
Deploying Applications on Kubernetes Clusters

Once you have created Kubernetes cluster using the Cisco Container Platform web interface, you can deploy
containerized applications on top of it.

This chapter contains the following topics:

• Workflow of Deploying Applications, on page 1
• Downloading Kubeconfig File, on page 1
• Sample Scenarios, on page 2

Workflow of Deploying Applications
Related SectionTask

Creating Clusters on vSphereCreate Kubernetes clusters using the Cisco Container
Platform web interface.

Downloading Kubeconfig File, on page 1Download the kubeconfig file that contains the cluster
information and the certificates required to access
clusters.

Sample Scenarios, on page 2Use the kubectl utility to deploy the application and
test the scenario.

Downloading Kubeconfig File
You must download the cluster environment to access the Kubernetes clusters using command line tools such
as kubectl or using APIs.

Step 1 In the left pane, click Clusters.
Step 2 Click the Download icon corresponding to the cluster environment that you want to download.

The kubeconfig file that contains the cluster information and the certificates required to access clusters is downloaded
to your local system.

Deploying Applications on Kubernetes Clusters
1

ccp-user-guide-10-0-0_chapter4.pdf#nameddest=unique_7

Sample Scenarios
This topic contains a few sample scenarios of deploying applications.

Deploying a Pod with Persistent Volume
Tenant clusters are deployed with a default storage class named standard, and a default storage class provider
named vSphere provider.

If you select a HyperFlex local network during cluster creation, HyperFlex storage class and storage class
provisioner are created by default.

In Cisco container Platform 4.0+, when deployed with Hyperflex 4.0+, the following two HyperFlex
provisioners are supported:

• hyperflex, the HyperFlex FlexVolume provisioner available with HyperFlex 3.5+

• hyperflex-csi, the HyperFlex Container Storage Interface (CSI) provisioner available with HyperFlex
4.0+

We recommended that you use the HyperFlex Container Storage Interface (CSI) plugin, which is a more
robust framework.

Note

Step 1 Configure a tenant Kubernetes cluster.
export KUBECONFIG=<Path to kubeconfig file>

Step 2 Verify if the storage cluster is created.
kubectl describe storageclass standard

Name: standard
IsDefaultClass: Yes
Provisioner: kubernetes.io/vsphere-volume
Parameters: diskformat=thin
ReclaimPolicy: Delete
VolumeBindingMode: Immediate

On HyperFlex 4.0+, if you have selected a HyperFlex local network, additional storage classes are displayed when you
run the following command:
kubectl get sc

NAME PROVISIONER AGE
hyperflex hyperflex.io/hxvolume 22h
hyperflex-csi csi-hxcsi 22h
standard (default) kubernetes.io/vsphere-volume 22h

Step 3 Create the persistent volume claim to request for storage.
cat <<EOF > pvc.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:

Deploying Applications on Kubernetes Clusters
2

Deploying Applications on Kubernetes Clusters
Sample Scenarios

name: pv-claim
spec:
storageClassName: standard
accessModes:
- ReadWriteOnce

resources:
requests:
storage: 3Gi

EOF

The storageClassName field is optional. For HyperFlex 4.0+, you must use hyperflex-csi as the storage class.Note

kubectl create -f pvc.yaml
persistentvolumeclaim "pv-claim" created

The HyperFlex storage class supports the ReadWriteOnce or ReadOnlyMany access modes and the vSphere
storage class supports the ReadWriteOnce access mode.

Note

Step 4 Verify if the persistent volume claim (pvc) is created.
kubectl describe pvc pv-claim
Name: pv-claim
Namespace: default
StorageClass: standard
Status: Bound
Volume: hx-default-pv-claim-5c4e8978-cdd2-11e8-9a07-005056b8fd7b
Labels:
Annotations: pv.kubernetes.io/bind-completed=yes

pv.kubernetes.io/bound-by-controller=yes
Finalizers: [kubernetes.io/pvc-protection]
Capacity: 3Gi
Access Modes: RWO,ROX
Events: \

Persistent Volume is automatically created and is bounded to this pvc.

When VSPHERE is used as the default storage class, a VMDK file is created inside the kubevols folder in
the datastore which is specified during the creation of the tenant Kubernetes cluster.

Note

Step 5 Create a pod that uses persistent volume claim with storage class.
cat <<EOF > pvc-pod.yaml
kind: Pod
apiVersion: v1
metadata:
name: pvc-pod

spec:
volumes:
- name: pvc-storage
persistentVolumeClaim:
claimName: pv-claim

containers:
- name: pvc-container
image: nginx
ports:
- containerPort: 80
name: "http-server"

volumeMounts:
- mountPath: "/usr/share/nginx/html"
name: pvc-storage

EOF

kubectl create -f pvc-pod.yaml
pod "pvc-pod" created

Deploying Applications on Kubernetes Clusters
3

Deploying Applications on Kubernetes Clusters
Deploying a Pod with Persistent Volume

Step 6 Verify if the pod is up and running.
kubectl get pod pvc-pod

NAME READY STATUS RESTARTS AGE
pvc-pod 1/1 Running 0 16s

When VSPHERE is used as the default storage class, you can access vCenter and view the dynamically provisioned
VMDKs of the pod.

Deploying Cafe Application with Ingress
This scenario shows how to deploy the NGINX or NGINX Plus Ingress controller, the Cafe application, and
then configure load balancing for the Cafe application using the Ingress resource.

For more information on Ingress, see Load Balancing Kubernetes Services using NGINX.

Step 1 Download the required artifacts.
a) Go to the following URL:

https://github.com/nginxinc/kubernetes-ingress/tree/master/examples/complete-example

b) Download the following yaml files:

• cafe-ingress.yaml

• cafe-secret.yaml

• cafe.yaml

Step 2 Deploy the Ingress controller.
a) Save the public IP address of the Ingress controller in a shell variable.

$ IC_IP=XXX.YYY.ZZZ.III

b) Save the HTTPS port of the Ingress controller in a shell variable.
$ IC_HTTPS_PORT=<port number>

Step 3 Deploy the Cafe application by creating the coffee and the tea deployments and services.
$ kubectl create -f cafe.yaml

Step 4 Configure load balancing.
a) Create a secret with an SSL certificate and a key.

$ kubectl create -f cafe-secret.yaml

b) Create an Ingress resource.
$ kubectl create -f cafe-ingress.yaml

Step 5 Test the application.
a) To access the application, curl the coffee and the tea services.

Deploying Applications on Kubernetes Clusters
4

Deploying Applications on Kubernetes Clusters
Deploying Cafe Application with Ingress

ccp-user-guide-10-0-0_chapter10.pdf#nameddest=unique_130
https://github.com/nginxinc/kubernetes-ingress/tree/master/examples/complete-example

You can use the curl --insecure option to turn off certificate verification of the self-signed certificate and
the --resolve option to set the Host header of a request with cafe.example.com.

Note

• Accessing the coffee application
$ curl --resolve cafe.example.com:$IC_HTTPS_PORT:$IC_IP

https://cafe.example.com:$IC_HTTPS_PORT/coffee --insecure
Server address: 10.12.0.18:80
Server name: coffee-7586895968-r26zn
...

• Accessing the tea application
$ curl --resolve cafe.example.com:$IC_HTTPS_PORT:$IC_IP
https://cafe.example.com:$IC_HTTPS_PORT/tea --insecure
Server address: 10.12.0.19:80
Server name: tea-7cd44fcb4d-xfw2x
...

b) Monitor the runtime activities of the application in one of the following ways:

1. If you are using NGINX, follow the instructions to access the NGINX status page.

2. If you are using NGINX Plus, go to the Upstream tab.

Deploying Applications on Kubernetes Clusters
5

Deploying Applications on Kubernetes Clusters
Deploying Cafe Application with Ingress

https://docs.nginx.com/nginx-ingress-controller/installation/installation-with-manifests/

Deploying Applications on Kubernetes Clusters
6

Deploying Applications on Kubernetes Clusters
Deploying Cafe Application with Ingress

	Deploying Applications on Kubernetes Clusters
	Workflow of Deploying Applications
	Downloading Kubeconfig File
	Sample Scenarios
	Deploying a Pod with Persistent Volume
	Deploying Cafe Application with Ingress

