
Deploying Applications on Kubernetes Clusters

Once you have created Kubernetes cluster using the Cisco Container Platform web interface, you can deploy
containerized applications on top of it.

This chapter contains the following topics:

• Workflow of Deploying Applications, on page 1
• Downloading Kubeconfig File, on page 1
• Sample Scenarios, on page 2

Workflow of Deploying Applications
Related SectionTask

Creating Kubernetes Clusters on vSphere On-prem
Clusters

Create Kubernetes clusters using the Cisco Container
Platform web interface.

Downloading Kubeconfig File, on page 1Download the kubeconfig file that contains the cluster
information and the certificates required to access
clusters.

Sample Scenarios, on page 2Use the kubectl utility to deploy the application and
test the scenario.

Downloading Kubeconfig File
You must download the cluster environment to access the Kubernetes clusters using command line tools such
as kubectl or using APIs.

Step 1 From the left pane, click Clusters.
Step 2 Click the Download icon corresponding to the cluster environment that you want to download.

The kubeconfig file that contains the cluster information and the certificates required to access clusters is downloaded
to your local system.

Deploying Applications on Kubernetes Clusters
1

CCP-User-Guide-2-2-0_chapter3.pdf#nameddest=unique_7
CCP-User-Guide-2-2-0_chapter3.pdf#nameddest=unique_7

Sample Scenarios
This topic contains a few sample scenarios of deploying applications.

Deploying a Pod with Persistent Volume
Tenant Clusters are deployed with a default storage class named standard. Depending on the storage class
that you have selected during the cluster creation task, persistent volume is made available by a HyperFlex
or a vSphere provider.

Step 1 Configure a tenant Kubernetes cluster.
export KUBECONFIG=<Path to kubeconfig file>

Step 2 Verify if the storage cluster is created.
kubectl describe storageclass standard

Name: standard
IsDefaultClass: Yes
Annotations: storageclass.beta.kubernetes.io/is-default-class=true
Provisioner: hyperflex.io/hxvolume
Parameters:
AllowVolumeExpansion:
MountOptions:
ReclaimPolicy: Delete
VolumeBindingMode: Immediate
Events: \

Step 3 Create the persistent volume claim to request for storage.
cat <<EOF > pvc.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: pv-claim

spec:
storageClassName: standard
accessModes:
- ReadWriteOnce

resources:
requests:
storage: 3Gi

EOF

The storageClassName field is optional.Note

kubectl create -f pvc.yaml
persistentvolumeclaim "pv-claim" created

The HyperFlex storage class supports the ReadWriteOnce or ReadOnlyMany access modes and the vSphere
storage class supports the ReadWriteOnce access mode.

Note

Step 4 Verify if the persistent volume claim (pvc) is created.
kubectl describe pvc pv-claim
Name: pv-claim
Namespace: default
StorageClass: standard

Deploying Applications on Kubernetes Clusters
2

Deploying Applications on Kubernetes Clusters
Sample Scenarios

Status: Bound
Volume: hx-default-pv-claim-5c4e8978-cdd2-11e8-9a07-005056b8fd7b
Labels:
Annotations: pv.kubernetes.io/bind-completed=yes

pv.kubernetes.io/bound-by-controller=yes
Finalizers: [kubernetes.io/pvc-protection]
Capacity: 3Gi
Access Modes: RWO,ROX
Events: \

Persistent Volume is automatically created and is bounded to this pvc.

When VSPHERE is used as the default storage class, a VMDK file is created inside the kubevols folder in
the datastore which is specified during the creation of the tenant Kubernetes cluster.

Note

Step 5 Create a pod that uses persistent volume claim with storage class.
cat <<EOF > pvc-pod.yaml
kind: Pod
apiVersion: v1
metadata:
name: pvc-pod

spec:
volumes:
- name: pvc-storage
persistentVolumeClaim:
claimName: pv-claim

containers:
- name: pvc-container
image: nginx
ports:
- containerPort: 80
name: "http-server"

volumeMounts:
- mountPath: "/usr/share/nginx/html"
name: pvc-storage

EOF

kubectl create -f pvc-pod.yaml
pod "pvc-pod" created

Step 6 Verify if the pod is up and running.
kubectl get pod pvc-pod

NAME READY STATUS RESTARTS AGE
pvc-pod 1/1 Running 0 16s

When VSPHERE is used as the default storage class, you can access vCenter and view the dynamically provisioned
VMDKs of the pod.

Deploying Cafe Application with Ingress
This scenario describes deploying and configuring theCafe applicationwith Ingress rules to manage incoming
HTTP requests. It uses a Simple fanout with SSL termination Ingress.

For more information on Ingress, see Load Balancing Kubernetes Services using NGINX.

Deploying Applications on Kubernetes Clusters
3

Deploying Applications on Kubernetes Clusters
Deploying Cafe Application with Ingress

CCP-User-Guide-2-2-0_chapter6.pdf#nameddest=unique_76

Step 1 Go to the following URL:
https://github.com/nginxinc/kubernetes-ingress/tree/master/examples/complete-example

Step 2 Download the following yaml files:

• tea-rc.yaml

• tea-svc.yaml

• coffee-rc.yaml

• coffee-svc.yaml

• cafe-secret.yaml

• cafe-ingress.yaml

Step 3 Open the kubectl utility.
Step 4 Obtain the IP address of the L7 NGINX load balancer that Cisco Container Platform automatically installs:

kubectl get pods --all-namespaces -l app=nginx-ingress -o wide

NAMESPACE NAME READY STATUS RESTARTS AGE IP NODE
ingressnginx nginx- 1/1 Running 0 3d 10.10.45.235 test-clusterwc5729f9ce2

ingresscontroller
-66974b775-jnmpl

Step 5 Deploy the Cafe application.
a) Create the coffee and the tea services and replication controllers:

kubectl create -f tea-rc.yaml

kubectl create -f tea-svc.yaml

kubectl create -f coffee-rc.yaml

kubectl create -f coffee-svc.yaml

Step 6 Configure load balancing.
a) Create a Secret with an SSL certificate and a key:

kubectl create -f cafe-secret.yaml

b) Create an Ingress Resource:
kubectl create -f cafe-ingress.yaml

Step 7 Verify that the Cafe application is deployed.
kubectl get pods -o wide

NAMESPACE READY STATUS RESTARTS AGE IP NODE
coffee-rc-jb9sx 1/1 Running 0 3d 192.168.151.134 test-cluster-wb3d42afeff
coffee-rc-tjwgj 1/1 Running 0 3d 192.168.44.133 test-cluster-wc5729f9ce2
tea-rc-6qmvm 1/1 Running 0 3d 192.168.44.132 test-cluster-wc5729f9ce2
tea-rc-ms46j 1/1 Running 0 3d 192.168.151.132 test-cluster-wb3d42afeff
tea-rc-tnftv 1/1 Running 0 3d 192.168.151.133 test-cluster-wb3d42afeff

Step 8 Verify if the coffee and tea services are deployed.
kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
coffee-svc ClusterIP 10.105.139.1 80/TCP 3d

Deploying Applications on Kubernetes Clusters
4

Deploying Applications on Kubernetes Clusters
Deploying Cafe Application with Ingress

https://github.com/nginxinc/kubernetes-ingress/tree/master/examples/complete-example

kubernetes ClusterIP 10.96.0.1 443/TCP 4d
tea-svc ClusterIP 10.109.34.129 80/TCP 3d

Step 9 Verify if the Ingress is deployed.
kubectl describe ing

Name: cafe-ingress
Namespace: default
Address:
Default backend: default-http-backend:80 (<none>)
TLS: cafe-secret terminates cafe.example.com
Rules:

Host Path Backends
cafe.example.com

/tea tea-svc:80 (<none>)
/coffee coffee-svc:80 (<none>)

Annotations:
Events: <none>

Step 10 Test the application.
a) Access the load balancer IP address 10.10.45.235, which is obtained in Step2.
b) Test if the Ingress controller is load balancing as expected.
curl --resolve cafe.example.com:443:10.10.45.235 https://cafe.example.com/coffee --insecure
<!DOCTYPE html>
...
<p>Server address: 192.168.151.134:80</p>
...
curl --resolve cafe.example.com:443:10.10.45.235 https://cafe.example.com/coffee --insecure
<!DOCTYPE html>
...
<p>Server address: 192.168.44.133:80</p>
...

Deploying Applications on Kubernetes Clusters
5

Deploying Applications on Kubernetes Clusters
Deploying Cafe Application with Ingress

Deploying Applications on Kubernetes Clusters
6

Deploying Applications on Kubernetes Clusters
Deploying Cafe Application with Ingress

	Deploying Applications on Kubernetes Clusters
	Workflow of Deploying Applications
	Downloading Kubeconfig File
	Sample Scenarios
	Deploying a Pod with Persistent Volume
	Deploying Cafe Application with Ingress

