

Y.1564 - Ethernet Service Activation Test

With the deployment of Ethernet in service provider networks, ethernet services have evolved significantly. Not only is ethernet found at the User Network Interface (UNI) but can also be deployed anywhere in the network, creating a Network-to-Network Interface (NNI). With the capability to prioritize traffic, high availability, and its built-in resiliency, service providers are now using this technology to deliver advanced services. In the absence of any standardized test methodologies that can measure delay, jitter, loss, and throughput at a port, the ITU-T recommendation Y.1564 addresses the gap

Y.1564 - Ethernet Service Activation Test (or performance test methodology) is a testing procedure which tests service turn-up, installation, and troubleshooting of Ethernet-based services. This test methodology was created to have a standard way of measuring Ethernet-based services in the industry.

Cisco implementation of ITU-T Y.1564 has three key objectives:

- To serve as a network SLA validation tool, ensuring that a service meets its guaranteed performance settings in a controlled test time.
- To ensure that all services carried by the network meet their SLA objectives at their maximum committed rate, thus proving that under maximum load, network devices and paths can support all traffic as designed.
- To perform medium-term and long-term service testing, confirming that network elements can properly carry all services while under stress during a soaking period.

The following Key Performance Indicators (KPI) metrics are collected to ensure that the configured SLAs are met for the service or stream.

- Frame Transfer Delay (FTD) or latency—Measures the round-trip time (RTT) taken by a test frame to travel through a network device, or across the network and back to the test port.
- Frame Loss Ratio (FLR)—Measures the number of packets lost from the total number of packets sent. Frame loss can be due to a number of issues such as network congestion or errors during transmissions.

Note

- Rewrite with POP option is supported with Color Blind mode with Outer-Cos value of 0.
- Rewrite Push and Translate on Encapsulation Untagged is not supported.
- Y.1564 doesn't support L1 loopback.

Note

In Cisco IOS XR Release 7.3.1, for 10G interfaces on the following NCS 540 variants, the maximum transmission rate is 8G. This rate cannot be changed.

- N540X-6Z18G-SYS-A/D
- N540X-8Z16G-SYS-A/D
- N540X-4Z14G2Q-SYS-A/D

Supported Modes

The mode of operation that is supported for Y.1564 is the Two-way statistics collection mode. In the two-way mode, the sender generates the test traffic used to perform the test, which is then looped back by the remote node. The statistics are measured and collected locally on the sender

The following encapsulations are supported by Y.1564 SADT feature:

- dot1q
- dot1q + second dot1q
- dot1ad
- dot1ad + second dot1q
- · priority tagged
- · untagged
- CoS DEI Support Matrix, on page 2
- Configuration Examples, on page 3
- Verification, on page 4

CoS DEI Support Matrix

Table 1: Class of Service (CoS) and Discard Eligibility Identifier (DEI) Matrix

		CoS							
0	1	2	3	4	5	6	7		
DEI	0	Ö	Ö	Ö	Ö	Ö	X	Ö	X
	1	Ö	Ö	X	X	X	X	X	X

- Ö Supported
- X- Not Supported

Supported Bandwidth Parameters

Bandwidth Parameters	Internal Direction	External Direction
Committed Information Rate	Y	Y
Exceeded Information Rate	Y	Y
Committed Burst Rate	Y	Y
Exceeded Burst Rate	Y	Y

Service Activation Test Target Matrix

Target	Internal Direction	External Direction
L2 Interface over physical main/sub interfaces	Y	Y
L2 Interface over bundle main/sub interfaces	Y	Y
L2 PW VPWS over physical main/sub interfaces	Y	Y
L2 PW VPWS over bundle main/sub interfaces	Y	Y
L2 EVPN/XConnect over physical main/sub interfaces	Y	Y
L2 EVPN/XConnect over bundle main/sub interfaces	Y	Y
L2 VPLS PW	N	N
L2 EVPN Bridge-Domain	N	N
L3 Interfaces	N	N

Configuration Examples

The following example shows how to start service-activation test on an interface with external direction:

RP/0/RP0/CPU0:router ethernet service-activation-test start interface TenGigE 10/0/0/1 profile test destination 00ab.6009.9c3c direction external

The following example shows how to start service-activation test on an interface with internal direction:

RP/0/RP0/CPU0:routerethernet service-activation-test start interface TenGigE 10/0/0/1 profile test destination 00ab.6009.9c3c direction internal

The following example shows how to stop service-activation-test on an interface:

RP/0/RP0/CPU0:routerethernet service-activation-test stop interface TenGigE 10/0/0/1

The following example shows how to stop all service-activation-tests:

RP/0/RP0/CPU0:routerethernet service-activation-test stop all

Configuring Ethernet Service Activation Test Color Profile

The following example shows how to configure a color-blind profile for ethernet service activation test:

```
RP/0/RP0/CPU0:router#configure
RP/0/RP0/CPU0:router(config) # ethernet service-activation-test
RP/0/RP0/CPU0:router(config-ethsat) #profile sattest1
RP/0/RP0/CPU0:router(config-ethsat-prf) #outer-cos 4
RP/0/RP0/CPU0:router(config-ethsat-prf) #duration 8 minutes
RP/0/RP0/CPU0:router(config-ethsat-prf) #information-rate 11800 mbps
RP/0/RP0/CPU0:router(config-ethsat-prf) #packet-size 1000
```

The following example shows how to configure a color-aware profile for ethernet service activation test:

```
RP/0/RP0/CPU0:router#configure
RP/0/RP0/CPU0:router(config) # ethernet service-activation-test
RP/0/RP0/CPU0:router(config-ethsat) #profile sattest3
RP/0/RP0/CPU0:router(config-ethsat-prf) #outer-cos 4
RP/0/RP0/CPU0:router(config-ethsat-prf) #duration 1 minutes
RP/0/RP0/CPU0:router(config-ethsat-prf) #color-aware cir 7 gbps eir-color cos 1
RP/0/RP0/CPU0:router(config-ethsat-prf) #information-rate 8 gbps
RP/0/RP0/CPU0:router(config-ethsat-prf) #packet-size 1000
```

Verification

To verify the interfaces on which Y.1564 (ethernet service activation test) is enabled, use the **show ethernet service-activation-test brief** command. The following is a sample output of an enabled device: