

System

This section contains the following topics:

- Architecture overview, on page 1
- Check health and logs, on page 2

Architecture overview

The Crosswork Workflow Manager architecture is a microservice-based solution that operates on top of the Kubernetes container orchestration system. This section shows a diagram presenting its core architectural components along with short descriptions of each.

- User Interface (UI): allows operators to add and instantiate workflows, enter workflow data, list running workflows, monitor job progress. The Admin section of the UI enables adding workers, managing worker processes and assigning activities from adapters to workers.
- **REST API**: includes all interaction with the CWM application: deploying adapters, publishing and instantiating workflows, managing workers, resources and secrets.
- Control Server: dispatches API requests to relevant microservices.
- Workflow Engine: it is the core component that conducts how workflows are handled; it interprets and manages the execution of workflow definitions.
- Execution Engine (Workflow Worker): it is responsible for executing the workflow tasks. It receives the workflow tasks from the Workflow Engine, executes them in the correct order, and sends the results back to the Workflow Engine.
- Adapter Workers: they are processes responsible for executing the tasks defined in workflow definitions
 and adapter code. They receive the tasks from the Workflow Worker, execute them, and send the results
 back to the Workflow Worker. The Execution Workers are capable to load additional adapters as plugins,
 which allows them to work with different systems and technologies.
- Adapters: they interface and integrate with external systems, applications and technologies. Inside them, activities that can be consumed in a workflow are defined.
- Adapter SDK: a Software Development Kit that helps developers create new adapters to integrate with external systems.
- Workflow Definitions: workflow code written in the JSON format based on the Serverless Workflow specification.
- **K8s Infrastructure**: runtime platform for the CWM application. It is a collection of services that provide the necessary infrastructure to support the deployment and management of the application within a Kubernetes cluster.
- **PostgreSQL**: it is the database used by the system to store and manage its data.

Check health and logs

CWM is a microservice-based application that leverages Kubernetes cluster architecture as its runtime environment. The health of the CWM application can thus be checked using Kubernetes commands.

Note To see all the supported kubect1 commands, log in to the OS on your VM and use kubect1 --help.

Check pod status

Step 1 Using a command-line terminal, log in to the OS on your virtual machine with SSH:

ssh -o UserKnownHostsFile=/dev/null -p 22 nxf@<your_resource_pool_address>

2

Step 2 To check status of pods for namespace zone-a (this is the default namespace for pods contaning CWM microservices), run the following command:

kubectl get pods -n zone-a

Step 3 A list of pods will appear:

ſ	• • • mxf@wf-nat	33:~ — ss	h -o UserKı	ιον	vnHos	tsFile	=/dev/
	~ % ssh -0	o UserKno	wnHostsFil	e=/	/dev/n	null	-p 833
	wf-nat.lab.tail-f.com						•
	The authenticity of host '[wf-nat.la	ab.tail-f	.com]:8332	([10.14	7.44.	16]:83
	n't be established.						
	ED25519 key fingerprint is						
	This key is not known by any other names						
	Are you sure you want to continue connecting (yes/no/[fingerprint])? yes						
	Warning: Permanently added '[wf-nat	.lab.tail	-f.com]:83	32 '	(ED2	25519)	to th
	of known hosts.						
	Last login: Tue May 23 13:45:51 2023	3 from 10	.61.193.45				
	[[nxf@wf-nat33 ~]\$ kubectl get pods -	-n zone-a					
	NAME	READY	STATUS	RE	ESTART	S	AGE
	api-service-c78bc8fc8-kb88f	2/2	Running	3	(10d	ago)	10d
	dsl-service-7748d8d4b-mbnqx	2/2	Running	4	(10d	ago)	10d
	logcli-b4494db6-zdv6j	2/2	Running	0			10d
	plugin-manager-6655c99df9-vn6jw	2/2	Running	1	(10d	ago)	10d
	ui-service-7cdb497b7c-sf678	2/2	Running	0			10d
	worker-manager-68c979f997-64n4q	2/2	Running	2	(10d	ago)	10d
	workflow-frontend-bd9c4c554-xdsrd	2/2	Running	2	(10d	ago)	10d
	workflow-history-8589b95f9f-kcgws	2/2	Running	2	(10d	ago)	10d
	workflow-matching-644498b786-zwqfr	2/2	Running	2	(10d	ago)	10d
	workflow-ui-78d5f9df58-b249v	2/2	Running	0			10d
	workflow-worker-977fc69dc-6rx9b	2/2	Running	2	(10d	ago)	10d
1	[nxf@wf-nat33 ~]\$ 🗌						

Step 4 If a pod has a status different from Running, you can 'restart' it using the following command:

kubectl delete pod <pod_name> -n zone-a

The pod will be deleted, but as Kubernetes configuration is declarative, it will effectively recreate the deleted pod and rerun it.

Check and collect logs

Application logs can be checked with **Loki logCLI** command-line interface. To gather logs from the CWM platform, follow these steps:

Step 1 Using a command-line terminal, connect to the system using SSH client:

ssh -pSSH_PORT nxf@ip_address_of_deployment

Note Adjust SSH_PORT and ip_address_of_deployment accordingly.

Step 2 After successful login, use the command below to list all running pods:

kubectl get pods -A

Example result:

[nxf@wf-nat-08 ~]\$ NAMESPACE	kubectl get pods -A NAME	READY	STATUS	RESTARTS
kube-flannel 103m	kube-flannel-ds-trr95	1/1	Running	0
kube-system 103m	coredns-htg9j	1/1	Running	0
kube-system 103m	etcd-wf-nat-08	1/1	Running	0
kube-system 103m	kube-apiserver-wf-nat-08	1/1	Running	0
kube-system 103m	kube-controller-manager-wf-nat-08	1/1	Running	0
kube-system 103m	kube-proxy-c25f5	1/1	Running	0
kube-system 103m	kube-scheduler-wf-nat-08	1/1	Running	0
local-path-storage 103m	local-path-provisioner-6fb6f599c7-ckcjc	1/1	Running	0
nxf-system 102m	authenticator-5db8885675-qlrmg	2/2	Running	0
nxf-system 102m	controller-cbd87f8c5-6tg6f	2/2	Running	1 (102m ago)
nxf-system 102m	ingress-proxy-56f7c9899d-6st6j	1/1	Running	0
nxf-system 102m	kafka-0	1/1	Running	0
nxf-system 102m	loki-7c994678f8-fnrs9	3/3	Running	0
nxf-system 103m	minio-0	2/2	Running	0
nxf-system 102m	postgres-0	2/2	Running	0
nxf-system 102m	promtail-v6tb4	1/1	Running	0
nxf-system 102m	registry-7dd84db44f-n5q7h	2/2	Running	0
nxf-system 3m42s	vip-wf-nat-08-28131000-772k5	0/1	Completed	0
zone-a 100m	api-service-745759bffc-v6r25	2/2	Running	2 (100m ago)
zone-a 100m	dsl-service-77d5fc96cc-5nv42	2/2	Running	3 (100m ago)
zone-a 100m	logcli-5c7ddbc95d-mkpcc	2/2	Running	0
zone-a 100m	plugin-manager-665b7bbd4d-jvqdk	2/2	Running	1 (100m ago)
zone-a 100m	ui-service-57cf6d6bcc-smmvt	2/2	Running	0
zone-a 100m	worker-manager-6d6b445d46-r6nzk	2/2	Running	1 (99m ago)

zone-a	workflow-frontend-77bc897549-kcz5k	2/2	Running	1 (99m ago)
100m				
zone-a	workflow-history-58bdb85b8d-88t25	2/2	Running	1 (99m ago)
100m				
zone-a	workflow-history-58bdb85b8d-h22bd	2/2	Running	1 (99m ago)
100m				
zone-a	workflow-history-58bdb85b8d-ph5fh	2/2	Running	1 (99m ago)
100m				
zone-a	workflow-matching-86cfc5577c-4mxhb	2/2	Running	1 (99m ago)
100m				
zone-a	workflow-ui-68f857645-9mq9v	2/2	Running	0
100m				
zone-a	workflow-worker-8496898f7b-wcrqs	2/2	Running	1 (99m ago)
100m				

Step 3 Identify the logcli tool available in the zone-a namespace. In this example, it is the pod named logcli-5c7ddbc95d-mkpcc.

```
Step 4 Connect to the correct pod and list the available log labels for filtering:
```

```
kubectl exec --namespace=zone-a -ti logcli-5c7ddbc95d-mkpcc -- logcli labels
app
container
filename
level
namespace
node_name
pod
stream
```

Step 5 Gather logs from all applications running in the "zone-a" namespace and save them to a single file. Make sure to adjust the --since option to collect logs from the relevant time period when the troubleshooting event occurred:

kubectl exec --namespace=zone-a -ti logcli-5c7ddbc95d-mkpcc -- logcli query '{namespace="zone-a"}'
--since 60m > zone-a.log

Step 6 Similarly, collect logs from other namespaces, using different files for convenience:

kubectl exec --namespace=zone-a -ti logcli-5c7ddbc95d-mkpcc -- logcli query '{namespace="nxf-system"}'
 --since 60m > nxf-system.log

kubectl exec --namespace=zone-a -ti logcli-5c7ddbc95d-mkpcc -- logcli query '{namespace="kube-system"}'
--since 60m > kube-system.log

Step 7 Use the SCP tool to copy the log files from the system to your desktop:

scp -P SSH PORT nxf@ip address of deployment:"*.log".

Step 8 Finally, you can send the logs to support and provide a detailed description of the issue you are experiencing.

Note For more details on the logCLI commands and usage, refer to logCLI Grafana documentation.

Check and collect logs

I