Virtual Switching System Support

Virtual Switching technology is the process of combining two standalone distribution switches found in the local distribution layer into a single management point.

The Virtual Switching System functions and appears as a single switch to the wiring closet and the core layer. You can also create Virtual Switching Systems with a pair of standalone switches available in the core layer.

After the conversion of two distribution switches into one Virtual Switching System, the wiring closet switch creates a port bundle to the Virtual Switching System.

Creating a port bundle allows you to manage Standalone switches, easily because the port bundle has to manage only a single virtual port to the Virtual Switching System.

This Virtual Switching technology is implemented in LAN Management Solutions (LMS) by providing a Virtual Switching System Configuration Tool.

This GUI based conversion tool allows you to select two compatible standalone switches and guides you in converting those standalone switches into one Virtual Switching System.

During the conversion process, the Virtual Switching System Configuration tool generates the required CLI commands, based on your inputs. The process then pushes this configuration to the devices using the protocol order provided in Admin > Collection Settings > Config > Config Transport Settings.

This chapter contains:

- Prerequisites for Conversion
- Virtual Switching System Configuration Process
- Support for Virtual Switching Systems
- Converting Switches from Virtual to Standalone Mode

Note
Only VSS-capable standalone Cisco Catalyst 6000 switches can be converted into a Virtual Switching System.
Prerequisites for Conversion

Before you convert Standalone switches to a Virtual Switching System, you must ensure that:

- Candidate devices that are to be converted to a Virtual Switching System are managed by LMS so that they can use this conversion tool.
- Fresh Inventory and Config Collection has been carried out.
- Only VSS-capable IOS Software Modularity images are running on the Standalone switches.

Virtual Switching System Configuration Process

Two Standalone distribution switches can be converted into a single Virtual Switching System by using the Virtual Switching System Configuration Tool available in LMS. This process of converting to Virtual Switching Systems can also be done for core layer switches.

Before proceeding with conversion, ensure that the prerequisites are met.

For more information, see Prerequisites for Conversion.

To convert standalone switches to a Virtual Switching System:

1. Select Devices for VSS Configuration
2. Perform Hardware Checks on the Devices
3. Perform Software Compatibility Checks on the Two Devices
4. Generate Compliance Report
5. Define Configuration Parameters
6. Deploy Commands on the Two Switches to Enable VSS Mode

Select Devices for VSS Configuration

You need to select two switches and convert them into one Virtual Switching System. Only VSS-capable Standalone devices can be converted to Virtual Switching System.

The Virtual Switching System Configuration Tool consists of a customized device selector. This device selector displays only VSS-capable devices with their sysObjectIDs.

Perform Hardware Checks on the Devices

After you select two devices, sequential hardware checks are carried out by the Virtual Switching System Configuration tool on these two devices to ensure hardware compliance.

The hardware checks carried out are:

- RAM size check
 The RAM sizes in MB of both the devices are compared.
 If you try to convert one device with 450 MB RAM and another device with 512 MB RAM into a Virtual Switching System, a warning message is displayed. However, you are allowed to proceed with the conversion.

- Supervisor Type check
 The Supervisor types of both the devices are compared. You cannot convert one device with Supervisor4 and another device with Supervisor3 into a Virtual Switching System. Only Supervisor4 is supported for VSS Configuration.
Chapter 10 Virtual Switching System Support

Virtual Switching System Configuration Process

- Modules not supported in VSS mode
 Ideally, all modules available in the two devices must support VSS mode. Modules in the two devices that do not support VSS mode are displayed here.

- Physical Connectivity check
 Both devices should have physical connectivity. This connectivity enables you to convert them to the Virtual Switching System mode.

Perform Software Compatibility Checks on the Two Devices

After the hardware compatibility check is done, the selected devices undergo a software compatibility check.

The software compatibility checks are:

- Switch mode check
 Check whether both devices are in standalone non-VSS modes.
 You cannot convert a Standalone switch and a Virtual-mode configured switch into a Virtual Switching System.

- IOS Software Modularity Image check
 Both devices must be running VSS-capable IOS Software Modularity images in native IOS mode. An image is considered VSS-capable if it has SXH as the last three characters of the image name.
 Example
 The image, 12.2(99)SXH is considered VSS-capable because it has SXH as the last three characters of the image name.

Generate Compliance Report

After the hardware and software compatibility checks have been completed, a Compliance report is generated. This report indicates the various attributes considered for the checks and the status of the checks.

If there are any instances of non-compliance, you need to restart the conversion process to address these non-compliances.

You are allowed to proceed to the next step only if both hardware and software compatibility checks are successful.

For example:

If the devices do not comply with the minimum IOS software image version, you need to upgrade the software images in the two devices to the minimum recommended version.

A link is provided to the software image upgrade page along with the compliance report, if the minimum software requirement is not met. You can use this link to upgrade the software images in the devices to the minimum IOS software image version.

Define Configuration Parameters

When the devices are made compliant with the hardware and software compatibility checks, you need to define configuration parameters for both the devices.

The configuration definition includes:

- Specifying the Domain number for the Virtual Switching System configuration
- Assigning one switch as the Active switch and the other as the Standby switch
- Entering the Switch Priority value for both switches
Virtual Switching System Configuration Process

- Entering the Port Channel numbers for both switches
- Selecting 10 Gigabit Ethernet Interfaces for both switches.

Deploy Commands on the Two Switches to Enable VSS Mode

After you have defined the configuration parameters, the Conversion Work Order page is displayed. This page lists the various CLI commands that you must download to the two devices. The CLI commands convert the switches into a Virtual Switching System.

These CLI commands are generated by the Virtual Switching System Configuration tool. You need to deploy the CLI commands on the devices.

LMS uses various protocols such as Telnet, SSH, RCP, SCP, and TFTP to deploy the commands on the devices. The protocols are tried out in the order specified in LMS. If the first protocol in sequence cannot log into the device, the next protocol in the order is tried out, until a suitable protocol is found.

For more information on how to change the protocol order, see *Administration of Cisco Prime LAN Management Solution 4.2*.

The devices reboot after the CLI commands have been deployed on them. One switch is transformed to function as an Active switch and the other as a Standby switch.

After successful conversion, the running configuration of the VSS setup is copied to its startup configuration. The individual switches are then moved to the Suspended state in LMS.

The new Virtual Switching System is added to Device Credentials Repository (DCR) with the device name, same as the IP Address of the Active switch followed by _VSS._

Note

After conversion, irrespective of whether an Active or Standby switch boots up first, the conversion to Virtual Switching System takes place successfully. The IP address of the Active device is added to DCR.
Converting Switches from Standalone to VSS Mode

LAN Management Solution (LMS) provides support for Virtual Switching Systems.

You can use the Virtual Switching System Configuration Tool to convert VSS-capable Standalone switches to a Virtual Switching System. This GUI-based tool is a wizard that guides you through the conversion process.

Before you start converting Standalone switches to a Virtual Switching System, you need to ensure that the prerequisites are met.

For more information, see Prerequisites for Conversion.

To convert Standalone switches to a Virtual Switching System:

Step 1
Select **Configuration > Workflows > Virtual Switching System > VSS Conversion**.

The Virtual Switching System Mode Conversion dialog box appears.

Step 2
Select two Standalone switches that are VSS-compliant from the Device Selector to convert to a Virtual Switching System.

The device selector is customized to display only Standalone switches that are VSS-compliant.

Step 3
Click **Convert to VSS Mode**.

- If the switches are compatible, the Checking the Hardware and Software Requirements dialog box appears.
- If the switches are not compatible, an error message is displayed and the conversion is terminated. In this case, you must restart the conversion after making the switches hardware and software compatible.

For more information on the hardware and software checks, see Table 10-1.

Table 10-1 Hardware and Software Check

<table>
<thead>
<tr>
<th>Properties</th>
<th>Device 1</th>
<th>Device 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Checks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervisor Type</td>
<td>The Supervisor type for Device 1.</td>
<td>The Supervisor type for Device 2.</td>
</tr>
<tr>
<td>Modules not supported in VSS mode</td>
<td>Names of modules in Device 1 that do not support VSS mode.</td>
<td>Names of modules in Device 2 that do not support VSS mode.</td>
</tr>
<tr>
<td>Physical Connectivity</td>
<td>The IP Address through which Device 1 is connected.</td>
<td>The IP Address through which Device 2 is connected.</td>
</tr>
<tr>
<td>Result</td>
<td>Status of hardware check.</td>
<td></td>
</tr>
<tr>
<td>Software Checks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Properties</td>
<td>Device 1</td>
<td>Device 2</td>
</tr>
<tr>
<td>VSS Mode</td>
<td>The current mode of Device 1.</td>
<td>The current mode of Device 2.</td>
</tr>
<tr>
<td>Image Version</td>
<td>The software image version in Device 1</td>
<td>The software image version in Device 2.</td>
</tr>
<tr>
<td>Result</td>
<td>Status of software check.</td>
<td></td>
</tr>
</tbody>
</table>
When the RAM size of both the devices are not equal, a warning message is displayed. However, you will be allowed to continue with the conversion.

Step 4 Click **Next**.

The Define Configuration Parameters dialog box appears.

Step 5 Enter the required information as shown in [Table 10-2](#).

Table 10-2 Define Configuration Parameters

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Switching System Configuration</td>
<td></td>
</tr>
</tbody>
</table>
| Enter Domain Number | Domain number to be used by the Virtual Switching System, which can be any number between 1 to 255.
 | This domain number is common for both the switches. |
| Device Name: 1 | |
| Select Switch Number | Either
 | • Check Switch No.1 if you want to assign Device 1 as Switch No. 1. |
 | Or
 | • Check Switch No.2 if you want to assign Device 1 as Switch No. 2. |
 | You cannot assign both Device1 and Device 2 as Switch No.1. If Device 1 is assigned Switch No.1 then Device 2 should be assigned as Switch No.2.
 | The configuration of the switch designated as No. 2 is overwritten by the configuration of the switch designated as No. 1.
 | The first switch becomes the Active Switch and the second switch becomes the Standby Switch. |
| Enter Switch Priority | Switch Priority number to be used by the Virtual Switching System, which can be any number between 1 and 255.
 | The switch with the higher value becomes the Active Switch and the other switch becomes the Standby Switch.
 | The priority value should not be the same for both switches. |
| Enter Port Channel Number | Port Channel for Device 1.
 | Enter a number between 1 and 255. The Port channel number must be different for each switch. |
Chapter 10 Virtual Switching System Support

Virtual Switching System Configuration Process

Table 10-2 Define Configuration Parameters

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Interface</td>
<td>Interface for Device 1. Select the interface for the device from the list box that displays the 10 Gigabit Ethernet interfaces. A minimum of one interface must be selected for the device. Use the Control Key to select more than one interface. Only VSS-capable 10 Gigabit line cards are displayed. Interface modules for Supervisor 4, 6708 10 Gigabit and 6716 10 Gigabit interfaces are available for selection. For 6716 10 Gigabit type cards, only four interfaces are displayed for selection. For example, if there is a 6716 10 Gigabit card in the device, only the following four interfaces (1, 5, 9, 13) are displayed: TenGigabitEthernet <module number>/1 TenGigabitEthernet <module number>/5 TenGigabitEthernet <module number>/9 TenGigabitEthernet <module number>/13 Where <module number> is the module number of the Gigabit card. For example, TenGigabitEthernet 6/1, where 6 is the module and 1 is the interface. The number of interfaces selected must be the same for both devices.</td>
</tr>
<tr>
<td>Device Name: 2</td>
<td></td>
</tr>
<tr>
<td>Select Switch Number</td>
<td>Either:</td>
</tr>
<tr>
<td></td>
<td>• Check Switch No.1 if you want to assign Device 2 as Switch No. 1. Or • Check Switch No.2 if you want to assign Device 2 as Switch No. 2. You cannot assign both Device1 and Device 2 as Switch No.1. If Device 1 is assigned Switch No.1 then Device 2 should be assigned as Switch No.2. The configuration of the switch designated as No. 2 is overwritten by the configuration of the switch designated as No. 1. The first switch becomes the Active Switch and the second switch becomes the Standby Switch.</td>
</tr>
<tr>
<td>Enter Switch Priority</td>
<td>Switch Priority number to be used by the Virtual Switching System, which can be any number between 1 and 255. The switch with higher value becomes the Active Switch and the second switch becomes the Standby Switch. The priority value should not be the same for both switches.</td>
</tr>
</tbody>
</table>
Chapter 10 Virtual Switching System Support

Virtual Switching System Configuration Process

Table 10-2 Define Configuration Parameters

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Port Channel Number</td>
<td>The Port channel for Device 2. Enter a port channel number for the switch between 1 and 255. The Port channel number must be different for each switch.</td>
</tr>
<tr>
<td>Select Interface</td>
<td>The Interface for Device 2. This list box lists the 10 Gigabit Ethernet interfaces. Select the interface for the device from the list box.</td>
</tr>
<tr>
<td></td>
<td>At least one interface must be selected for the device. Use the Control Key to select more than one interface.</td>
</tr>
<tr>
<td></td>
<td>Only VSS capable 10 Gigabit line cards are displayed. Interface modules for Supervisor 4, 6708 10 Gigabit and 6716 10 Gigabit cards are available for selection.</td>
</tr>
<tr>
<td></td>
<td>For 6716 10 Gigabit type cards, only four interfaces are displayed for selection. For example, if there is a 6716 10 Gigabit card in the device, only the following four interfaces (1, 5, 9, 13) are displayed:</td>
</tr>
<tr>
<td></td>
<td>• TenGigabitEthernet <module number>/1</td>
</tr>
<tr>
<td></td>
<td>• TenGigabitEthernet <module number>/5</td>
</tr>
<tr>
<td></td>
<td>• TenGigabitEthernet <module number>/9</td>
</tr>
<tr>
<td></td>
<td>• TenGigabitEthernet <module number>/13</td>
</tr>
<tr>
<td></td>
<td>Where <module number> is the module number of the Gigabit card. For example, TenGigabitEthernet 6/1, where 6 is the module and 1 is the interface.</td>
</tr>
<tr>
<td></td>
<td>The number of interfaces selected must be the same for both devices.</td>
</tr>
</tbody>
</table>

Step 6 Click **Next**.

The Work Order page appears with the CLI commands that need to be downloaded to each of the switches so that they can be converted into one Virtual Switching System.

Step 7 Click **Finish**.

- If the conversion was completed, a message is displayed that the two switches have been converted to a single Virtual Switching System.
- If the conversion failed, an error message is displayed indicating the reason for failure. The reason could be that the CLI commands were not properly deployed on the devices.

Note You cannot set priorities for the two Standalone switches that are considered for VSS conversion. Both the Standalone switches have equal priority by default.
Support for Virtual Switching Systems

The various applications in LMS such as Syslog, Inventory Management, Reporting, Software Management, and Configuration Management provide support for Virtual Switching Systems. The implication of Virtual Switching System support for these applications is discussed below:

- **Inventory Management**
- **Configuration Management**
- **Syslog**
- **Software Management - Software Distribution**
- **Software Management - Scheduling a Software Distribution Job**

Inventory Management

The Virtual Switching System is considered as a single switch by Inventory. However Inventory collection happens for both switches.

You can generate a Detailed Device Report for the Virtual Switching System. The output of this report consists of information on both the Active and the Standby switches.

For more information on how to generate a Detailed Device Report, see *Reports Management with Cisco Prime LAN Management Solution 4.2*.

Configuration Management

After the conversion, the Virtual Switching System will have a single unified configuration. Configuration management provides support for Virtual Switching Systems by managing the configuration of the switch.

You can use Configuration Management to:

- Archive the device configurations
- Determine out-of-sync configuration files
- View the configuration version tree
- Compare the revisions of configurations
- Compare the archived configuration with a baseline template
- Deploy a version of configuration on the device

For more information on Configuration Management, see *Archiving Configurations and Managing them using Configuration Archive*.

You can also use NetConfig and Config Editor to configure Interfaces on a VSS device.

For more information on using NetConfig and Config Editor, see:

- **Making and Deploying Configuration Changes Using NetConfig**
- **Editing and Deploying Configurations Using Config Editor**
Syslog

The Syslog messages are sent from the Active switch of the Virtual Switching System to the LMS server. These messages are treated like any other Syslog message from any other device type. Syslog reports can be generated for the Syslogs received from the Active switch of the Virtual Switching System.

For information on Syslogs, see Administration of Cisco Prime LAN Management Solution 4.2.

Software Management - Software Distribution

Software Management is enhanced to support distribution of software images to a Virtual Switching System. Software Management uses Master Chassis - Active Supervisor for software distribution.

Software Distribution through LMS Software Management varies based on the software image or Patch image considered for distribution.

• Distribution of the Base Image
 Distributing the software Base image consists of:
 a. Copying the new software image to the Master switch, Flash storage partition.
 b. Copying the same software image to the corresponding slave switch Flash storage partition.
 If Master Flash storage is disk0 the software image will be copied to slave-disk0 Flash storage of the Slave switch.
 c. Loading the Active switch.
 d. Loading the Slave switch.
 e. Activating the software image on both the Flash storages.
 f. Rebooting the Master switch.

• Distribution of Patch image
 Distribution of software base image consists of:
 a. Copying of the new patch image to the Master switch, Flash storage partition.
 b. Copying the same Patch image to the corresponding Slave switch, Flash storage partition.
 If Master Flash storage is disk0, the Patch image will be copied to slavedisk0 Flash storage of the Slave switch.
 c. Loading the Active switch.
 d. Loading the Slave switch.
 e. Activating the Patch image on both the Flash storages.
 You are allowed to reload the device to activate the Patch images, only if you have selected Reload if required option while scheduling the Patch distribution job.
 – When you reload, the standby Route Processor(RP) on the Slave switch is reset.
 – The device reboots as soon as the installed code starts running.
 – A manual switchover to the redundant supervisor engine for a dual processor redundant system takes place.
You can only distribute Patch images to a Virtual Switching System running VSS-capable IOS Software Modularity image in Install mode.

For more information on Software Distribution, see Software Distribution.

Software Management - Scheduling a Software Distribution Job

Scheduling a Software Management distribution job for Virtual Switching Systems is almost similar to that of any Standalone switch. In addition to the verifications performed by Software management, there are a few verifications that are carried out for Virtual Switching Systems.

Software management verifies:

- If VSS-capable IOS Software Modularity images are running on the devices.
 The prerequisite for VSS is that the devices should have VSS-capable IOS Software Modularity images running on them. So if you select an image that is not a VSS-capable IOS Software Modularity image, the software distribution job cannot be performed.
- If the RAM space available on the two devices are compatible.
 RAM checks are carried out only for Master switch supervisors and not for Slave switch supervisors.
- If there is an identical Slave switch storage partition with enough space for the selected Master switch storage partition.

For more information on Software Distribution, see:

- Distributing by Devices [Basic]
- Distributing by Devices [Advanced]
- Distributing by Images
- Remote Staging and Distribution
- Patch Distribution

Converting Switches from Virtual to Standalone Mode

Virtual Switching System refers to the conceptual switch that is created by converting two VSS-capable standalone switches into one switch. You can also convert Virtual Switching Systems back to Standalone switches.

To convert Virtual Switching Systems into Standalone switches:

Step 1 Locate the original configurations of the two switches.

These configurations maybe available as files on your server. If not, locate them from the Configuration Archive of LMS.

For more information on locating the configurations, see Using the Configuration Version Tree.

You can continue with this procedure even if the original configuration files are not available. You can manually reconfigure the individual switches, if required.
Converting Switches from Virtual to Standalone Mode

Step 2 Back up the current VSS setup configuration.
This configuration may be required for future conversions.

Step 3 Connect to the VSS setup using Telnet and:
 a. Remove all the loop back interfaces on the VSS.
 Run the command `no loopback` for each loop back address on the switch.
 This removes the loop back addresses from the switch.
 b. Go to the running configuration of the VSS setup and configure the IP address on the physical interface of the Standby switch.
 This IP address must be in a subnet that is not the physical interface of the Active switch.
 After the IP address is configured on the physical interface, the Standby chassis is accessible through the management IP address.
 c. Save this configuration change by running the `write mem` command.
 The configuration is saved to the NVRAM of the corresponding device.
 d. Run the command `switch convert mode stand-alone` in Enable mode.
 This command will reload the Active switch and release the switch from VSS setup.

Step 4 Connect to the VSS setup using Telnet. You must use the IP address configured in Step 3b.

Step 5 Run the command `switch convert mode stand-alone` in Enable mode.
The switches are now in Standalone mode. You can access them using their own management addresses.

Step 6 Either:
 • Add the two devices to the DCR of LMS, if they do not exist there. To do this select Inventory > Device Administration > Add / Import / Manage Devices.
 Or
 • Change the device states if the devices are in Suspended state. This change allows the two devices to be managed again by LMS.

Note Alternatively, you can refer to the VSS Reverse Conversion wizard for the procedures for converting Virtual Switching Systems to Standalone switches. To access the wizard, go to Configuration > Workflows > Virtual Switching System > VSS Reverse Conversion.
Use Case: Converting Standalone Switches into a Virtual Switching System

Case:
You are a network administrator and you want to convert two standalone switches into a Virtual Switching System by using the Virtual Switching System Configuration Tool available in LMS.

Solution:
To convert Standalone switches to a Virtual Switching System:

Step 1 Select Configuration > Workflows > Virtual Switching System > VSS Conversion.
The Virtual Switching System Configuration dialog box appears.

Step 2 Select 10.77.118.242 and 10.77.118.242_alias, two Standalone switches that are VSS-compliant, from the Device Selector to convert to a Virtual Switching System.

Step 3 Click Convert to VSS Mode.
You can view the hardware and software check results.

Step 4 Click Next.
The Define Configuration Parameters dialog box appears.

Step 5 Enter the required information in the Define Configuration Parameters dialog box.

Step 6 Click Next.
The Work Order page appears with the CLI commands that need to be downloaded to each of the switches so that they can be converted into one Virtual Switching System.

Step 7 Click Finish.
A message is displayed that the two switches have been converted to a single Virtual Switching System. After successful conversion, the running configuration of the VSS setup is copied to its startup configuration. The individual switches are then moved to the Suspended state in LMS.

The new VSS switch is added to the Device Credentials Repository (DCR) with the display name, same as the IP address of the Active switch followed by _VS
So, the IP address of the Virtual Switching System is 10.77.118.242_VSS
Use Case: Converting Standalone Switches into a Virtual Switching System