
Overview

This section contains the following topics:

• Overview, on page 1
• What's in an adapter, on page 1

Overview
Workflow Adapters are tools that allow a workflow to interact with systems outside the CWM. You can see
them as agents and intermediaries between the CWMplatform and any external services. Their role is to cause
an action in an outside system that's part of a workflow stream, or to retrieve data required by a workflow to
progress.

Every adapter is developed for communicating with an intended target service. Target services can be generic,
such as REST APIs over HTTP, or specific, such as vendor products (Cisco's Network Services Orchestrator,
for example).

If a workflow needs to access one or more external services, you can develop custom adapters for each of
them using the Adapter SDK. You may also want to use two pre-built adapters which are available as part
of the CWM offering. These ready-made solutions include: the Network Services Orchestrator adapter and a
generic REST API adapter.

What's in an adapter
An adapter is developed using the Workflow Adapter SDK which uses Golang for defining adapter logic and
leverages Protocol Buffers for representing adapter interfaces.

Modules, packages, activities
Every adapter is a go module that represents a product by a vendor. The go module in turn is a collection of
product features organized into go packages. Inside the packages you define adapter activities, which are
particular actions that the adapter can trigger within a given external system. You can have multiple features
inside one adapter by bundling related activities into separate packages.

Overview
1

https://go.dev
https://protobuf.dev


Figure 1: Adapter structure

As shown in the picture, every adapter follows the vendor, product and feature naming convention which
corresponds to a standard go project layout with modules and packages as described above.

Interfaces
Each product feature is represented by a protobuf file located in the proto folder. The Adapter SDK provides
command arguments to create the adapter structure and files.

As mentioned before, the naming convention for the adapter features is <vendor>.<product>.<feature>,
for example, cisco.nso.restconf.

When you create an adapter, the Adapter SDK generates a .proto file for each interface (feature) you specified:
syntax = "proto3";

package <vendor>.<product>.<feature>;

option go_package = "<module>/<feature>";

The interface is defined as a list of RPCs in the service named 'Activities':
service Activities {

rpc <ActOne> (<ActOne>Request) returns (<ActOne>Response);
rpc <ActTwo> (<ActTwo>Request) returns (<ActTwo>Response);

}

Lastly, the input and output of each activity are defined as protobuf messages:
message <ActOne>Request {

...
}
message <ActOne>Response {

...
}
...

common.adapter.proto
Besides the .proto files representing the adapter interface, there is one additional file:
<vendor>.<product>.common.adapter.proto.

Overview
2

Overview
Interfaces



The common .proto file is used to define additional configuration required by the adapter as well as information
allowing the adapter to connect to a target system. The file is generated automatically by the Adapter SDK,
but the developer can do any manual updates required.

The common .proto file must define certain messages to enable the CWM Resource Manager to handle this
data correctly. This can be done directly inside the file (default) or by importing another .proto.

Note

// Can be defined anywhere and imported to common .proto file.
message Resource {

...
}
message Secret {

...
}

// Must be defined in common .proto file.
message Config {

Resource resource = 1;
Secret secret = 2;

}

Activities
The Adapter SDK generates activities to be implemented in Golang. Each activity is represented as a method
with the receiver being a pointer to an adapter struct. Each method definition is based on the activity RPC
defined in proto.
func (adp *Adapter) <ActivityName>(

ctx context.Context,
req *<ActivityName>Request,
cfg *common.Config) (*<ActivityName>Response, error) {

/* Activity implementation */
}

There are no restrictions on how to implement an activity. The developer is free to import any available go
packages. One suggestion is to avoid panics by having robust error handling with the activity returning a
meaningful error code.

Note

Properties
Each adapter has a .properties file which serves the CWM as the source of basic data about the adapter.
Mandatory properties are described below with examples:

DescriptionProperty

Name of adapter developerauthor=cisco

Name of target system vendorvendor=cisco

Name of target systemproduct=nso

Adapter versionversion=1.0.0

Overview
3

Overview
Activities



DescriptionProperty

Version of SDK used for developing the adaptercwmsdk=1.0.0

Compatible CWM versioncwmversion=1.0

Compatible resource type stored by CWMResourceManagerresourcetype=cisco.nso.resource.v1.0.0

Overview
4

Overview
Properties


	Overview
	Overview
	What's in an adapter
	Modules, packages, activities
	Interfaces
	common.adapter.proto

	Activities
	Properties



