

Using the Configuration Web Services
This chapter describes the environment that you must set up to use the Configuration web service and explains how to
use it.

The Configuration web services are implemented as REST interfaces over HTTPS. There is no HTTP support.

Configuring REST web services are available on all ACS servers in the deployment, but only the ACS primary instance
provides the full service that supports read and write operations. Secondary ACS instances provide read only access to
the configuration data.

The Monitoring and Report Viewer displays the messages and audit logs for all REST activities.

Enabling the REST Web Interface on ACS CLI
You must enable the web interface on ACS before you can use the REST web service. To enable the web interface on
ACS, from the ACS CLI, enter:

acs config-web-interface rest enable

For more information on the acs config-web-interface command, see CLI Reference Guide for Cisco Secure Access
Control System 5.8.

Viewing the Status of the REST Web Interface from ACS CLI
To view the status of the web interface, from the ACS CLI, enter:

show acs-config-web-interface

For more information on the acs config-web-interface command, see CLI Reference Guide for Cisco Secure Access
Control System 5.8.

Applications that interact with the ACS configuration REST service may use any administrator account to authenticate to
the REST service. Authorization for the used account should be set to allow all activities that are done by the REST client.

Supported Configuration Objects
The Rest PI in ACS provides services for configuring ACS, and it is organized for each configuration feature. In ACS 5.8,
the following five subsets of the ACS configuration are supported:

 Common configuration objects

 Users configuration objects, Hosts configuration objects, and Identity group configuration objects.

 Network Device configuration objects

 Device Group configuration objects

 Device Group Type configuration objects

 Maximum User Sessions

Table 1 on page 2 lists the supported configuration objects.
1

Cisco Systems, Inc. www.cisco.com

http://www.cisco.com/c/en/us/td/docs/net_mgmt/cisco_secure_access_control_system/5-8/command/reference/cli/cli_app_a.html#pgfId-1147813
http://www.cisco.com/c/en/us/td/docs/net_mgmt/cisco_secure_access_control_system/5-8/command/reference/cli/cli_app_a.html#pgfId-1147813
http://www.cisco.com/c/en/us/td/docs/net_mgmt/cisco_secure_access_control_system/5-8/command/reference/cli/cli_app_a.html#pgfId-1152377
http://www.cisco.com/c/en/us/td/docs/net_mgmt/cisco_secure_access_control_system/5-8/command/reference/cli/cli_app_a.html#pgfId-1152377

Using the Configuration Web Services

Supported Configuration Objects
This section contains:

 Identity Groups, page 2

 Attribute Info, page 3

 Group Associations, page 3

 Device Info, page 3

Identity Groups
The Identity Group object is used to manipulate nodes on the Identity Group hierarchy. The group name defines the full
path of the node within the hierarchy. When you add a new node, you should be aware that the name of the node (which
includes the full path) specifies where in the hierarchy the node should be attached. For example:

 All Groups:CDO:PMBU

 All Groups:CDO

 All Groups:CDO:PMBU:ACS-Dev

Note: You must create the upper level hierarchy (parent node) and then create the leaf node.
For example: To create the hierarchy, All Groups:US:WDC; we must create All Groups:US and then go ahead

creating the next level in hierarchy.

In order to retrieve the child of a certain group, you can set a filter as “start” with All groups:CDO”.

Table 1 Supported Configuration Objects

Feature Main Supported Classes Comments

Common Attribute Info Also known as dynamic attributes or AV pair. Attribute
Info is composed within Protocol User.

ACS Version Supports Get method only.

Service Location Supports getall method only.

It allows you to find the ACS instance that serve as
primary and the ACS instance that provide Monitoring
and Troubleshooting Viewer.

Error Message Supports getall method only.

It allows you to retrieve all ACS message codes and
message texts that are used on the REST Interface.

Identity Protocol User Full CRUD (Create, Read, Update, and Delete) and
query support.

Identity Group Full CRUD and query support.

Query is used to retrieve subgroups of a specific node.
The list of users for each group is fetched by querying
on the users.

Internal Host Full CRUD and query support.

Network Device Network Device Full CRUD and query support.

Device Group Network Device Group Full CRUD and query support.

Device Group Type Network Device Group Type Full CRUD and query support.
2

Using the Configuration Web Services

Supported Configuration Objects
Attribute Info
The AttributeInfo structure is an array of pairs of attribute names and attribute values.

The attribute name refers to the user dictionary, where the definition of the attribute, such as value type, can be found.
The value of the attribute must conform with the dictionary definition.

The following is an example of JAVA representation for a user that has two attributes:

User user = new User();
 user.setDescription(description);
 user.setPassword(password);
 user.setName(userName);
 user.setAttributeInfo(new AttributeInfo[]{
 new AttributeInfo("Department","Dev"),
 new AttributeInfo("Clock","10 Nov 2008 12:12:34")
 });

Group Associations
The REST Interface schema shows the association of the user to the Identity group, as a group name property on the
user object.

Here is an example of associating a user to an identity group:

User user = new User();
 user.setIdenityGroupName("IdentityGroup:All Groups:Foo");
 user.setDescription(description);
 user.setPassword(password);
 user.setName(userName);

Device Info
The following is an example of a Java representation for the configuration of a network device group and information that
is related to creating a network device. It is also a good example of using a GroupInfo object to define device groups.

IPSubnetType ip1 = new IPSubnetType();
 ip1.setIpAddress("1.1.1.1-5");
 ip1.setNetMask(32);
 ip1.setIpSubnetExclude(new IPSubnetExcludeType().setIpAddress("1.1.1.3");
IPSubnetType ip2 = new IPSubnetType();
 ip1.setIpAddress("3.3.3.1-5");
 ip1.setNetMask(32);
 ip1.setIpSubnetExclude(new IPSubnetExcludeType().setIpAddress("3.3.3.3");

TACACSConnection tacacsCon = new TACACSConnection();
 tacacsCon.setSharedSecret("secret");
 tacacsCon.setSingleConnect("true");
 tacacsCon.setLegacyTACACS("true");

RADIUSConnection radiusCon = new RADIUSConnection();
 radiusCon.setSharedSecret("secret");
 radiusCon.setPortCoA(1700);
 radiusCon.setKeyWrap(true);
 radiusCon.setKeyEncryption("Key");
 radiusCon.setMessageAuthenticationCodeKey("AuthKey");
 radiusCon.setDisplayedInHex(false);

Device device = new Device();
3

Using the Configuration Web Services

Query Object
 device.setName(deviceName);
 device.setdescription(deviceDescription);
 device.setGroupInfo(new GroupInfo[]{new GroupInfo("All
Locations:Chennai","Location"),new GroupInfo("All Device Types:Router","Device Type"});
 device.setSubnets(new IPSubnetType[]{ip1,ip2});
 device.setTacacsConnection();
 device.setRadiusConnection(radiusCon);

To create a single IP without mask or ranges, you need to just create the IPSubnetType and associate the subnet to that
object, as shown in the above example.

Note: It is mandatory to provide information about at least one group to which the network device is associated while
updating a network device using the REST interface. The network device may be associated with more than one group.
The group information that is not provided will automatically be updated with a default value.

Query Object
The REST Interface schema exposes a query object to define criteria and other query parameters. The query object is
used for Users, Identity Groups, Network Device, Network Device Groups, Internal Hosts, and Maximum User Sessions.

The query object includes parameters that apply to:

 Filtering, page 4

 Sorting, page 5

 Paging, page 5

Filtering
You can use the query object to retrieve a filtered result set. You can filter users or identity groups, based on the following
criteria:

 Simple condition—Includes property name, operation, and value. For example, name STARTS_WITH "A".

The following operations are supported for filtering:

— CONTAINS

— DOES_NOT_CONTAIN

— ENDS_WITH

— IS_EMPTY

— EQUALS

— NOT_EMPTY

— NOT_EQUALS

— STARTS_WITH

 And condition— Includes set of simple conditions. All simple condition must be evaluated to be True in order for the
and condition to be matched.

Here is an XML-based example for the “And” filter.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ns2:query xmlns:ns2="query.rest.mgmt.acs.nm.cisco.com">
 <criteria xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:type="ns2:AndFilter">
 <simpleFilters>
4

Using the Configuration Web Services

Query Object
 <propertyName>name</propertyName>
 <operation>STARTS_WITH</operation>
 <value>user</value>
 </simpleFilters>
 <simpleFilters>
 <propertyName>name</propertyName>
 <operation>ENDS_WITH</operation>
 <value>1</value>
 </simpleFilters>
 </criteria>
 <numberOfItemsInPage>100</numberOfItemsInPage>
 <startPageNumber>1</startPageNumber>
 </ns2:query>

Note: The XML tag numberOfItemsInPage has been changed to numberofItemsInPage (from upper case "O" to lower
case "o") in patch 3. You need to install patch 3 to get this change reflected in ACS.

Here is a Java-based example for the “And” filter:

 Query query = new Query();
 query.setStartPageNumber(1);
 query.setNumberOfItemsInPage(100);

 SimpleFilter simpleFilter = new SimpleFilter();
 simpleFilter.setOperation(FilterOperation.STARTS_WITH);
 simpleFilter.setPropertyName("name");
 simpleFilter.setValue("user");

 SimpleFilter simpleFilter1 = new SimpleFilter();
 simpleFilter1.setOperation(FilterOperation.ENDS_WITH);
 simpleFilter1.setPropertyName("name");
 simpleFilter1.setValue("1");

 AndFilter andFilter = new AndFilter();
 andFilter.setSimpleFilters(new SimpleFilter[] { simpleFilter,
 simpleFilter1 });

 query.setCriteria(andFilter);

Sorting
You can use the query object to sort the results. You can sort based on the following criteria:

 One property to sort by

 Direction of sorting (Ascending/Descending)

Paging
You can set the query object with the following paging parameters:

 Page number, which is the requested page

 Number of objects in a page

Paging is stateless. That is, the required page is calculated from scratch for every request. This means that paging could
skip objects or return them twice, in case objects were added or deleted concurrently.
5

Using the Configuration Web Services

Request Structure
Request Structure
ACS REST request is composed of:

 URL

 HTTP method

 Content—Includes ACS objects if applicable to the requested method. The ACS objects are represented in XML.

URL Path
URL includes:

 Service name: Rest

 Package name: Identity, Common, or Network Device

 Object Type: User, Identity Group, and so on

 Object Identifiers are valid with the GET and DELETE methods.

 Operation name is required for operations other than CRUD, such as query.

Table 2 on page 6 lists the URLs for each object.

Object Identifiers
Objects are identified by name or by object ID. The basic object key is the object name. You can also use the Object ID
for the GET and DELETE methods. For POST and PUT, the method gets the object itself, which includes the identifiers.

You can specify the identifier on the URL in the following ways:

 Name as the key: Rest/{package}/{ObjectType}/name/{name}

 Object ID as the key: Rest//{package}/{ObjectType}/id/{id}

 For a single instance per object type, no key is required. For example: REST/Common/AcsVersion

Table 2 URL Summary Table

Object URL Comment

ACS Version ../Rest/Common/AcsVersion Single object exists

Service Location ../Rest/Common/ServiceLocation —

Error Message ../Rest/Common/ErrorMessage —

User ../Rest/Identity/User/….. For some methods, there is additional data on the
URL. See Table 3 on page 7

Identity Group ../Rest/Identity/IdentityGroup/….. For some methods, there is additional data on the
URL. See Table 3 on page 7

Network Device ../Rest/NetworkDevice/Device/..... For some methods, there is additional data on the
URL. See Table 3 on page 7

Device Group ..Rest/NetworkDevice/DeviceGrou
p/.....

For some methods, there is additional data on the
URL. See Table 3 on page 7

Internal Host ../Rest/Identity/Host/..... For some methods, there is additional data on the
URL. See Table 3 on page 7
6

Using the Configuration Web Services

Request Structure
HTTP Methods
HTTP methods are mapped to configuration operations (CRUD - Create, Read, Update, and Delete).

The common intrinsic methods are not specified within the URL, and are determined by the HTTP request method. In
other cases, you need to add the configuration operation into the URL. HTTP methods are mapped to ACS operations:

 HTTP GET—View an object or multiple objects.

 HTTP POST—Create a new object.

 HTTP DELETE—Delete a object.

 HTTP PUT—Update an existing object. PUT is also used to invoke extrinsic methods (other than CRUD).

When the HTTP PUT method is used for operations other than CRUD, the URL specifies the required operation. This is
also used to distinguish the message from the PUT method for update. The keyword “op” is included in the URL as
follows:

Rest/{package}/{ObjectType}/op/{operation}

For example, /Rest/Identity/IdentityGroup/op/query

Table 3 on page 7 describes the primary ACS REST methods and their mapping to HTTP messages.

Note: The GET and DELETE methods using MAC addresses are applicable only for the Host object types. For example,
/Host/macaddress/{macaddress}. The name attribute in these methods is replaced with MAC addresses. This is because
of the Host object, which does not have the name attribute.

Table 3 HTTP Method Summary

Function HTTP
Method

URL Request content Response on Success

getAll GET /{ObjectType} None Collection of Objects

getAllDevices GET /{ObjectType} None List of all devices with
basic information and
without Network Device
Group information.

getByName GET /{ObjectType}/name/
{name}1

1. Names in the URL are full names. ACS REST services does not support wildcards or regular expressions.

None An Object

getById GET /{ObjectType}/id/{id} None An Object

create POST /{ObjectType} Object

Note: For create, the Object
ID property should not be
set.

Rest Response Result,
which includes Object ID.

delete DELETE /{ObjectType}/name/
{name}1

None Rest Result

delete DELETE /{ObjectType}/ id/{id} None Rest Result

update2

2. Update method replaces the entire object with the object provided in the request body, with the exception of sensitive properties.

PUT /{ObjectType} Object Rest Result

Query PUT /{ObjectType}/op/query QueryObject List of Objects
7

Using the Configuration Web Services

Request Structure
Note: For the responses on failure, see ACS REST Result, page 10.

getAllDevices method
ACS 5.8 introduces a light weight REST API method called “getAllDevices” that helps you to get the list of network
devices and AAA clients information without the Network Device Groups. This method returns the list of all network
devices with basic and minimal information. The basic information includes the name, IP address, description, device id,
version, and authentication related details. This new lightweight “getAllDevices” method increases the response time to
fetch data from ACS.

When you use the existing “getAll” method to fetch device information from ACS, if you have 10 or 100 devices, it fetches
all information including the network device group quickly. But, when you have 10k devices and you try to fetch data using
“getAll” method, it takes around 30 minutes to process the request. Therefore, in such cases, you need to use the light
weight “getAllDevices” method. The light weight “getAllDevices” method retrieves the limited basic information from
ACS quickly. You can use the name or ID of the device and use “getByName” or “getById” methods to get all related
information of that device. Now, you can perform the CRUD operations on the objects that are received.

If you are going to use the light weight “getAllDevices” API method, update to the version field in ACS will be done by
ACS itself, however, you can add a version field in your custom database and modify it. The version field indicates that
the number of times an object is modified. This version field must be increased by one every time in your custom
database when you update that object. When you retrieve data using “getAllDevices” method, the version field is also
retrieved from ACS. You need to compare the object version in your custom database with the retrieved objects version
from ACS. You need to compare the versions in your custom database with the records that are fetched from ACS. If the
retrieved version of the object is different from what you have it in your custom database, then you need to update that
object using the “getByName” or “getById” API methods.

Multiple Parallel REST requests results in Denial of Service in ACS:
When a primary ACS node receives a REST request, it verifies the administrator credentials and establishes a TCP
connection with the REST client and stores the authentication results along with the last login time and replicates the
results secondary nodes.

When ACS receives multiple parallel REST requests at the same time, ACS tries to store the authentication results in the
database and replicate the results to all secondary nodes. This results in denial of service in ACS.

It is recommended to establish a connection against ACS and use this connection for all the subsequent REST requests
to avoid the stability issues.

 If you use Java clients, you can register the client against ACS, establish a TCP connection, and use this connection
for all subsequent requests. For more information, see REST client Java class section on the SDK examples of in ACS
Web interface (System Administration > Downloads > REST Service > SDK samples)

 If you use CURL clients, you must save the cookies from CURL program and use the cookies for all subsequent REST
requests.

To save and use CURL cookies, complete the following steps:

1. Execute the following command to save the cookies in cookies.txt file:

curl -c cookies.txt https://<ACS_IP_ADRESS>/REST/Common/AcsVersion

2. Execute the following command to use the cookies from cookies.txt file

curl -b cookies.txt https://<ACS_IP_ADRESS>/REST/Common/AcsVersion
8

Using the Configuration Web Services

Response Structure
Response Structure
The response to REST request is a standard HTTP response that includes the HTTP status code and other data that is
returned by web servers. In addition, the response can include the ACS REST result object or ACS configuration objects
according to the type of request.

You should check the HTTP status code to find out the type of objects that are expected in the response body.

 For 4xx HTTPS status codes except for 401 and 404, REST result object is returned.

 For 5xx status codes other than 500, the message content includes text that describe the server error.

 For 500 HTTP status codes, REST result is returned.

 For 200 and 201 HTTP status codes, objects per the specific method or object type are returned.

 For 204 HTTP status codes, no object is returned.

HTTP Status Codes
ACS returns the following types of status codes:

 2xx for success

 4xx for client errors

 5xx for server errors

ACS does not return the following types of status codes:

 1xx

 3xx

The HTTP status code is returned within the HTTP response headers as well as within the REST result object.

Table 4 on page 9 lists the HTTP status codes that are returned by ACS.

Table 4 Usage of HTTP Status Codes

Status
Code

Message Usage in ACS Comment

200 OK Successful Get, create and
query

—

204 OK with no content Successful delete and update No data is returned in the response body.

400 Bad Request Request errors: Object
validation failure, XML syntax
error, and other error in request
message

The request contains bad syntax or cannot be
executed.

For example, if you try to create an object with a
name that already exists, the object validation
fails.

Detailed reasons can be found in the REST result
object.
9

Using the Configuration Web Services

Response Structure
ACS REST Result
The HTTP response for a REST request includes either requested objects or a REST result object. See Table 3 on page 7
for details. ACS result includes:

 HTTP status code

 HTTP status text

 ACS message code

 ACS message

 Object ID for successful CREATE method

Returned Objects
ACS returns objects for GET method and for query operation. The type of returned object is determined by the request
URL.

When a GET method returns multiple objects, these are included in the response. If the returned list is too long, you
should use filtering or paging options.

401 Unauthorized Authentication Failure/ Time
outs

Similar to 403 error, but specifically for use when
authentication failed or credentials are not
available.

403 Forbidden ACS is a secondary and cannot
fulfill the request, or operation
is not allowed per administrator
authorization.

The request was valid, but the server refuses to
respond to it.

Unlike a 401 error, authenticating will make no
difference. Also, this error is displayed when an
non-read request was sent to a secondary
instance.

404 Not Found For cases where the URL is
wrong or the REST service is
not enabled

—

410 Gone A resource is no longer
available.

A request was made for an object that does not
exist. For example, deleting an object that does
not exist.

500 Internal Server Error For any server error that has no
specific HTTP code.

—

Table 4 Usage of HTTP Status Codes (continued)

Status
Code

Message Usage in ACS Comment
10

Using the Configuration Web Services

WADL File
WADL File
The WADL files contain the object structure (schema) and the methods for every object.

The WADL files are mainly documentation aids. You cannot generate client applications using WADL files.

The WADL file structure is according to W3C specification. For more information, see
http://www.w3.org/Submission/wadl/

To download the WADL files:

1. From the ACS user interface, go to System Administration > Downloads > Rest Service

2. Under ACS Rest Service WADL files, click Common or Identity and save the files to your local drive.

Schema File
ACS is shipped with four XSD files that describe the structure of the objects that are supported on ACS 5.8 REST
interfaces.

The four XSD files are:

 Common.xsd, which describes the following objects:

— Version

— AttributeInfo

— Error Message

— ResultResult, RestCreateResult

— BaseObject

— Service Location

— Status

— RestCommonOperationType

 Identity.xsd, which describes the following objects:

— Users

— Hosts

— IdentityGroup

 Query.xsd, which describes the structure of query objects.

 NetworkDevice.xsd, which describes the following objects:

— Network Devices

— Network Device Groups

— Network Device Group Types
11

http://www.w3.org/Submission/wadl/
http://www.w3.org/Submission/wadl/

Using the Configuration Web Services

Sample Code
You can download the schema files in the same way as you download the WADL files. You can use the schema with
available tools such as JAXB to generate schema classes.

You can develop HTTP client or use any third-party HTTP client code and integrate it with the schema classes that are
generated from the XSD files.

Note: It is highly recommended to generate REST client classes from the XSD files rather than coding XML or creating it
manually.

Sample Code
ACS provides sample code for client application to help you develop an application that interacts with ACS REST
Interface. The sample code can be downloaded in the same way as WADL and schema files.

The sample code is based on Apache HTTP Client http://hc.apache.org/httpcomponents-client-ga/index.html and JAVA
code generated by JAXB (xjc command) with the help of the XSD files. It includes sample codes for:

 Get ACS Version

 Get all users

 Get All Service Locations

 Get Filtered list of Users

 Get list of Error messages

 Get User by ID and by name

 Create, Delete, Update user

 Create, Delete, and Update identity group

 Get IdentityGroup by name or ID

 Get sub-tree of IdentityGroups

 Get all Users of an Identity Group

 Create, Delete, Update Network Device

 Get Network Devices by ID and by name

 Get All Network Devices

 Query for Network Device

 Create, Delete, Update Network Device Group

 Get Network Device Group by ID or by name

 Get sub-tree of Network Device Group

 Query for Network Device Group

 Create, Delete, Update Network Device Group Type

 Get Network Device Group Type by ID and by name

 Get All Network Device Group Type

 Query for Network Device Group Type
12

http://hc.apache.org/httpcomponents-client-ga/index.html

Using the Configuration Web Services

Sample Code
 Create, Delete, Update Internal Host

 Get Internal Host by ID or Name

 Get All Internal Host

 Query for Internal Host

Changing Internal User Password from REST API
ACS allows you to change the user password from REST API. You can use the GET method from REST API to retrieve the
change password XML file from ACS. You can enter the old password and new password in the retrieved XML file and
use the PUT method to update the password in ACS. This feature is applicable only for the internal users.

Before you Begin:
Ensure that the REST API is enabled in ACS. To enable REST API, execute the acs config-web-interface rest enable
command in EXEC mode of ACS CLI.

To change user password from REST API:

1. Open the REST API client.

2. Enter https://<IP address>/Rest/UCP/User/name/<username> in the Request URL field; where <IP address> is the
IP address of the ACS instance in which the user account is present and <username> is the username of the user
for whom you want to change the password.

3. Select GET from the Method drop-down list and click SEND.

The REST API displays the Response dialog box with the following XML code:

<?xml version"1.0" encoding "UTF-8" standalone "yes"?>
<ns2:userPassword
xmlns:ns2-"ucp.rest.mgmt.acs.nm.cisco.com">
<version>0</version><newPassword>*******</newPassword>
<oldPassword>*******</oldPassword>
(userName><acsuser></userName></ns2:userPassword>

Observe that the old password and new password fields are displayed as asterisks.

4. Enter the old password and the new password in the XML code.

For example:

<?xml version"1.0" encoding "UTF-8" standalone "yes"?>
<ns2:userPassword
xmlns:ns2-"ucp.rest.mgmt.acs.nm.cisco.com">
<version>0</version><newPassword>123456</newPassword>
<oldPassword>abcdefg</oldPassword>
<userName><acsuser></userName></ns2:userPassword>

5. Change the Request URL field to https://<IP address>/Rest/UCP/User.

6. Select PUT from the Method drop-down list and click SEND.

REST API displays the response dialog box with the status as “204 No Content” after successfully changing the
password.

If the password changing operation fails, then REST API displays the corresponding error codes and error messages
in the XML code. See Table 4 on page 9 for more information on Error Codes.
13

Using the Configuration Web Services

Sample Code
14

	Using the Configuration Web Services
	Supported Configuration Objects
	Identity Groups
	Attribute Info
	Group Associations
	Device Info

	Query Object
	Filtering
	Sorting
	Paging

	Request Structure
	URL Path
	HTTP Methods
	getAllDevices method

	Response Structure
	HTTP Status Codes
	ACS REST Result
	Returned Objects

	WADL File
	Schema File
	Sample Code
	Changing Internal User Password from REST API

