

Revised: February 17, 2026

KVM Deployment Guide

KVM deployments

Cisco IoT FND can be deployed on commercial hypervisors (such as VMware ESXi) and on Kernel-based Virtual Machines (KVM) using supported Linux distributions.

- Cisco IoT FND manages device lifecycles, configurations, firmware, telemetry, and alarms across distributed field networks.
- KVM provides an open, Linux-native virtualization layer, enabling flexible resource allocation and performance for production or lab deployments.

The following table summarizes the KVM deployment feature in Cisco IoT FND:

Table 1: KVM Deployment Feature Table

Feature name	Release	Description
KVM deployments	Cisco IoT FND Release 5.1.0	Deploy Cisco IoT FND on KVMs using supported Linux distributions.

Verify QCOW2 signature

This task guides you to run the signature verification program to verify QCOW2 signature.

Step 1 Before attempting to run the signature verification scripts, ensure that you have the following:

- Python 2.7.x
- OpenSSL
- Tar package
- Internet connectivity to reach Cisco to download root and sub-CA certs.

Step 2 Unzip the downloaded release file `CISCO-IOTFND-VPI-K9-5.1.0-155-SHA512-QCOW2.zip`

You should obtain the following two files:

- `qcown2-5.1.0.155.tar.xz`
- `qcown2-5.1.0.155.tar.xz.signature`

Step 3 Run the signature verification script `python2 cisco_x509_verify_release.py -e FND_RPM_SIGN-CCO_RELEASE.pem -s qcown2-5.1.0.155.tar.xz.signature -i qcown2-5.1.0.155.tar.xz -v dgst -sha512` to verify the integrity of the `tar.xz` file.

Example:

```
python2 cisco_x509_verify_release.py -e {PUBLIC_KEY_PEM} -s {DATA_FILE}.signature -i {DATA_FILE} -v dgst -sha512
Retrieving CA certificate from http://www.cisco.com/security/pki/certs/crcam2.cer ...
Successfully retrieved and verified crcam2.cer.
```

```
Retrieving SubCA certificate from http://www.cisco.com/security/pki/certs/innerspace.cer
...
Successfully retrieved and verified innerspace.cer.
Successfully verified root, subca and end-entity certificate chain.
Successfully fetched a public key from FND_RPM_SIGN-CCO_RELEASE.pem.
Successfully verified the signature of qcow2-5.1.0.155.tar.xz using
FND_RPM_SIGN-CCO_RELEASE.pem
```

You've verified the QCOW2 signature.

Related Topics

[Deploy Cisco IoT FND on a KVM](#), on page 2

Deploy Cisco IoT FND on a KVM

This task guides you to deploy Cisco IoT FND on a KVM using Linux distributions.

Step 1 Before proceeding to deploy Cisco IoT FND on a KVM, do these:

- Log in to the IP address of KVM RHEL server running 9.6 using a web browser with your credentials (username and password).
- Ensure to install the `cockpit-machines` package.
- Ensure your distribution includes a Postgres DB with PSK mode enabled by default, which establishes tunnels using pre-shared keys rather than certificates, since PSK mode does not support certificate-based tunnels.
- Ensure that the system requirements for the various device scales. For more information see, [System Requirements in Cisco IoT FND 5.1 Release](#) .

Step 2 Create and manage virtual machines and CPUs using the RHEL 9 web console. For more information see, [Creating Virtual Machines](#) and [Managing virtual CPUs](#) .

Step 3 View and edit the VM interface information using the RHEL 9 web console. For more information see, [View and edit virtual network information](#) .

Step 4 From the **Interface type** drop-down list, select **Direct attachment** . Select the interface on which you configured the KVM IP from the **Source** drop-down list. Leave the **Model** and **MAC address** fields with the default values.

Step 5 (Optional) Add an additional network interface based on your requirement.

Step 6 Start the VM. For more information see, [Starting VM using the web console](#) .

Step 7 [View the serial console](#) of the VM and log in to the RHEL server using your default credentials.

```
User Name: root
Default Password: C!sco123
```


Note If you do not wish to enable root login for SSH (by keeping `PermitRootLogin no`), check if the `fnouser` account is available. You can use the `fnouser` account for SSH access instead of root. Ensure that `fnouser` has appropriate permissions (such as sudo access) to perform necessary tasks.

```
User Name: fnouser
Default Password: C!sco123
```

- Ensure to reset the default password.

Step 8 Configure IPv4 address using `nmcli` command and verify the rechability. For more information see, [Configure network interfaces using nmcli command](#) .

Step 9 Enable SSH and edit the `/etc/ssh/ssh_config` file. Locate the parameter `PermitRootLogin` in the serial console to change `no` to `yes`.

If you prefer not to enable root login `PermitRootLogin no`, you can use the `fnduser` account for SSH access, provided it is enabled and has the required permissions.

Restart the SSH service using the `systemctl restart sshd.service` command.

a) Restart the SSH service using the `systemctl restart sshd.service` command.

You've installed Cisco IoT FND on KVM.

Related Topics

[Create and activate a swap file](#), on page 3

Create and activate a swap file

Create a swap file to create a temporary storage space on a solid-state drive or hard disk when the system runs low on memory.

Step 1 Ensure that you have enough disk space.

Step 2 Follow the steps in [Creating and activating a swap file](#) to create and enable a swap file.

Step 3 Verify if the swap file is active or not using the `swapon --show` command.

In scale setups, swap space helps systems handle memory demands that exceed physical RAM by temporarily offloading inactive memory pages to disk. This approach supports the stability and scalability of applications and services. To know more about the need for swap on modern systems, see [Do we really need swap on modern systems?](#)

You've created and activated a swap file.