

# **Administering Kubernetes Clusters**

You can create, modify, or delete Kubernetes clusters using the Cisco Container Platform web interface.

This chapter contains the following topics:

- Creating Kubernetes Clusters, on page 1
- Upgrading Kubernetes Clusters, on page 2
- Scaling Kubernetes Clusters, on page 3
- Deleting Kubernetes Clusters, on page 3
- Configuring Node Pools, on page 3
- Managing Users and RBAC, on page 5

## **Creating Kubernetes Clusters**

- **Step 1** From the left pane, click **Clusters**, and then click **NEW CLUSTER**.
- **Step 2** In the **Basic Information** screen, specify the following information, and then click **NEXT**:
  - The infrastructure provider where the cluster needs to be created.

For more information, see Adding Provider Profile.

- The name, version of Kubernetes, and description to be used for creating the cluster.
- If you are using ACI, specify the ACI profile, see Adding ACI Profile.
- In the **Provider Settings** screen, the data center, cluster, resource pool, network, HyperFlex local network, datastore, VM template, and storage class that you want to use, and then click **NEXT**.

#### Note

- Ensure that DRS and HA are enabled on the cluster that you choose in this step. For more information on enabling DRS and HA on clusters, refer to the *Cisco Container Platform Installation Guide*.
- Ensure that the datastore that you choose in this step is accessible to the hosts in the cluster.
- The selected network must have access to vCenter.
- The default **Storage Class** is **VSPHERE**. If the selected vCenter cluster is running on HyperFlex 3.5+ that supports Dynamic Volume Provisioning, you need to choose the **Storage Class** as **HYPERFLEX**.
- If you have chosen **HYPERFLEX** as the storage class, ensure that the selected network has access to the HypexFlex Connect server.

#### **Step 4** In the **Node Configuration** screen, specify the following information, and then click **NEXT**:

- The number of worker and master nodes, and their VCPU and memory configurations.
- The SSH public key that you want to use for creating the cluster.
- The VM username that you want to use as the login for the VM.
- The subnet that you want to use for this cluster.
- The number of load balancer IP addresses for this cluster.

For more information, see Load Balancer Services.

- The IP addresses in CIDR notation that you want to use as the pod subnet.
- · Whether or not you want to enable Istio
- A root CA certificate to allow tenant clusters to securely connect to additional services

# Step 5 In the Harbor Registry screen, specify if you want to enable Harbor. If no, click NEXT. If yes, you must specify the following information, and then click NEXT:

- a) Ensure the switch to enable Harbor is activated
- b) A password for Harbor server admin
- c) The immutable registry size in gigabits

#### **Step 6** In the **Summary** screen, verify the configuration, and then click **FINISH**.

The cluster deployment takes few minutes to complete. The newly created cluster is displayed on the **Clusters** page.

For more information on deploying applications on clusters, see Deploying Applications on Kubernetes Clusters.

# **Upgrading Kubernetes Clusters**

#### Before you begin

Ensure that you have imported the latest tenant cluster OVA to the vSphere environment.

For more information on importing the tenant cluster OVA, refer to the *Cisco Container Platform Installation Guide*.

- **Step 1** From the left pane, click **Clusters**.
- **Step 2** From the drop-down list displayed under the **ACTIONS** column, choose **Upgrade**.
- Step 3 In the Upgrade Cluster dialog box, choose a Kubernetes version and a new template for the VM, and then click Submit. It may take a few minutes for the Kuberenetes cluster upgrade to complete.

## **Scaling Kubernetes Clusters**

You can scale clusters by adding or removing worker nodes to them based on the demands of the workloads you want to run. You can add worker nodes in a default or custom node pool.

For more information on adding worker node pools, see Configuring Node Pools, on page 3.

## **Deleting Kubernetes Clusters**

#### Before you begin

Ensure that the cluster you want to delete is not currently in use, as deleting a cluster removes the containers and data associated with it.

- **Step 1** From the left pane, click Clusters.
- **Step 2** From the drop-down list displayed under the **ACTIONS** column, choose **Delete** for the cluster that you want to delete.
- **Step 3** Click **DELETE** in the confirmation dialog box.

# **Configuring Node Pools**

Node pools allow the creation of worker nodes with varying configurations. Nodes belonging to a single node pool have identical characteristics.

In the Cisco Container Platform vSphere implementation, a node pool has the following properties:

- vcpus
- · memory
- template
- · labels
- taints

Labels and taints are optional parameters. All nodes that belong to a nodepool are tagged with labels and they are tainted. Taints are key-value pairs, which are associated with an *effect*.

The following table describes the available *effects*.

| Effect           | Description                                                                                                                                              |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| NoSchedule       | Ensures that the pods that do not contain this taint are not scheduled on the node.                                                                      |
| PreferNoSchedule | Ensures that Kubernetes avoids scheduling pods that do not contain this taint on the node.                                                               |
| NoExecute        | Ensures that a pod is removed from the node if it is already running on the node, and is not scheduled on the node if it is not yet running on the node. |

During cluster creation, each cluster is assigned a default node pool. Cisco Container Platform supports the ability for different master and worker configurations. Upon cluster creation, the master node is created in the default-master-pool and the worker nodes are created in the default-pool.

Cisco Container Platform supports the ability to create multiple node pools and customize each pool characteristics such as vCCPUs, memory, labels, and taints.

## **Adding Node Pools**

Cisco Container Platform allows you to add custom node pools to an existing cluster.

- **Step 1** Click the cluster for which you want to add a node pool.
  - The **Cluster Details** page displays the node pools of the cluster that you have selected.
- **Step 2** From the right pane, click **ADD NODE POOL**.
  - The **Add Node Pool** page appears.
- **Step 3** Under **POOL NAME**, enter a name for the node pool.
- **Step 4** Under **WORKERS**, enter the number of nodes, vCPU, or memory requirement of the pool.
- **Step 5** Under **Kubernetes Labels**, enter the key-value pair of the label.
  - You can click the **Delete** icon to delete a label and the **+LABEL** icon to add a label.
- **Step 6** Under **Kubernetes Taints**, enter the key-value pair and the effect you want to set for the label.
  - You can click the **Delete** icon to delete a taint and the +TAINT icon to add a taint.
- Step 7 Click ADD.

The Cluster Details page displays the node pools. You can point the mouse over the Labels and Taints to view a summary of the labels and taints that are assigned to a pool.

## **Modifying Node Pools**

Cisco Container Platform allows you to modify the worker node pools.

- **Step 1** Click the cluster that contains the node pool that you want to modify.
  - The **Cluster Details** page displays the node pools of the cluster that you have chosen.
- **Step 2** From the drop-down list next to the name of the node pool, click **Edit**.

- The **Update Node Pool** page appears.
- **Step 3** Under **WORKERS**, modify the number of nodes of the pool.
- **Step 4** Under **Kubernetes Labels**, modify the key-value pair of the label.
- **Step 5** Under **Kubernetes Taints**, modify the key-value pair and the effect you want to set for the label.
- Step 6 Click UPDATE.

### **Deleting Node Pools**

Cisco Container Platform allows you to delete the worker node pools. You cannot delete the default master pool.

- **Step 1** Click the cluster that contains the node pool that you want to delete.
  - The Cluster Details page displays the node pools of the cluster that you have chosen.
- **Step 2** From the drop-down list next to the worker pool that you want to delete, choose **Delete**.

The worker pool is deleted from the **Cluster Details** page.

## Managing Users and RBAC

Cisco Container Platform provides Role-based Access Control (RBAC) through built-in static roles, namely the *Administrator* and *User* roles. Role-based access allows you to use local accounts and LDAP for authentication and authorization.

### **Configuring Local Users**

Cisco Container Platform allows you to manage local users. An administrator can add a user, and assign an appropriate role and cluster(s) to the user.

#### Before you begin

Ensure that you have configured LDAP Server for authentication of Cisco Container Platform users.

For more information, see Configuring AD Servers, on page 6.

- **Step 1** From the left pane, click **User Management**, and then click the **Users** tab.
- Step 2 Click NEW USER.
- **Step 3** Specify information such as first name, last name, username, passphrase, and role for the user.
- Step 4 Click SUBMIT.

The new user is displayed on the **User Management** page.

**Note** You can edit or delete a user by using the options available under the **ACTIONS** column.

## **Changing Login Passphrase**

- **Step 1** From the left pane, click **User Management**, and then click the **Users** tab.
- **Step 2** From the drop-down list displayed under the **ACTIONS** column, choose **Edit** corresponding to your name.

**Note** Administrators can change passphrase and role for other users as well.

**Step 3** Change the passphrase and role assigned as necessary, and click **SUBMIT**.

## **Configuring AD Servers**

LDAP authentication is performed using a service account that can access the LDAP database and query for user accounts. You will need to configure the AD server and service account in Cisco Container Platform.

- Step 1 From the left pane, click User Management, click the Active Directory tab, and then click EDIT.
- **Step 2** In the **SERVER IP ADDRESS** field, type the IP address of the AD server.
- **Step 3** In the **PORT** field, type the port number for the AD server.
- **Step 4** For improved security, we recommend that you check **STARTTLS**.
- **Step 5** In the **BASE DN** field, specify the domain name of the AD server for all the accounts that you have.
- **Step 6** In the ACCOUNT USERNAME field, specify the service account name that is used for accessing the LDAP server.
- **Step 7** In the **PASSPHRASE** field, type the passphrase of the AD account.
- Step 8 Click SUBMIT.

## **Configuring AD Groups**

Cisco Container Platform allows you to manage users using AD groups. An administrator can add users to AD groups, and then assign appropriate roles and clusters to the groups.

#### Before you begin

Ensure that you have configured the AD server that you want to use.

For more information on configuring AD servers, see Configuring AD Servers, on page 6.

- **Step 1** From the left pane, click **User Management**, and then click the **Groups** tab.
- Step 2 Click ADD GROUP.
- **Step 3** Specify information such as the name of the AD group and the role you want to assign to the group.

**Note** If the AD group is associated with the *Administrator* role, by default, access is provided to all clusters. But, if the AD group is associated with the *User* role, you need to assign a cluster.

**Step 4** From the CLUSTERS drop-down list, choose the names of the cluster that you want to assign to the AD group.

Step 5 Click SUBMIT.

**Configuring AD Groups**