
Cisco Edge Intelligence Local Manager

In Cisco Edge Intelligence Local Manager dashboard, we create pipelines to define the data progression.

Along with pipeline creation, the following features are available in the dashboard.

Figure 1: Cisco Edge Intelligence Local Manager dashboard

1. Check Cisco Edge Intelligence connection status:

Hover over the network connection icon (Wi-Fi icon) in the top banner to view whether Cisco Edge
Intelligence is online or offline, and for agent details such as version and ID.

2. Create and view deployed pipelines:

• The pipelines area provides a quick view of the deployed pipelines and their respective statuses.

• Click an existing pipeline to view its health status details, or to edit the pipeline's configurations.

• To create a new pipeline, click the plus (+) icon.

3. View, import, or export templates:

The templates area displays all the templates that are available in the Cisco Edge Intelligence Local
Manager.

• Click the import icon to upload template files from your local system.

Cisco Edge Intelligence Local Manager
1

• Click the download icon to download one or all the templates to your local system, in JSON format.
You can then import the templates into other agents for deployment.

4. Delete all pipelines:

To delete all the pipelines in your Cisco Edge Intelligence Local Manager, chooseActions >Reset Links
from the top banner.

Once deleted, a pipeline cannot be retrieved.Caution

Templates are browser-specific and access is restricted to your user credentials. However, deployed pipelines
do not have similar restrictions. Multiple users can check the health status of a pipeline and edit any existing
pipeline configurations.

• How to create pipelines, on page 2
• Data sources, on page 3
• Add data destinations, on page 24
• About Data Policies, on page 35
• Deploy or undeploy pipelines, on page 58
• View health status, on page 59

How to create pipelines
Creating a Cisco Edge Intelligence pipeline involves defining:

1. One/multiple source asset type

2. One data destination

3. A data transformation method, in the form of a data rule or a data logic

To create a pipeline in the Cisco Edge Intelligence Local Manager GUI, in the Pipelines area of the left pane,
click the plus (+) sign button. At the top of the page, enter a name for the pipeline. Ensure that each pipeline
name for the Cisco Edge Intelligence must be unique, in compliance with the following recommendations.

• Do not use special characters for a pipeline name, as special characters are removed during internal
processing. We recommend using the CamelCase naming convention.

For example, use WaterSensorSalinityJ2345 instead of Water Sensor-Salinity_J2345.

• Avoid ending a pipeline name with the letter s to indicate a plural form, as this name can cause internal
naming conflicts.

For example, use ColdStoragePlc instead of ColdStoragePlcs.

Cisco Edge Intelligence Local Manager
2

Cisco Edge Intelligence Local Manager
How to create pipelines

Data sources
Define assets or data source types based on the communication protocols they use. Each protocol then allows
further configurations to define the data sources.

In the Source tab, these fields are the required for all type of connection types.

DescriptionField

Click the pencil icon to enter a name for the asset.
This name gives a significant value to the data logic.

Asset Name

From the drop-down list, choose one of the following
protocols:

• MQTT

• Modbus – Serial

• Modbus – TCP/IP

• OPC-UA

• Serial

• RSU

• NTCIP1202

• NTCIP1203

• NTCIP1204

Connection Type

Enter a serial number for the chosen source type.Serial Number

Cisco Edge Intelligence Local Manager
3

Cisco Edge Intelligence Local Manager
Data sources

DescriptionField

You can add custom attributes along with each asset
type-specific attribute. Add the following details to
configure the custom attribute:

1. Name: Enter a name for the custom attribute.

2. Data Type: From the drop-down list, select a data
type, string, double, encrypted string, or file.

3. Value: Enter a custom attribute value.

If the Data Type is selected as File:

• There can be only one attribute type File for a
given asset type.

• The max size of the uploaded file should be 12
KB.

• The file can be of any type - ASCII or binary.

• If the asset is part of a data rule policy and the
destination is configured to send the custom
attribute to the northbound destination, the
base64 equivalent of the file contents will be
sent.

• If the asset is part of a data logic policy, a custom
attribute value is available in the data logic script
as a byte array (UInt8Array), and it can be
converted to the original format for access.

• For example, if the custom attribute
"reference_data" was of File type and the
uploaded file was as ASCII file, the following
code shows how to convert the value available
as UInt8Array into ASCII text.

function on_update() {

...
var file_contents = new

TextDecoder().decode(input.reference_data);
// Converts UInt8Array to

ASCII
...
}

Click Add to add more custom attributes to any asset
configuration

Custom Attribute Configuration

Cisco Edge Intelligence Local Manager
4

Cisco Edge Intelligence Local Manager
Data sources

Cisco Edge Intelligence Local Manager have the provision to configure the multiple assets under a single
pipeline. You can configure upto 20-assets type details and run the deployment.

If you want to duplicate an existing asset details with a different serial number, click copy-paste icon next to
the asset name.

Note

Configure MQTT asset type
The MQTT asset type enables and configures the Cisco Edge Intelligence MQTT Server. You can publish
data to the EI Agent from an MQTT client on the following ports after deploying this to an EI Agent:

• Port 8883 for TLS configurations

• Port 1883 for non-TLS configurations

In the Source tab, from the Connection Type drop-down list, choose MQTT. Then, fill out the following
fields.

DescriptionField

Configuration Details

Choose this checkbox to enable TLS.

When you choose to enable TLS, additional fields are
displayed to allow the upload of certificate and private
key files. The MQTT server that is deployed on the
EI agent, uses these certificates and private keys to
authenticate the MQTT clients connecting to it.

Enable TLS

Enter a username. The connecting MQTT Clients
(sensors) will use this username for authentication at
the MQTT Server which will be spawned on the EI
Agent.

Username

Cisco Edge Intelligence Local Manager
5

Cisco Edge Intelligence Local Manager
Configure MQTT asset type

DescriptionField

Enter the Password. The connecting MQTT Clients
(sensors) will use this password for authentication at
the MQTT Server which will be spawned on the EI
Agent.

Password

Advanced Settings

Add a client ID to publish data. (Topic-based device
or sensor identity detection is not supported).

The client ID, specified in the MQTT client
connection, differentiates variousMQTT connections
to Cisco Edge Intelligence.

Client ID

The data model explains how data is represented in
the asset, and what MQTT topics the asset should be
updated from. To define a data model, add the
following details:

1. Name: Enter a name for the data model

2. Label: Enter a label for the data model

3. Data Type: From the drop-down menu, select a
measurement entity (string, integer, float, long,
or boolean) for the MQTT topic.

4. Topic: Enter the MQTT topic over which the
measurement is sent by the transmitting MQTT
client. For example, sensors/tempXY/temp.

Click Add to add more data model attributes to the
configuration

Attribute Definitions

The MQTT topic used to publish sensor data and the data format should match the data model JSON file.Note

MQTT data model example:

{
"apiVersion": 1.0,
"connectionType": "MQTT",
"fields": {
"temperature": {
"category": "TELEMETRY",
"label": "Temperature",
"description": "Outside temperature sensor XY | Temperature",
"datatype": "Float",
"topic": "sensors/tempXY/temp"
},
"humidity": {
"category": "TELEMETRY",
"label": "Humidity",
"description": "Outside temperature sensor XY | Humidity",

Cisco Edge Intelligence Local Manager
6

Cisco Edge Intelligence Local Manager
Configure MQTT asset type

"datatype": "Float",
"topic": "sensors/tempXY/hum"

},
"attr1": {
"category": "ATTRIBUTE",
"label": "Attribute 1",
"datatype": "Float",
"description": "My Attribute 1",
"required": true,
"defaultValue": 12.9

},
"attr2": {
"category": "ATTRIBUTE",
"label": "Attribute 2",
"datatype": "String",
"description": "My Attribute 2",
"required": false,
"defaultValue": null

},
"encrypted_attr3": {
"category": "ATTRIBUTE",
"label": "New Attribute",
"datatype": "EncryptedString",
"description": "My Attribute 3",
"required": true,
"defaultValue": null

}
}

}

MQTT topic and sensor data used by MQTT Client example:

MQTT Client Topic: sensors/tempXY/hum
MQTT Client Data: 50.0

Configure Modbus-Serial asset type
From the Device Type drop-down list, choose MODBUS-Serial. Then enter the required details in the
following fields.

Cisco Edge Intelligence Local Manager
7

Cisco Edge Intelligence Local Manager
Configure Modbus-Serial asset type

DescriptionField

Configuration Details

This field is not editable. It has a default value set for
RTU.

Transport

Enter a port number. For example, /dev/ttyS0.Serial Port

Enter a baud rate.Baud Rate

From the drop-down list, chooseNone,Odd, orEven.Parity

This value can be either 1 or 2. Choose the required
radio button.

Stop Bits

From the drop-down list, choose a value 5–9.Data Bits

This refers to the unique identifier assigned to a
Modbus secondary device (such as a sensor or PLC)
on a serial network. Modbus protocol requires each
secondary device to have a unique ID (1–247) to
distinguish it on a shared bus. This ID ensures that
the Modbus primary (such as the Cisco EI agent)
sends requests to the correct device and processes its
responses.

Slave ID

Advanced Settings

The value if there is no response from the asset. This
field is not editable.

Zero or Failed Poll

To request batch responses from the asset. This field
is not editable.

Use Batch Polling

Cisco Edge Intelligence Local Manager
8

Cisco Edge Intelligence Local Manager
Configure Modbus-Serial asset type

DescriptionField

To request contiguous batch responses from the asset.
This field is not editable.

Contiguous Batch Request Only

This field is not editable.Use Multiple Write Commands

The time in which to receive the data before it is reset.
The default value is 500.

Timeout

The number of times the server requests for
retransmission of data. This field is not editable.

Retries

The maximum number of bits that the server reads in
one read request. This field is not editable.

Max Read Bit Count

The maximum number of registers that the server
reads in one read request. This field is not editable.

Max Read Register Count

The maximum number of registers that the server
writes in one write request. This field is not editable.

Max Write Register Count

A data model explains how data is represented in the
asset. You can create a data model using a JSON file.
Select one of the following:

1. Name: Enter a name for the data model.

2. Label: Enter a label value.

3. Data Type: From the drop-down list, select a
measurement entity (string, integer, float, long,
or boolean) for the MODBUS serial data.

4. Polling Interval (ms): Enter a value to define the
fastest rate at which the server must test and
debug.

5. Type: From the drop-down list, choose a data
type for industrial control of factory devices. The
available choices are COIL, HOLDING,
DISCRETE, and INPUT.

6. Offset: Enter a value to reference a specific
register within the function.

7. RawType: From the drop-down list, choose the
value type for storing binary data or byte strings.

8. Access Mode: From the drop-down list, choose
an access mode. The available choices are Read
Only, Read & Write, and Write Only.

Click Add to add more data model attributes to the
configuration

Attribute Definitions

Modbus_serial data model example:

Cisco Edge Intelligence Local Manager
9

Cisco Edge Intelligence Local Manager
Configure Modbus-Serial asset type

{
"apiVersion": 1,
"connectionType": "MODBUS_SERIAL",
"fields": {
"pressureInPascal": {
"label": "MetrLabeModb1",
"pollingInterval": 50,
"offset": 12,
"type": "HOLDING",
"datatype": "Float",
"rawType": "VARCHARSTRING",
"description": "",
"access": "Write"

},
"TemperatureInDegrees": {
"label": "Temperature",
"pollingInterval": 41,
"offset": 56,
"type": "DISCRETE",
"datatype": "String",
"rawType": "INT16",
"description": "",
"access": "ReadWrite"

},
"HumidityInDegrees": {
"label": "Humidity",
"pollingInterval": 20,
"offset": 45,
"type": "COIL",
"datatype": "Int",
"rawType": "FLOAT64",
"description": "Humidity Value ",
"access": "Read"

}
}

}

Adding Asset Types for Modbus TCP Connection Type
After you select the MODBUS-TCP/IP, complete the following additional fields by adding the details on it.

Cisco Edge Intelligence Local Manager
10

Cisco Edge Intelligence Local Manager
Adding Asset Types for Modbus TCP Connection Type

DescriptionField

Configuration Details

Enter an IP address or hostname.IP Address or Host Name

Enter a port number.Port

This refers to the unique identifier assigned to a
Modbus secondary device (such as a sensor or PLC)
on a serial network. Modbus protocol requires each
secondary device to have a unique ID (1–247) to
distinguish it on a shared bus. This ID ensures that
the Modbus primary (such as the Cisco EI agent)
sends requests to the correct device and processes its
responses.

Slave ID

Advanced Settings

The value if there is no response from the asset. This
field is non-editable.

Zero on Failed Poll

To request batch responses from the asset. This field
is non-editable.

Use Batch Polling

To request contiguous batch responses from the asset.
This field is non-editable.

Contiguous Batch Request Only

This field is non-editable.Use Multiple Write Commands

The time set to receive the data before it is reset. The
default value is 500.

Timeout

The number of times the server requests for
retransmission of data. This field is non-editable.

Retries

The maximum number of bits that the server reads in
one read request. This field is non-editable.

Max Read Bit Count

The maximum number of registers that the server
reads in one read request. This field is non-editable.

Max Read Register Count

The maximum number of registers that the server
writes in one write request. This field is non-editable.

Max Write Register Count

Cisco Edge Intelligence Local Manager
11

Cisco Edge Intelligence Local Manager
Adding Asset Types for Modbus TCP Connection Type

DescriptionField

A data model explains how data is represented in the
asset. You can create a data model using a JSON file.
Enter the following details:

1. Name: Enter a name for the data model.

2. Label: Enter a label value.

3. Data Type: From the drop-down menu, select a
measurement entity (string, integer, float, long,
or boolean) for the MODBUS-TCP/IP data.

4. Polling Interval: Enter a value to define the
fastest rate at which the server should test and
debug.

5. Type: From the drop-down menu, choose a data
type for industrial control of factory devices. The
available choices are COIL, HOLDING,
DISCRETE, and INPUT.

6. Offset: Enter a value to reference a specific
register within the function.

7. RawType: From the drop-down menu, choose
the value type for storing binary data or byte
strings.

8. Access Mode: From the drop-down list, choose
an access mode. The available choices are Read
Only, Read & Write, and Write Only.

Click Add to add more data model attributes to the
configuration

Attribute Definitions

The following is an example of a data model for Modbus-TCP/IP source type.
{
"apiVersion": 1,
"connectionType": "MODBUS_TCP",
"fields": {
"desired_temp": {
"label": "Desired Temperature",
"datatype": "Int",
"description": "WO",
"rawType": "UINT16",
"type": "HOLDING",
"pollingInterval": 5000,
"offset": 5,
"category": "TELEMETRY",
"access": "Write"

},
"temp_to_display": {
"label": "Temperature to be displayed",
"datatype": "Int",
"description": "RW",
"rawType": "UINT16",

Cisco Edge Intelligence Local Manager
12

Cisco Edge Intelligence Local Manager
Adding Asset Types for Modbus TCP Connection Type

"type": "HOLDING",
"pollingInterval": 5000,
"offset": 100,
"category": "TELEMETRY",
"access": "ReadWrite"

},
"temp": {
"label": "Current Temperature",
"datatype": "Int",
"description": "RO",
"rawType": "UINT16",
"type": "HOLDING",
"pollingInterval": 5000,
"offset": 1,
"category": "TELEMETRY",
"access": "Read"

}
}

}

Configure OPC-UA asset type
After you select the asset type OPC-UA, enter the required details in the following fields:

DescriptionField

Configuration Details

Enter an IP address or hostname.IP Address or Host Name

Enter a port number.Port

Cisco Edge Intelligence Local Manager
13

Cisco Edge Intelligence Local Manager
Configure OPC-UA asset type

DescriptionField

This is the requested publishing frequency from the
OPC-UA Server. The interval must be greater than or
equal to 1000ms.

Note
The OPC-UA server publishing frequency is
independent of the metric-specific sample interval.
In case the sampling interval (in the following
attribute table) of an individual metric is smaller than
the publishing interval, the OPC-UA server queues
up and send all the sampled values for a metric
between the last publish and the current publish.

Publishing Interval

Advanced Settings

Choose an authentication type:

• Anonymous: The OPC-UA client inside the EI
Agent does not authenticate at the OPC-UA
server. Use this authentication type if your
OPC-UA server does not have authentication
that is enabled for connecting clients.

• Username & Password: Enter the username and
password that the EI Agent must use to
authenticate at the OPC-UA server.

Authentication

This field is non-editable. The default value is None.Security Mode

Cisco Edge Intelligence Local Manager
14

Cisco Edge Intelligence Local Manager
Configure OPC-UA asset type

DescriptionField

A data model explains how data is represented in the
asset.

1. Name: Enter a name for the data model.

2. Label: Enter a label for the data model.

3. Data Type: From the drop-down menu, select a
measurement entity (string, integer, float, long,
or boolean) for the OPC-UA data.

4. OPC_UA Type: From the drop-down menu,
choose URI or INDEX.

5. NameSpace URI: Enter a value to identify the
naming authority that defines the identifiers of
Node IDs.

Note
This field is editable if you select URI under
OPC_UA Type.

6. NameSpace Index: Enter a value to identify the
naming authority that defines the identifiers of
Node IDs.

Note
This field is editable if you select INDEX under
OPC_UA Type.

7. Identifier: Enter a value that is unique across
different naming authorities.

8. Sampling Interval: Enter a value to indicate the
fastest rate at which the server should sample its
underlying source for data changes.

9. Type: From the drop-downmenu, choose the data
type for the identifier. The available choices are
Numeric and String.

Click Add to add more data model attributes to the
configuration

Attribute Definitions

The following is an example of a data model for OPC-UA source type.
{
"apiVersion": 1,
"connectionType": "OPC_UA",
"fields": {
"temperature": {
"label": "Temperature",
"description": "",
"datatype": "Float",
"nodeId": {

Cisco Edge Intelligence Local Manager
15

Cisco Edge Intelligence Local Manager
Configure OPC-UA asset type

"namespaceUri": "2",
"identifier": "2",
"type": "numeric"

},
"samplingInterval": 1000,
"category": "TELEMETRY"

}
}

}

Configure Serial asset type
After you select the asset type Serial, enter the required details in the following fields.

DescriptionField

Configuration Details

Enter a port number. For example, /dev/ttyS0Serial Port

From the drop-down menu, choose 9600, 19200 or
you can add a new custom value on it.

Baud Rate

From the drop-down menu, choose None, Odd, or
Even

Parity

Choose the radio button for 1 or 2.Stop Bits

From the drop-down menu, choose 7 or 8.Data Bits

Cisco Edge Intelligence Local Manager
16

Cisco Edge Intelligence Local Manager
Configure Serial asset type

DescriptionField

A data model explains how data is represented in an
asset.

1. Name: Enter a name for the data model.

2. Label: Enter a label for the data model.

3. Data Type: From the drop-down menu, choose
String or Binary. If you select Binary, the data
is delivered in binary form 1.

a. For a data logic policy, the data is delivered
as a binary buffer in the data logic script in
the on_update() function.

b. For a data rule policy, the data is sent to the
northbound destination in the base64 format.

4. Access: From the drop-down menu, choose read,
write, or read and write.

5. Start Code: Enter the marker that indicates the
start of a stream of bytes.

6. End Code: Enter the marker that indicates the
end of a stream of bytes.

7. Message Size: This is the size, in bytes, between
the start code and the end code.

8. Timeout: Enter a time, in milliseconds, within
which to receive data, before it is reset. This is
enabled only for READ and READWRITE
access modes. This field is mandatory only if the
message size is configured.

Attribute Definitions

Common errors and troubleshooting

Errors can easily occur when configuring a serial port. For example:

• The wiring must be accurate. For example, see the Cisco IR829 installation guide.

• The serial relay service should be configured correctly for the Guest OS. For example, see the Cisco
Catalyst IR1101 documentation and Cisco Catalyst IR1800 documentation.

• The physical serial port must be correctly exposed to IOx through the Local Manager.

To troubleshoot a serial interface:

• Make sure that serial port is configured in propagate mode at the IOS level. A current workaround is to
use just the 0x prefix as the StartCode to specify an empty StartCode.

• For testing interface options only:

• Use a data model with a fixed message size of 1 byte and no start code.

Cisco Edge Intelligence Local Manager
17

Cisco Edge Intelligence Local Manager
Configure Serial asset type

https://www.cisco.com/c/en/us/td/docs/routers/access/800/829/hardware/install/guide/b_IR829-HIG/b_IR829-HIG_chapter_01.html#con_1172480
https://www.cisco.com/c/en/us/td/docs/routers/access/1101/software/configuration/guide/b_IR1101config/b_IR1101config_chapter_010100.html
https://www.cisco.com/c/en/us/td/docs/routers/access/1101/software/configuration/guide/b_IR1101config/b_IR1101config_chapter_010100.html
https://www.cisco.com/c/en/us/td/docs/routers/access/IR1800/software/b-cisco-ir1800-scg/m_serial-relay.html

• Verify that there is some data that is coming in to ensure that the connection is working.

• Once this is done, the actual data model can be defined.

Serial Connector data model

A serial connector asset type has a reduced data type.

The following combinations are allowed:

• One read attribute

• One read plus one write attribute

• One read-write attribute

Read attribute allows the following configuration combinations:

• Message Size and Timeout

• StartCode and Message Size and an optional Timeout

• StartCode and EndCode and an optional Timeout

Start-/End-Code prefix handling:

• Prefix 0x allows to specify hex encoded binary data. For example, 0x1310 -> CR+LF)

• Prefix allows to specify as-is

Serial data model example:

{
"apiVersion": 1,
"connectionType": "SERIAL",
"fields": {
"data_string1": {
"label": "My Data String",
"datatype": "String",
"description": "serial read attribute",
"access": "READ"
"startCode": "$",
"endCode": "0x0a",
"messageSize":""

}
}

}

RSU asset type settings
The RSU asset type supports a set of static attributes in addition to the regular configurable attributes. Static
attributes are always available and not required to be configured.

• The static attributes have a JSON string content and reflect incoming DSRC messages, except
storeAndRepeatMessage and broadcastImmediately static attributes.

• The storeAndRepeatMessage must be set as an array of message objects. All previous messages will be
overwritten by the new array.

Cisco Edge Intelligence Local Manager
18

Cisco Edge Intelligence Local Manager
RSU asset type settings

• The current array of messages can be obtained by reading the attribute.

• The basic configuration for this asset type includes the host, port, and SNMP version.

• Advanced settings like community or authentication data must be set depending on the SNMP version.

In the Source tab, from the Device Type drop-down list, choose RSU. Then, fill the following fields.

DescriptionField

Configuration Details

Enter the IP address or hostname.IP Address or Host Name

Enter the port number.Port

Select a version from the drop-down list from 1, 2c
and 3.

3 is the most secure version.

SNMP Version

Complete these fields based on the selected SNMP
Version.

Advanced Settings

It shows the default attributes that are specific to RSU.
Even if you will not add any additional attributes, it
runs for the agents.

Default Attributes

Cisco Edge Intelligence Local Manager
19

Cisco Edge Intelligence Local Manager
RSU asset type settings

DescriptionField

A data model explains how data is represented in an
asset.

1. Name: Enter a name for the data model.

2. Label: Enter a label for the data model.

3. Data Type: From the drop-down list, choose
String, Integer, Float, Long, or Boolean.

4. Object ID (OID): OID address is used to
uniquely identify managed devices and their
statuses.

5. OID Data Type: OID is the data type for the
object. String or Integer.

6. Polling Interval (ms): This indicates the fastest
rate at which the Server should test and debug.
Select a unit from the up-down menu.

7. Access Mode: From the drop-down list, choose
read, write, or read and write.

Click Add to add more attributes to the asset
configuration.

Attribute Definitions

NTCIP1202, NTCIP1203, NTCIP1204 asset type settings
Cisco Edge Intelligence Local Manager supports three NTCIP devices. Use the Asset Type for the correct
connection type.

• NTCIP 1202—Actuate Signal Controller

• NTCIP 1203—Dynamic Message Sign

• NTCIP 1204—Road Weather Information System

The basic configuration for all these three asset types include the host, port, and SNMP version.

Advanced settings like community or authentication data must be set depending on the SNMP version.

Each NTCIP asset type supports a set of static attributes in addition to the regular configurable attributes.

Cisco Edge Intelligence Local Manager
20

Cisco Edge Intelligence Local Manager
NTCIP1202, NTCIP1203, NTCIP1204 asset type settings

DescriptionField

Configuration Details

Provide the IP address or Host Name.IP Address or Host Name

Select a version from the drop-down list from 1, 2c
and 3.

3 is the most secure version.

SNMP Version

Provide a NTCIP connector port number.

Note
NTCIP1202 port number should never match Trap
port number, and vice versa.

Port

Provide Trap port number.

Note
Trap port number should never match NTCIP1202
port number, and vice versa.

Trap Port (Applicable only for device type:
NTCIP1202)

Cisco Edge Intelligence Local Manager
21

Cisco Edge Intelligence Local Manager
NTCIP1202, NTCIP1203, NTCIP1204 asset type settings

DescriptionField

Choose this checkbox to enable Streaming.

When you choose to enable Streaming, an additional
field Standard or Asset Manufacturer protocol is
displayed. NTCIP 1202 allows the streaming of data
using standard and Asset manufactured protocols. The
different protocols are:

Standard protocol:

• SAE J2735 Standard

Asset manufactured protocols

• Trafficware

• Intelight

• Econolite

Enable Streaming

(Specific to device type: NTCIP1202)

Intersection ID is optional and depends on the user's
specific use case. You can choose to configure this
field if required for their particular scenario. For
example, in traffic use cases, this information is
mandatory.

Intersection ID (Specific to device type: NTCIP1202)

Intersection Name is optional and depends on the
user's specific use case. You can choose to configure
this field if required for their particular scenario.

Intersection Name (Specific to device type:
NTCIP1202)

The specific Advanced Setting details vary based on
the SNMP Version. Provide the appropriate
authentication information accordingly.

Advanced Settings

Cisco Edge Intelligence Local Manager
22

Cisco Edge Intelligence Local Manager
NTCIP1202, NTCIP1203, NTCIP1204 asset type settings

DescriptionField

A data model explains how data is represented in an
asset.

1. Name: Enter a name for the data model.

2. Label: Enter a label for the data model.

3. NTCIP Type: From the drop-down list, choose
Default or trap.

4. Data Type: From the drop-down list, choose
String, Integer, Float, Long, or Boolean.

5. Object ID: From the drop-down list, choose
RawSpat,NTCIP-1211 SRM, and SAE J2735
SRM. Bottom to that add OID. OID address is
used to uniquely identify managed devices and
their statuses.

Note
This field is applicable if you select Default
under NTCIP Type.

6. Trap OID: Enter an ID for Trap NTCIP type.

Note
This field is applicable if you selectTrap under
NTCIP Type.

7. OID Data Type: OID is the data type for the
object. String or Integer.

8. Polling Interval (ms): It indicates the fastest
rate at which the Server tests and debug. Select
a unit from the up-down menu.

9. Access Mode: From the drop-down list, choose
read, write, or read and write.

Note
This field is applicable if you select Default
under NTCIP Type.

10. Service: From the drop-down list, choose
TRAP_RECEIVE.

Note
This field is applicable if you selectTrap under
NTCIP Type.

Attribute Definitions

Cisco Edge Intelligence Local Manager
23

Cisco Edge Intelligence Local Manager
NTCIP1202, NTCIP1203, NTCIP1204 asset type settings

Add data destinations
In the Destination tab, define where configured data policies must send data to.

The supported destinations are:

• MQTT servers

• AWS server

• Azure IoT Hub

• Splunk

From the Type drop-down list, choose the destination. Then, configure the connection settings for the chosen
destination.

Before you configure a data destination in the pipeline, ensure that you have set up the servers or hubs. You
must have the required identifying information ready to complete the destination configuration.

Table 1: Feature History Table

Feature DescriptionRelease InformationFeature

Splunk is introduced as a new data
server destination in this release.

Splunk integration serves as a new
data server for configuring a
pipeline in Cisco Edge Intelligence.

Release 2.2.xSplunk destination

Add a Microsoft Azure IoT Hub destination

Procedure

In theDestination tab, from theType drop-down list, chooseAZURE IoT, and enter the required details in the following
fields.

Cisco Edge Intelligence Local Manager
24

Cisco Edge Intelligence Local Manager
Add data destinations

DescriptionField

Azure IoT Connection Details

Enter the ID Scope that is displayed in the Azure Device
Provisioning Service Overview page.

ID Scope

Upload the intermediate CA Certificate file that you have
configured in your Azure Device Provisioning Service.

Note
The status of this CA certificate in the Azure Provisioning
Service must be marked as trusted, or device creation (and
therefore metric sending) is not allowed by Azure.

CA Certificate

Upload the unencrypted private certificate key file that
belongs to the intermediate CA certificate that you uploaded.
The private key must be in PKCS8 format, and must not
include a passphrase.

To convert an existing key, use the command: openssl
pkcs8 -topk8 -inform PEM -outform PEM -nocrypt

-in azure-iot-test-only.intermediate.key.pem -out

azure-iot-test-only.intermediate.pkcs8.pem

CA Certificate Key

Advanced Settings

Enter the Global Device Endpoint value from the Azure
IoT Hub Device Provisioning Service.

Device Provisioning Endpoint

Cisco Edge Intelligence Local Manager
25

Cisco Edge Intelligence Local Manager
Add a Microsoft Azure IoT Hub destination

DescriptionField

Check this check box to enable the browser to leverage all
MQTT features.

Enable MQTT over WebSockets

From the drop-down list, choose DEVICE_PROPERTY
or TELEMETRY.

Data Rule Classification

Choose the required options in this area to customize the
structure of the device-to-cloud message. You can choose
Include asset attributes, Group asset attributes under
property in the Asset Attributes section or choose Group
telemetry data under property, Include Timestamps in
the Telemetry Data section.

The data can be sent in a flat structure or can be grouped
with a key. Customization does not apply if the chosen data
policy is of the type Device Properties.

Message Structure

Add an MQTT Server destination

Procedure

In theDestination tab, from theType drop-down list, chooseMQTT Server and enter the required details in the following
fields.

Cisco Edge Intelligence Local Manager
26

Cisco Edge Intelligence Local Manager
Add an MQTT Server destination

DescriptionField

Connection Details

Enter the URL or IP address of your MQTT broker.Broker

Enter the port number used by the broker.Port

Cisco Edge Intelligence Local Manager
27

Cisco Edge Intelligence Local Manager
Add an MQTT Server destination

DescriptionField

Enter the topic to which device states and other data are
published. For
example,cisco/edge-intelligence/telemetry/%deviceSerialNumber%%deviceSerialNumber%.
The example topic matches the device or asset instance
serial number that is configured previously in the source
tab.

Note
MQTT topic has a restricted number of characters that can
be used in a topic name. For example, # or + cannot be part
of a topic name.

Topic names are URL-encoded to ensure that they do not
violate MQTT specifications. URL-encoding also allows
northbound applications to decode a topic easily to get to
the original contents.

Topic

Check the TLS check box to enable the protocol.When you
choose TLS, the following fields are displayed:

• Verify Peer: Check this checkbox to allow peer
verification. When you select this option, the
Certificate field is displayed where you can upload a
CA certificate.

• Enable X.509: Check this check box to use X.509
certificates. When you select this option, two fields
are displayed where you can upload a CA certificate
and a private key.

Enabling the use of X.509 certificates allows you to
turn on configure MQTT brokers (like Mosquitto) to
require certificates for authentication. You can also
use X.509 client certificates instead of usernames and
passwords to ensure that only trusted assets are allowed
to send data to a cloud MQTT broker.

Note
• The private key must be PKCS8-compatible.

• The generated certificate for each asset contains the
CN - Serial Number of the asset.

• X.509 certificates can be used with the username and
password authentication method, or as the only
authentication method.

Enable TLS

Enter the username to connect to the MQTT destination
broker.

Username

Enter the password to connect to the MQTT destination
broker.

Password

Cisco Edge Intelligence Local Manager
28

Cisco Edge Intelligence Local Manager
Add an MQTT Server destination

https://mosquitto.org/

DescriptionField

Advanced Settings

From the drop-down list, choose 0, 1, or 2.QoS

Enter a Client ID.

The Client ID field is not URL-encoded because there are
no restrictions in MQTT specifications about allowed
characters.

Client ID

Check this check-box to retain messages on the broker for
new subscribers.

Retain Messages

Choose the required options in this area to customize the
structure of the device-to-cloud message. You can choose
Include asset attributes, Group asset attributes under
property in Asset Attributes section or choose Group
telemetry data under property, Include Timestamps in
Telemetry Data section.

The data can be sent in a flat structure or grouped with a
key. Customization does not apply if the chosen data policy
is of the type Device Properties.

Message Structure

Cloud to Network Device

Use the cloud to data logic commands to send a command
(with payload) from a cloud app to a data logic on an edge
device. The data logic script parses the command.

This feature provides bi-directional communication between
the cloud and edge, allowing the application to send a
command and receive a response. For example, a cold
storage unit connected to an edge device can send
commands to:

• Set the temperature on the cold storage unit

• Initiate a defrost action on the cold storage unit

To enable cloud to data logic commands, enter the following
topic values:

a. Command Topic: Enter the syntax and variables in the
format, cisco/edge-intelligence/commands/variable.

b. Response Topic: The response topic must use the
format cisco/edge-intelligence/responses/variable.

Responses are optional. If a script doesn't send a
response, nothing is published to the topic.

Enable cloud to data logic commands

Cisco Edge Intelligence Local Manager
29

Cisco Edge Intelligence Local Manager
Add an MQTT Server destination

Add an AWS Server destination

Procedure

From the Destination tab, from the Type drop-down list, choose AWS and enter the required details in the following
fields.

DescriptionField

Connection Details

Enter the URL or IP address of your AWS broker.

This info can be found from the AWS IoT Settings page

Broker

Enter 8883.Port

Enter a topic to which device states and other data are
published.

Topic

Cisco Edge Intelligence Local Manager
30

Cisco Edge Intelligence Local Manager
Add an AWS Server destination

DescriptionField

For AWS destinations, you must enable the TLS protocol.
When you choose TLS, the following fields are displayed:

• Verify Peer: Do not choose this option.

• Enable X.509: Check this check box to use X.509
certificates. When you select this option, two fields
are displayed where you can upload a CA certificate
and a private key.

Enable TLS

Do not enter any value in this field.Username

Do not enter any value in this field.Password

Advanced Settings

From the drop-down list, choose 1.QoS

Enter a Client ID.Client ID

For AWS destination type, do not choose the Retain
Messages option.

This option retains messages on the broker for new
subscribers.

Retain Messages

Choose the required options in this area to customize the
structure of the device-to-cloud message. You can choose
to include asset attributes, include timestamps, group asset
attributes, or group telemetry data in the device-to-cloud
messages.

The data can be sent in a flat structure or can be grouped
with a key. Customization does not apply if the chosen data
policy is of the type Device Properties.

Message Structure

Cloud to Network Device

Cisco Edge Intelligence Local Manager
31

Cisco Edge Intelligence Local Manager
Add an AWS Server destination

DescriptionField

Use the cloud to data logic commands to send a command
(with payload) from a cloud app to a data logic on an edge
device. The data logic script parses the command.

This feature provides bi-directional communication between
the cloud and edge, allowing the application to send a
command and receive a response. For example, a cold
storage unit connected to an edge device can send
commands to:

• Set the temperature on the cold storage unit

• Initiate a defrost action on the cold storage unit

To enable cloud to data logic commands, enter the following
topic values:

a. Command Topic: Enter the syntax and variables in the
format, cisco/edge-intelligence/commands/variable.

b. Response Topic: The response topic must use the
format cisco/edge-intelligence/responses/variable.

Responses are optional. If a script doesn't send a
response, nothing is published to the topic.

Enable cloud to data logic commands

Add a Splunk server destination
Splunk is a software platform designed to collect, analyze, and visualize machine-generated data in real time,
delivering operational intelligence for IT operations, security, and business analytics. With the capability in
Cisco Edge Intelligence to use Splunk as a destination, customers can seamlessly send their data to Splunk.

When you choose Splunk as the destination type, set the data policy type to Data Logic. Data Rule policy
type is not supported for this destination.

Note

This procedure explains the fields and settings for the Splunk server destination.

Before you begin

Make sure that you have an active Splunk account with the HTTP Event Collector enabled.

Procedure

In the Destination tab, select Splunk from the Type drop-down list. Enter the required details in each field.
Table 1 lists the required configuration fields and settings for the Splunk server destination.

Cisco Edge Intelligence Local Manager
32

Cisco Edge Intelligence Local Manager
Add a Splunk server destination

DescriptionField

Connection Details

Enter the complete URL for the HTTP Event Collector
(HEC).

HEC URL

Enter the HEC token.HEC token

For more information about configuring the HEC token and other configuration details, see the HTTP Event Collector
Guide.

For Splunk destinations, you must enable the TLS protocol.
Enabling TLS displays these checkboxes.

• Verify Server Certificate: This option enables
certificate validation for secure connections.

• Enable Mutual TLS (mTLS): This option allows the
use of client certificates for authentication.

Enable TLS

Select the checkbox to upload a CA Certificate Bundle,
which verifies the indexer.

Verify Server Certificate

Selecting this checkbox displays two fields for uploading
a client certificate and client private key.

• Client Certificate: Provide a PEM file containing the
client certificate.

• Client Private key: Provide a PEM file containing the
decrypted private key associated with your client
certificate.

Enable Mutual TLS (mTLS)

How to configure single or batch payloads
Splunk data can be sent as a single payload or in batches. This approach is generally used for handling large
volumes of data.

This sample snippet demonstrates how to send North Bound data to Splunk.

• Using a single payload

• function init() {
logger.info("Starting initialization")

// SSL setup can be added here if required
}

var counter = 100

function on_update() {
// Reserved for external update triggers

}

function on_time_trigger() {

Cisco Edge Intelligence Local Manager
33

Cisco Edge Intelligence Local Manager
How to configure single or batch payloads

https://docs.splunk.com/Documentation/Splunk/9.4.2/Data/UsetheHTTPEventCollector
https://docs.splunk.com/Documentation/Splunk/9.4.2/Data/UsetheHTTPEventCollector

counter = counter + 1

// Create a single event payload
var payload = {
event: {
pressure: counter

},
host: "FCW22360076",
source: "FCW22360076",
sourcetype: "EI Agent"
// Optional fields like index or timestamp can be added here

}

// Send the payload to output immediately
publish("output", payload);

}

• Using a batch payload

• function init() {
logger.info("Starting initialization and setup")
// SSL options can be added here if needed in future

}

// Message buffer to hold event data before sending
var messageBuffer = []

// Max number of events to buffer before sending
const maxBufferSize = 2

// Example counter for generating event values
var counter = 100

function on_update() {
// Reserved for handling updates from external source

}

function on_time_trigger() {
counter = counter + 1
// non batch payload
var payload = {
"event": {
"data": counter,
"escaped_chars": "Line 1\\nLine 2\\tTabbed\\\"Quoted\\\"",

},
"host": "FCW22360076",
"source": "FCW22360076",
"sourcetype": "EI Agent",
//"index": "ei-hec-index",
// "time": new Date(trigger.timestamp).getTime() / 1000

};
//publish("output", payload);

// batch payload
for (var i = 0; i < 3; ++i) {
messageBuffer.push(payload);

}
publish("output", messageBuffer);
messageBuffer = [];

}

Cisco Edge Intelligence Local Manager
34

Cisco Edge Intelligence Local Manager
How to configure single or batch payloads

About Data Policies
Data Policies define how data is sent from edge assets to a destination. There are two types of policies:

• Data Logic: Data is transformed before being sent to a destination. Data Logic scripts are developed
using Microsoft VS Code and embedded UI editor.

• Data Rule: Data is sent from Assets to a destination without transformation.

Make sure to configure Data Logic when you have configured multiple Source type. Proceeding only with
Data Rule, will pop-up an error while deployment.

Restriction

Table 2: Feature History Table

Feature DescriptionRelease InformationFeature

HTTP and HTTPS are new
enhancement features in the data
logic script that allows you to run
various methods to fetch data from
the source.

Release 2.2.xHTTP supports in data logic script

Cisco Edge Intelligence data logic
scripts now offer enhanced
flexibility for accessing a
device-specific attribute. You can
retrieve asset serial number directly
from the global device mode using
the on_update() function.
function on_update() {
serial_number =
input.asset_serial_number;
serial_number =
globalThis[trigger.device_name].asset_serial_number;
}

Release 2.2.xGet a device’s asset serial number
from global device model

Scripting engine tutorial
This is a basic user guide on how to implement scripts for Cisco Edge Intelligence. Internally, this feature is
based on duktape 2.7.0 and supports the same subset as duktape. It conforms to ES5.0/ES5.1, with semantics
updated from ES2015 or later when appropriate.

For additional information, refer to the these links:

• Duktape Programmers Guide

• ECMA Script Language Specification

Cisco Edge Intelligence Local Manager
35

Cisco Edge Intelligence Local Manager
About Data Policies

https://duktape.org/guide.html#introduction.3
https://www.ecma-international.org/ecma-262/5.1/

High level flow for data logic scripts
A data pipeline can be configured to use data logic, such as JavaScript code, to transform data. It is important
to understand when the user code is called and what information is accessible. Each data logic instance is
called for every change to fields in the input data model. The user code can publish a value for consumption
by an egress link or decide not to publish a value.

User code can create global objects that persist across invocations, which allows implementation of stateful
transformations such as sliding averages, sliding medians, and histograms. Additionally, a script can be
configured for customization and reuse in different data pipelines. For example, the same script can aggregate
the last 30 values in one pipeline and 100 values in another. The count of values to aggregate is defined as a
configuration parameter.

Required implementations
Each script must provide an on_update() function, which is called whenever a field in the input model changes.
The function does not return a value. Set the desired outputs on the global output object. Outputs are published
when output.publish() is called.

Built-in global objects

Output

The output shall be used to set the desired output values. The names match the output model as specified in
the VSCode plugin. For example, if the output model specifies a foo field, it has to be set with output.foo

=

Just setting the output fields is not sufficient. To give the script implementer strict control over when and if
to publish the changed output model, he must call output.publish() to explicitly publish the transformed
value.

Input

The input is the representation of the input model. Input model fields are input object fields. On on_update()
call, input contains the input model's last known values. They can simply be accessedwith var x = input.foo.

Trigger

The trigger identifies the field name of the input model that has been changed. Be aware the simultaneous
changes to multiple values of the input model are not possible and each change has to be handled on its own.
This can be used to access the last changed value: var x = input[trigger.field_name]

Parameters

The parameters are configurable runtime options for each VSCode pipeline. These settings are to be used to
configure the script depending on the pipeline. For example, a script with alerting capabilities has a different
threshold per pipeline.

Cisco Edge Intelligence Local Manager
36

Cisco Edge Intelligence Local Manager
High level flow for data logic scripts

Built-in global functions

Optional initialization

It is optional to provide a init() function. If present, this function is called exactly once when the pipeline
is incorporated. Instantiation occurs when the pipeline is first created or after each restart.

DSRC encode and DSRC decode

The global functions dsrc2016_encode and dsrc2016_decode are used to encode and decode messages to
and from ASN.1 format.

Encode JSON strings to Uint8Array
/**
* @fn dsrc2016_encode(json_string)
* @brief function to encode provided input of json string into Uint8Array format
* @param json_string -> String (message contains json string format)
* @return Uint8Array -> Encoded message in byte array format
*/ dsrc2016_encode(json_string);

Decode Uint8Array to JSON string
/**
* @fn dsrc2016_decode(buffer)
* @brief function to decode provided input of byte array into json string
* @param buffer -> Encoded message in Uint8Array byte array format
* @return json_string -> String (message contains json string format)
*/
dsrc2016_decode(buffer);

BinaryUtils

The BinaryUtils is the representation of binary utility methods to operate on binary data. The following
methods are part of the BinaryUtils object:

Table 3: Binary mask string

Example (Invalid)Example (Valid)Descriptions

11000b1100Must start with the prefix 0b or 0B

0b10200b1010Only the characters 0 and 1 are
allowed in the Binary Mask String

0b11-00-110b11_00_11The character _ is allowed as a
separator to improve readability
and can appear any number of
times

0b_00_1111_1111_0

(length≠16)

0b_0000_1111_1111_0000Mask string length (excluding
_)depends on API type (For
example, mask16AndShiftRight
expects exactly 16 0 or 1 digits)

0b_0010_0111_1110_00000b_0000_1111_0000_0000The digit 1 must always appear
consecutively (all 1's are together,
no 0's between them)

Cisco Edge Intelligence Local Manager
37

Cisco Edge Intelligence Local Manager
Built-in global functions

Example (Invalid)Example (Valid)Descriptions

0b_0000_0000_0000_00000b_0000_0000_0000_0001The mask string cannot consist
entirely of 0 characters

Table 4: Hex mask string

Example (Invalid)Example (Valid)Descriptions

FF0F0xFF0FMust start with the prefix 0x or 0X

0x1G2B0x1A2BAllowed characters: 0-9, a-f, A-F

0xFF-FF-00-000xFF_FF_00_00The character _ is allowed as a
separator to improve readability
and can appear any number of
times

0xFFFF_FF0xFFFF_FFFFString mask length (excluding _)
depends on API type (for example,
mask32AndShiftRight expects 8
hex characters)

0x0000F0F00x0000FFF0The mask must represent
consecutive 1s in binary (no gaps
between 1s in the bit pattern)

0x000000000x00000001The mask string cannot consist
entirely of 0 characters

Valid hex string:

• 0x_00_FF_FF_00 => 32 Bit APIs

• 0x_3F_FC => 16 Bit APIs

• 0x_F_8_ => 8 Bit APIs

Invalid hex string:

• 0x_00_F0_FF_00 => 32 Bit APIs because of non-consecutive 1 bit in mask

• 0x_00_FF_FF => 16 Bit APIs because of invalid length

• 0xFG => 8 Bit APIs because invalid character in mask

Cisco Edge Intelligence Local Manager
38

Cisco Edge Intelligence Local Manager
Built-in global functions

ResultsFunctions

/**
* @fn mask8()
* @brief gets the number of bit value from
the input byte position as according to mask
* @param mask -> String (Binary or Hex Mask
string. Mask should always have 8
bits/1byte)
* @param byte_value -> Uint8 (Input Byte
Value)
* @return 8 bit integer -> masked bits from
byte_value
*/
/ BinaryUtils.mask8(mask, bytes_value);

mask8 ()

/**
* @fn mask16()
* @brief gets the number of bit value from
the input buffer index as
according to Mask
* @param mask -> String (Binary or Hex Mask
string. Mask
should always have 16
* bits/2bytes)
* @param buffer -> Uint8Array[] (Input buffer)
* @param buffer_index -> Integer (Start buffer
index)
* @return Integer -> masked bits from input
buffer
*/
BinaryUtils.mask16(mask, buffer,
buffer_index);

mask16 ()

/**
* @fn mask32()
* @brief gets the number of bit value from
the input buffer index as
according to Mask
* @param mask -> String (Binary or Hex Mask
string. Mask
should always have 32
* bits/4bytes)
* @param buffer -> Uint8Array[] (Input buffer)
* @param buffer_index -> Integer (Start buffer
index)
* @return Integer -> masked bits from input
buffer
*/
BinaryUtils.mask32(mask, buffer,
buffer_index);

mask32 ()

Cisco Edge Intelligence Local Manager
39

Cisco Edge Intelligence Local Manager
Built-in global functions

ResultsFunctions

/**
* @fn mask8AndShiftRight()
* @brief gets the number of bit value from
the input byte position as
according to Mask and right
* shift the value for all zero bits
* @param mask -> String (Binary or Hex Mask
string. Mask
should always have 8 bits/1byte)
* @param byte_value -> Uint8 (Input Byte
Value)
* @return 8 bit integer -> masked bits from
byte_value after right shift
*/
BinaryUtils.mask8AndShiftRight(mask,
bytes_value);

mask8AndShiftRight ()

/**
* @fn mask16AndShiftRight()
* @brief gets the number of bit value from
the input buffer index as
according to Mask and right
* shift the value for all zero bits
* @param mask -> String (Binary or Hex Mask
string. Mask
should always have 16
* bits/2bytes)
* @param buffer -> Uint8Array[] (Input buffer)
* @param buffer_index -> Integer (Start buffer
index)
* @return Integer -> masked bits from input
buffer after right shift
*/
BinaryUtils.mask16AndShiftRight(mask, buffer,
buffer_index);

mask16AndShiftRight ()

/**
* @fn mask32AndShiftRight()
* @brief gets the number of bit value from
the input buffer index as
according to Mask and right
* shift the value for all zero bits
* @param mask -> String (Binary or Hex Mask
string. Mask
should always have 32
* bits/4bytes)
* @param buffer -> Uint8Array[] (Input buffer)
* @param buffer_index -> Integer (Start buffer
index)
* @return Integer -> masked bits from input
buffer after right shift
*/
BinaryUtils.mask32AndShiftRight(mask, buffer,
buffer_index);

mask32AndShiftRight()

Cisco Edge Intelligence Local Manager
40

Cisco Edge Intelligence Local Manager
Built-in global functions

ResultsFunctions

/**
* @fn mask8AndSet()
* @brief returns the byte_value after setting
the set_value into the input
byte as according to
* bits mentioned in the mask
* @param mask -> String (Binary or Hex Mask
string. Mask
should always have 8 bits/1byte)
* @param byte_value -> Uint8 (Input Byte
Value)
* @param set_value -> Integer (value to be
set)
* @return 8 bit integer -> The byte_value
after setting the set value into
it.
*/
BinaryUtils.mask8AndSet(mask, bytes_value,
set_value);

mask8AndSet ()

/**
* @fn mask16AndSet()
* @brief sets the number of bits value into
the input buffer from buffer
index as according to
* bits mentioned in the mask
* @param mask -> String (Binary or Hex Mask
string. Mask
should always have 16
* bits/2bytes)
* @param buffer -> Uint8Array[] (Input buffer)
* @param buffer_index -> Integer (Start buffer
index)
* @param set_value -> Integer (value to be
set)
* @return updated input buffer
*/
BinaryUtils.mask16AndSet(mask, bytes_value,
set_value);

mask16AndSet ()

/**
* @fn mask32AndSet()
* @brief sets the number of bits value into
the input buffer from buffer
index as according to
* bits mentioned in the mask
* @param mask -> String (Binary or Hex Mask
string. Mask
should always have 32
* bits/4bytes)
* @param buffer -> Uint8Array[] (Input buffer)
* @param buffer_index -> Integer (Start buffer
index)
* @param set_value -> Integer (value to be
set)
* @return updated input buffer
*/
BinaryUtils.mask32AndSet(mask, bytes_value,
set_value);

mask32AndSet ()

Cisco Edge Intelligence Local Manager
41

Cisco Edge Intelligence Local Manager
Built-in global functions

ResultsFunctions

/**
* @fn crc16()
* @brief calculates the crc16 checksum on the
input byte array
* @param algorithm -> Builtin Global Object
[CRC16Algorithm.ARC,
CRC16Algorithm.XMODEM, CRC16Algorithm.MODBUS,
CRC16Algorithm.USB,
CRC16Algorithm.CMS]
* @param buffer -> Uint8Array (Input buffer)
* @param start_index -> Integer [OPTIONAL]
(Start index of input
buffer)
* @param length -> Integer [OPTIONAL] (length
of input buffer
from start index)
* @return 16 bit integer -> crc16 checksum
*/
BinaryUtils.crc16(algorithm, buffer,
start_index, length)

crc16 ()

/**
* @fn crc32()
* @brief calculates the crc32 checksum on the
input byte array
* @param algorithm -> Builtin Global Object
[CRC32Algorithm.AIXM]
* @param buffer -> Uint8Array (Input buffer)
* @param start_index -> Integer [OPTIONAL]
(Start index of input
buffer)
* @param length -> Integer [OPTIONAL] (length
of input buffer
from start index)
* @return 32 bit integer -> crc32 checksum
*/
BinaryUtils.crc32(algorithm, buffer,
start_index, length)

crc32 ()

* @fn base64_encode()
* @brief base64 encode the input byte array
* @param buffer -> Uint8Array (Input buffer)
* @return String -> base64 encoded string
*/
BinaryUtils.base64_encode(buffer);
/**
* @fn base64_decode()
* @brief decode the base64 encoded string
* @param encoded_data -> String (Input string)
* @return Uint8Array -> decoded array buffer
*/
BinaryUtils.base64_decode(encoded_data);

base64_encode ()

Few examples of on_update functions

• Applying Bit Manipulation on Uint8Array using BinaryUtils object
// Buffer Input (Uint8Array) -> 0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48
0x49 0x4A
function on_update() {
// encoded_message -> QUJDREVGR0hJSg==

Cisco Edge Intelligence Local Manager
42

Cisco Edge Intelligence Local Manager
Built-in global functions

output.encoded_message = BinaryUtils.base64_encode(buffer);

// decoded_message -> "Cisco - Edge Intelligence"
var decoded_buf =
BinaryUtils.base64_decode("Q2lzY28gLSBFZGdlIEludGVsbGlnZW5jZQ==");
output.decoded_message = String.fromCharCode.apply(null, new
Uint8Array(decoded_buf));

// crc16_checksum -> 3230
output.crc16_checksum = BinaryUtils.crc16(CRC16Algorithm.ARC, buffer);

// crc32_checksum -> 840854789
output.crc32_checksum = BinaryUtils.crc32(CRC32Algorithm.AIXM, buffer);

output.publish();
}

• Temperature conversion from Celsius to Fahrenheit
function on_update() {
var temp_celsius = input.temperature;
var temp_fahrenheit = temp_celsius * (9 / 5) + 32;
output.temperature = temp_fahrenheit;
output.publish();
}

• This code snippet is responsible for processing incoming sensor data (like temperature or vibration),
calculating a sliding average for that data, and then publishing the result.
function FastSlidingAvg(window_size) {
this.size = window_size;
this.values = [];
this.sum = 0;
this.update = function (value) {
if (this.values.length == this.size) {
this.sum -= this.values[0];
this.values.shift();
}
this.sum += value;
this.values.push(value);
};
this.avg = function () {
return this.sum / this.values.length;
};
}
var acc = {};
function init() {
acc["temp"] = new FastSlidingAvg(parameters.window_size);
acc["vibration"] = new FastSlidingAvg(parameters.window_size);
output.temp = 0;
output.vibration = 0;
}
function on_update() {
var field_name = trigger.field_name;
var value = input[field_name];
acc[field_name].update(value);
output[field_name] = acc[field_name].avg();
output.publish();
}

Cisco Edge Intelligence Local Manager
43

Cisco Edge Intelligence Local Manager
Built-in global functions

Logging

These scripts represent common logging methods which helps to emit the log messages. Using a global object
named logger, you can emit log messages with these six different severity level APIs. They are used to record
events, status, and errors within an application, with each method corresponding to a different log level or
severity.
logger.trace(...)
logger.debug(...)
logger.info(...)
logger.warn(...)
logger.error(...)
logger.fatal(...)

Example:
logger.info("Calling script with:", my_value);

• This is a log entry which indicates the exact date and time when the log event occurred. Each call accepts
a variable number of arguments and will print them to a log message with the following pattern:
2014-10-17T19:26:42.141Z INF: some text 123
^^^^^^^^^^^^^^^^^^^^^^^^ ^^^ ^^^^^^^^^ ^^^
\Timestamp | \arg1 \arg2
\LogLevel

• Custom types must implement a toString() method to be displayed in log messages. For example:
function MyType() {}
MyType.prototype.toString = function () {
return "This is MyType";
};
var my_type = new MyType();
logger.info("MyType is:", my_type);

Applying Bit Manipulation get bit functions on Uint8Array using BinaryUtils object

Get bit functions are for reading/inspecting data (checking if a bit is 0 or 1).

1. string_to_byte_array(str)

• function string_to_byte_array(str) {
var strLen=str.length;
var buf = new Uint8Array(strLen);
for (var i=0; i < strLen; i++) {
buf[i] = str.charCodeAt(i);
}
return buf;
}

2. on_update()

• Main function that processes input string data and applies various bit manipulation functions from
the BinaryUtils object.

• Steps inside on_update():

• Convert input string to byte array using string_to_byte_array

• Apply six different bit mask functions on the byte array:
// Buffer Input (Uint8Array) -> //# 0x 4E 62 63 64 65 66
function on_update() {
var get_buf = string_to_byte_array(input.getbit_array_data);

Cisco Edge Intelligence Local Manager
44

Cisco Edge Intelligence Local Manager
Built-in global functions

DescriptionsCode Fucntions

//function 1. mask8
output.getbit_mask8 =
BinaryUtils.mask8("0b1111_0000",
get_buf[0]);

mask8: Applies an 8-bit mask to the first byte

//function 2. mask8AndShiftRight
output.getbit_mask8AndShiftRight =
BinaryUtils.mask8AndShiftRight(
"0b11110000",
get_buf[0]
);

mask8AndShiftRight: Applies an 8-bit mask
and shifts right on the first byte

//function 3. mask16
output.getbit_mask16 =
BinaryUtils.mask16(
"0b0000_1111_1111_0000",
get_buf,
0
);

mask16: Applies a 16-bit mask starting at
offset 0

//function 4. mask16AndShiftRight
output.getbit_mask16AndShiftRight =
BinaryUtils.mask16AndShiftRight(
"0b0000_1111_1111_0000",
get_buf,
0
);

mask16AndShiftRight: Applies a 16-bit mask
and shifts right starting at offset 0

//function 5. mask32
output.getbit_mask32 =
BinaryUtils.mask32(
"0b0000_1111_1111_1111_1111_1111_1111_0000",
get_buf,
0
);

mask32: Applies a 32-bit mask starting at
offset 0

//function 6. mask32AndShiftRight
output.getbit_mask32AndShiftRight =
BinaryUtils.mask32AndShiftRight(
"0b0000_1111_1111_1111_1111_1111_1111_0000",
get_buf,
0
);

mask32AndShiftRight: Applies a 32-bit mask
and shifts right starting at offset 0

• Publish the output after all manipulations
output.publish();

Applying Bit Manipulation set bit functions on Uint8Array using BinaryUtils object

Set bit functions are for writing/modifying data (changing a bit to 1).

1. string_to_byte_array(str)

• function string_to_byte_array(str) {
var strLen=str.length;
var buf = new Uint8Array(strLen);
for (var i=0; i < strLen; i++) {
buf[i] = str.charCodeAt(i);
}

Cisco Edge Intelligence Local Manager
45

Cisco Edge Intelligence Local Manager
Built-in global functions

return buf;
}

2. on_update()

• Main function that processes input string data and applies various bit manipulation functions from
the BinaryUtils object.

• Steps inside on_update():

• Convert input string to byte array using string_to_byte_array

• Apply six different bit mask functions on the byte array:
// Buffer Input (Uint8Array) -> //# 0x 41 42 43 44 45 46 - "ABCDEF"
function on_update() {
var set_buf = string_to_byte_array(input.setbit_array_data);
var dup_set_buf = set_buf;

DescriptionsCode Fucntions

//function 1. mask8AndSet ,output: 0x71
= 113
output.setbit_mask8AndSet =
BinaryUtils.mask8AndSet("0xF0",
set_buf[0],
7);

mask8AndSet

//function 2. mask16AndSet ,output:
"aBCDEF"
set_buf = dup_set_buf;
BinaryUtils.mask16AndSet("0xFF00",
set_buf, 0, 0x61);
output.setbit_mask16AndSet =
String.fromCharCode.apply(
null,
new Uint8Array(set_buf)
);

mask16AndSet

//function 3. mask32AndSet ,output:
"bCDDEF"
set_buf = dup_set_buf;
BinaryUtils.mask32AndSet("0x0F_FF_FF_F0",
set_buf, 0, 0x243444);
output.setbit_mask32AndSet =
String.fromCharCode.apply(
null,
new Uint8Array(set_buf)
);

mask32AndSet

• Publish the output after all manipulations
output.publish();

Currently, all levels are treated equally and either are all emitted or none.

• A pipeline set to productive = true will never emit any log messages.

• A pipelines set to productive = false will emit all messages.

All emitted messages are subject to quota handling.

Cisco Edge Intelligence Local Manager
46

Cisco Edge Intelligence Local Manager
Built-in global functions

Function mqtt_add_subscription api from data logic for MQTT destination
/**
* @fn mqtt_add_subscription()
* @brief it is to add the topic subscription for mqtt link the API should
be called from data
* logic init() function and its applicable only for mqtt link, the
API is a blocking * call and will block current thread for maximum
100ms
* @param topic: valid mqtt topic
* @param qos: its optional param allowed values (0,1 or 2) default value
is considered 0 if not * provided
* @return none on success
* @Error message for the invalid use
* 1. Wrong number of argument:
* Error message: Error executing JavaScript: TypeError:
mqtt_add_subscription(): wrong number of argument provide, expecting 1
(topic) or 2 arguments (topic,qos)
* 2. non-utf in topic:
* Error message: Error executing JavaScript: TypeError:
mqtt_add_subscription(): Topic is not UTF-8 string
* 3. invalid QOS
* Error message: Error executing JavaScript: RangeError:
mqtt_add_subscription(): QoS should be 0,1 or 2
* 4. commandPath topic not allowed
* Error message: Error executing JavaScript: SyntaxError:
mqtt_add_subscription(): topic 'commandPath' cannot be * subscribed from
data logic script
* 5. not supported destination
* Error message: Error executing JavaScript: TypeError:
mqtt_add_subscription(): api is only supported for mqtt destination
* 6. api mqtt_add_subscription() is allowed only in init()
* Error message: Error executing JavaScript: TypeError:
mqtt_add_subscription(): api is only allowed to be called from init()
*
*/
mqtt_add_subscription(topic,qos)

HTTP utilities
The global object http provides HTTP client functionality for making web requests from JavaScript. All HTTP
methods are asynchronous and use error-first callbacks.

HTTP request methods

/**
* @fn http.get(url, [headers], callback)
* @brief Performs an HTTP GET request
*/
function handleGetResponse(err, res) {
if (err) {
logger.error("Request failed: " + err.message);
} else {
output.api_data = JSON.parse(res.body);
output.publish();
}
}

http.get("https://api.example.com/data", {"Accept": "application/json"},
handleGetResponse);

/**
* @fn http.post(url, body, [headers], callback)

Cisco Edge Intelligence Local Manager
47

Cisco Edge Intelligence Local Manager
HTTP utilities

* @brief Performs an HTTP POST request
*/
function handlePostResponse(err, res) {
if (err) {
logger.error("POST failed: " + err.message);
} else {
logger.info("Created: " + res.statusCode);
}
}

var data = {"name": "John", "age": 30};
http.post("https://api.example.com/users", data, {"Content-Type":
"application/json"}, handlePostResponse);

/**
* @fn http.put(url, body, [headers], callback)
* @brief Performs an HTTP PUT request (same parameters as POST)
*/

/**
* @fn http.delete(url, [headers], callback)
* @brief Performs an HTTP DELETE request (same parameters as GET)
*/

HTTP configuration

/**
* @fn http.setTimeout(milliseconds)
* @brief Sets the default timeout for HTTP requests
*/
http.setTimeout(30000); // 30 seconds

/**
* @fn http.setConnectionReuse(enabled)
* @brief Controls whether HTTP connections are reused or closed after each
request
*/
http.setConnectionReuse(false); // Disable for problematic servers

/**
* @fn http.getRequestCount()
* @brief Returns the current number of pending HTTP requests
*/
var pendingRequests = http.getRequestCount();

SSL configuration

/**
* @fn http.setSSLOptions(options)
* @brief Configures SSL/TLS options for HTTPS requests
*/
http.setSSLOptions({
verify: true, // Enable peer verification
verifyHostname: true, // Enable hostname verification
allowSelfSigned: false, // Allow self-signed certificates
caFile: "/path/to/ca.pem" // CA certificate file path or content
});

/**
* @fn http.setVerifyMode(verify)
* @brief Sets the SSL peer verification mode
*/
http.setVerifyMode(false); // Disable SSL verification for testing

Cisco Edge Intelligence Local Manager
48

Cisco Edge Intelligence Local Manager
HTTP utilities

/**
* @fn http.allowSelfSignedCertificates(allow)
* @brief Controls whether self-signed certificates are accepted
*/
http.allowSelfSignedCertificates(true); // Allow for development

Response object

The response object passed to callbacks contains:

• statusCode (Number): HTTP status code

• body (String): Response body

• headers (Object): Response headers

Error handling

All HTTP methods use error-first callbacks. The error object contains:

• message (String): Error description

• code (String): Error code (if available)

HTTP usage example

function handleApiResponse(err, res) {
if (err) {
logger.error("HTTP error: " + err.message);
return;
}

if (res.statusCode === 200) {
var data = JSON.parse(res.body);
output.external_data = data;
output.publish();
} else {
logger.warn("HTTP status: " + res.statusCode);
}
}

function init() {
http.setTimeout(30000);
http.setConnectionReuse(true);
http.setVerifyMode(true);
}

function on_update() {
var apiUrl = "https://api.example.com/sensor/" + input.sensor_id;
http.get(apiUrl, {"Accept": "application/json"}, handleApiResponse);
}

Protobuf utilities
The protobuf module provides Protocol Buffer encoding and decoding functionality. Protocol Buffers
(protobuf) is a language-neutral, platform-neutral extensible mechanism for serializing structured data. The
module is accessed via require("protobuf").

Cisco Edge Intelligence Local Manager
49

Cisco Edge Intelligence Local Manager
Protobuf utilities

Protobuf best practices

1. Initialize in init(): Always initialize protobuf types in the init() function to avoid repeated parsing

2. Memory Management: Store protobuf types in global objects to reuse across function calls

3. Base64 Encoding: Proto files must be base64 encoded when embedded in JavaScript

Example: simple message encoding/decoding

var pb = new Object();
function init() {
var protobuf = require("protobuf");
// Base64 encoded proto file content for a simple message
// Original proto:
// syntax = "proto3";
// package simple;
// message SimpleMessage {
// string name = 1;
// int32 value = 2;
// }
var protofile =
"c3ludGF4ID0gInByb3RvMyI7CnBhY2thZ2Ugc2ltcGxlOwptZXNzYWdlIFNpbXBsZU1lc3NhZ2
UgewogIHN0cmluZyBuYW1lID0gMTsKICBpbnQzMiB2YWx1ZSA9IDI7Cn0=";
var root = protobuf.init([protofile]);
pb.SimpleMessage = root.lookupType("simple.SimpleMessage");
}

function on_update() {
// Create and encode a protobuf message
var msg = pb.SimpleMessage.create({
name: input.device_name,
value: input.sensor_reading
});
var encoded_buffer = pb.SimpleMessage.encode(msg).finish();
publish("output", encoded_buffer);

// Decode a protobuf message
var decoded_msg = pb.SimpleMessage.decode(encoded_buffer);
output.decoded_name = decoded_msg.name;
output.decoded_value = decoded_msg.value;
}

Create a Data Logic
Data logic is used to transform data from connected assets before it is delivered to a destination. Unlike Data
Rules that send all the raw data for an Asset Type, Data Logic allows you to aggregate or average data, send
only data that exceeds certain value, detect anomalies, and more.

Data Logic is developed and debugged using JavaScript in Microsoft Visual Studio (VS Code) and embedded
UI editor. Scripts are synchronized to Cisco IoT where they can be deployed to EI Agents running on Edge
Devices.

Procedure

Step 1 From the Data Policy tab, select Data Logic checkbox.

Cisco Edge Intelligence Local Manager
50

Cisco Edge Intelligence Local Manager
Create a Data Logic

Note
Clicking upon Data Logic radio button the Data Logic Editor tab appears next to Data Policy.

Step 2 To add a data logic script, clickChoose File to select precreated new script (example: LogicExample.js) from your local
drive.

Step 3 To review or to create a new data logic script, click DL Editor.

• Data logic functionalities where user can write his own transformation code to help to transform data from source
to destination.

• It helps to verify and validate the existing script file by clicking Run Debug.

• You can write a new script and validate it.

Cisco Edge Intelligence Local Manager
51

Cisco Edge Intelligence Local Manager
Create a Data Logic

Note
HTTP funtionality is introduced on data logic script. Data logic editor supports HTTP CRUD (create, retrive, update and
delete) opeartion. To know various supported HTTP features, refer to HTTP and HTTPS protocols in data logic scripts,
on page 53.

Step 4 After you upload a script file, the new download and delete icon appears. It helps to check/validate what uploaded from
other agents. Another user can also check an existing pipeline and can download it.

Step 5 From the following run-time options, select when the script will be run.

• Invoke Periodically (in ms): when you tick the checkbox, it enables the ms interval. Enter the interval time, in ms.
For example, if you enter 500, the Data Logic script will be called every 500 ms. Enable this option if needed.

• Invoke on New Data: The script is called when data changes.

• Cloud to Device Command: This function is called when you receive a command from the cloud.

• Enable Raw Mode: A default output JSON data model is automatically created when a Data Logic script is created.

• (Optional) In the Output Logic Data Model, you can modify the default format of the Output Data Logic Model
script (in JSON) and specify the output model with custom names.

Valid categories: TELEMETRY, PROPERTY, ATTRIBUTE

Valid types: string, int, binary, boolean, double

Cisco Edge Intelligence Local Manager
52

Cisco Edge Intelligence Local Manager
Create a Data Logic

HTTP and HTTPS protocols in data logic scripts
The data logic editor supports HTTP and HTTPS protocols. For these protocols, you can use the CRUD
operations, configure SSL settings, timeout settings, and cancel requests.

Cisco devices use the following ports by default:

Device portprotocol

80HTTP

443HTTPS

If a device uses the default ports for HTTP and HTTPS communications, the configurations in the data logic
script are automatically applied to the port. If a device uses a different port for these protocols, additional
configurations may be required.

Cisco Edge Intelligence Local Manager
53

Cisco Edge Intelligence Local Manager
HTTP and HTTPS protocols in data logic scripts

Secure the HTTP and HTTPS communications by using one of these TLS configurations.

• Trusted Certificate Authority (CA)

• Self-signed certificates

• Self-signed CA

• Mutual TLS (mTLS) using client certificate and key

• Use the API (setSslOptions) to configure the root certificate, client certificate, and client key

Sample SnippetSignatureMethod

function
getAllItemsCallback(err,
status, body, headers) {
if (err) {
logger.error("[GET ALL]
Error:", err.message);
} else {
logger.info("[GET ALL]
Success:", status,
body);
}
}

http.get(

"http://localhost:3000/a
pi/data",
{ "Accept":
"application/json" },
getAllItemsCallback
);

/**

HTTP GET: Fetch all items
Signature: http.get(url:
string, headers: object,
callback: function)
Example: Get list of all
items

Expected: 200 OK with
array of items
*/

GET

function
createItemCallback(err,
status, body, headers) {
if (err) {
logger.error("[POST]
Error:", err.message);
} else {
logger.info("[POST]
Success:", status,
body);
}
}
http.post(

"http://localhost:3000/a
pi/data",
{ name: "Item Three"
},
{ "Content-Type":
"application/json" },
createItemCallback
);

/*** HTTP POST: Create new
item* Signature:
http.post(url: string,
body: object|string,
headers: object, callback:
function)* Example: Create new
item with name "Item
Three"
* Expected: 201 Created
*/

POST

Cisco Edge Intelligence Local Manager
54

Cisco Edge Intelligence Local Manager
HTTP and HTTPS protocols in data logic scripts

Sample SnippetSignatureMethod

function
deleteItemCallback(err,
status, body, headers) {
if (err) {
logger.error("
[DELETE] Error:",
err.message);
} else {
logger.info("[DELETE]
Success:", status, body);
}
}
http.delete("http://local
host:3000/api/data/2",
deleteItemCallback);

/**
* HTTP DELETE: Delete
item by ID
* Signature:
http.delete(url: string,
callback: function)
* Example: Delete item
with ID 2
* Expected: 200 OK or 404
Not Found
*/

DELETE

function
updateItemCallback(err,
status, body, headers) {
if (err) {
logger.error("[PUT]
Error:", err.message);
} else {
logger.info("[PUT]
Success:", status,
body);
}
}
http.put(

"http://localhost:3000/a
pi/data/1",
{ name: "Updated Item
One" },
{ "Content-Type":
"application/json" },
updateItemCallback
);

/**
* HTTP PUT: Update item
by ID
* Signature:
http.put(url: string,
body: object|string,
headers: object, callback:
function)
* Example: Update item ID
1 to have a new name
* Expected: 200 OK or 404
Not Found
*/

PUT

http.setSSLOptions({
verify: true,
verifyHostname: true,
//
allowSelfSigned: true,
//
});

/**
* SSL Configuration
Example (optional)
* Signature:
http.setSSLOptions(options
: object)
* Example: Enable selfsigned
certificate support
* Use this before calling
HTTPS endpoints
*/

SSL Options

Cisco Edge Intelligence Local Manager
55

Cisco Edge Intelligence Local Manager
HTTP and HTTPS protocols in data logic scripts

Sample SnippetSignatureMethod

function
decodeFileContent(fileAt
tribute) {
// File attributes
come as binary data,
need to decode to string
var decoder = new
TextDecoder();
return
decoder.decode(fileAttri
bute);
}

var caCert =
decodeFileContent(input.
ca_certificate);
var clientCert =
decodeFileContent(input.
client_certificate);
var clientKey =
decodeFileContent(input.
client_key);
var sslOptions = {
verify: true,
caFile: caCert, //
root certificate
verifyHostname:
false,
certFile:
clientCert, // client
certificate
keyFile: clientKey
// client / private key
};

var
sslConfigured =
http.setSSLOptions(sslOp
tions);

Certificates and keys can also be
provided via the customAttribute
file options. These values can be
integrated into the data logic.
Before being passed to
setSslOptions , the certificate files
must be base64- encoded, as
demonstrated in the provided
example.

SSL options with Certificates

http.setTimeout(2000); //
Set timeout for all
requests to 2 seconds
MIN_TIMEOUT =1000; // 1 second
MAX_TIMEOUT =300000; // 5
minutes
DEFAULT_TIMEOUT = 8000; // 8
seconds

/**

Timeout Configuration

Signature:
http.setTimeout(timeoutMs:
number)

Example: Set timeout to
2000 ms
*/

Timeout

Cisco Edge Intelligence Local Manager
56

Cisco Edge Intelligence Local Manager
HTTP and HTTPS protocols in data logic scripts

Sample SnippetSignatureMethod

function init() {

http.setConnectionReuse(true);
// by dfault its true
mentioned this .

}

/*

http.setConnectionReuse(enabled
: boolean): boolean

Controls whether HTTP
connections are reused
(pooled)
or closed after each request.

� Parameters
enabled (boolean):

true: Enables connection reuse
(default behavior)

false: Disables connection
reuse — HTTP connection will
be
closed after each request

�� Returns
true on success

false if setting failed (e.g.,
unsupported in the current
environment)*/

Connection Reuse

Known Limitations

• Avoid using http.get/post/delete/put within the init() call to prevent unexpected delays during
initialization.

• When making API calls that handle large payloads, particularly for CRUD operations, refrain from
logging the full response due to the logging buffer's size limit.

• Configure SSL options during the init call to ensure secure communication is established from the start.

• Be aware that the maximum payload size is limited to 1MB.

Create a Data Rule
Data rules define the flow of data, from connected assets to data destinations, without transformation.

Procedure

Step 1 From the Data Policy tab, select Data Rule checkbox.
Step 2 To configure the Data Rule, select a data from Data Sampling Inerval (ms) drop-down list.

Cisco Edge Intelligence Local Manager
57

Cisco Edge Intelligence Local Manager
Create a Data Rule

Deploy or undeploy pipelines
When deployed, a pipeline runs on the Cisco network device where the EI agent is installed.

Procedure

Step 1 To deploy a pipeline:
a) Create a pipeline.
b) Click Deploy.

The deployed pipeline is listed in the Pipelines area of the Cisco Edge Intelligence page.

Step 2 To undeploy a pipeline, in the Pipeline section, select a pipeline and click Undeploy.

When you undeploy a pipeline, it is entirely removed from Cisco Edge Intelligence. If you wish to retain a copy of the
configuration, save the pipeline configuration as a template before you undeploy the pipeline.

Cisco Edge Intelligence Local Manager
58

Cisco Edge Intelligence Local Manager
Deploy or undeploy pipelines

View health status
To track the health status of an EI agent, select a pipeline from the list of pipelines.

Procedure

Step 1 From the left pane, click any Pipeline for which you want to view the details.
Step 2 Click Health Status tab. A combined list log of pipeline overview, source status, and destination status appears for the

EI agent.
Step 3 Click on any status tab to preview each log report.

DescriptionColumn Header

Displays the overall health of the data pipeline, indicating errors in source or
destination connections.

Health Status

Shows the current status of the data pipeline. For example, Error and so on.Pipeline Status

Indicates the connection status (online or offline) of the source asset.Source Status

Reflects the status (online or offline) of the data destination.Destination Status

Cisco Edge Intelligence Local Manager
59

Cisco Edge Intelligence Local Manager
View health status

Cisco Edge Intelligence Local Manager
60

Cisco Edge Intelligence Local Manager
View health status

	Cisco Edge Intelligence Local Manager
	How to create pipelines
	Data sources
	Configure MQTT asset type
	Configure Modbus-Serial asset type
	Adding Asset Types for Modbus TCP Connection Type
	Configure OPC-UA asset type
	Configure Serial asset type
	RSU asset type settings
	NTCIP1202, NTCIP1203, NTCIP1204 asset type settings

	Add data destinations
	Add a Microsoft Azure IoT Hub destination
	Add an MQTT Server destination
	Add an AWS Server destination
	Add a Splunk server destination
	How to configure single or batch payloads

	About Data Policies
	Scripting engine tutorial
	High level flow for data logic scripts
	Required implementations
	Built-in global objects
	Built-in global functions
	HTTP utilities
	Protobuf utilities

	Create a Data Logic
	HTTP and HTTPS protocols in data logic scripts

	Create a Data Rule

	Deploy or undeploy pipelines
	View health status

