-extended-attr name="IOSconfigtemplate">DemoRouter.cfgtpl</cns-extended-attr>
        <cns-extended-attr name=" IOSConfigID">myDeviceDevice1</cns-extended-attr>
        <cns-extended-attr name=" IOSEventID">myDeviceDevice1</cns-extended-attr>
        - <dev-image-information>
          <image-id>myDeviceDevice1</image-id>
        </dev-image-information>
      </cns-device-info>
      - <cns-device-info dev-type="other">
        <cns-device-name>myDeviceDevice2</cns-device-name>
        <cns-extended-attr name="IOSconfigtemplate">DemoRouter.cfgtpl</cns-extended-attr>
        <cns-extended-attr name=" IOSConfigID">myDeviceDevice2</cns-extended-attr>
        <cns-extended-attr name=" IOSEventID">myDeviceDevice2</cns-extended-attr>
        - <dev-image-information>
          <image-id>myDeviceDevice2</image-id>
        </dev-image-information>
      </cns-device-info>
      - <cns-device-info dev-type="pix">
        <cns-device-name>myDeviceDevice3</cns-device-name>
        <cns-extended-attr name="ErrorAction">revert</cns-extended-attr>
        <cns-extended-attr name="AuthPassword">myDevicepwd</cns-extended-attr>
      </cns-device-info>
    </NSM-DATA>
  </cns-element-data>
</cns-bulk-upload>
```

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>Prefix that is used to create the device/application/group objects.</td>
<td>a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)</td>
</tr>
<tr>
<td>Data Format</td>
<td>XML, CSV</td>
<td>From drop-down list</td>
</tr>
<tr>
<td>Sample Data Without image info</td>
<td>Creates application, group, device data without the image information for device.</td>
<td>From drop-down list</td>
</tr>
<tr>
<td>Sample Data With image info</td>
<td>Creates application, group, device data without the image information for device. Also creates IMAGE object data.</td>
<td>From drop-down list</td>
</tr>
<tr>
<td>Sample IMAGE Data only</td>
<td>Creates only IMAGE object data</td>
<td>From drop-down list</td>
</tr>
</tbody>
</table>

Table 16-2 Valid Values for Create Sample Data
<cns-extended-attr name="IOSconfigtemplate">DemoRouter.cfgtpl</cns-extended-attr>
<cns-extended-attr name="parent">/config/myDeviceGroup2</cns-extended-attr>
<cns-extended-attr name="ConfigAction">merge</cns-extended-attr>
<cns-extended-attr name="IOSConfigID">myDeviceDevice3</cns-extended-attr>
<cns-extended-attr name="IOSEventID">myDeviceDevice3</cns-extended-attr>
- <dev-image-information>
 <image-id>myDeviceDevice3</image-id>
</dev-image-information>
</cns-device-info>
- <cns-device-info dev-type="asa">
 <cns-device-name>myDeviceDevice4</cns-device-name>
 <cns-extended-attr name="ErrorAction">revert</cns-extended-attr>
 <cns-extended-attr name="AuthPassword">myDevicepwd</cns-extended-attr>
 <cns-extended-attr name="IOSconfigtemplate">DemoRouter.cfgtpl</cns-extended-attr>
 <cns-extended-attr name="parent">/config/myDeviceGroup2/myDeviceSubGroup1</cns-extended-attr>
 <cns-extended-attr name="ConfigAction">merge</cns-extended-attr>
 <cns-extended-attr name="IOSConfigID">myDeviceDevice4</cns-extended-attr>
 <cns-extended-attr name="IOSEventID">myDeviceDevice4</cns-extended-attr>
 <dev-image-information>
 <image-id>myDeviceDevice4</image-id>
 </dev-image-information>
</cns-device-info>
- <cns-device-info dev-type="imgw">
 <cns-device-name>myDeviceDevice5</cns-device-name>
 <cns-extended-attr name="IOSconfigtemplate">DemoRouter.cfgtpl</cns-extended-attr>
 <cns-extended-attr name="parent">/config/myDeviceGroup2/myDeviceSubGroup2</cns-extended-attr>
 <cns-extended-attr name="IOSConfigID">myDeviceDevice5</cns-extended-attr>
 <cns-extended-attr name="IOSEventID">myDeviceDevice5</cns-extended-attr>
 <dev-image-information>
 <image-id>myDeviceDevice5</image-id>
 </dev-image-information>
 <imgw-data>
 <gateway-id>myDeviceIMGWGatewayID5</gateway-id>
 <device-type>IOS</device-type>
 <simulation-agent>IMAGEAGENT</simulation-agent>
 <simulation-agent>CONFIGAGENT</simulation-agent>
 <hop-information>
 <hop-type>IOS_LOGIN</hop-type>
 <ip-address>0.0.0.0</ip-address>
 <port>0000</port>
 <username>myDeviceusr5</username>
 <password>myDevicepwd5</password>
 </hop-information>
 <hop-information>
 <hop-type>IOS_EN</hop-type>
 <ip-address />
 <port />
 <username />
 <password>myDevicepasswd5</password>
 </hop-information>
 </imgw-data>
</cns-device-info>
- <cns-device-info dev-type="imgw">
 <cns-device-name>myDeviceDevice6</cns-device-name>
 <cns-extended-attr name="IOSconfigtemplate">DemoRouter.cfgtpl</cns-extended-attr>
 <cns-extended-attr name="parent">/config/myDeviceGroup2/myDeviceSubGroup2</cns-extended-attr>
 <cns-extended-attr name="IOSConfigID">myDeviceDevice6</cns-extended-attr>
 <cns-extended-attr name="IOSEventID">myDeviceDevice6</cns-extended-attr>
 <dev-image-information>
 <image-id>myDeviceDevice6</image-id>
 </dev-image-information>
 <imgw-data>
 <gateway-id>myDeviceIMGWGatewayID6</gateway-id>
</cns-device-info>
NSM Data Sample With Image Info

The following example shows sample data with the image in XML format:

```xml
<device-type>IOS</device-type>
<simulation-agent>IMAGEAGENT</simulation-agent>
<simulation-agent>CONFIGAGENT</simulation-agent>
- <hop-information>
  <hop-type>IOS_LOGIN</hop-type>
  <ip-address>0.0.0.0</ip-address>
  <port>0000</port>
  <username>myDeviceusr6</username>
  <password>myDevicepwd6</password>
</hop-information>
- <hop-information>
  <hop-type>IOS_EN</hop-type>
  <ip-address />
  <port />
  <username />  
  <password>myDevicepasswd6</password>
</hop-information>
</imgw-data>
</cns-device-info>
- <cns-group-info>
  <cns-group-name>/config/myDeviceGroup1</cns-group-name>
  <cns-group-member type="GRP">myDeviceSubGroup1</cns-group-member>
</cns-group-info>
- <cns-group-info>
  <cns-group-name>/config/myDeviceGroup2</cns-group-name>
  <cns-group-member type="GRP">myDeviceSubGroup1</cns-group-member>
  <cns-group-member type="GRP">myDeviceSubGroup2</cns-group-member>
</cns-group-info>
</NSM-DATA>
</cns-element-data>
</cns-bulk-upload>

The following example shows sample data with the image in XML format:

```xml
<xml version="1.0" encoding="UTF-8" standalone="no" ?>
 <!DOCTYPE cns-bulk-upload (View Source for full doctype...)>
- <cns-bulk-upload stop-on-error='false' version='3.0'>
 - <cns-element-data>
 - <cns-device-info dev-type="other">
 <cns-device-name>myDeviceDevice1</cns-device-name>
 <cns-extended-attr name="IOSconfigtemplate">DemoRouter.cfgtpl</cns-extended-attr>
 <cns-extended-attr name="IOSConfigID">myDeviceDevice1</cns-extended-attr>
 <cns-extended-attr name="IOSEventID">myDeviceDevice1</cns-extended-attr>
 - <dev-image-information>
 <image-id>myDeviceDevice1</image-id>
 <activation-template>DemoRouter.cfgtpl</activation-template>
 - <dev-image-info>
 <image-name>myDeviceIMAGEObj1</image-name>
 - <distribution activate="false" erase-flash="no" overwrite="yes">
 <destination>flash</destination>
 <location>tftp://test.com/c7200-js-mz1</location>
 </distribution>
 </dev-image-info>
 </dev-image-information>
 </cns-device-info>
 - <cns-device-info dev-type="other">
 <cns-device-name>myDeviceDevice2</cns-device-name>
```

Cisco Configuration Engine Administration Guide 3.5.4
<cns-extended-attr name="IOSconfigtemplate">DemoRouter.cfgtpl</cns-extended-attr>
<cns-extended-attr name="parent"></cns-extended-attr>
<cns-extended-attr name="ID">myDeviceDevice2</cns-extended-attr>
<cns-extended-attr name="ErrorAction">revert</cns-extended-attr>
<cns-extended-attr name="AuthPassword">myDevicepwd</cns-extended-attr>
<cns-extended-attr name="parent"></cns-extended-attr>
<cns-extended-attr name="ConfigAction">merge</cns-extended-attr>
<cns-extended-attr name="ID">myDeviceDevice4</cns-extended-attr>
<cns-extended-attr name="ErrorAction">revert</cns-extended-attr>
<cns-extended-attr name="AuthPassword">myDevicepwd</cns-extended-attr>
<cns-extended-attr name="ConfigAction">merge</cns-extended-attr>
<cns-extended-attr name="ID">myDeviceDevice5</cns-extended-attr>
<cns-extended-attr name="IOSConfigID">myDeviceDevice5</cns-extended-attr>
<cns-extended-attr name="IOSEventID">myDeviceDevice5</cns-extended-attr>
- <dev-image-information>
  <image-id>myDeviceDevice5</image-id>
  <activation-template>DemoRouter.cfgtpl</activation-template>
- <dev-image-info>
  <image-name>myDeviceIMAGEObj5</image-name>
  <distribution activate="false" erase-flash="no" overwrite="yes">
    <destination>flash</destination>
    <location>tftp://test.com/c7200-js-mz5</location>
  </distribution>
  </dev-image-info>
  <dev-image-information>
  - <imgw-data>
    <gateway-id>myDeviceIMGWGatewayID5</gateway-id>
    <device-type>IOS</device-type>
    <image-id>myDeviceDevice5</image-id>
    <activation-template>DemoRouter.cfgtpl</activation-template>
    <distribution activate="false" erase-flash="no" overwrite="yes">
      <destination>flash</destination>
      <location>tftp://test.com/c7200-js-mz5</location>
    </distribution>
    <hop-information>
      <hop-type>IOS_LOGIN</hop-type>
      <ip-address>0.0.0.0</ip-address>
      <port>0000</port>
      <username>myDeviceusr5</username>
      <password>myDevicepwd5</password>
    </hop-information>
    - <hop-information>
      <hop-type>IOS_EN</hop-type>
      <ip-address />
      <port />
      <username />
      <password>myDevicepasswd5</password>
    </hop-information>
    - <hop-information>
      <hop-type>IOS_EN</hop-type>
      <ip-address />
      <port />
      <username />
      <password>myDevicepasswd5</password>
    </hop-information>
  </imgw-data>
  </cns-device-info>
  - <cns-device-info dev-type="imgw">
    <cns-device-name>myDeviceDevice6</cns-device-name>
    <cns-extended-attr name="IOSconfigtemplate">DemoRouter.cfgtpl</cns-extended-attr>
    <cns-extended-attr name="IOSConfigID">myDeviceDevice6</cns-extended-attr>
    <cns-extended-attr name="IOSEventID">myDeviceDevice6</cns-extended-attr>
    - <dev-image-information>
      <image-id>myDeviceDevice6</image-id>
      <activation-template>DemoRouter.cfgtpl</activation-template>
      - <dev-image-info>
        <image-name>myDeviceIMAGEObj6</image-name>
        <distribution activate="false" erase-flash="no" overwrite="yes">
          <destination>flash</destination>
          <location>tftp://test.com/c7200-js-mz6</location>
        </distribution>
        </dev-image-info>
        <dev-image-information>
        - <imgw-data>
          <gateway-id>myDeviceIMGWGatewayID6</gateway-id>
          <device-type>IOS</device-type>
          <image-id>myDeviceDevice6</image-id>
          <activation-template>DemoRouter.cfgtpl</activation-template>
          <distribution activate="false" erase-flash="no" overwrite="yes">
            <destination>flash</destination>
            <location>tftp://test.com/c7200-js-mz6</location>
          </distribution>
          </dev-image-info>
          </dev-image-information>
          - <imgw-data>
            <gateway-id>myDeviceIMGWGatewayID6</gateway-id>
            <device-type>IOS</device-type>
            <simulation-agent>IMAGEAGENT</simulation-agent>
            <simulation-agent>CONFIGAGENT</simulation-agent>
            <hop-information>
              <hop-type>IOS_LOGIN</hop-type>
              <ip-address>0.0.0.0</ip-address>
              <port>0000</port>
              <username>myDeviceusr6</username>
              <password>myDevicepwd6</password>
            </hop-information>
            - <hop-information>
              <hop-type>IOS_EN</hop-type>
NOTES

- For Bulk Upload of NSM devices with Image Info, make sure that the image objects referenced in the `dev-image-info` element tag already exist.
- The location given should be one of the multiple image locations specified with the image object.
- If there are errors while adding the devices, please check the error file provided as a result of the Upload operation. There can be an exception given as CISException, which points to the CISDevice creation failed, which could have occurred if you had ignored the checklist. In this case, just recheck the information provided in the `dev-image-information` element tag. Correct the file and upload it again.

Image Sample Data

The following example shows image data sample:

```xml
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE cns-bulk-upload (View Source for full doctype...)>
<cns-bulk-upload stop-on-error="false" version="3.0">
<cns-element-data>
<IMAGE-DATA op-type="add" validate-data="false">


</IMAGE-DATA>
</cns-element-data>
</cns-bulk-upload>
```
<system-description>Cisco Network Operating System</system-description>
<file-byte-size>1040</file-byte-size>
<platform-family-name>7200</platform-family-name>
<img-location>tftp://test.com/c7200-js-mz2</img-location>
</image-info>
</image>

- 

- 

- 

- 

- 
<image-info>
  </image-info>
</image>
- 
</IMAGE-DATA>
</cns-element-data>
</cns-bulk-upload>
Email Manager

To access Email management tasks, log into the system (see “Logging In” section on page 2-23). Then, from the Home page, click the Tools tab. The Tools page appears.

From the Tools page, click Email Manager. The Email page appears showing: Edit Email SMTP Host.

Editing Email SMTP Host

**Step 1**
From the Email Manager Functional Overview page, click Edit Email SMTP Host.

The Edit Email SMTP Host page appears:

![Edit Email SMTP Host](image)

**Step 2**
Enter a new host path, then click Submit.
This chapter describes Image Service management tasks. To access the Image Service feature, click the **Image Service** tab. The Image Service Functional Overview page appears showing:

- Images
- Search Parameters

**Note**  
For External Directory Mode, the Search Parameters tab is called Preconditions.

### Working with Images

From the Image Service Functional Overview page, click **Images**. The Images Functional Overview page appears showing:

- View Image
- Create Image
- Edit Image
- Delete Image
- Associate Image with Device(s)

### Viewing an Image

**Step 1**  
From the Images Functional Overview page, click **View Image**. 
The list of images to view appears (see **Figure 18-1**).
Figure 18-1  View Image List

View Image

<table>
<thead>
<tr>
<th>Name</th>
<th>Image Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>image1</td>
<td><a href="http://ftp.test@10.1.7.24/http/c7200-1s-mz.123-1.0.T">http://ftp.test@10.1.7.24/http/c7200-1s-mz.123-1.0.T</a></td>
</tr>
<tr>
<td>image2</td>
<td><a href="http://ftp.test@10.1.7.24/http/c8540-es-mz.gae_20030810">http://ftp.test@10.1.7.24/http/c8540-es-mz.gae_20030810</a></td>
</tr>
<tr>
<td>image3</td>
<td><a href="http://ftp.test@10.1.7.24/http/c7200-1s8-a-mz.gae_20030721.T">http://ftp.test@10.1.7.24/http/c7200-1s8-a-mz.gae_20030721.T</a></td>
</tr>
<tr>
<td>image4</td>
<td><a href="http://ftp.test@10.1.7.24/http/c7200-1s8-a-mz.v123-3.20030714.T">http://ftp.test@10.1.7.24/http/c7200-1s8-a-mz.v123-3.20030714.T</a></td>
</tr>
</tbody>
</table>

Step 2  From the Name column, select the image you want to view.

The image information appears (see Figure 18-2).

Figure 18-2  View Image Information

View Image

<table>
<thead>
<tr>
<th>Name</th>
<th>Image Name</th>
<th>Version</th>
<th>Platform Family</th>
<th>Image checksum</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>image1</td>
<td>C7200-1S-MZ</td>
<td>12.3(1.9)T</td>
<td>C7200</td>
<td>8b6e160c10141e4d12b65db19b01d20</td>
<td>17723372 bytes</td>
<td>Cisco Internetwork Operating System IOS (px) 7200 Software (C7200-1S-MZ), Version 12.3(1.9)T; MAINTENANCE INTERIM SOFTWARE Synched to technology version 12.3(1.9) TAC Support <a href="http://www.cisco.com/tac">http://www.cisco.com/tac</a> Copyright (c) 1986-2003 by cisco Systems, Inc. Compiled Thu 12-Jun-03 17:19 by csai</td>
</tr>
</tbody>
</table>

Adding an Image

Step 1  From the Image Service Functional Overview page, click Create Image.

The Create Image page appears (see Figure 18-3).
There are two methods for creating an Image Object:

**Manual data entry**
To enter image information manually, jump to **Step 2**.

**Timesaver**
You can get image attributes for manual entry by clicking the link: **Lookup image attributes from Cisco.com**.

**Automatic data entry**

a. In the **Image Location** field, enter a valid URL for the desired image.

b. Click **Populate**.

**Step 2**
Enter the name of the image used by Image Service to identify this image object in the **Name** field. **Table 18-1** shows valid values for these attributes.
Working with Images

Step 3 Enter the actual image name in the **Image Name** field.

Step 4 Enter the version of the image in the **Version** field.

Step 5 Enter the name of the platform family in the **Platform Family** field.

---

### Table 18-1 Valid Values for Create Image

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name used by Image Services to identify this image object.</td>
<td>a-z, A-Z, 0-9, #, _ (under-score), - (hyphen)</td>
</tr>
<tr>
<td>Image Name</td>
<td>The actual image name.</td>
<td>a-z, A-Z, 0-9, - (hyphen)</td>
</tr>
<tr>
<td>Version</td>
<td>Version of the image.</td>
<td>a-z, A-Z, 0-9, . (period), ( open braces), ) (close braces)</td>
</tr>
<tr>
<td>Platform Family</td>
<td>Platform family of the image.</td>
<td>a-z, A-Z, 0-9, - (hyphen)</td>
</tr>
<tr>
<td>Image Checksum</td>
<td>Checksum generated by MD5 hashing algorithm</td>
<td>128-bit hex number</td>
</tr>
<tr>
<td>Size</td>
<td>File size</td>
<td>0 – 9</td>
</tr>
<tr>
<td>Description</td>
<td>Description of the image.</td>
<td>Any text except Ctrl characters.</td>
</tr>
<tr>
<td>Image Type</td>
<td>(i) PDM (ii) QDM (iii) VDM (iv) Other (v) Pix-image</td>
<td>From drop-down list.</td>
</tr>
<tr>
<td>Image Location</td>
<td>- Any Valid URL: (i) http (ii) https (iii) ftp (iv) tftp - rcp</td>
<td>Valid URL as per RFC 1738.</td>
</tr>
</tbody>
</table>
Step 6 Enter the image checksum for the image in the **Image Checksum** field.

Step 7 Enter the size of this file in the **Size** field.

Step 8 Enter a description of the image in the space provided.

Step 9 Select an image type from the **Image Type** drop-down list.

Step 10 Enter a valid URL for the image location in the **Image Location** field. Follow the proper syntax as described.

---

**Note** You can create an image without specifying a location. You can add a location later by using the **Edit Image** function.

Step 11 To add another row for image location, click **Add Another Row**.

You can locate multiple copies of an image on separate servers. This allows you to do load-sharing when updating a large number of devices. Each device in a large group can be associated with a copy of the image (see “Adding Devices” section on page 3-31) located at one of many server locations.

Step 12 To cancel this task, click **Cancel**.

Step 13 To create this image, click **Create**.

---

**Editing an Image**

Step 1 From the Image Service Functional Overview page, click **Edit Image**.

The Edit Image page appears (see Figure 18-4).

---

Figure 18-4 **Edit Image**

---

Step 2 Select the image you want to edit by clicking the Image Name.

The Edit Image information page appears (see).
Chapter 18      Image Service

Working with Images

Figure 18-5      Edit Image Information

Edit Image

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name used by Image Services to identify this image object.</td>
<td>a-z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td></td>
<td></td>
<td>_ (underscore)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (hyphen)</td>
</tr>
<tr>
<td>Image Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platform Family</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Checksum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Type</td>
<td>IOS</td>
<td></td>
</tr>
<tr>
<td>Image Locations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 3  To edit the image name, enter a new value in the **Name** field.

Table 18-2      Valid Values for Edit Image

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name used by Image Services to identify this image object.</td>
<td>a-z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td></td>
<td></td>
<td>_ (underscore)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (hyphen)</td>
</tr>
<tr>
<td>Image Location</td>
<td>- Any Valid URL:</td>
<td>Valid URL as per RFC 1738.</td>
</tr>
<tr>
<td></td>
<td>(i) http</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ii) https</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(iii) ftp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(iv) tftp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 4  To edit the image location, enter a valid URL in the **Image Location** field.

Step 5  To cancel this task, click **Cancel**.

Step 6  To make these changes, click **Edit**.
Deleting an Image

**Step 1**
From the Image Service Functional Overview page, click *Delete Image*.
The Delete Image page appears (see *Figure 18-6*).

*Figure 18-6 Delete Image*

Delete Image

![Delete Image Page](image)

Please select image(s) from the following list:

<table>
<thead>
<tr>
<th>Name</th>
<th>Image Name</th>
<th>Version</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>image1</td>
<td>C7200-IS-MZ</td>
<td>12.3(19;T)</td>
<td>C7200</td>
</tr>
<tr>
<td>image2</td>
<td>C3640-TEA-MZ</td>
<td>12.3(20030811-051206)</td>
<td>C3640</td>
</tr>
<tr>
<td>image3</td>
<td>C7200-TKSEA-MZ</td>
<td>12.3(20030722-022380)</td>
<td>C7200</td>
</tr>
<tr>
<td>image4</td>
<td>C7200-TKSEA-MZ</td>
<td>12.3(20030715-044015)</td>
<td>C7200</td>
</tr>
</tbody>
</table>

**Step 2**
Check the image(s) you want to delete.

**Step 3**
To cancel this task, click *Cancel*.

**Step 4**
To make these changes, click *Delete*.

Associating Images with Devices

**Note**
To associate a device with the image, the device must have been registered for image service during device object creation by providing an ImageID. If this has not been done, before trying to associate the device, the device must be edited and an ImageID must be provided.

**Step 1**
From the Image Service Functional Overview page, click *Associate Image with Device(s)*.
The Associate Image with Device(s) page appears (see *Figure 18-7*).

*Figure 18-7 Associate Image with Device(s)*

**Associate Image with Device(s)**

![Associate Image Page](image)

Please Select an Image:

<table>
<thead>
<tr>
<th>Name</th>
<th>Image Type</th>
<th>Image Locations</th>
<th>Over Write</th>
<th>Erase File System</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>image1</td>
<td>IOS</td>
<td><a href="http://test1/1.2.3/1.2.3/1.2.3">http://test1/1.2.3/1.2.3/1.2.3</a></td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Set this image as the image to be activated on device(s).
Step 2  Select the image from the Name drop-down list.

The Image Type field and Image Location drop-down box are populated with corresponding information for the image.

Step 3  From the Image Location drop-down list, select the desired location.

Step 4  In the Destination field, enter a valid URL where the image will be copied.

For example:

disk0:/c7200-mz

Step 5  To assign this image to be the active image after distribution, check Set this image as the Image to be activated on device.

Step 6  To cancel this task, click Cancel.

Step 7  To continue, click Next.

The Group list page appears.

Step 8  To associate this image with a group of devices, check the group, then click Submit.

Step 9  To associate this image with specific devices, click View.

The Device list page appears (see Figure 18-8).

Figure 18-8  Device List

Associate Image with Device(s)

Groups

config  dev

View

default

Group: /config/East

☐ Select All

☐ c7200e2s  ☐ c7300x2s  ☐ c7200s2s  ☐ c7200e2s

View Devices  Save Devices  Submit

Step 10  Check the desired device(s).

Step 11  To cancel this task, click Cancel.

Step 12  To associate this image to the selected devices, click Submit.

A confirmation page appears.
Search Parameters

Each Search Parameter can be associated with an action to be performed. In this release, Search Parameters are associated with the action to delete certain files from the file system on a device.

For example, if you want to delete all files that contain .bin from a device, you can create a Search Parameter that states: *FileName contains .bin* and use this Precondition from the *Devices > Delete Files*.

From the Image Service Functional Overview page, click *Search Parameters*.

Note

For External Directory Mode, the Search Parameters tab is called Preconditions.

The Search Parameters Functional Overview page appears showing:

- View Search Parameters
- Create Search Parameter
- Edit Search Parameter
- Delete Search Parameters

Viewing Search Parameters

Step 1

From the Search Parameters Functional Overview page, click *View Search Parameters*.

The View Search Parameters page appears (see Figure 18-9).

*Figure 18-9  View Search Parameters*

View Search Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp1a</td>
<td>File Size is greater than 80000 bytes</td>
</tr>
<tr>
<td>sp1b</td>
<td>File Name contains .bin</td>
</tr>
<tr>
<td>fo12</td>
<td>File Size is greater than 11 bytes</td>
</tr>
</tbody>
</table>

Step 2

To edit a Precondition, click *Edit* for the desired Precondition, then go to “Editing Search Parameters” section on page 18-181.
Creating Search Parameters

Step 1
From the Search Parameters Functional Overview page, click Create Search Parameter. The Create Search Parameter page appears (see Figure 18-10).

Figure 18-10 Create Search Parameter

Create Search Parameter

- Name (required)
- Content (required)

Step 2
Enter the name of this Search Parameter.

Step 3
Use the drop-down arrow in the left Content menu to select:
- File Size
- File Name
- File Timestamp
  a. For File Size, use the drop-down arrow in the center Content menu to select:
     - is greater than
     - is less than
     - is equal to
  b. For File Name, the only choice is contains.
  c. For File Timestamp, the only choice is before.

Step 4
Enter the remaining portion of the argument in the right Content field.
For example:

File Size is greater than 80,000 bytes

Step 5
To cancel this task, click Cancel.

Step 6
Click Create.
Editing Search Parameters

**Step 1**  From the Search Parameters Functional Overview page, click **Edit Search Parameter**. The Edit Search Parameter page appears.

**Step 2**  Select the Search Parameter you want to edit. The argument page for the Search Parameter appears (see **Figure 18-11**).

![Figure 18-11  Edit Search Parameter Argument](image)

**Step 3**  Edit the name or argument as required.

**Step 4**  To cancel this task, click **Cancel**.

**Step 5**  To save your changes, click **Edit**.

Deleting Search Parameters

**Step 1**  From the Search Parameters Functional Overview page, click **Delete Search Parameter**. The Delete Search Parameters page appears (see **Figure 18-12**).

![Figure 18-12  Delete Search Parameters](image)

**Step 2**  Check to select the Search Parameter(s) to delete, then click **Delete**.
Upgrade or Downgrade Cisco IOS Image

With the Image Service feature, you can not only update the Cisco IOS image on a device, you can revert back to an earlier version of the image. When you do this, the availability of Cisco Configuration Engine agents on the device might change. This means you might have to use IMGW to simulate agents to update configurations and images on the device.

Cisco Configuration Engine agents at the device-level are a function of the particular version of Cisco IOS running on that device:

- 12.0 or earlier – No Cisco Configuration Engine agents on the device
- 12.2 – Configuration Agent and Event Agent but not the Image Agent
- 12.3(3) or later – Configuration Agent, Event Agent, and Image Agent

**Things to Know**

- IMGW can simulate different agent types:
  
  - Configuration Agent only
  - Image Agent only
  - both Configuration Agent and Image Agent

Make sure to select the correct agent for your purpose when creating IMGW devices.

- You should always have one set of the same agents running for the same device object. The common mistake when upgrading/downgrading to a different version of an image is:

  - Upgrading: after enabling a certain agent on the device, you still have an IMGW device that is simulating the same agent on the Cisco Configuration Engine, or the other way around.
  
  - Downgrading: a certain agent is not available on the device anymore, but the IMGW device is not simulating this agent. The next update will fail.

**12.0 -> 12.2**

To update an image from 12.0 to 12.2, the image needs to use IMGW to simulate both Configuration Agent and Image Agent.
**Procedure**

**Step 1** Create a template for configuration update. This template only applies to a device when you do a configuration update.

**Step 2** Create a template for image activation.

The activation template should include the boot image information. For example, if you want to copy image `c837-k9o3y6-mz.122-13.ZH2.bin` to flash and run it as the active image, the following CLI commands should be in the active template:

```
no boot system
boot system flash:c837-k9o3y6-mz.122-13.ZH2.bin
```

**Step 3** Create the image for the device:

a. Setup an FTP/TFTP server.

b. Copy the image onto the FTP/TFTP server.

c. Log into the Cisco Configuration Engine, go to Image Service -> Images -> Create Image.

d. Enter image information on the page or just enter Name and Image Locations on the FTP/TFTP server, then click on Populate to get image information.

e. Click on Create.

f. To verify, go to Image Service -> Images -> View Image, select the image and verify the image information.

**Step 4** Create an IMGW device with device hop info. Make sure to select an agent type to simulate both Configuration Agent and Image Agent (see “Adding Non-agent Enabled Devices” section on page 3-31).

**Step 5** Update image (see “Updating Device Images” section on page 3-67).

**Step 6** To check the updating status, go to Jobs -> Query Job, click Status to check the job status.

**Step 7** To see more debug message on the job, go to Log Manager -> View Logs and select the log to view.

**Step 8** Now you should have the 12.2 image running on the device. If you want to enable Configuration Agent and Event Agent on the device, put the following CLI commands in device configuration template that you created in Step 1, then do Update Config from Cisco Configuration Engine:

```
cns config partial server_ipaddress port

cns event server_ipaddress port
```

**Step 9** To verify, go to the View Device page on Cisco Configuration Engine. You should be able to see a green indicator next to this device object.

**Note** In order to use Configuration Agent and Event Agent to do configuration updates, you should delete the IMGW device object since it should never have two sets of the same agent for the device on the Cisco Configuration Engine.
12.0 -> 12.3(3) or later

To update image from 12.0 to 12.3(3) or later image you need to use IMGW to simulate both Configuration Agent and Image Agent.

The image update procedure is the same as 12.0 -> 12.2 except in Step 9. To enable the image agent on the device, you can also add the following line to the configuration template and update the configuration to the device:

```
cns image server http://server_ipaddress/cns/HttpMsgDispatcher status
http://server_ipaddress/cns/HttpMsgDispatcher
```

**Note**

In order to use Configuration Agent, Event Agent, and Image agent to do configuration and image updates, you should delete the IMGW device object since it should never have two sets of the same agent for a device on the Cisco Configuration Engine.

12.2 -> 12.3(3) or later

There are two ways to update the image from 12.2 to 12.3(3) or later image:

1. No agents enabled on the device and use IMGW to simulate both Configuration Agent and Image Agent. The procedure is same as update from 12.0 -> 12.2.

2. Enable Event Agent and Configuration Agent on devices to update activation template and use IMGW to simulate image agent only.

**Procedure**

**Step 1**

On the device, make sure to enable Configuration and Image Agents with the following commands (it can be done from router command line or from Cisco Configuration Engine configuration update):

```
cns event server_ipaddress port

cns config partial server_ipaddress port
```

**Step 2**

Repeat the procedure in 12.0 -> 12.2 except in Step 4. When creating the IMGW device, make sure to select **Image Agent** for Agent Type.

**Step 3**

To enable the image agent on the device, you can also add the following line to configuration template and update configuration to the device:

```
cns image server http://server_ipaddress:http_port/cns/HttpMsgDispatcher status
http://server_ipaddress:http_port/cns/HttpMsgDispatcher
```

**Note**

In order to use Configuration Agent, Event Agent, and Image Agent to do configuration and image updates, you should delete the IMGW device object since it should never have two sets of the same agent for a device on the Cisco Configuration Engine.
12.3(3) or later -> 12.3(3) or later

Image upgrading from 12.3(3) or later -> 12.3(3) later images can be done with agents enabled on device. There is no need for IMGW.

Procedure

Step 1
On the device, make sure to enable the Configuration Agent with the following commands (it can be done from router command line or from Cisco Configuration Engine configuration update):

cns event server_ipaddress prot

cns config partial server_ipaddress prot

cns image server http://server_ipaddress/cns/HttpMsgDispatcher status
http://server_ipaddress/cns/HttpMsgDispatcher

Step 2
Create a template for configuration updates.

Step 3
Create a template for image activation.

Step 4
Create an image for device:

a. Setup FTP/TFTP server.

b. Copy image on FTP/TFTP server.

c. Log into the Cisco Configuration Engine, go to Image Service -> Images -> Create Image.

d. Enter image information on the page or just enter Name and Image Locations on the FTP/TFTP server then click Populate to get image information.

e. Click on Create.

f. To verify, go to Image Service -> Images -> View Image, select the image and verify the image information.

Step 5
Create a device object on Cisco Configuration Engine (see “Adding Agent Enabled Devices” section on page 3-39).

Step 6
Associate the device object with an image object.

Step 7
Update image see “Updating Device Images” section on page 3-67.

Step 8
To check the updating status, go to Jobs -> Query Job, click the Status to check the job status.

Step 9
To see more debug messages on the job, go to Log Manager -> View Logs and select the log to view.

12.3(3) or later -> 12.2

This is the same as upgrading from 12.2 -> 12.3(3) or later images. There are several things that you should check before submitting the update:

- If you are using the second option in 12.2->12.3(3), which uses IMGW to simulate only the Image Agent, but not the Configuration Agent and Event Agent, make sure there is only Event Agent and Configuration Agent enabled on the device but no Image Agent; even though it is running 12.3(3) or later image that has all the agents. The IMGW on the server side will simulate the Image Agent.
• If there is already a device on the Cisco Configuration Engine, you only need to add an IMGW device with the same device name as device object on Cisco Configuration Engine.
• Please remove any commands in your configuration template to configuration Image Agent.

### 12.3(3) or later -> 12.0

Same as upgrading from 12.0 -> 12.3(3) or later image. There are several things that users should check before submit the update:

---

**Step 1** Make sure there is no agent enabled on router even it runs 12.3(3) or later image that has all the agents. The IMGW on server side will simulate both Configuration Agent and Image Agent.

**Step 2** If there is already device object on the Cisco Configuration Engine, users only need to add IMGW device with the same device name as device object on Cisco Configuration Engine.

**Step 3** Please remove them if you have any command in your configuration template to configure Configuration Agent, Event Agent, or Image Agent.

---
Backup and Restore

This chapter describes Backup and Restore management tasks. The Backup and Restore function allows you to backup directory data (configuration templates, device and user information, and so forth) to a remote location.

Backup Procedure

Step 1  Log into the Cisco Configuration Engine user interface.

Step 2  Go to Tools > Data Manager > Schedule Backup.

The backup information dialog box appears (see Figure 20-1).

Figure 20-1  Backup Schedule Parameters

<table>
<thead>
<tr>
<th>Backup server name</th>
<th>FTP, TFTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td></td>
</tr>
<tr>
<td>Password</td>
<td></td>
</tr>
<tr>
<td>Directory</td>
<td></td>
</tr>
<tr>
<td>Enable Log File Management</td>
<td>No</td>
</tr>
<tr>
<td>Backup Schedule</td>
<td>Daily, Weekly, Monthly, Specific Day, Specific Time</td>
</tr>
</tbody>
</table>

Step 3  Use the drop-down arrow to select FTP, or TFTP.
Chapter 20  Backup and Restore

Backup Procedure

Note  If you select TFTP, the Username, Password, and Directory fields are disabled.

Step 4  To specify where you want the backup data to be stored, enter the FTP server name in the FTP Server Name field.

Note  To edit or remove a scheduled backup job, enter the crontab-e command.

Table 20-1 shows valid values for these fields.

| Table 20-1  Valid Values for Backup Schedule Parameters |
Attribute	Description	Valid Values
FTP/TFTP	Select FTP or TFTP type. When you select TFTP server, the Username, Password and Directory fields are disabled because the TFTP server does not require a username and password, and all the files will go into the TFTP root directory. The file name format is `backup-cnse-$HOST-$DATE-$(date +%H%M).tar.gz` (ex: `backup-cnse-myCE-20100202-1843.tar.gz`).	From drop-down
Server name	Server name where all backup files will be put.	From drop-down
Username	Login username for the FTP server.	a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)
Password	Password for FTP server.	a-z, A-Z, 0-9, -(hyphen), _ (under-score), . (period)
Directory	Subdirectory into which all backup files will be put.	Absolute path
Enable Log File Management	determines whether files will be deleted from host system after backup.	From drop-down list
Backup Schedule	Date and time fields.	As required

Step 5  To specify the username to log into the FTP server, enter a valid username in the Username field.

Step 6  To specify the password to use to log into the FTP server, enter a valid value in the Password field.

Step 7  To specify the subdirectory where the data file is put, enter the absolute path in the Directory field.

Step 8  Choose whether to Enable Log File Management.

Step 9  To specify the backup schedule, complete the fields in the Backup Schedule pane.
Note
The time base for the host system should be set to Coordinated Universal Time (UTC).

Step 10
To cancel this task, click Cancel.

Step 11
To schedule the backup operation, click Backup.

Data Restore Procedure

Step 1
Log in to the host system.

Step 2
Type datarestore at the command line, then press Enter.

Step 3
Provide inputs to following prompts:

Notes
Sample user inputs are shown in bold text.

FTP Server

```
root@i336s6 root]# datarestore
Entering Data Restore section
Type ctrl-c to exit

Enter Transfer Protocol (FTP[F] or TFTP[T]): F
Enter FTP server (hostname.domainname or IP address): 10.77.27.17
Enter username used for FTP server: root
Enter FTP password: ******
Re-enter FTP password: ******
Enter absolute pathname of backup file on FTP server: /backup.tar
```

TFTP Server

```
[root@i336s6 root]# datarestore
Entering Data Restore section
Type ctrl-c to exit

Enter Transfer Protocol (FTP[F] or TFTP[T]): T
Enter the TFTP server (hostname.domainname or IP address): 10.77.27.17
Enter pathname of backup file on the TFTP server(relative to tftp root dir): backup.tar
```
Backup Procedure

Chapter 20      Backup and Restore

DNS Server

[root@i336s6 root]# datarestore
Entering Data Restore section
Type ctrl-c to exit

Enter Transfer Protocol (FTP[F] or TFTP[T]): T
Enter the TFTP server (hostname.domainname or IP address): test.cisco.com
Enter DNS server IP address: 10.77.27.1
Enter pathname of backup file on the TFTP server(relative to tftp root dir): backup.tar

Definitions

FTP: File transfer protocol.

FTP/TFTP Server: <hostname.domainname>, or IP address, of the FTP/TFTP server on which the backup file is located.

DNS Server: IP address of the DNS server. This appears when you enter a hostname instead of an IP address for the server prompt.

FTP Username: username used for FTP server.

FTP Password: password used to log into the FTP server.

Absolute pathname of backup file on FTP/TFTP server: fully specified path of the backup file stored on the FTP server, or TFTP server (relative to TFTP root directory).
PIX Firewall Device Support

Cisco Configuration Engine provides configuration management and image service to Cisco PIX firewall devices (PIX device). Figure 21-1 shows a functional block diagram of Cisco Configuration Engine including the PIX device interface module.

Figure 21-1  PIX-Compatible Configuration Engine Module Interaction

Encryption must be enabled during setup for PIX devices to supported by Cisco Configuration Engine.
PIX Device Polls for Updates

The PIX device contacts the PIX module in the Cisco Configuration Engine to report information about itself. This occurs when the PIX starts, when any of the reported information changes, and whenever the PIX wants to check for updates. PIX sends the **DeviceDetails** message to the server. The **DeviceDetails** message provides the Cisco Configuration Engine an update of the version of software that the device is currently running. The information received in **DeviceDetails** is logged into the log file (pix.log) for reference.

The server responds with the **UpdateInfo** message. This message contains (optionally):

- Checksum and URL for the configuration file the PIX should be running
- Checksum and URL for the PIX image
- Checksum and URL for the PIX Device Manager (PDM) image
- URL for reporting any errors

The PIX compares the checksum in the message with the current checksum of the component concerned. In the case of configuration, it also calculates the cryptochecksum of the running configuration and compare that with the one calculated the last time when the configuration was updated from the Cisco Configuration Engine. An update is required if the checksum (or cryptochecksum) differs.

If a software/configuration update is required, the PIX sends requests on the respective URLs.

**Configuration Processing**

For any configuration update that is required, the PIX sends an HTTPS GET request to the returned URL. The configuration file is completely read into a local buffer before being applied. This is to prevent a connection error from leaving the PIX in a partially configured state. If there are no errors (or the **errors** attribute of the **config-data** message is **continue**) while applying the configuration commands, then the running configuration is copied to flash with the **write memory** command. All configuration files work in the **replace** mode.

Completion of configuration download by a PIX device results in a log file entry indicating the same in pix.log.

**Note**

The log entry does not mean that the configuration has been successfully applied on a PIX device. It only means that the PIX device has downloaded the configuration file.

**Image Processing**

The **DeviceDetails** XML sent along with the initial HTTPS POST optionally has information regarding the PIX image, its version and checksum. Cisco Configuration Engine returns with the **UpdateInfo** XML containing image URLs and checksums based on the entries in the directory. The PIX downloads and applies images one after the other (and reload itself if required). Any error is processed as mentioned below.

**Note**

There is no notification of successful image download because image distribution might be external to Cisco Configuration Engine and hence the PIX server cannot keep track of the same. Also, the PIX device does not provide any image upgrade successful indication.
## Error Processing

All errors are reported by way of HTTPS POST to the error URL using the **ErrorList** message.

Each configuration error report (type=error, warning or info) is logged by the Cisco Configuration Engine into *pix.log*. The log file is cyclic to limit disk space usage.

---

**Note**

An error occurring during configuration does not mean that the downloaded configuration is not been applied on the PIX entirely. It only means that the error mentioned in the log file has happened with respect to this particular device.

Any error or notification (type= warning, notification, informational, debugging, emergency, alert, critical and error) that occurs while retrieving the data at one of the URLs received from the Cisco Configuration Engine results in log file entries.

If a failure is encountered during the processing of any of the URLs in the UpdateInfo response from the server, the error is reported to the Error URL. Also, processing of all URLs received in the current call home is discontinued. Any further processing is deferred till the PIX calls home again.

After all the updates are successfully completed, another **DeviceDetails** message is sent to the Cisco Configuration Engine by the PIX device. Cisco Configuration Engine again sends the **UpdateInfo** and checksum. The PIX device compares the checksums and finds that no further updates are required.

## Processing a DeviceDetails Request from PIX Device

The sequence of processing a DeviceDetails request from a PIX device is as follows:

1. PIX device contacts the Cisco Configuration Engine with **DeviceDetails** as XML payload by means of an HTTPS post request.
2. New PIX Configuration servlet receives request, parses XML, and retrieves DeviceID.
3. Device is authenticated.
4. Template associated with this DeviceID is processed to generate a configuration file.
5. Configuration file is converted into XML format as per the PIX DTD and the file is saved (over-written in case a file is already present for this DeviceID).
6. Checksum of XML configuration file is calculated and URL noted.
7. URLs and checksums for pix image and PDM images are retrieved from image object attached with the PIX device.
8. Checksums and URLs for configuration file and various images (if the corresponding checksum differs) and the Error URL are sent to the PIX device as an HTTP response with an XML payload (UpdateInfo).
9. Device now requests for configuration/image based on the content of the UpdateInfo response.
10. If errors are encountered, information is posted to error URL.
11. Error servlet logs the errors to *pix.log*. 
PIX DeviceID

The following PIX CLI decides the value of DeviceID sent by PIX in the DeviceDetails request:

```
[no] auto-update device-id hardware-serial | hostname | ipaddress [if-name] | mac-address [if-name] | string text
```

- **auto-update device-id** command specifies the device ID to send when polling the Management server.
- **no auto-update device-id** command resets the device ID to the default of hostname.
- **hardware-serial** option uses the PIX serial number.
- **hostname** option uses the PIX host name.
- **ipaddress** option uses the IP address of the interface with the name **if-name**.
  
  If the interface name is not specified, it uses the IP address of the interface used to communicate with the remote management server.
- **mac-address** option uses the MAC address of the interface with the name **if-name**.
  
  If the interface name is not specified, it uses the MAC address of the interface used to communicate with the remote management server.
- **string** option uses the specified **text**.
  
  The text can not contain white space or the characters ‘’, ‘‘, ‘<’, ‘>’, ‘&’ and ‘?’. 

**Note**

Since the DeviceID provided by the PIX is internally mapped to ConfigID and EventID in the Cisco Configuration Engine, it only supports hyphen (-), underscore (_), period (.) and alphanumeric characters.

Security Considerations

Since PIX devices are firewall devices and configuration information is vital, transport of this information is made secure by the use of SSL.

HTTPS has been enforced as the transport protocol between PIX devices and Cisco Configuration Engine under all circumstances. DeviceDetails, Update Info, ErrorInfo and configuration files are transported only using HTTPS. The authorization mechanism used in Configuration Service has been leveraged in the PIX server module. The URLs supplied by you towards PDM/pix-image can use HTTP or HTTPS.

PIX Device Polling Setup

PIX devices can be configured to poll the Cisco Configuration Engine at regular intervals for configuration or image updates. This entry has to be made by you on the PIX device itself. Details are available from PIX device documentation. CLI format for the same is as follows:

```
Usage: auto-update device-id hardware-serial | hostname | ipaddress [<if_name>] | mac-address [<if_name>] | string <text>
```

**no auto-update device-id**
auto-update poll-period <poll-period> [<retry-count> [<retry-period>]]
no auto-update poll-period
auto-update server <url> [verify-certificate]
no auto-update server
auto-update timeout <period>
no auto-update timeout

Example:
auto-update device-id string myPIXDevice
auto-update poll-period 120
auto-update server https://********@cns-ie2100/cns/PIXConfig

The URI to be polled on the Cisco Configuration Engine is:
/cns/PIXConfig

The auto-update poll-period command specifies how often to poll the Management server for configuration or image updates. The poll-period parameter specifies how often (in minutes) to check for an update. The default is 720 (12 hours). The retry-count option specifies how many times to try re-connecting to the server if the first attempt fails. The default is 0. The retry-period option specifies how long to wait (in minutes) between retries. The default is 5.

The no auto-update poll-period command resets the poll period to the default.

Also, you must to map the hostname of the server on the PIX device with its IP address. You can do this by using the name command as follows:
pixfirewall# conf t
pixfirewall(config)# name <ip_address of the server> <hostname of the server>

Configuration and Restrictions

PIX compatibility module is set up along with Configuration Service during the initial setup of the system. You need not do anything specifically to enable PIX compatibility.

PIX devices with software versions of 6.2.1 and higher are supported by Cisco Configuration Engine (auto-update from PIX device side was introduced in this version). All PIX hardware platforms that run software version 6.2.1 or higher will be supported.

The configuration files will be generated with options config-action= replace and errors=revert. No other options are supported.
ASA Firewall Device Support

Cisco Configuration Engine provides configuration management and image service to Cisco Adaptive Security Appliance devices (ASA device). Figure 22-1 shows a functional block diagram of Cisco Configuration Engine including the ASA device interface module.

*Figure 22-1  ASA-Compatible Configuration Engine Module Interaction*

Encryption must be enabled during setup for ASA devices to supported by Cisco Configuration Engine.
ASA Device Polls for Updates

The ASA device contacts the ASA module in the Cisco Configuration Engine to report information about itself. This occurs when the ASA starts, when any of the reported information changes, and whenever the ASA wants to check for updates. ASA sends the **DeviceDetails** message to the server. The **DeviceDetails** provides the Cisco Configuration Engine with an update on the version of the software that the device is currently running. The information received in the **DeviceDetails** message is logged into the log file (**asa.log**) for reference.

The server responds with the **UpdateInfo** message. This message contains (optionally):

- Checksum and URL for the configuration file the ASA should be running
- Checksum and URL for the ASA image
- Checksum and URL for the ASA Device Manager (ASDM) image
- URL for reporting any errors

The ASA compares the checksum in the message with the current checksum of the component concerned. In the case of configuration, it also calculates the cryptochecksum of the running configuration and compares that with the one calculated last time when the configuration was updated from the Cisco Configuration Engine. An update is required if the checksum (or cryptochecksum) differs.

If a software/configuration update is required, the ASA sends requests on the respective URLs.

**Configuration Processing**

For any configuration update that is required, the ASA sends an HTTPS GET request to the returned URL. The configuration file is completely read into a local buffer before being applied. This message is used to prevent a connection error from leaving the ASA in a partially configured state. If there are no errors (or the `errors` attribute of the `config-data` message is `continue`) while applying the configuration commands, the running configuration is copied to flash with the `write memory` command. All configuration files work in the `replace` mode.

Completion of configuration download by a ASA device results in a log file entry indicating the same in **asa.log**.

---

**Note**

The log entry does not mean that the configuration is successfully applied on a ASA device. It only means that the ASA device has downloaded the configuration file.

**Image Processing**

The **DeviceDetails** XML message sent along with the initial HTTPS POST optionally has information regarding the ASA image, its version, and checksum. Cisco Configuration Engine returns with the **UpdateInfo** XML containing image URLs and checksums based on the entries in the directory. The ASA downloads and applies images one after the other (and reloads itself if required). Any error is processed as mentioned next.
Note

There is no notification for the successful image download because the image distribution can be external to Cisco Configuration Engine and hence, the ASA server cannot keep track of the same. Also, the ASA device does not provide any image upgrade successful indication.

Error Processing

All errors are reported by way of HTTPS POST to the error URL using the ErrorList message. Each configuration error report (type=error, warning or info) is logged by the Cisco Configuration Engine into asa.log. The log file is cyclic to limit disk space usage.

Note

An error occurring during configuration does not mean that the downloaded configuration is not applied on the ASA entirely. It only means that the error mentioned in the log file has happened with respect to this particular device.

Any error or notification (type= warning, notification, informational, debugging, emergency, alert, critical, and error) that occurs while retrieving the data at one of the URLs received from the Cisco Configuration Engine results in log file entries.

If a failure is encountered during the processing of any of the URLs in the UpdateInfo response from the server, the error is reported to the Error URL. Also, processing of all URLs received in the current call home is discontinued. Any further processing is deferred till the ASA calls home again.

After all the updates are successfully completed, another DeviceDetails message is sent to the Cisco Configuration Engine by the ASA device. Cisco Configuration Engine again sends the UpdateInfo and checksum. The ASA device compares the checksums and finds that no further updates are required.

Processing a DeviceDetails Request from ASA Device

The sequence of processing a DeviceDetails request from a ASA device is as follows:

1. ASA device contacts the Cisco Configuration Engine with the DeviceDetails message as XML payload by means of an HTTPS post request.
2. New ASA Configuration servlet receives request, parses XML, and retrieves DeviceID.
3. Device is authenticated.
4. Template associated with this DeviceID is processed to generate a configuration file.
5. Configuration file is converted into XML format as per the ASA DTD and the file is saved (over-written in case a file is already present for this DeviceID).
6. Checksum of XML configuration file is calculated and URL noted.
7. URLs and checksums for ASA image and PDM images are retrieved from image object attached with the ASA device.
8. Checksums and URLs for configuration files and various images (if the corresponding checksum differs) and the Error URL are sent to the ASA device as an HTTP response with an XML payload (UpdateInfo).
9. Device now requests for configuration/image based on the content of the UpdateInfo response.
10. Errors are encountered, information is posted to error URL.
11. The error servlet logs the errors to asa.log.

**ASA DeviceID**

The following ASA CLI decides the value of the DeviceID sent by the ASA in the DeviceDetails request:

\[
\text{[no]} \text{ auto-update device-id hardware-serial | hostname | ipaddress [if-name] | mac-address [if-name] | string text}
\]

- **auto-update device-id** command specifies the device ID to send when polling the Management server.
- **no auto-update device-id** command resets the device ID to the default of hostname.
- **hardware-serial** option uses the ASA serial number.
- **hostname** option uses the ASA host name.
- **ipaddress** option uses the IP address of the interface with the name \( \text{if-name} \).
  
  If the interface name is not specified, it uses the IP address of the interface used to communicate with the remote management server.
- **mac-address** option uses the MAC address of the interface with the name \( \text{if-name} \).
  
  If the interface name is not specified, it uses the MAC address of the interface used to communicate with the remote management server.
- **string text** option uses the specified text.
  
  The text can not contain white space or the characters ‘, “, <, >, &, and ?.

---

**Note**

Since the DeviceID provided by the ASA is internally mapped to ConfigID and EventID in the Cisco Configuration Engine, it only supports hyphen (-), underscore (_), period (.) and alphanumeric characters.

**Security Considerations**

Because ASA devices are firewall devices and the configuration information is vital, the information is transported securely by using SSL.

HTTP is enforced as the transport protocol between ASA devices and Cisco Configuration Engine under all circumstances. **DeviceDetails**, **Update Info**, **ErrorInfo**, and configuration files are transported using only HTTPS. The authorization mechanism used in the Configuration Service is leveraged in the ASA server module. The URLs supplied by you toward the ASDM/ASA-image can use HTTP or HTTPS.

**ASA Device Polling Setup**

ASA devices can be configured to poll the Cisco Configuration Engine at regular intervals for configuration or image updates. This entry has to be made by you on the ASA device itself. Details are available from ASA device documentation. CLI format for the same is as follows:

**Usage:** auto-update device-id hardware-serial | hostname |
Configuration and Restrictions

The ASA compatibility module is set up along with Configuration Service during the initial setup of the system. You need not do anything specifically to enable ASA compatibility.

ASA devices with software versions of 8.2 and higher are supported by Cisco Configuration Engine (auto-update from the ASA device side was introduced in this version). All ASA hardware platforms that run software version 8.2 or higher will be supported.

The configuration files will be generated with options config-action= replace and errors=revert. No other options are supported.

Following are the different type of configuration-actions.

- Replace—Specifies that the current configuration should be cleared before applying the new configuration.
- Merge—Merges the current configuration with the new configuration file.

Following are the different type of error-actions.

- Continue—Continues with applying the new configuration, even if there is a configuration error.
- Revert—Reverts the old configuration from the flash without rebooting when there is a configuration error.
- Stop—Stops reading the rest of the configuration when a command causes an error.
The Intelligent Modular Gateway (IMGW) device module development toolkit clearly defines the southbound interface of IMGW and provides a registration utility to allow you to register plug-in device modules into IMGW after the device module is installed onto the Cisco Configuration Engine.

This chapter analyzes the requirements of the IMGW device module development toolkit and describes the functionality that is offered by this toolkit.

Note
You can also implement the device module in either shell scripts or Linux executables as long as the device module conforms to IMGW southbound interface.

User Types

This toolkit is oriented to three types of users:

- **Plug-in Developer**—responsible for developing the device module that complies with the IMGW southbound interface defined in this toolkit
- **System Administrator**—responsible for the following:
  - Plug the device module into and out of the Cisco Configuration Engine
  - Register and de-register the plug-in device module
  - Update the device module on the Cisco Configuration Engine
- **Network Operator**—configures the device through the plug-in device module

Toolkit Usage

There are three common usages of this toolkit:

- Plug a device module into Cisco Configuration Engine and configure devices using the device module.
- Update a device module on the Cisco Configuration Engine and configure devices through the modified device module.
- Unplug a device module from the Cisco Configuration Engine.
Plug Device Module Into Cisco Configuration Engine

**Step 1**  The *Plug-in Developer* develops a device module conforming to the IMGW southbound interface defined in this toolkit to handle the given device type.

For information about the device module syntax, see “IMGW Southbound Interface” section on page 23-206.

**Step 2**  The *System Administrator* installs the device module onto Cisco Configuration Engine.

**Step 3**  The *System Administrator* runs the registration utility to register the device module into IMGW.

**Step 4**  The *Network Operator* configures devices through the device module.

Update Device Module on Cisco Configuration Engine

**Step 1**  The *Plug-in Developer* provides a new version of the device module.

**Step 2**  The *System Administrator* runs the registration utility to de-register the device module from IMGW.

If the device module you want to update is not registered, skip this step

**Step 3**  The *System Administrator* updates the device module with the new version on Cisco Configuration Engine.

**Step 4**  The *System Administrator* runs registration utility to register the updated device module into IMGW.

**Step 5**  The *Network Operator* configures devices through modified device module.

Unplug Device Module from Cisco Configuration Engine

**Step 1**  The *System Administrator* runs the registration utility to de-register the plug-in device module from IMGW.

**Step 2**  The *System Administrator* uninstalls the plug-in device module from Cisco Configuration Engine.

IMGW Southbound Interface

When a command execution or a configuration update event is received by IMGW runtime, it will first retrieve device type information from the device information database. If the device module corresponding to device type and operation type (*CONFIG_UPLOAD* or *CONFIG_DOWNLOAD*) is registered, IMGW runtime forks a process to execute the proper plug-in program and pass the parameter list to the plug-in program.

The initial mapping information from the `<device type, operation type>` pair to the plug-in program is read from a configuration file into memory upon start up. When IMGW is running, the system administrator can still add, remove, or update the entries of mapping information by way of the toolkit registration utility.
The System Administrator can modify only the entries for non-legacy device modules. This restriction is enforced by IMGW runtime.

**User Designed Device Module Specifications**

A user-defined device module must conform to the IMGW southbound interface as specified in this section.

**Config Event**

```xml
cfg_event
 <plug-in program> <temp_logfile_name> <logging_level> <device_id> <action_type>
 <warning_logfile_name> <error_logfile_name> <hop_information_string>
 <configuration_file_name> <persistence> <operation_timeout_value> <prompt_timeout_value>.
```

**Exec Event**

```xml
eexec_event
 <plug-in program> <temp_logfile_name> <logging_level> <device_id> <action_type>
 <hop_information_string> <command_to_be_executed> <command_arguments>
 <exec_response_logfile_name> <operation_timeout_value> <prompt_timeout_value>.
```

**Hop Test**

```xml
_hop_test
 <plug-in program> <temp_logfile_name> <logging_level> <device_id> <action_type>
 <hop_information_string> <operation_timeout_value> <prompt_timeout_value>.
```

---

**Note**

All files specified for the IMGW southbound interface are managed by IMGW runtime and their file names are absolute path names.

**Parameter Descriptions**

**Plug-in Program:** The plug-in program that is executed in the child process forked by IMGW runtime. The system administrator gives this information to IMGW runtime during registration.

**temp_logfile_name:** The full path to the device module temporary log file, which should be used by the device module to log the processing history of one instance of operation (configuration download, command execution or hop test). This file is by default located at /tmp directory on the Cisco Configuration Engine. After the plug-in program exits, IMGW runtime puts the content of this file into a centralized log file named /opt/CSCOimgw/bin/IMGW-DEVMOD_LOG for debugging purpose, then unlinks this file.

**logging_level:** It could be verbose, error, or silent. This flag can be set up by running setup command on the host system. It is recommended that the device module log information into the file <temp_logfile_name> based on the specified logging level.

**device_id:** The identification of the device that is processed by the device module. It is passed in by the cisco.mgmt.cns.config.load or cisco.mgmt.cns.exec.cmd event.
**action_type:** It could be `config`, `exec`, or `hoptest`. Action type `config` notifies the device module to update the device configuration. Action type `exec` notifies the device module to execute a command on the device. Action type `hoptest` notifies the device module to test if the device is reachable by way of the hop information provided in `<hop_information_string>`. The device module should do the proper operation in response to this flag.

**warning_logfile_name:** The full path to the file that is used by the device module to log all warning messages and its corresponding configuration commands line numbers. This parameter is supplied by IMGW runtime only when the action type is `config` because the information in this file is only used to generate the response message to the `cisco.mgmt.cns.config.load` event if the configure succeeds with warnings. In order for the IMGW runtime to generate the proper response message, each warning message should begin a new line and be prefixed with the string of `LINE <line number of the configuration command that causes the warning message>`: An example of the warning file is as follows:

LINE 3: The interface has already been removed
. 
. 
LINE 7: The interface already exists.

The location of this file is under `/tmp` on the host system. After the plug-in program exits, IMGW runtime puts the content of this file into the response event payload, then immediately unlinks this file.

**error_logfile_name:** The full path to the file that is used by the device module to log the occurrences of the error messages and their corresponding configuration command line numbers. This parameter is supplied by IMGW runtime only when the action type is `config` because the information in this file is only used to generate the response message to the `cisco.mgmt.cns.config.load` event if the configure fails. In order for the IMGW runtime to generate the proper response message, each error message should begin a new line and be prefixed with the string of `LINE <line number of the configuration command that causes the error message>`.

An example of the error file is as follows:

LINE 3: % Invalid input detected at
LINE 7: % Incomplete command
. 
. 
LINE 12: % The interface already exists

The location of this file is under `/tmp` on the host system. After the plug-in program exits, IMGW runtime puts the content of this file into the response event payload, then immediately unlinks this file.

**exec_response_logfile_name:** The full path to the file that is used to log the output of command execution on the device. It is supplied by IMGW runtime only when the action type is `exec` and its location is under `/tmp` on the host system. After the plug-in program exits, IMGW runtime puts the content of this file into the response event payload, then immediately unlinks this file.

**hop_information_string:** The string used to store the access information of the device. It is the string concatenation of all individual hop information of the device in order. An example the hop information and its `<hop_information_string>` are as follows:

<table>
<thead>
<tr>
<th>Hop type</th>
<th>IP address</th>
<th>Port</th>
<th>Username</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOS_LOGIN</td>
<td>172.29.145.45</td>
<td></td>
<td>Admin</td>
<td>Cisco</td>
</tr>
<tr>
<td>IOS_EN</td>
<td></td>
<td></td>
<td>Lab</td>
<td>Lab</td>
</tr>
</tbody>
</table>
The corresponding `<hop_information_string>` should be as follows:

```
"IOS_LOGIN" "172.29.145.45" "Admin" "Cisco" "IOS_EN" "" ""Lab" "Lab"
```

**Note**
For those fields of hop information with null value, IMGW runtime automatically adds a space before passing it to the child process.

**command_to_be_executed:** The command to be executed on the device. It is supplied by IMGW runtime only when the action type is `exec`.

**command_arguments:** The arguments of the command to be executed on the device. It is supplied by IMGW runtime only when the action type is `exec`.

**configuration_file_name:** The full path to the configuration file which will be downloaded onto the device. It is supplied by IMGW runtime only when the action type is `config` and its location is under `/tmp` on the host system. After the plug-in program exits, IMGW runtime immediately unlinks this file.

**persistence:** `y` or `n`. The value `y` means the configuration needs to be written into non-volatile storage. It is supplied by IMGW runtime only when the action type is `config`. This option is dependent on the device type. This means the device module can ignore it if the device type does not support it.

**operation_timeout_value:** The maximum time period allowed to execute a command on the device. This parameter is now used by Expect scripts in IMGW legacy device module for IOS, CatOS, CatIOS, PIX, CSS and CE devices. A user-defined device module can ignore this parameter if it does not use it.

**prompt_timeout_value:** The maximum time period allowed to wait for the next prompt during login session to the device. This parameter is now used by Expect scripts in IMGW legacy device module for IOS, CatOS, CatIOS, PIX, CSS and CE devices. A user-defined device module can ignore this parameter if it does not use it.

### Exit Codes

When the forked process (in which the plug-in program is executed) exits, the following exit codes are expected by IMGW runtime from the forked process:

**config event:**

- 0 – Download succeeds
- 1 – Download fails
- 2 – Download succeeds but with warning messages

**Exec Event:**

- 0 – Command execution succeeds
- 1 – Command execution fails

**Hop Test:**

- 0 – Hop test succeeds
- 1 – Hop test fails
How to Develop Plug-in Device Module

This toolkit allows the Plug-in Developer to use any implementation to realize the plug-in device module as long as the device module complies with IMGW southbound interface specified in “IMGW Southbound Interface” section on page 23-206.

This toolkit also provides sample code (see Toolkit Usage, page 23-205) in Perl plus Expect scripts as well as inline comments to help beginners to understand the workflow of the plug-in device module.

The plug-in device module should render three basic functions:

- Device configuration update
- Command execution
- Hop test

The first two functions are in response to the `cisco.mgmt.cns.config.load` and `cisco.mgmt.cns.exec.cmd` events respectively. The last one is an internal routine operation required by IMGW runtime and is transparent to network operators.

After IMGW runtime spawns a child process to execute the plug-in program, the corresponding device module should read the action type from the parameter list. If the action type is:

- `config` – device module should do device a configuration update.
- `exec` – device module should do a command execution.
- `hoptest` – device module should do hop test.

Development Guidelines

The following subsections describe the processes associated with each function.

Note
The subject of actions in the subsections below is the plug-in device module.

Device Configuration Update

1. Access the device by way of the `<hop_information_string>`.
2. Download the configuration file named after `<configuration_file_name>` onto the device.
3. If the above download operation succeeds, the `<persistence>` is set to `y` and the device supports this option, then write the configuration to non-volatile storage.
4. Write all warning messages prompted by the device and their corresponding configuration commands line numbers into the file named after `<warning_logfile_name>` in the specified format (see “Parameter Descriptions” section on page 23-207). The content of this file will be part of the payload of the response event if the download succeeds but with warning messages.
5. Write all error messages prompted by the device and their corresponding configuration commands’ line numbers into the file named after `<error_logfile_name>` in the specified format (see “Parameter Descriptions” section on page 23-207). The first error message and its corresponding configuration command line number will be part of the payload of the response event if the download fails.
6. Based on the `<logging_level>`, selectively redirect the processing history into the file named after `<temp_logfile_name>` for debugging purpose during the whole procedure.
7. Exit with proper exit code to return control to IMGW runtime. See “Exit Codes” section on page 23-209 to get the definition of exit codes.

Command Execution

1. Access the device by way of the <hop_information_string>.
2. Execute on the device the <command_to_be_executed> with the <command_arguments>.
3. Capture all output from the command execution into the file named after <exec_response_logfile_name>. The content of this file will be part of the payload of the response event.
4. Based on the <logging_level>, selectively redirect the processing history into the file named after <temp_logfile_name> for debugging purpose during the whole procedure.
5. Exit with proper exit code to return control to IMGW runtime. See “Exit Codes” section on page 23-209 to get the definition of exit codes.

Hop Test

1. Access the device by way of the <hop_information_string>.
2. Based on the <logging_level>, selectively redirect the processing history into the file named after <temp_logfile_name> for debugging purpose during the whole procedure.
3. Exit with proper exit code to return control to IMGW runtime. See “Exit Codes” section on page 23-209 to get the definition of exit codes.

Installing Plug-in Device Module

The System Administrator is required to take charge of the install/uninstall. He/She should make sure the installation is successful before calling the registration utility.

The System Administrator should install all plug-in device modules into the reserved file directory of /opt/ConfigEngine/CSCOimgw/plugin-modules with one subdirectory per device module. For example, install the device module for MGX into /opt/ConfigEngine/CSCOimgw/plugin-modules/MGX while install the one for NT into /opt/ConfigEngine/CSCOimgw/plugin-modules/NT.

The System Administrator should only operate within the device module installation directory to set/remove the running environment of the module. The installation activities should not affect the running environment of other components on the Cisco Configuration Engine.
Registering Plug-in Device Module

The System Administrator must provide the device type and the full path to the plug-in program when registering a device module. IMGW runtime does not check the integrity of this information. It is responsibility of the System Administrator to make sure the information is correct.

This toolkit provides a dynamic registration utility to the system administrator, which allows the System Administrator to plug the device module into and out of IMGW seamlessly without tearing down IMGW runtime. Therefore, the services irrelevant to the device module that is being registered/de-registered will not be affected. However, this might not be the case for other services.

For example, at the time you issue the de-register command on device module x, the events related to x that are still queued in event bus might get failure responses from IMGW.

Caution
It is HIGHLY RECOMMENDED that the System Administrator notify all Network Operators of the upcoming registration activities so that Network Operators have a chance to stop beforehand any relevant operation.

End User Interface

The end user interface of IMGW device module development toolkit consists of IMGW southbound interface and the command line registration utility.

Configuration and Restrictions

This toolkit does not put a restriction on the maximum number of plug-in device modules that can be put into IMGW.

Device Module Restrictions

- The device module must be able to run on the Linux platform.
- If the executable of the device module is a C++ binary file, it must utilize the glib that exists on Cisco Configuration Engine where applicable.
- If the executable of the device module is a java class, it must run in the existing JVM of Cisco Configuration Engine.
- If the device module includes Perl and/or Expect scripts, the scripts should use the Perl and/or Expect interpreters that exist on Cisco Configuration Engine.

Registration Utility Restriction

The System Administrator is not allowed to register/de-register IMGW legacy device module. Sometimes users might want to modify one of the legacy device modules to do upload/download operation on CatOS, CatIOS, PIX, CSS, CE or IOS devices to meet their specific needs. In this case, they can only modify their own copy of the legacy device module, associate a different device type name to the modified device module and register the device module into IMGW.
Troubleshooting

This appendix provides troubleshooting information. It contains information about:

- Contacting Cisco TAC
- Checking the Version Number of Cisco Configuration Engine
- Cannot Log in to the System
- System Cannot Connect to the Network
- Cannot Connect to the System Using a Web Browser
- Problems Connecting to the System with Secure Shell
- Cannot Connect to the System Using Telnet
- Backup and Restore Not Working Properly
- Cannot Back Up Jobs
- Using the cns-send and cns-listen Commands

For additional troubleshooting information, see the Troubleshooting Guide for Cisco Configuration Engine.

Note

For additional troubleshooting information, see the Troubleshooting Guide for Cisco Configuration Engine.

Contacting Cisco TAC

In some of the sections, you might be advised to contact the Cisco Technical Assistance Center (TAC) for assistance. You can obtain TAC assistance online at http://www.cisco.com/tac.

Checking the Version Number of Cisco Configuration Engine

To check the version number of the Cisco Configuration Engine software, do one of the following:

- Start the Cisco Configuration Engine application, and look for the version number in the displayed login screen.
- Use the `version` command. This command is located in the `cd $CISCO_CE_INSTALL_ROOT/CSCO CNSIE/bin` directory.
Cannot Log in to the System

Problem You cannot log in to the system.

Possible Cause This problem could occur for one of the following reasons:
- You did not run the Setup program to create the initial system configuration.
- You lost all of the user account passwords.

Solution To resolve this problem, follow these steps:

Step 1 If you did not run the Setup program, run the Setup program as described in the Cisco Configuration Engine Solaris Installation & Configuration Guide, 2.0.

Step 2 If you do not know the passwords for the system user accounts, reconfigure the system to create a new user account.

Step 3 If you still cannot log in to the system, contact the Cisco Technical Assistance Center (TAC) for assistance.

System Cannot Connect to the Network

Problem The system cannot connect to the network.

Possible Cause This problem could occur for the following reasons:
- The network cable is not connected to an Ethernet port.
- The Ethernet interface is disabled or misconfigured.
- The system is configured correctly, but the network is down or misconfigured.
- The system is not configured correctly.

Solution To resolve this problem, follow these steps:

Step 1 Verify that the network cable is connected to an Ethernet port and that the Link light is on.
- If the network cable is not connected, connect it.
- If the network cable is connected but the Link light is not on, check these probable causes:
  - The network cable is faulty.
  - The network cable is the wrong type (for example, a crossover type is used, instead of the required straight-through type).
  - The port on the default gateway to which the system connects is down.

Step 2 If you still cannot connect to the network, use the ping command to perform the following tests:

  a. Try to connect to a well-known host on the network. A DNS server is a good target host.

     If the ping command can reach the well-known host, the system is connected to the network. If it cannot connect to the host, the problem is with the network configuration or the host. Contact your network administrator for assistance.
b. If the `ping` command cannot reach the well-known host, try to reach another host on the same subnet as the system.

   If the `ping` command can reach a host on the same subnet, but cannot reach a host on a different subnet, the default gateway is probably down or misconfigured.

Step 3 If the `ping` command cannot reach any hosts, use the `ifconfig` command to determine whether the Ethernet interface is disabled or misconfigured.

   If the Ethernet interface is disabled, enable it. If it is misconfigured, configure it correctly.

Step 4 If the interface is enabled and correctly configured but you still cannot connect to the network, ensure that all network setting are configured correctly. Run the Setup program again by entering the `setup` command in the shell prompt.

Note You cannot run the Setup program a second time by logging in as `setup`. For security reasons, the account is disabled after it is used once successfully.

Step 5 Contact your network administrator to verify that there are no conditions on the network that prevent the system from connecting to the network.

Step 6 If no conditions are preventing the system from connecting to the network, contact the Cisco TAC for assistance.

---

**Cannot Connect to the System Using a Web Browser**

**Problem** You cannot connect to the system by entering its IP address in a web browser.

**Possible Cause** This problem could occur for the following reasons:

- The system cannot connect to the network.
- Encryption is enabled (plain text is disabled).
- The HTTP service is not running.

**Solution** To resolve this problem, follow these steps:

Step 1 Make sure that the system can connect to the network.

   If it cannot connect to the network, see the “System Cannot Connect to the Network” section on page A-2 for possible resolution.

Step 2 Try to connect to the system by using a web browser.

   If encryption is enabled:
   - Use `https://...` to connect.
   - Verify that the certificate is correct.

Step 3 If you still cannot connect, stop and start the web server by entering the following commands:

   `/etc/rc.d/init.d/httpd stop`  
   `/etc/rc.d/init.d/httpd start`

   If the LDAP directory contains thousands of devices, restart and wait 20 minutes.
Appendix A  Troubleshooting

Problems Connecting to the System with Secure Shell

Problem  When connecting to the system using Secure Shell (SSH), you experience one of these problems:

- You cannot connect to the system.
- The system is extremely slow, even though it is connected to the network.
- The system cannot correctly process requests from management applications.

Possible Cause  The system cannot obtain DNS services from the network.

Solution  To resolve this problem, follow these steps. Connect to the console if you cannot connect by using SSH.

Step 1  Do one of the following:

- Set up the name servers properly by editing the /etc/resolv.conf file.
- Re-execute Setup.

Step 2  Verify that the system can obtain Domain Name System (DNS) services from the network by entering the following command:

```
host <dns-name>
```

where <dns-name> is the DNS name of a host on the network that is registered in DNS. When you enter this command, it responds with the IP address of the host.

If the system cannot resolve DNS names to IP addresses, the DNS server is not working properly.

Step 3  Resolve the network DNS problem.

Step 4  If the system can resolve DNS names to IP addresses but you still cannot connect to the system using SSH, contact the Cisco TAC for assistance.

Cannot Connect to the System Using Telnet

Problem  You cannot connect to the system by using Telnet even though the system is connected to the network.

Possible Cause  This problem could occur if the Telnet service is disabled on the system.

Solution  To resolve this problem, use SSH to connect to the system.
Backup and Restore Not Working Properly

Problem  Backup and restore is not working properly.

Possible Cause  This problem could occur for the following reasons:
- The time base for the host system is not set to the UTC time zone.
- The time has changed.
- The cron job has not started.

Solution  To resolve this problem, follow these steps:

---

Step 1  Connect to the console if you cannot connect using SSH.

Step 2  Log in to the host system as root.

Step 3  To determine whether the time is correct, enter the following command:

```
date
```

Step 4  To determine the state of the cron job, enter the following command:

```
/etc/rc.d/init.d/crond restart
```

Example:

```
/etc/rc.d/init.d/crond restart
Stopping cron daemon: [OK]
Starting cron daemon: [OK]
#`
```

---

Cannot Back Up Jobs

Problem  Cannot back up jobs.

Possible Cause  The crontab command is used to schedule backup jobs. This command requires space in the /var partition to execute. If the /var partition is full, the crontab command fails to execute, which causes backup job failure.

Solution  To resolve this problem, clean up the /var partition on the system (move some files to the /home/ directory). Then resubmit the backup job from the Cisco Configuration Engine user interface.

---

Using the cns-send and cns-listen Commands

Use the cns-send and cns-listen commands to send and receive test messages to the event gateway in the Cisco Configuration Engine. These commands are located in the /opt/CSCOcnsie/tools directory.
cns-send

The syntax for the cns-send command is:

```
cns-send -version
```

or

```
cns-send [-service <service>] [-network <network>] [-daemon <daemon>] [-file <filename>]
<subject> [message]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-version</td>
<td>Outputs the version of cns-send.</td>
</tr>
<tr>
<td>-service &lt;service&gt;</td>
<td>(Optional) The port number (default: 7500).</td>
</tr>
<tr>
<td>-network &lt;network&gt;</td>
<td>(Optional) Network interface (in local machine) where messages are sent.</td>
</tr>
<tr>
<td>-daemon &lt;daemon&gt;</td>
<td>(Optional) Internal port of application to the rvd daemon (default: 7500).</td>
</tr>
<tr>
<td>-file &lt;filename&gt;</td>
<td>(Optional) Filename containing the XML-message. The filename can be sent instead of individual subject/messages.</td>
</tr>
<tr>
<td>&lt;subject&gt;</td>
<td>Subject name of the message.</td>
</tr>
<tr>
<td>&lt;message&gt;</td>
<td>(Optional) Message in the message field.</td>
</tr>
</tbody>
</table>

To use the cns-send command, follow these steps:

**Step 1**
Log in to the host system as root.

**Step 2**
Change directories to /opt/CSCOcnsie/tools.

**Step 3**
Type `.cns-send -file <filename> <subject>`

**Note**
The cns-send command sends messages in the opaque data format.

cns-listen

The syntax for the cns-listen command is:

```
cns-listen -version
```

or

```
cns-listen [-service <service>] [-network <network>] [-daemon <daemon>] <subject_list>
```
Using the cns-send and cns-listen Commands

**Syntax Description**

- **-version**
  Outputs the version of cns-listen.

- **-service <service>**
  (Optional) The port number (default: 7500).

- **-network <network>**
  (Optional) Network interface (in local machine) where messages are received.

- **-daemon <daemon>**
  (Optional) Internal port of application to the rvd daemon (default: 7500).

- **<subject_list>**
  Subjects listen to.

**Usage Guidelines**

Use the greater than symbol (>) for a wildcard.

**Examples**

- `./cns-listen “cisco.cns.config.load”`
- `./cns-listen “cisco.cns.>”`

**To use the cns-listen command, follow these steps:**

**Step 1** Log in to the host system as root.

**Step 2** Change directories to `/opt/CSCOcnsie/tools`.

**Step 3** Type `./cns-listen <subject_list>`
Software Licenses and Acknowledgements

For information on the third-party software licenses, see the *Cisco Configuration Engine 3.5.4 Open Source Documentation*. 
Symbols

#define 12-137
#else 12-136
#elseif 12-136
#elseif 12-136
#endif 12-136
#if 12-136
#include 12-137

Numerics

12.0 -> 12.2 19-183
12.0 -> 12.3(3) or later 19-185
12.2 -> 12.3(3) or later 19-185
12.3(3) or later -> 12.0 19-187
12.3(3) or later -> 12.2 19-186
12.3(3) or later -> 12.3(3) or later 19-186

A

adding
   events 7-102
   image 18-172
   template 12-138
   user account 4-85
adding a device 3-31
adding agent enabled devices 3-39
adding an account 4-85
adding devices 3-31
adding non-agent device 3-31
adding non-agent enabled device 3-31
adding pix firewall devices 3-44, 3-47
adding subdevices 3-72

administrator, levels of access 2-25
administrator-level operations 2-25
advanced search 3-30
advanced search feature 3-30
agent enabled devices
   adding 3-39
ASA device 22-199
ASA Device Polls 22-200
ASA Firewall Device 22-199
associating images with devices 18-177
audience for this document i-xi
automatic data entry 18-173

B

backup and restore 20-189
backup procedure 20-189
banner 3-74
batch size 3-69
Bootstrap Password 1-13
bootstrap password
   changing 13-145
bulk data manager 16-157

canceling
   jobs 5-92
cannot connect to system
   using a web browser  A-3
   using Telnet  A-4
   with SSH or SSH interaction is slow A-4
cannot log in  A-2, A-5
changing
account privilege level 4-90
bootstrap password 13-145
log level 14-151
user password 4-89
chema
editing 10-117
Cisco Adaptive Security Appliance devices 22-199
Cisco IOS Dependencies 1-3
clearing
log files 14-149
cloning
devices 3-62
subdevices 3-75
cloning groups 6-97
cns-listen A-6
cns-send A-6
command execution 23-211
command-line upload of bulk data 16-160
commands
cns config init 1-14
cns config partial 1-14
cns-listen A-5
cns-send A-5
datarestore 20-191
date A-5
ifconfig A-3
logrotate 1-16
Common Log File Location 1-16
config event 23-207
ConfigID 1-16
configuration agent 1-4
configuration and restrictions 21-197, 22-203, 23-212
configuration control template 3-35, 3-70, 12-127
configuration control templates 12-127
Configuration Processing 22-200
configuration processing 21-194, 22-200
configuration server 1-4
Configuration Service 1-4
configuration templates 1-4
contact information
editing 3-61
editing subdevice 3-75
contacting Cisco TAC A-1
control structures 12-136
conventions, typographical i-xiii
creating
groups using search 6-98
queries 8-108
sample data 16-160
search parameters 18-180
template 12-125
cron daemon
how to restart A-5
currently supported device types 3-36
customize supported device types 3-69
D
data backup
scheduling 9-111
data converter utility 16-160
data manager 9-111
data restore 20-191
data restore procedure 20-191
Data Structures 1-6
date A-5
delete files on device 3-80
deleting
completed jobs 5-93
devices 3-64
events 7-105
groups 6-98
image 18-177
queries 8-110
search parameters 18-181
subdevices 3-77
template 12-140
user account 4-89
deleting devices 3-64
deleting groups 6-98
deleting user accounts 4-89
development guidelines 23-210
Device Authentication 1-12
device authentication 1-12
device batch size 3-69
device configuration
  updating 3-64
  viewing 3-27, 3-29
device configuration update 23-210
device hop information 3-36
device inventory
  query 3-78
device module restrictions 23-212
devices
  adding 3-31
  deleting 3-64
  discovering 3-50
  editing 3-53
  editing parameters 3-61
Directory Manager 10-117
directory modes 1-3
directory services 1-4
discovering devices 3-50
disk space
  managing 9-114
Distribution Decision Keys 1-8
DNS server 20-192
documentation
  audience for this i-xi
  conventions used in i-xiii
  related i-xiii
Dynamic ConfigID and EventID Change Synchronization 1-16
dynamic flow control template 12-127
Dynamic Log level Update 1-17
dynamic operations 3-82
Dynamic Template and Object 1-6
dynamic templates 12-135
E
  editing
    contact information 3-75
    device contact information 3-61
    device parameters 3-61
    devices 3-53
    device templates 3-59
    email SMTP Host 17-169
    events 7-104
    fetch process 11-122
    groups 6-97
    image 18-175
    image association information 3-61
    IMGW device and hop types 15-155
    non-agent enabled device 3-55
    non-agent enabled device information 3-55
    parameters 12-139
    pix device information 3-57
    queries 8-109
    save process 11-123
    schema 10-117
    search parameters 18-181
    service properties 15-153
    subdevice
      information 3-74
      parameters 3-75
      template 3-74
      subdevice contact information 3-75
      subdevices 3-73
      template 12-139
      templates 12-139
      user account 4-87
    editing agent enabled device information 3-56
    email manager 17-169
Encryption 1-12
encryption 1-12
end user interface 23-212
error processing 21-195, 22-201
Event Gateway 1-5
EventID 1-16
EventIDs and ConfigIDs 1-16
event mapping 1-5
events
  adding 7-102
  deleting 7-105
  editing 7-104
  viewing 7-101
Event Service 1-5
event subject names
  new 1-5
exec event 23-207
exit codes 23-209
exporting
  log files 14-150
eXtensible Markup Language 1-4
External Directory Mode 1-4
external directory mode 1-4

F
fastethernet template 12-134
feature operations 2-26
fetch process
  editing 11-122
FTP server 20-191

G
gateway id 3-33
groups 6-95
  cloning 6-97
  creating 6-96
  creating using search 6-98
deleting 6-98
editing 6-97
moving 6-98
viewing 6-95
gui 2-23
  administrator-level operations 2-25
  levels of access 2-25
    administrator 2-25
    operator 2-25
  logging in 2-23
  logging out 2-25
  operator-level operations 2-25

H
help
  technical support
    (see also troubleshooting)
hopinfo examples 3-38
hop tables 3-36
hop test 23-207
hostname 1-14
How the Cisco Configuration Engine Works 1-13
how the Configuration Engine works 1-13

I
ifconfig A-3
image activation 3-35, 12-127
  template 3-70
imageInventoryResponse Message 1-7
image processing 21-194, 22-200
image sample data 16-166
Image Service 1-7
image service 18-171
  associating images with devices 18-177
data entry
    automatic 18-173
    manual 18-173
deleting
  image 18-177
downgrade 19-183
editing
  image 18-175
upgrade 19-183
viewing
  image 18-171
working with images 18-171
Image Update Criteria 1-8

IMGW
  currently supported device types 3-36
  hopinfo examples 3-38
  restrictions 1-10
imgw
  hop tables 3-36
IMGW device and hop types
  editing 15-155
IMGW device module development toolkit 23-205
  plug-in device module
    how to develop 23-210
    installing 23-211
    registering 23-212
  usage 23-205
  user designed device module specifications 23-207
  user types 23-205
IMGW Device Module Toolkit 1-11
IMGW southbound interface 23-206
import
  script file 11-123
importing
  schema 10-118
  template 12-141
initial configuration 1-14
installing plug-in device module 23-211
Intelligent Modular Gateway 1-10
  See also IMGW
inventory operations 12-127

J
  jobs
    canceling 5-92
    deleting completed 5-93
    querying 5-91
    restarting 5-92
    stopping 5-92

L
  LDAP 1-4
  levels of access 2-25
  lightweight directory access protocol 1-4
Load Initial Configuration 1-14
Load Partial Configuration 1-15
load-sharing 3-43, 18-175
log files
  clearing 14-149
  exporting 14-150
  viewing 14-147
logging in 2-23
logging out 2-25
log level
  changing 14-151
log manager 14-147

M
  main device template 12-133
  managing
    disk space 9-114
  managing templates 12-137
  manual data entry 18-173
  Modes of Operation 1-3
  modes of operation 1-2
  Modular Router 1-15
  modular router 1-11
  events 12-135
Index

sample templates 12-133
templates 12-131
modular router events 12-135
modular router support 1-11
moving
groups 6-98
multi-line tag delimiters 3-74

N
namespace 1-5
namespace manager 7-101
NameSpace Mapper 1-5
no crontab set for backup job when /var is 100% full. A-5
non-agent enabled device
adding 3-31
editing 3-55
NSM
data sample 16-161
with image information 16-163
NSM modes 7-103

O
OpenLDAP 1-4
operator, levels of access 2-25
operator-level operations 2-25
overview 1-1

P
parameter
manager 11-121
validations 11-121
parameter descriptions 23-207
partial configuration 1-15
password
changing 4-89
PIX firewall devices
configuration and restrictions 21-197, 22-203
configuration processing 21-194, 22-200
devicedetails 21-194, 22-200
devicedetails, request 21-195, 22-201
deviceID 21-196, 22-202
error processing 21-195, 22-201
image processing 21-194, 22-200
polling for updates 21-194, 22-200
polling setup 21-196, 22-202
processing devicedetails request 21-195, 22-201
security 21-196, 22-202
security considerations 21-196, 22-202
PIX Firewall Support 1-9
plugging in device module 23-206
plug-in device module
how to develop 23-210
privilege level
changing 4-90
product list
updating 9-113
product overview 1-1
query device inventory 3-78
querying device inventory 3-78
querying jobs 5-91
query manager 8-107
registration plug-in device module 23-212
registration utility restriction 23-212
restarting jobs 5-92
Restrictions 1-10
Resynchronize cns_password 1-13
resynchronizing devices 3-62

S
sample data for bulk upload
  NSM 16-161
Sample Logrotate Config File 1-17
sample template 12-125
sample templates
  modular router 12-133
save process
  editing 11-123
scheduling
  data backup 9-111
schema
  importing 10-118
script file
  importing 11-123
search parameters 18-179
secure socket layer 1-12
security manager 13-145
service manager 15-153
service properties
  editing 15-153
software licenses and acknowledgements B-1
stopping
  jobs 5-92
stopping jobs 5-92
subdevices 3-71
subject-based addressing 1-5
supported interfaces 1-3
system cannot
  connect to the network A-2

T

T

T

T

template
  configuration control 3-35
template content
  editing 12-139
template file, basic format of 12-125
template filename 3-73
template manager 12-137
  adding a template 12-138
deleting a template 12-140
  editing 12-139
editing attributes 12-139
  editing content 12-139
importing a template 12-141
templates 1-4, 12-125
  configuration control 3-70, 12-127
  control structures 12-136
  variable substitutions 12-125
templates for modular routers 12-131
TFTP server 20-191
toolkit usage 23-205
troubleshooting
  cannot connect to system with telnet or telnet interaction is slow A-4
cannot connect to the system using a web browser A-3
cannot log in to the system A-2, A-5
  system cannot connect to the network A-2

U
unplugging
  device module 23-206
update jobs manager 5-91
updating
  device configuration 3-64
device configurations and images 3-64
device images 3-67
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>device module</td>
</tr>
<tr>
<td>product list</td>
</tr>
<tr>
<td>uploading bulk data</td>
</tr>
<tr>
<td>user accounts</td>
</tr>
<tr>
<td>changing password</td>
</tr>
<tr>
<td>deleting</td>
</tr>
<tr>
<td>editing</td>
</tr>
<tr>
<td>setting privilege level</td>
</tr>
<tr>
<td>user designed device module specifications</td>
</tr>
<tr>
<td>user types</td>
</tr>
<tr>
<td>using advanced search feature</td>
</tr>
<tr>
<td>using the cns-send and cns-listen commands</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>viewing</td>
</tr>
<tr>
<td>device configuration</td>
</tr>
<tr>
<td>events</td>
</tr>
<tr>
<td>groups</td>
</tr>
<tr>
<td>image</td>
</tr>
<tr>
<td>log files</td>
</tr>
<tr>
<td>queries</td>
</tr>
<tr>
<td>search parameters</td>
</tr>
<tr>
<td>subdevices</td>
</tr>
<tr>
<td>voice-port template</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>working with images</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>XML</td>
</tr>
<tr>
<td>bulk upload</td>
</tr>
<tr>
<td>dtd</td>
</tr>
</tbody>
</table>