
Feature overview

This section contains the following topics:

• Overview, on page 1
• Wokflow definition features, on page 1
• States, on page 6
• Operation state overview, on page 9
• Switch state overview, on page 12
• Sleep state, on page 13
• Inject state, on page 13
• ForEach state, on page 14
• Parallel state, on page 15
• State data, on page 16

Overview
Workflows help you automate business processes in a standardizedmanner to bridge the gap between expressing
and modelling business logic.

Workflow definitions are written based on Serverless Workflow specification. For the Crosswork Workflow
Manager version 1.0, only a subset of the specification is supported. This chapter describes all the supported
features and gives practicable examples for each.

Wokflow definition features
A newworkflow can be defined in either JSON or YAML formatting. The structure of the workflow definition
is described in the specification.

The supported high-level components are as follows:

• id

• name

• description

• version

Feature overview
1

https://github.com/serverlessworkflow/specification/blob/main/specification.md
https://github.com/serverlessworkflow/specification/blob/main/specification.md#workflow-definition-structure


• start

• retries

• errors

• functions

• states

• metadata

Toplevel fields
Table 1: Toplevel fields

DescriptionParameter

Unique identifier for the workflow.id

Workflow name.name

Workflow version based on Semantic Versioning.version

Version of Serverless Workflow specification release
this definition adheres to. Current implementation is
as per 0.9 specification.

specVersion

Workflow description text.description

State to be executed first.start

Example in JSON:

{
"id": "MyWorkflow",
"version": "1.0.0",
"specVersion": "0.9",
"name": "My Workflow",
"description": "My Workflow Description",
"start": "SomeState",
"states": [],
"functions": [],
"retries":[]
}

If you prefer to use YAML instead of JSON, you can use a converter for the examples in this document.Note

Retry definitions
Retry definitions are policies that can be assigned to activities executing in a workflow to control how the
workflow engine deals with faults and retries in the event of failure.

Feature overview
2

Feature overview
Toplevel fields

https://github.com/serverlessworkflow/specification/blob/main/specification.md#Start-Definition
https://github.com/serverlessworkflow/specification/blob/main/specification.md#Retry-Definition
https://github.com/serverlessworkflow/specification/blob/main/specification.md#error-definition
https://github.com/serverlessworkflow/specification/blob/main/specification.md#Function-Definition
https://github.com/serverlessworkflow/specification/blob/main/specification.md#Workflow-States
https://github.com/serverlessworkflow/specification/blob/main/specification.md#Workflow-Metadata
https://semver.org/


The following properties of retry definitions are supported:

Table 2: Retry definitions

DefinitionParameter

Definition name.name

Time delay between retry attempts in ISO 8601
format, for example "PT30S" for a 30 second delay.

delay

Maximum number of attempts. 0 for infinite. If you
did not want any retries, maxAttempts should be set
to 1.

maxAttempts

Maximum amount of delay between retry attempts.
Uses ISO 8601 format.

maxDelay

Used to multiply delay value - if provided before each
retry attempt. A float value. For example, if initial
delay is 30 seconds, and multiplier is 1.5, the retries
will increase by 50% each time.

multiplier

Example:

"retries": [
{

"name": "Default",
"delay": "PT1M",
"maxAttempts": 5,
"multiplier": 1.2
"maxDelay": "PT3M"

}
]

Error definitions
Error definitions describe errors that can occur during workflow execution.Whilst the serverless specification
supports referencing an external file (JSON or YAML) that lists the errors, CWM will only handle errors
defined in the Workflow definition.

The following properties of error definitions are supported:

Table 3: Error definitions

DefinitionParameter

Definition name.name

Error code that could be returned - currently, this field
is not used for error matching.

code

Should describe the error message. This description
is used to match against error returned by activities.

description

Feature overview
3

Feature overview
Error definitions



Workflow Serverless specification doesn't have an option to specify error message which means that currently
description is being used for matching against errors.

Note

Example:

"errors": [
{

"name": "My Custom Error",
"code": 0,
"description": "Specific Error Message"

}
]

Function definitions
Function definitions describe the function available for the workflow to execute and the name of the adapter
and activity that should be invoked by the engine when that function is invoked. Whilst Serverless Workflow
specification supports various types of functions, CWM will only support custom type functions that map to
activities exposed via Adapters.

The following properties of function definitions are supported:

Table 4: Function definitions

DefinitionParameter

Name of function definition.name

Defines the adapter name and activity name that
should be invoked by the engine. Format is <adapter
name>.<activity name>, for example, the NSO
Adapter has an activity called RestconfGet - an
operation for this would be the name of activity as
registered in worker, for example "RestconfGet".
Please note this is case sensitive.

operation

Allows modelling of information beyond the core
definition of the Serverless Workflow specification.
The "worker" key is used to define which Taskqueue
the activities will be executed on. CWM 1.0 supports
the concept of Workers that execute an Activity and
are assigned Taskqueues that they listen to. To
schedule an activity to run, the workflow engine
places the activity on a Taskqueue. A worker process
picks up the tasks to execute from Taskqueue and
executes the activity.

metadata

Example:

"functions": [
{

Feature overview
4

Feature overview
Function definitions



"name": "NSO.RestconfGet",
"operation": "restconf_Get"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "NSO.RestconfPut",
"operation": "restconf_Put"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "NSO.RestconfPost",
"operation": "restconf_Post"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "NSO.RestconfPatch",
"operation": "restconf_Patch"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "NSO.RestconfDelete",
"operation": "restconf_Delete"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "NSO.SyncFrom",
"operation": "device_SyncFrom"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "REST.Post",
"operation": "rest_Post"
"metadata": {

"worker": "defaultWorker"
}

} ]

SubFlowRef definitions
SubFlowRef definitions are used for invoking child workflowswithin a parent workflow.With child workflows,
you can:

• Separate the parent workflow code and workers from the child workflow code and workers.

• Split the workload done by the workflow into smaller chunks for better separation of event history. This
is especially helpful when your workflow is intended to spawn large numbers of activity executions.

The following properties of subFlowRef definition are supported:

Feature overview
5

Feature overview
SubFlowRef definitions



DescriptionParameter

Child workflow unique id.workflowId

Child workflow version.version

Specifies if the child workflow should be invoked sync or async. Default is sync, which
means workflow execution should wait until the child workflow completes.

invoke

If invoke is async, specifies if child workflow execution should terminate or continue
when parent workflow completes. Default is terminate.

onParentComplete

Example

"states": [
{
"end": true,
"name": "SpawnChildWorkflow",
"type": "operation",
"actions": [

{
"subFlowRef": {

"version": "1.0",
"workflowId": "subtest",
"invoke": "sync",
"onParentComplete": "terminate"

}
}

]
}

]

States
States define the building blocks of workflow execution logic. Different types of states provide control flow
logic to the Execution Engine and also allow you to define which activities to execute.

Common state properties
The following properties are common to all states:

Table 5: Common state properties

DefinitionParameter

State name.name

Supported types are: "operation", "switch", "sleep",
"inject", "foreach".

type

Next transition of workflow - see below for further
details. Not applicable to SwitchState. For switch
state, the transition option is defined on a per
condition basis.

transition

Feature overview
6

Feature overview
States



DefinitionParameter

If the workflow should end after this state - see below
for further details. Not applicable to SwitchState. For
switch state, the end option is defined on a per
condition basis.

end

Filter data input and output for the state - not
applicable to "sleep" state.

stateDataFilter

Defines error handling for a given state, see below
for further details. Can match based on Error
Definition and control transition/end based onmatched
error including Compensation.

onErrors

If true, this state is used to compensate another state.
Default: false.

usedForCompensation

Unique name of state which is responsible for
compensation of this state. State identified here, is
executed if "compensate" is set to true for
transition/end property.

compensatedBy

For any given state, you can only have one transition or end object. At least one must be present.Note

Compensation
Compensation provides you a way to define undoing the work done as part of a workflow. For each state, a
compensation state can be defined. If, during execution, a condition is reached where compensation logic
should be executed, a "compensate" flag can be set when defining a transition/end. The flag will result in
executing states that are to be usedForCompensation. Refer to the Workflow Serverless specification for
more information: Workflow compensation.

For CWM 1.0 implementation, each state marked for compensation is added to a queue. The compensation
states are executed in terms of Last in First Out.

Transition
Serverless specification supports defining transition either as string or object with further properties.
Crosswork Workflow Manager only supports the object format. Current CWM 1.0 implementation only
supports the "nextState" property:

Table 6: Transition

DefinitionParameter

The name of state that workflow will transition to
next.

nextState

If set to true, triggers workflow compensation before
next transition is taken. Default: false.

compensate

Feature overview
7

Feature overview
Compensation

https://github.com/serverlessworkflow/specification/blob/main/specification.md#workflow-compensation


End
Serverless specification supports defining end either as string or object with further properties. Crosswork
Workflow Manager only supports the object format. Current CWM 1.0 implementation only supports the
"nextState" property:

Table 7: End states

DefinitionParameter

Boolean value to define if this state should terminate
the workflow.

terminate

If set to true, triggers workflow compensation before
execution completes. Default: false.

compensate

stateDataFilter
State Data Filters allow you to define input and output data filters. Input Data filters allow you to select data
that is required. Output Data filters are applied before transitioning to the next state, allowing you to filter
data to be passed into the next state. More information on State Data Filters can be found here. Both the input
and output filters are workflow expressions defined in jq. If no filters are specified, then all data is passed.

Table 8: stateDataFilter

DefinitionParameter

Input filter jq expression.input

Output filter jq expression.output

Example:

"states": [
{

"name": "step1",
"type": "operation",
"stateDataFilter" : {

"input": "${ . }"
"output": "${ . }"

}
"transition": {

"nextState": "downloadImage"
}

},
{

"name": "step2",
"type": "operation",
"end": {

"terminate": "true"
}

}
]

Feature overview
8

Feature overview
End

https://github.com/serverlessworkflow/specification/blob/main/specification.md#State-data-filters
https://github.com/serverlessworkflow/specification/blob/main/specification.md#workflow-expressions


onErrors
onErrors property for a state defines errors that may occur during state execution and how they should be
handled. More information on onErrors can be found here.

Table 9: onErrors

DefinitionParameter

Define either a single errorDef or array of ErrorDefs
to match for this state.

errorRef or errorRefs

Next transition of workflow if the error returned in
state matches any of the error description in
errorRef/errorRefs. Only transition or end can be
defined.

transition

The workflow should end if the error returned in state
matches any of the error description in
errorRef/errorRefs. Only transition or end can be
defined.

end

Example:

"onErrors": [
{

"errorRef": "My Custom Error",
"end" : {

"terminate": true
"compensate": true

}
}

]

Operation state overview
As per serverless workflow specification, operation states define sets of actions to be executed in sequence
or parallel. Crosswork Workflow Manager only supports execution of actions in sequence.

An action can define invocation of 3 different types of services:

• Execution of function definition.

• Execution of another workflow definition as a child workflow (not supported in current implementation).

• Referencing events that may be "produced" or "consumed" (not supported in current implementation).

Only execution of function definition is supported in current implementation.Note

Feature overview
9

Feature overview
onErrors

https://github.com/serverlessworkflow/specification/blob/main/specification.md#Error-Definition


Action
Action definition specifies the function that should be executed for this state. The following properties are
supported:

DescriptionParameter

Action name.name

Object which defines the name of the function to be executed, and optionally arguments to
pass into the activity the function points to. See below for further details.

functionRef

Name of retry definition defined globally. For example, default.retryRef

Object that optionally defines time to sleep either before or after action execution. See below
for further details.

sleep

Filter to control what data should be passed to action, how to filter the results returned by
action, and where to store the filtered results in the global state data. See below for further
details.

actionDataFilter

functionRef

DescriptionParameter

Name of function referencing the function definition.refName

Arguments to be passed to the function - this can be a JSON object with complex structure. For
Adapter activities, the structure has to be JSON as follows:
{
"input": {
...
},
"resource": {
...
}
}

arguments

actionDataFilter
Detailed information on actionDataFilter with examples can be found here.

DescriptionParameter

Workflow expression in jq that filters data from state data to pass into function.fromStateData

Boolean flag to control whether data returned from function execution should added/merged
into state data output.

useResults

Workflow expression in jq that filters the data returned from function execution. Ignored if
useResults is false. Default: true.

results

Workflow expression defines state data where the results should be added/merged. If not
specified, results merged at top level.

toStateData

Feature overview
10

Feature overview
Action

https://github.com/serverlessworkflow/specification/blob/main/specification.md#Action-data-filters


sleep

DescriptionParameter

Amount of time to sleep before function is executed in ISO 8601 format e.g. "PT30S" - sleep
for 30 seconds.

before

Amount of time to sleep after function is executed in ISO 8601 format e.g. "PT30S" - sleep for
30 seconds.

after

{
"id": "example",
"version": "1.0",
"specVersion": "0.9",
"start": "step1",
"functions": [

{
"name": "NSO.RestconfPost",
"operation": "RestconfPost"

}
],
"retries": [

{
"name": "Default",
"maxAttempts": 5,
"delay": "PT30S",
"multiplier": 1.1

}
],
"states": [

{
"name": "step1",
"type": "operation",
"sleep": {

"before": "PT1M"
},
"actions": [

{
"retryRef": "Default",
"name": "showVersion",
"functionRef": {

"refName": "NSO.RestconfPost",
"arguments": {

"input": {
"path": "restconf/operations/devices/device=${ .deviceName

}/live-status/tailf-ned-cisco-ios-stats:exec/any",
"data": "{\"input\": {\"args\": \"show version\"}}"

}
}

},
"actionDataFilter": {

"results": "${ if (.data) then .data |
fromjson.\"tailf-ned-cisco-ios-stats:output\".result else null end }",

"toStateData": "${ .showVersionPreCheck }"
}

}
],
"end": {

"terminate": "true"
}

}

Feature overview
11

Feature overview
sleep



]
}

Switch state overview
Switch states enable you to define decision points to route the workflow to a given path based on certain
conditions. Workflow Serverless specification supports Data-based conditions and Event-based conditions.
CWM only supports Data-based conditions.

dataConditions
The data condition property of Switch state is an array of conditions that are evaluated by the Execution
engine. The Execution engine will select the first condition it matches and proceed along that path. If there
are subsequent conditions that also match, they will be ignored.

DescriptionParameter

Condition name.name

Workflow expression in jq that represents the condition. Must evaluate to true/false.condition

Next transition of workflow if the condition matches.transition

The workflow should end if the condition matches.end

You can provide only the transition object or the end object. At least one must be present.Note

defaultCondition
The default condition that is applied if none of the conditions match.

DescriptionParameter

Next transition of workflow if no conditions are matched.transition

The workflow should end if condition matches.end

You can provide only the transition object or the end object. At least one must be present.Note

{
"name": "ConditionName",
"type": "switch",
"dataConditions": [

{
"name": "IsTrue",
"condition": "${ true }",
"transition": {

"nextState": "TrueState"
}

Feature overview
12

Feature overview
Switch state overview

https://github.com/serverlessworkflow/specification/blob/main/specification.md#switch-state
https://github.com/serverlessworkflow/specification/blob/main/specification.md#Switch-State-Data-Conditions


},
{

"name": "IsFalse",
"condition": "${ false }",
"transition": {

"nextState": "FalseState"
}

}
],
"defaultCondition": {

"end": {
"terminate": true

}
}

}

Sleep state
Sleep state pauses workflow execution for a given duration.

DescriptionParameter

Duration the workflow should sleep for in ISO8601 format. For example, PT1M results in
workflow sleeping for 1 minute.

duration

{
"name": "Sleep3Minutes",
"type": "sleep",
"duration": "PT3M",
"transition": {

"nextState": "NextState"
}

}

Inject state
Inject state is used to inject static data into the State Data.

DescriptionParameter

JSON object added to State Data.data

{
"id": "example",
"version": "1.0",
"specVersion": "0.9",
"start": "HelloWorld",
"states": [

{
"name": "HelloWorld",
"type": "inject",
"data": {

"name": "Cisco",
"message": "Hello World"

},
"stateDataFilter":{

Feature overview
13

Feature overview
Sleep state

https://github.com/serverlessworkflow/specification/blob/main/specification.md#Sleep-State
https://github.com/serverlessworkflow/specification/blob/main/specification.md#Inject-State


"output": "${ .message + \" from \" + .name + \"!\" }"
},
"end": {

"terminate": "true"
}

}
]

}

ForEach state
ForEach state allows you to define a set of actions to execute for each element in an array or list defined in
State Data. For example, for Each device in device array, check the devices is in sync. Whilst the serverless
workflow specification defines support for Parallel and Sequential execution of actions, current implementation
only supports sequential execution of actions for each element in array.

DescriptionParameter

Workflow expression in jq that points to an array in State Data.inputCollection

Name of the parameter that can be referenced in action for each data element.iterationParam

Workflow expression in jq that points to an array in State Data that the result will be
appended to. If array doesn't exist, it will be created.

outputCollection

{
"id": "example",
"version": "1.0",
"specVersion": "0.9",
"start": "InjectData",
"functions": [

{
"name": "HelloWorld",
"operation": "HelloWorld"

}
],
"states": [

{
"name": "InjectData",
"type": "inject",
"data": {

"people": [
{

"Firstname": "Peter",
"Surname": "Parker"

},
{

"Firstname": "Thor",
"Surname": "Odinson"

},
{

"Firstname": "Bruce",
"Surname": "Banner"

}
]

},
"transition":{

"nextStat": "SayHelloToEveryone"
}

Feature overview
14

Feature overview
ForEach state

https://github.com/serverlessworkflow/specification/blob/main/specification.md#ForEach-State


},
{

"name": "SayHelloToEveryone",
"type": "foreach",
"inputCollection": "${ .people }",
"iterationParam": "person",
"outputCollection": "${ .messages }",
"actions": [

{
"name": "SayHello",
"functionRef":{

"refName": "HelloWorld",
"arguments": {

"name": "${ .person.Firstname + \" \" + .person.Surname }"
}

}
}

],
"end": {

"terminate": "true"
}

}
]

}

Parallel state
Parallel state allows you to define a collection of branches that are executed in parallel. Each branch in a state
can define its own set of actions. Once the execution has completed, the parallel branches are joined into
current path based on the completionType attribute.

The completionType attribute can define 2 values:

• allOf: All branches must complete execution before state can transition/end. This is the default value.

• atLeast: State can transition/end if the number of branches specified in atLeast has completed execution.
If completionType attribute is "atLeast", numCompleted must also be set.

DescriptionParameter

Define how to evaluate completion of state based on branch execution. "allOf" or "atLeast".
Default: "allOf".

completionType

If completionType is "atLeast", this value must be specified. Defines the minimum number
of branches that must be completed for the execution to proceed.

numCompleted

branches
List of branches that are to be executed in Parallel state. More information on branches can be found here.

DescriptionParameter

Name of branch.name

Actions to execute for this branch. A branch can support an array of actions. Definition for each
action is the same as for Operation state type, see here.

actions

Feature overview
15

Feature overview
Parallel state

https://github.com/serverlessworkflow/specification/blob/main/specification.md#parallel-state
https://github.com/serverlessworkflow/specification/blob/main/specification.md#Parallel-State-Branch


State data
State data plays an important role during the lifecycle of the workflow. A state can filter data, inject data, and
add data. Jq plays an important role in data filtering, creation and manipulation. For more information on how
Data can be handled, see the Serverless Workflow specification.

When creating workflows, the following rules will apply when it comes to data management within CMW:

• Initial data passed into workflow execution is passed into State data as input.

• Data output from the last executed state is workflow output.

• If no State Input Filter is specified, all the data is passed into the state.

• If no State Output Filter is specified, all the data is passed into the next state.

• Workflow expressions in jq allow you to filter and manipulate data.

• Actions also allow for filtering data and also, if return data from action should be merged back into state
data.

• Filters must return JSON object, if a jq workflow expression results in a string literal, this will result in
an error.

• When working with jq, it is highly recommended to use https://jqplay.org/ to test the jq expressions.
Alternatively, you can download jq locally and use it for testing.

Feature overview
16

Feature overview
State data

https://github.com/serverlessworkflow/specification/blob/main/specification.md#workflow-data
https://jqplay.org/

	Feature overview
	Overview
	Wokflow definition features
	Toplevel fields
	Retry definitions
	Error definitions
	Function definitions
	SubFlowRef definitions

	States
	Common state properties
	Compensation
	Transition
	End
	stateDataFilter
	onErrors


	Operation state overview
	Action
	functionRef
	actionDataFilter
	sleep


	Switch state overview
	dataConditions
	defaultCondition

	Sleep state
	Inject state
	ForEach state
	Parallel state
	branches

	State data


