
Events

This section contains the following topics:

• Event handling overview, on page 1
• Define a Kafka event, on page 8

Event handling overview
The event handling mechanism enables CWM to interact with external brokers for handling outbound and
inbound events. Workflows can act as either consumers or producers of events which can be used to initiate
a new workflow, or signal an existing workflow. On top of that, for each event type that you define in CWM,
you can add correlation attributes for filtering events and routing them to the workflow waiting for the event
containing specific attribute values.

Event messages need to be defined according to Cloud Events specification. See the event format section for
more details.

Brokers and protocols
CrossworkWorkflowManager 1.1 supports the Kafka broker and the AMQP and HTTP protocols for handling
events. Events can be either consume by a workflow running inside CWM (incoming events forwarded by a
broker) or produce by a running workflow and forwarded to an external system (outgoing events received
by a broker).

It is important to remember that CWM doesn't act as an event broker itself. It provides means to connect to
external brokers to forward messages/events.

Note

Kafka broker
For consume event kind, CWM connects to a Kafka broker and listens for a specific event type on a topic.
Once an event of the specific type registers to the right topic, CWM retrieves the event data and forwards it
to the running workflow. Then, the workflow executes actions defined inside the Event State and/or runs
another workflow execution (if selected).

Events
1

https://github.com/cloudevents/spec

For produce event kind, a running workflow produces a single event or a set of events which CWM then
forwards to the broker and they get published in the right

topic.

Events
2

Events
Kafka broker

The Kafka broker will accept every event message format supported by the language-specific SDK as long
as a valid content-type is sent. The list of supported formats is here:
https://github.com/cloudevents/spec?tab=readme-ov-file.

AMQP protocol (e.g. RabbitMQ broker)
For consume event kind, CWM connects to an AMQP broker and listens for a specific event type on a queue.
Similarly to the Kafka broker, when an event of the specific type registers to the right queue, CWM retrieves
the event data and forwards it to the running workflow. Then, the workflow executes actions defined inside
the Event State and/or runs another workflow execution (if selected).

For produce event kind, a running workflow produces a single event or a set of events which CWM then
forwards to the broker and they get published in the right queue.

AMQP brokers will accept every event message format supported by the specific SDK as long as a valid
content-type is sent. The list of supported formats is here:
https://github.com/cloudevents/spec?tab=readme-ov-file.

HTTP protocol
For consume event kind, CWM exposes an HTTP endpoint that listens for any incoming events. If an event
of specific type comes, it is forwarded to the running workflow that waits for this event type.

When events are consumed, CWM functions as the destination HTTP server. Therefore, the URL of the CWM
server is what you effectively provide as the resource for the given HTTP event type.

Note

Event messages need to be HTTP POST requests, and message body needs to be in JSON format representing
a Cloud Event:

Example: { "specversion": "1.0", "id": "2763482-4-324-32-4", "type":

"com.github.pull_request.opened", "source": "/sensors/tn-1234567/alerts", "datacontenttype":

"text/xml", "data": "<test=\"xml\"/>", "contextAttrName": "contextAttrValue" }

Note

For produce kind events, a workflow produces an event in the Cloud Event format and CWM forwards it as
an HTTP POST request to an HTTP endpoint exposed by an external system. The HTTP endpoint address is
a concatenation of the host URL defined in the Resource configuration in CWM and the End point field of
the Event definition inside the workflow definition. Inside the resource configuration, you can change the

Events
3

Events
AMQP protocol (e.g. RabbitMQ broker)

https://github.com/cloudevents/spec?tab=readme-ov-file
https://github.com/cloudevents/spec?tab=readme-ov-file

request method to PUT or other, and add key and value pairs as header (in JSON

format):

Event system configuration

Secret
In event configuration, secrets store credentials needed to enable connection to a broker or endpoint exposed
by a third party service that sends or receives events. This includes basic authentication: username and

Events
4

Events
Event system configuration

password. The Secret ID that you provide when creating a secret will be referenced when creating a resource,
so you need to add a secret beforehand. To learn how to do it, see the section on adding secrets.

Resource
The resource is where you provide all the connection details (including the secret) needed to reach an event
broker or endpoint exposed by a third party service. Depending on the broker/protocol you want to use, you
can choose among three default event resource types:

• system.event.amqp.v1.0.0

• system.event.kafka.v1.0.0

• system.event.http.v1.0.0

Notice that there is a different set of configuration fields for each of them:

• For AMQP, provide the ServerDSN in the following format: amqp://localhost:5723.

• For Kafka:

• KafkaVersion: provide your Kafka version. The standard way to check Kafka version is to run
bin/kafka-topics.sh --version in a terminal.

• Brokers: provide your Kafka broker addresses in the following format: ["localhost:9092",
"192.168.10.9:9092"].

• OtherSettings: an editable list with default Kafka setting values. You can modify the values if
needed.

• For HTTP:

• Produce event kind: fill in the URL field and optionally, Method and Headers (for example,
Client-ID header name and value as a JSON object).

Note that URL needs to be the address of destination HTTP server, but without
the URL path. You will provide the URL path as End point when configuring
the event type.

Note

• Consume event kind: fill in theURL field with the server URL of your CWM instance, for example,
192.168.10.9:9092.

Remember to provide the URL of your CWM instance without the URL path
(/event/http). You will later use the URL path as the End point when
configuring the event type.

Note

Events
5

Events
Resource

Event type

To create a new event type, you need to have a resource and secret added to CWM.Note

The following fields are available when adding an event type:

• Event type name: the name of your event type. It's later referred to inside the workflow definition.

• Resource: a list of resources previously added to CWM.

• Event source: a fully user-defined entry that will be referenced in the workflow definition. Required
for produce event kind.

• End point: the name of Kafka topic (event stream), AMQP endpoint (terminus), or HTTP URL
(Host) path.

For HTTP consume event kind, provide /event/http as your End point.Note

• Select kind: a list consisting of two options: consume or produce event kind.

The both option is not yet supported for {{ version.CWM }}.Note

• Start listener (only for consume kind): check it to start listening for the defined event type.

• Run job (only for consume kind): tick this checkbox if you want to trigger a workflow upon receiving
the event. Then select the desired workflow from the list.

Correlation attributes

Optionally, you can set context attributes for your event. They apply only to the consume event kind and are
used to trigger workflows selectively. You can view them as a kind of custom filters that refine the inbound
event data and route them to the right workflows that listen on event types with specific values of correlation
attributes.

Events
6

Events
Event type

To add an attribute to your event type, click Add attribute, provide attribute name and value, and click

Add.

Correlation attributes are fully user-defined. They need to match the JSON key and value pair stated inside
the Cloud event message that is to be routed to a given workflow.

Note

Event message format
Event messages need to follow the Cloud Events specification format. Minimum viable event message contains
the following parameters:
{
"specversion": "1.0",
"id": "00001",
"type": "com.github.pull_request.opened",
"source": "/sensors/tn-1234567/alerts"

}

Themessage can carry additional parameters like "datacontenttype", "data", and correlation context attribute
name (contextAttrName in this example) :
{
"specversion": "1.0",
"id": "2763482-4-324-32-4",
"type": "com.github.pull_request.opened",
"source": "/sensors/tn-1234567/alerts",
"datacontenttype": "text/xml",
"data": "<test data=\"xml\"/>",
"contextAttrName": "contextAttrValue"

}

Events
7

Events
Event message format

https://github.com/cloudevents/spec

Workflow event definition and state
In the workflow definition, there are two major syntactical elements that you use to handle the events that the
workflow will be waiting on. These are:

• Event definition: used to define the event type and its properties:

{
"name": "applicant-info",
"type": "org.application.info",
"source": "applicationssource",
"correlation": [
{
"contextAttrName": "applicantId"

}
]

}

• Event state: used to define actions to be taken when the event occurs:

{
"name": "MonitorVitals",
"type": "event",
"onEvents": [

{
"actions": [
{
"functionRef": {
"refName": "uppercase",
"arguments": {
"input": {
"in": "patient ${ .patient } has high temperature"

}
}

}
}

],
"eventRefs": [
"HighBodyTemperature"

]
}

]
}

Define a Kafka event

Prerequisites
• A set-up Kafka service (or RabbitMQ with AMQP 1.0 plugin in case of AMQP, or any HTTP Client).

• CWM 1.1 installed using OVA.

Step 1: Create Kafka secret and resource
To enable a secure connection to the Kafka service, you need to create a secret with Kafka credentials and a
resource with connection details. Here's how to do it:

Events
8

Events
Workflow event definition and state

https://github.com/serverlessworkflow/specification/blob/main/specification.md#event-definition
https://github.com/serverlessworkflow/specification/blob/main/specification.md#event-state

Create secret

Step 1 In CWM, navigate to the Admin -> Secrets tab.
Step 2 Click Add Secret.
Step 3 In the New secret view, specify the following:

a) Secret ID: KafkaSecret
b) Secret type: basicAuth

Step 4 After selecting the secret type, a set of additional fields is displayed under the Secret type details section. Fill in the fields:
a) password: password used for logging in to Kafka.
b) username: username used for logging in to Kafka.

Step 5 Click Create Secret.

Create resource

Step 1 In CWM, navigate to the Admin -> Resources tab.
Step 2 Click Add Resource.
Step 3 In the New resource window, specify the following:

a) Resource name: KafkaResource
b) Resource type: cisco.cwm.kafka.v1.0.0 (or cisco.cwm.amqp.v1.0.0 or cisco.cwm.http.v1.0.0 if you use these

protocols instead)
c) Secret ID: KafkaSecret
d) Connection:

• KafkaVersion: provide your Kafka version. The standard way to check this is to run bin/kafka-topics.sh

--version in a terminal.

• Brokers: provide your Kafka broker address in the following format: ["localhost:9092"].

• OtherSettings: an editable list with default Kafka setting values. You can modify the values if needed.

Connection setting differ in case of AMQP and HTTP resource types:

- For AMQP, provide the **ServerDNS** in the following format: `amqp://localhost:5723`. - For HTTP,
provide the **URL** and additional **headers** (for example, Client-ID header name and value). Note
that URL needs to be your host address but without the URL path. This you will specify as **End point**
when configuring the resource type.

Note

Events
9

Events
Create secret

Step 4 Click Create resource.

Events
10

Events
Create resource

Step 2: Add event type to CWM
When you have the secret and resource in place, it's time to specify the type of event that will be consumed
or produced by CWM.

Step 1 In the CWM UI, select the Admin tile from the navigation menu on the left.
Step 2 In the Event system panel, click Add event type.
Step 3 In the New event type modal, provide the required input:

a) Event type name: provide name for your event type. You will later refer to it inside the workflow definition.
b) Resource: from the list, select KafkaResource.
c) Event source: define your event source. It's fully user-defined and will be referenced in the workflow definition.

Required for produce event kind.
d) End point: for Kafka, provide your Kafka topic (event stream). For AMQP, provide endpoint (terminus). For HTTP,

provide URL (Host) path.
e) Select kind: from the list, select consume.

Use Produce to define an event to be produced by a workflow and consumed by another system. In this
case, the remaining Step 2 settings presented below this point won't apply. The both option is not yet
supported for CWM 1.1.

Note

f) Start listener: click it to start listening for the defined event type.
g) Run job: tick this checkbox if you want to trigger a workflow upon receiving the event. Then select the desired

workflow from the list.
h) Correlation context attributes: optionally, you can set context attributes for your event. They apply only to the

consume event kind and are used to trigger workflows selectively. You can view them as a kind of custom filter that
refines the inbound event data and triggers actions defined inside a "listening" workflow on the basis of your context
attributes.

i) Click Add attribute and provide attribute name and value (fully user-defined).

Step 4 Click Create Event type.

Step 3: Define event in a workflow
Now that we have the event type added, we can create a workflow that registers for this event type and executes
an action when the event is received by CWM. For this purpose, we'll need to define the event using an Event
definition and specify the Event state and define actions to be taken when the event occurs. For example
purposes, let's take a scenario where a router overheating alarm (inbound event) triggers the workflow event
state and two remediation actions are executed:
{
"id": "HighRouterTempWorkflow",
"name": "Router Overheating Alarm Workflow",
"start": "RemediateHighTemp",
"events": [
{
"kind": "consumed",
"name": "HighRouterTemp",
"type": "HighRouterTemp",

Events
11

Events
Step 2: Add event type to CWM

https://github.com/serverlessworkflow/specification/blob/main/specification.md#event-definition
https://github.com/serverlessworkflow/specification/blob/main/specification.md#event-definition
https://github.com/serverlessworkflow/specification/blob/main/specification.md#event-state

"source": "monitoring.app"
}

],
"states": [
{
"end": {
"terminate": true

},
"name": "RemediateHighTemp",
"type": "event",
"onEvents": [
{
"actions": [
{
"functionRef": {
"refName": "DispatchTech",
"contextAttributes": {
"RouterIP": "${ .RouterIP }"

},
"resultEventTimeout": "PT30M"

}
},

],
"eventRefs": ["HighRouterTemp"],
},
{
"actions": [
{
"functionRef": {
"refName": "MoveTraffic",
"contextAttributes": {
"RouterIP": "${ .RouterIP }"

},
"resultEventTimeout": "PT30M"

}
}

],
"timeouts": {
"actionExecTimeout": "PT60M"

}
}

]
}

],
"version": "1.0.0",
"description": "Remediate router overheating",
"specVersion": "0.8"

}

Note that the example is not a complete workflow. It presents a sample of how you can define an event inside
a workflow and act on it.

Note

Events
12

Events
Step 3: Define event in a workflow

	Events
	Event handling overview
	Brokers and protocols
	Kafka broker
	AMQP protocol (e.g. RabbitMQ broker)
	HTTP protocol

	Event system configuration
	Secret
	Resource
	Event type
	Correlation attributes

	Event message format
	Workflow event definition and state

	Define a Kafka event
	Prerequisites
	Step 1: Create Kafka secret and resource
	Create secret
	Create resource

	Step 2: Add event type to CWM
	Step 3: Define event in a workflow

