THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.
IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2019 Cisco Systems, Inc. All rights reserved.
CONTENTS

CHAPTER 1

BGP Functional Overview 1
 Enable BGP Routing 2
 Adjust BGP Timers 6
 Change BGP Default Local Preference Value 7
 Configure MED Metric for BGP 7
 Configure BGP Weights 8
 Tune BGP Best-Path Calculation 9
 Set BGP Administrative Distance 10
 Indicate BGP Back-door Routes 12
 Configure Aggregate Addresses 13
 Understanding BGP MD5 Authentication 14
 Configuring BGP MD5 Authentication 14
 Hiding the Local AS Number for BGP Networks 15
 Configuring BGP to Hide the Local AS Number 16
 Autonomous System Number Formats in BGP 17
 2-byte Autonomous System Number Format 17
 4-byte Autonomous System Number Format 17
 as-format Command 17
 BGP Multi-Instance and Multi-AS 17
 Configure Multiple BGP Instances for a Specific Autonomous System 18
 BGP Routing Domain Confederation 19
 Configure Routing Domain Confederation for BGP 19
 BGP Additional Paths 22
 Configure BGP Additional Paths 22
 BGP Maximum Prefix 23
 Configure Discard Extra Paths 24
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor BGP Update Groups</td>
<td>63</td>
</tr>
<tr>
<td>L3VPN iBGP PE-CE</td>
<td>64</td>
</tr>
<tr>
<td>Restrictions for L3VPN iBGP PE-CE</td>
<td>64</td>
</tr>
<tr>
<td>Configuring L3VPN iBGP PE-CE</td>
<td>65</td>
</tr>
<tr>
<td>Flow-tag propagation</td>
<td>67</td>
</tr>
<tr>
<td>Restrictions for Flow-Tag Propagation</td>
<td>67</td>
</tr>
<tr>
<td>Source and destination-based flow tag</td>
<td>67</td>
</tr>
<tr>
<td>Configure Source and Destination-based Flow Tag</td>
<td>67</td>
</tr>
<tr>
<td>BGP Keychains</td>
<td>69</td>
</tr>
<tr>
<td>Configure Keychains for BGP</td>
<td>69</td>
</tr>
<tr>
<td>Master Key Tuple Configuration</td>
<td>70</td>
</tr>
<tr>
<td>Keychain Configurations</td>
<td>71</td>
</tr>
<tr>
<td>Configuration Guidelines</td>
<td>71</td>
</tr>
<tr>
<td>Configuration Guidelines for TCP AO BGP Neighbor</td>
<td>71</td>
</tr>
<tr>
<td>Keychain Configuration</td>
<td>72</td>
</tr>
<tr>
<td>TCP Configuration</td>
<td>72</td>
</tr>
<tr>
<td>BGP Configurations</td>
<td>72</td>
</tr>
<tr>
<td>XML Configurations</td>
<td>73</td>
</tr>
<tr>
<td>BGP Nonstop Routing</td>
<td>73</td>
</tr>
<tr>
<td>Configure BGP Nonstop Routing</td>
<td>74</td>
</tr>
<tr>
<td>Disable BGP Nonstop Routing</td>
<td>74</td>
</tr>
<tr>
<td>Re-enable BGP Nonstop Routing</td>
<td>74</td>
</tr>
<tr>
<td>Accumulated Interior Gateway Protocol Attribute</td>
<td>75</td>
</tr>
<tr>
<td>Originate Prefixes with AiGP</td>
<td>75</td>
</tr>
<tr>
<td>Configure BGP Accept Own</td>
<td>77</td>
</tr>
<tr>
<td>BGP Link-State</td>
<td>80</td>
</tr>
<tr>
<td>Configure BGP Link-state</td>
<td>80</td>
</tr>
<tr>
<td>Configure Domain Distinguisher</td>
<td>81</td>
</tr>
<tr>
<td>BGP Permanent Network</td>
<td>82</td>
</tr>
<tr>
<td>Configure BGP Permanent Network</td>
<td>83</td>
</tr>
<tr>
<td>Advertise Permanent Network</td>
<td>84</td>
</tr>
<tr>
<td>Enable BGP Unequal Cost Recursive Load Balancing</td>
<td>85</td>
</tr>
<tr>
<td>DMZ Link Bandwidth for Unequal Cost Recursive Load Balancing</td>
<td>89</td>
</tr>
<tr>
<td>Enable BGP Unequal Cost Recursive Load Balancing</td>
<td>89</td>
</tr>
</tbody>
</table>
DMZ Link Bandwidth Over EBGP Peer
Sending and Receiving DMZ Link Bandwidth Extended Community over eBGP Peer
BGP Prefix Origin Validation using RPKI
Configure RPKI Cache-server
Configure BGP Prefix Validation
Configure RPKI Bestpath Computation
Resilient Per-CE Label Allocation Mode
Configure Resilient Per-CE Label Allocation Mode Under VRF Address Family
Configure Resilient Per-CE Label Allocation Mode Using Route-Policy
BGP VRF Dynamic Route Leaking
Configure VRF Dynamic Route Leaking
Configuring a VPN Routing and Forwarding Instance in BGP
Define Virtual Routing and Forwarding Tables in Provider Edge Routers
Configure Route Distinguisher
Configure PE-PE or PE-RR Interior BGP Sessions
Configure BGP as PE-CE Protocol
Resetting an eBGP Session Immediately Upon Link Failure
Information about Implementing BGP
BGP Router Identifier
BGP Default Limits
BGP Attributes and Operators
BGP Best Path Algorithm
Comparing Pairs of Paths
Order of Comparisons
Best Path Change Suppression
BGP Update Generation and Update Groups
BGP Update Group
BGP Cost Community Reference
BGP Next Hop Reference
BGP Nonstop Routing Reference
BGP Route Reflectors Reference
iBGP Multipath Load Sharing Reference
L3VPN iBGP PE-CE Reference
MPLS VPN Carrier Supporting Carrier
CHAPTER 2
Information About EVPN-VPWS Single Homed 143
Configuring L2VPN EVVPN Address Family Under BGP 144
Configuring EVVPN-VPWS 145
Configuring EVVPN-VPWS: Example 146

CHAPTER 3
Configuring VPWS with BGP Autodiscovery and Signaling 147
VPWS with BGP Autodiscovery and BGP Signaling 149

CHAPTER 4
Configuring BGP Dynamic Neighbors using Address Range 155
Configuring BGP Dynamic Neighbors Using Address Range With Authentication 156
Maximum-peers and Idle-watch timeout 157

CHAPTER 5
BGP PIC (Prefix Independent Convergence) Edge for IP and MPLS-VPN 159
Prerequisites for BGP PIC 159
Restrictions for BGP PIC 160
Benefits 160
BGP Convergence 160
Improve Convergence 160
BGP Fast Reroute 162
Detect a Failure 162
MPLS VPN–BGP Local Convergence 163
Enable BGP PIC 163
BGP PIC Scenario 163
IP PE-CE Link and Node Protection 163
Configure BGP PIC 164
CHAPTER 6

Master Key Tuple Configuration 167
 Keychain Configurations 167
 Configuration Guidelines 167
 Configuration Guidelines for TCP AO BGP Neighbor 168
 Keychain Configuration 169
 TCP Configuration 169
 BGP Configurations 169
 XML Configurations 170
 Verification 170
BGP uses TCP as its transport protocol. Two BGP routers form a TCP connection between one another (peer routers) and exchange messages to open and confirm the connection parameters.

BGP routers exchange network reachability information. This information is mainly an indication of the full paths (BGP autonomous system numbers) that a route should take to reach the destination network. This information helps construct a graph that shows which autonomous systems are loop free and where routing policies can be applied to enforce restrictions on routing behavior.

Any two routers forming a TCP connection to exchange BGP routing information are called peers or neighbors. BGP peers initially exchange their full BGP routing tables. After this exchange, incremental updates are sent as the routing table changes. BGP keeps a version number of the BGP table, which is the same for all of its BGP peers. The version number changes whenever BGP updates the table due to routing information changes. Keepalive packets are sent to ensure that the connection is alive between the BGP peers and notification packets are sent in response to error or special conditions.

VPNv4 address family is supported effective from Cisco IOS XR Release 6.1.31. However, VPNv6 and VPN routing and forwarding (VRF) address families will be supported in a future release.

- Enable BGP Routing, on page 2
- Adjust BGP Timers, on page 6
- Change BGP Default Local Preference Value, on page 7
- Configure MED Metric for BGP, on page 7
- Configure BGP Weights, on page 8
- Tune BGP Best-Path Calculation, on page 9
- Set BGP Administrative Distance, on page 10
- Indicate BGP Back-door Routes, on page 12
- Configure Aggregate Addresses, on page 13
- Understanding BGP MD5 Authentication, on page 14
- Hiding the Local AS Number for BGP Networks, on page 15
- Autonomous System Number Formats in BGP, on page 17
- BGP Routing Domain Confederation, on page 19
- BGP Additional Paths, on page 22
- BGP Maximum Prefix, on page 23
- BGP Best-External Path, on page 26
- BGP Local Label Retention, on page 27
Enable BGP Routing

Perform this task to enable BGP routing and establish a BGP routing process. Configuring BGP neighbors is included as part of enabling BGP routing.

Note

- At least one neighbor and at least one address family must be configured to enable BGP routing. At least one neighbor with both a remote AS and an address family must be configured globally using the `address family` and `remote as` commands.

- When one BGP session has both IPv4 unicast and IPv4 labeled-unicast AFI/SAF, then the routing behavior is nondeterministic. Therefore, the prefixes may not be correctly advertised. Incorrect prefix advertisement results in reachability issues. In order to avoid such reachability issues, you must explicitly configure a route policy to advertise prefixes either through IPv4 unicast or through IPv4 labeled-unicast address families.
Before you begin

BGP must be able to obtain a router identifier (for example, a configured loopback address). At least, one address family must be configured in the BGP router configuration and the same address family must also be configured under the neighbor.

Note

If the neighbor is configured as an external BGP (eBGP) peer, you must configure an inbound and outbound route policy on the neighbor using the `route-policy` command.

Procedure

Step 1 configure
Step 2 route-policy route-policy-name

Example:

```
RP/0/RP0/CPU0:router(config)# route-policy drop-as-1234
RP/0/RP0/CPU0:router(config-rpl)# if as-path passes-through '1234' then
RP/0/RP0/CPU0:router(config-rpl)# apply check-communities
RP/0/RP0/CPU0:router(config-rpl)# else
RP/0/RP0/CPU0:router(config-rpl)# pass
RP/0/RP0/CPU0:router(config-rpl)# endif
```

(Optional) Creates a route policy and enters route policy configuration mode, where you can define the route policy.

Step 3 end-policy

Example:

```
RP/0/RP0/CPU0:router(config-rpl)# end-policy
```

(Optional) Ends the definition of a route policy and exits route policy configuration mode.

Step 4 commit
Step 5 configure
Step 6 router bgp as-number

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120
```

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 7 bgp router-id ip-address

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# bgp router-id 192.168.70.24
```

Configures the local router with a specified router ID.
Step 8 address-family { ipv4 | ipv6 } unicast
Example:
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.
To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 9 exit
Example:
RP/0/RP0/CPU0:router(config-bgp-af)# exit
Exits the current configuration mode.

Step 10 neighbor ip-address
Example:
RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24
Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 11 remote-as as-number
Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2002
Creates a neighbor and assigns a remote autonomous system number to it.

Step 12 address-family { ipv4 | ipv6 } unicast
Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.
To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 13 route-policy route-policy-name { in | out }
Example:
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy drop-as-1234 in
(Optional) Applies the specified policy to inbound IPv4 unicast routes.

Step 14 commit

Enabling BGP: Example
The following shows how to enable BGP.
prefix-set static
 2020::/64,
 2012::/64,
 10.10.0.0/16,
 10.2.0.0/24
end-set

route-policy pass-all
 pass
end-policy

route-policy set_next_hop_agg_v4
 set next-hop 10.0.0.1
end-policy

route-policy set_next_hop_static_v4
 if (destination in static) then
 set next-hop 10.1.0.1
 else
 drop
 endif
end-policy

route-policy set_next_hop_agg_v6
 set next-hop 2003::121
end-policy

route-policy set_next_hop_static_v6
 if (destination in static) then
 set next-hop 2011::121
 else
 drop
 endif
end-policy

router bgp 65000
 bgp fast-external-fallover disable
 bgp confederation peers
 65001
 65002
 bgp confederation identifier 1
 bgp router-id 1.1.1.1
 address-family ipv4 unicast
 aggregate-address 10.2.0.0/24 route-policy set_next_hop_agg_v4
 aggregate-address 10.3.0.0/24
 redistribute static route-policy set_next_hop_static_v4
 address-family ipv6 unicast
 aggregate-address 2012::/64 route-policy set_next_hop_agg_v6
 aggregate-address 2013::/64
 redistribute static route-policy set_next_hop_static_v6
 neighbor 10.0.101.60
 remote-as 65000
 address-family ipv4 unicast
 neighbor 10.0.101.61
 remote-as 65000
 address-family ipv4 unicast
 neighbor 10.0.101.62
 remote-as 3
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
 neighbor 10.0.101.64
 remote-as 5
 update-source Loopback0
Adjust BGP Timers

BGP uses certain timers to control periodic activities, such as the sending of keepalive messages and the interval after which a neighbor is assumed to be down if no messages are received from the neighbor during the interval. The values set using the `timers bgp` command in router configuration mode can be overridden on particular neighbors using the `timers` command in the neighbor configuration mode.

Perform this task to set the timers for BGP neighbors.

Procedure

1. **configure**
2. **router bgp as-number**
 - **Example:**
     ```
     RP/0/RP0/CPU0:router(config)# router bgp 123
     ```
 Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.
3. **timers bgp keepalive hold-time**
 - **Example:**
     ```
     RP/0/RP0/CPU0:router(config-bgp)# timers bgp 30 90
     ```
 Sets a default keepalive time and a default hold time for all neighbors.
4. **neighbor ip-address**
 - **Example:**
     ```
     RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24
     ```
 Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.
5. **timers keepalive hold-time**
 - **Example:**
     ```
     RP/0/RP0/CPU0:router(config-bgp-nbr)# timers 60 220
     ```
 (Optional) Sets the keepalive timer and the hold-time timer for the BGP neighbor.
6. **commit**
Change BGP Default Local Preference Value

Perform this task to set the default local preference value for BGP paths.

Procedure

Step 1
configure

Step 2
router bgp
as-number

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3
bgp default local-preference
value

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# bgp default local-preference 200
```

Sets the default local preference value from the default of 100, making it either a more preferable path (over 100) or less preferable path (under 100).

Step 4
commit

Configure MED Metric for BGP

Perform this task to set the multi exit discriminator (MED) to advertise to peers for routes that do not already have a metric set (routes that were received with no MED attribute).

Procedure

Step 1
configure

Step 2
router bgp
as-number

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3
default-metric
value

Example:

RP/0/RP0/CPU0:router(config-bgp)# default metric 10

Sets the default metric, which is used to set the MED to advertise to peers for routes that do not already have a metric set (routes that were received with no MED attribute).

Step 4

commit

Configure BGP Weights

A weight is a number that you can assign to a path so that you can control the best-path selection process. If you have particular neighbors that you want to prefer for most of your traffic, you can use the `weight` command to assign a higher weight to all routes learned from that neighbor. Perform this task to assign a weight to routes received from a neighbor.

Procedure

Step 1

`configure`

Step 2

`router bgp as-number`

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3

`neighbor ip-address`

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4

`remote-as as-number`

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2002

Creates a neighbor and assigns a remote autonomous system number to it.

Step 5

`address-family { ipv4 | ipv6 } unicast`

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).
Step 6

weight weight-value

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# weight 41150

Assigns a weight to all routes learned through the neighbor.

Step 7

commit

What to do next

You the clear bgp command for the newly configured weight to take effect.

Tune BGP Best-Path Calculation

BGP routers typically receive multiple paths to the same destination. The BGP best-path algorithm determines the best path to install in the IP routing table and to use for forwarding traffic. The BGP best-path comprises of three steps:

• Step 1—Compare two paths to determine which is better.

• Step 2—Iterate over all paths and determines which order to compare the paths to select the overall best path.

• Step 3—Determine whether the old and new best paths differ enough so that the new best path should be used.

The order of comparison determined by Step 2 is important because the comparison operation is not transitive; that is, if three paths, A, B, and C exist, such that when A and B are compared, A is better, and when B and C are compared, B is better, it is not necessarily the case that when A and C are compared, A is better. This nontransitivity arises because the multi exit discriminator (MED) is compared only among paths from the same neighboring autonomous system (AS) and not among all paths. BGP Best Path Algorithm, on page 127 provides additional conceptual details.

Perform this task to change the default BGP best-path calculation behavior.

Procedure

Step 1

configure

Step 2

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 126

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.
Step 3 bgp bestpath med missing-as-worst

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath med missing-as-worst
```

Directs the BGP software to consider a missing MED attribute in a path as having a value of infinity, making this path the least desirable path.

Step 4 bgp bestpath med always

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath med always
```

Configures the BGP speaker in the specified autonomous system to compare MEDs among all the paths for the prefix, regardless of the autonomous system from which the paths are received.

Step 5 bgp bestpath med confed

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath med confed
```

Enables BGP software to compare MED values for paths learned from confederation peers.

Step 6 bgp bestpath as-path ignore

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath as-path ignore
```

Configures the BGP software to ignore the autonomous system length when performing best-path selection.

Step 7 bgp bestpath compare-routerid

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath compare-routerid
```

Configure the BGP speaker in the autonomous system to compare the router IDs of similar paths.

Step 8 commit

Set BGP Administrative Distance

An administrative distance is a rating of the trustworthiness of a routing information source. In general, the higher the value, the lower the trust rating. Normally, a route can be learned through more than one protocol. Administrative distance is used to discriminate between routes learned from more than one protocol. The route with the lowest administrative distance is installed in the IP routing table. By default, BGP uses the administrative distances shown in here:
Table 1: BGP Default Administrative Distances

<table>
<thead>
<tr>
<th>Distance</th>
<th>Default Value</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>20</td>
<td>Applied to routes learned from eBGP.</td>
</tr>
<tr>
<td>Internal</td>
<td>200</td>
<td>Applied to routes learned from iBGP.</td>
</tr>
<tr>
<td>Local</td>
<td>200</td>
<td>Applied to routes originated by the router.</td>
</tr>
</tbody>
</table>

Distance does not influence the BGP path selection algorithm, but it does influence whether BGP-learned routes are installed in the IP routing table.

Perform this task to specify the use of administrative distances that can be used to prefer one class of route over another.

Procedure

Step 1
configure

Step 2
router bgp *as-number*

Example:

`RP/0/RP0/CPU0:router(config)# router bgp 120`

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3
address-family \{ ipv4 | ipv6 \} unicast

Example:

`RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast`

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode. To see a list of all the possible keywords and arguments for this command, use the CLI help (?)

Step 4
distance bgp *external-distance internal-distance local-distance*

Example:

`RP/0/RP0/CPU0:router(config-bgp-af)# distance bgp 20 20 200`

Sets the external, internal, and local administrative distances to prefer one class of routes over another. The higher the value, the lower the trust rating.

Step 5
commit
Indicate BGP Back-door Routes

In most cases, when a route is learned through eBGP, it is installed in the IP routing table because of its distance. Sometimes, however, two ASs have an IGP-learned back-door route and an eBGP-learned route. Their policy might be to use the IGP-learned path as the preferred path and to use the eBGP-learned path when the IGP path is down.

Perform this task to set the administrative distance on an external Border Gateway Protocol (eBGP) route to that of a locally sourced BGP route, causing it to be less preferred than an Interior Gateway Protocol (IGP) route.

Procedure

Step 1
configure

Step 2
router bgp as-number

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3
address-family { ipv4 | ipv6 } unicast

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
```

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?)

Step 4
network { ip-address / prefix-length | ip-address mask } backdoor

Example:

```
RP/0/RP0/CPU0:router(config-bgp-af)# network 172.20.0.0/16
```

Configures the local router to originate and advertise the specified network.

Step 5
commit
Back Door: Example

Here, Routers A and C and Routers B and C are running eBGP. Routers A and B are running an IGP (such as Routing Information Protocol [RIP], Interior Gateway Routing Protocol [IGRP], Enhanced IGRP, or Open Shortest Path First [OSPF]). The default distances for RIP, IGRP, Enhanced IGRP, and OSPF are 120, 100, 90, and 110, respectively. All these distances are higher than the default distance of eBGP, which is 20. Usually, the route with the lowest distance is preferred.

Router A receives updates about 160.10.0.0 from two routing protocols: eBGP and IGP. Because the default distance for eBGP is lower than the default distance of the IGP, Router A chooses the eBGP-learned route from Router C. If you want Router A to learn about 160.10.0.0 from Router B (IGP), establish a BGP back door. See .

In the following example, a network back-door is configured:

```
RP/0/RP0/CPU0:router(config)# router bgp 100
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-af)# network 160.10.0.0/16 backdoor
```

Router A treats the eBGP-learned route as local and installs it in the IP routing table with a distance of 200. The network is also learned through Enhanced IGRP (with a distance of 90), so the Enhanced IGRP route is successfully installed in the IP routing table and is used to forward traffic. If the Enhanced IGRP-learned route goes down, the eBGP-learned route is installed in the IP routing table and is used to forward traffic.

Although BGP treats network 160.10.0.0 as a local entry, it does not advertise network 160.10.0.0 as it normally would advertise a local entry.

Configure Aggregate Addresses

Perform this task to create aggregate entries in a BGP routing table.

Procedure

1. **Step 1** configure
2. **Step 2** `router bgp as-number`

Example:

Configure Aggregate Addresses

BGP Functional Overview

Configure Aggregate Addresses
RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3

`address-family { ipv4 | ipv6 } unicast`

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode. To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4

`aggregate-address address/mask-length [as-set] [as-confed-set] [summary-only] [route-policy route-policy-name]`

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# aggregate-address 10.0.0.0/8 as-set

Creates an aggregate address. The path advertised for this route is an autonomous system set consisting of all elements contained in all paths that are being summarized.

- The `as-set` keyword generates autonomous system set path information and community information from contributing paths.
- The `as-confed-set` keyword generates autonomous system confederation set path information from contributing paths.
- The `summary-only` keyword filters all more specific routes from updates.
- The `route-policy route-policy-name` keyword and argument specify the route policy used to set the attributes of the aggregate route.

Step 5

`commit`

Understanding BGP MD5 Authentication

BGP provides a mechanism, known as Message Digest 5 (MD5) authentication, for authenticating a TCP segment between two BGP peers by using a clear text or encrypted password.

MD5 authentication is configured at the BGP neighbor level. BGP peers using MD5 authentication are configured with the same password. If the password authentication fails, then the packets are not transmitted along the segment.

Configuring BGP MD5 Authentication

You can use the configuration in this section to configure BGP MD5 authentication between two BGP peers.
The configuration for MD5 authentication is identical on both peers.

Configuration

Use the following configuration to configure BGP MD5:

```
RP/0/RP0/CPU0:router(config)# router bgp 50
RP/0/RP0/CPU0:router(config-router)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-af)# exit
RP/0/RP0/CPU0:router(config-router)# neighbor 10.1.1.1
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 51
RP/0/RP0/CPU0:router(config-bgp-nbr)# password encrypted a1b2c3
RP/0/RP0/CPU0:router(config-bgp-nbr)# commit
```

Running Configuration

Validate the configuration.

```
RP/0/RP0/CPU0:router# show running-config
...
! router bgp 50
address-family ipv4 unicast
!
neighbor 10.1.1.1
remote-as 51
password encrypted a1b2c3
!
```

Hiding the Local AS Number for BGP Networks

Changing the autonomous system number is necessary when two separate BGP networks are combined under a single autonomous system. The neighbor `local-as` command is used to configure BGP peers to support two local autonomous system numbers to maintain peering between two separate BGP networks.

However, when the neighbor `local-as` command is configured on a BGP peer, the local AS number is automatically prepended to all routes that are learned from eBGP peers by default. This behavior, however, makes changing the autonomous system number for a service provider or large BGP network difficult, because the routes with the prepended AS number are rejected by internal BGP (iBGP) peers that belong to the same AS.

Hiding the local AS number by using the `no-prepend` command simplifies the process of changing the autonomous system number in a Border Gateway Protocol (BGP) network. Without this feature, internal BGP (iBGP) peers reject external routes from peers with a local AS number in the as-path attribute to prevent routing loops. Hiding the local AS number allows you to transparently change the autonomous system number for the entire BGP network and ensure that routes can be propagated throughout the autonomous system, while the AS number transition is incomplete.
Configuring BGP to Hide the Local AS Number

Hiding the local AS number for eBGP peers by using the **no-prepend** command can be used to transparently change the AS number of a BGP network, and ensure that routes are propagated throughout the AS during the transition. Because the local AS number is not prepended to these routes, external routes are not rejected by internal peers during the transition from one AS number to another.

This section describes the configuration and verification of the feature.

Note

BGP prepends the autonomous system number from each BGP network that a route traverses. This behavior is designed to maintain network reachability information and to prevent routing loops from occurring.

Configuring the **no-prepend** command incorrectly could create routing loops. So, the configuration of this command should only be attempted by an experienced network operator.

Configuration

Use the following configuration to hide the local AS number for eBGP peers.

```
RP/0/RP0/CPU0:router# config
RP/0/RP0/CPU0:router(config)# router bgp 100
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-af)# network 10.1.1.1 255.255.0.0
RP/0/RP0/CPU0:router(config-bgp-af)# neighbor 10.1.1.1 remote-as 100
RP/0/RP0/CPU0:router(config-bgp-af)# neighbor 10.1.1.1 local-as 300 no-prepend
RP/0/RP0/CPU0:router(config-bgp-af)# commit
```

Running Configuration

```
RP/0/RP0/CPU0:router# show running-configuration
...
router bgp 100
   address-family ipv4 unicast
      network 10.1.1.1 255.255.0.0
      neighbor 10.1.1.1 remote-as 100
      neighbor 10.1.1.1 local-as 300 no-prepend
!
```

Verification

Use the following command to verify your configuration.

```
RP/0/RP0/CPU0:router# show ip bgp neighbors
BGP neighbor is 10.1.1.1, remote AS 100, local AS 300 no-prepend, external link
BGP version 4, remote router ID 10.1.1.1
BGP state = Established, up for 00:00:49
Last read 00:00:49, hold time is 180, keepalive interval is 60 seconds
Neighbor capabilities:
   Route refresh: advertised and received(new)
   Address family IPv4 Unicast: advertised and received
   IPv4 MPLS Label capability:
   Received 10 messages, 1 notifications, 0 in queue
   Sent 10 messages, 0 notifications, 0 in queue
   Default minimum time between advertisement runs is 30 seconds
```
Autonomous System Number Formats in BGP

Autonomous system numbers (ASNs) are globally unique identifiers used to identify autonomous systems (ASs) and enable ASs to exchange exterior routing information between neighboring ASs. A unique ASN is allocated to each AS for use in BGP routing. ASNs are encoded as 2-byte numbers and 4-byte numbers in BGP.

2-byte Autonomous System Number Format

The 2-byte ASNs are represented in a plain notation. The 2-byte range is 1 to 65535.

4-byte Autonomous System Number Format

To prepare for the eventual exhaustion of 2-byte Autonomous System Numbers (ASNs), BGP has the capability to support 4-byte ASNs. The 4-byte ASNs are represented both in a plain and as dot notations.

The byte range for 4-byte ASNs in plain notation is 1-4294967295. The AS is represented as a 4-byte decimal number. The 4-byte ASN as plain representation is defined in draft-ietf-idr-as-representation-01.txt.

For 4-byte ASNs in dot format, the 4-byte range is 1.0 to 65535.65535 and the format is:

\[\text{high-order-16-bit-value-in-decimal , low-order-16-bit-value-in-decimal} \]

The BGP 4-byte ASN capability is used to propagate 4-byte-based AS path information across BGP speakers that do not support 4-byte AS numbers. See draft-ietf-idr-as4bytes-12.txt for information on increasing the size of an ASN from 2 bytes to 4 bytes. AS is represented as a 4-byte decimal number.

as-format Command

The `as-format` command configures the ASN notation to asdot. The default value, if the `as-format` command is not configured, is asplain.

BGP Multi-Instance and Multi-AS

Multi-AS BGP enables configuring each instance of a multi-instance BGP with a different AS number. Multi-Instance and Multi-AS BGP provides these capabilities:

- Mechanism to consolidate the services provided by multiple routers using a common routing infrastructure into a single IOS-XR router.
- Mechanism to achieve AF isolation by configuring the different AFs in different BGP instances.
- Means to achieve higher session scale by distributing the overall peering sessions between multiple instances.
- Mechanism to achieve higher prefix scale (especially on a RR) by having different instances carrying different BGP tables.
- Improved BGP convergence under certain scenarios.
- All BGP functionalities including NSR are supported for all the instances.
• The load and commit router-level operations can be performed on previously verified or applied configurations.

Restrictions
• The router supports maximum of 4 BGP instances.
• Each BGP instance needs a unique router-id.
• Only one Address Family can be configured under each BGP instance (VPNv4, VPNv6 and RT-Constrain can be configured under multiple BGP instances).
• IPv4/IPv6 Unicast should be within the same BGP instance in which IPv4/IPv6 Labeled-Unicast is configured.
• IPv4/IPv6 Multicast should be within the same BGP instance in which IPv4/IPv6 Unicast is configured.
• All configuration changes for a single BGP instance can be committed together. However, configuration changes for multiple instances cannot be committed together.
• Cisco recommends that BGP update-source should be unique in the default VRF over all instances while peering with the same remote router.

Configure Multiple BGP Instances for a Specific Autonomous System

Perform this task to configure multiple BGP instances for a specific autonomous system. All configuration changes for a single BGP instance can be committed together. However, configuration changes for multiple instances cannot be committed together.

Procedure

Step 1 configure
Step 2 router bgp as-number [instance instance name]
Example:
 RP/0/RSP0/CPU0:router(config)# router bgp 100 instance inst1
 Enters BGP configuration mode for the user specified BGP instance.

Step 3 bgp router-id/ip-address
Example:
 RP/0/RSP0/CPU0:router(config-bgp)# bgp router-id 10.0.0.0
 Configures a fixed router ID for the BGP-speaking router (BGP instance).
 Note You must manually configure unique router ID for each BGP instance.

Step 4 commit
BGP Routing Domain Confederation

One way to reduce the iBGP mesh is to divide an autonomous system into multiple sub-autonomous systems and group them into a single confederation. To the outside world, the confederation looks like a single autonomous system. Each autonomous system is fully meshed within itself and has a few connections to other autonomous systems in the same confederation. Although the peers in different autonomous systems have eBGP sessions, they exchange routing information as if they were iBGP peers. Specifically, the next hop, MED, and local preference information is preserved. This feature allows you to retain a single IGP for all of the autonomous systems.

Configure Routing Domain Confederation for BGP

Perform this task to configure the routing domain confederation for BGP. This includes specifying a confederation identifier and autonomous systems that belong to the confederation.

Configuring a routing domain confederation reduces the internal BGP (iBGP) mesh by dividing an autonomous system into multiple autonomous systems and grouping them into a single confederation. Each autonomous system is fully meshed within itself and has a few connections to another autonomous system in the same confederation. The confederation maintains the next hop and local preference information, and that allows you to retain a single Interior Gateway Protocol (IGP) for all autonomous systems. To the outside world, the confederation looks like a single autonomous system.

Procedure

1. **configure**
2. **router bgp as-number**

 Example:

 RP/0/RP0/CPU0:router# router bgp 120

 Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

3. **bgp confederation identifier as-number**

 Example:

 RP/0/RP0/CPU0:router(config-bgp)# bgp confederation identifier 5

 Specifies a BGP confederation identifier.

4. **bgp confederation peers as-number**

 Example:

 RP/0/RP0/CPU0:router(config-bgp)# bgp confederation peers 1091
 RP/0/RP0/CPU0:router(config-bgp)# bgp confederation peers 1092
 RP/0/RP0/CPU0:router(config-bgp)# bgp confederation peers 1093
 RP/0/RP0/CPU0:router(config-bgp)# bgp confederation peers 1094
 RP/0/RP0/CPU0:router(config-bgp)# bgp confederation peers 1095
RP/0/RP0/CPU0:router(config-bgp)# bgp confederation peers 1096

Specifies that the BGP autonomous systems belong to a specified BGP confederation identifier. You can associate multiple AS numbers to the same confederation identifier, as shown in the example.

Step 5

 commit

BGP Confederation: Example

The following is a sample configuration that shows several peers in a confederation. The confederation consists of three internal autonomous systems with autonomous system numbers 6001, 6002, and 6003. To the BGP speakers outside the confederation, the confederation looks like a normal autonomous system with autonomous system number 666 (specified using the `bgp confederation identifier` command).

In a BGP speaker in autonomous system 6001, the `bgp confederation peers` command marks the peers from autonomous systems 6002 and 6003 as special eBGP peers. Hence, peers 171.16.232.55 and 171.16.232.56 get the local preference, next hop, and MED unmodified in the updates. The router at 171.19.69.1 is a normal eBGP speaker, and the updates received by it from this peer are just like a normal eBGP update from a peer in autonomous system 666.

```
router bgp 6001
  bgp confederation identifier 666
  bgp confederation peers
    6002
    6003
  exit
  address-family ipv4 unicast
    neighbor 171.16.232.55
    remote-as 6002
    exit
  address-family ipv4 unicast
    neighbor 171.16.232.56
    remote-as 6003
    exit
  address-family ipv4 unicast
    neighbor 171.19.69.1
    remote-as 777
```

In a BGP speaker in autonomous system 6002, the peers from autonomous systems 6001 and 6003 are configured as special eBGP peers. Peer 171.17.70.1 is a normal iBGP peer, and peer 199.99.99.2 is a normal eBGP peer from autonomous system 700.

```
router bgp 6002
  bgp confederation identifier 666
  bgp confederation peers
    6001
    6003
  exit
  address-family ipv4 unicast
    neighbor 171.17.70.1
    remote-as 6002
    exit
  address-family ipv4 unicast
```
neighbor 171.19.232.57
 remote-as 6001
 exit
address-family ipv4 unicast
neighbor 171.19.232.56
 remote-as 6003
 exit
address-family ipv4 unicast
neighbor 171.19.99.2
 remote-as 700
 exit
address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out

In a BGP speaker in autonomous system 6003, the peers from autonomous systems 6001 and 6002 are configured as special eBGP peers. Peer 192.168.200.200 is a normal eBGP peer from autonomous system 701.

router bgp 6003
 bgp confederation identifier 666
 bgp confederation peers
 6001
 6002
 exit
address-family ipv4 unicast
neighbor 171.19.232.57
 remote-as 6001
 exit
address-family ipv4 unicast
neighbor 171.19.232.56
 remote-as 6003
 exit
address-family ipv4 unicast
neighbor 192.168.200.200
 remote-as 700
 exit
address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out

The following is a part of the configuration from the BGP speaker 192.168.200.205 from autonomous system 701 in the same example. Neighbor 171.16.232.56 is configured as a normal eBGP speaker from autonomous system 666. The internal division of the autonomous system into multiple autonomous systems is not known to the peers external to the confederation.

router bgp 701
 address-family ipv4 unicast
 neighbor 172.16.232.56
 remote-as 666
 exit
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
 exit
 address-family ipv4 unicast
 neighbor 192.168.200.205

BGP Additional Paths

The Border Gateway Protocol (BGP) Additional Paths feature modifies the BGP protocol machinery for a BGP speaker to be able to send multiple paths for a prefix. This gives 'path diversity' in the network. The add path enables BGP prefix independent convergence (PIC) at the edge routers.

BGP add path enables add path advertisement in an iBGP network and advertises the following types of paths for a prefix:

- Backup paths—to enable fast convergence and connectivity restoration.
- Group-best paths—to resolve route oscillation.
- All paths—to emulate an iBGP full-mesh.

Configure BGP Additional Paths

Perform these tasks to configure BGP Additional Paths capability:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>route-policy route-policy-name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router (config)#route-policy add_path_policy</td>
</tr>
<tr>
<td>Defines the route policy and enters route-policy configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>if conditional-expression then action-statement else</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router (config-rpl)#if community matches-any (*) then set path-selection all advertise else</td>
</tr>
<tr>
<td>Decides the actions and dispositions for the given route.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>pass endif</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-rpl-else)#pass RP/0/RP0/CPU0:router(config-rpl-else)#endif</td>
</tr>
<tr>
<td>Passes the route for processing and ends the if statement.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end-policy</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Step 6
```
router bgp as-number
```
Example:
```
RP/0/RP0/CPU0:router(config)#router bgp 100
```
Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 7
```
address-family {ipv4 {unicast} | ipv6 {unicast | ipv4 | vpls-vpws | vplsv4 | vplsv6
```
Example:
```
RP/0/RP0/CPU0:router(config-bgp)#address-family ipv4 unicast
```
Specifies the address family and enters address family configuration submode.

Step 8
```
additional-paths receive
```
Example:
```
RP/0/RP0/CPU0:router(config-bgp-af)#additional-paths receive
```
Configures receive capability of multiple paths for a prefix to the capable peers.

Step 9
```
additional-paths send
```
Example:
```
RP/0/RP0/CPU0:router(config-bgp-af)#additional-paths send
```
Configures send capability of multiple paths for a prefix to the capable peers.

Step 10
```
additional-paths selection route-policy route-policy-name
```
Example:
```
RP/0/RP0/CPU0:router(config-bgp-af)#additional-paths selection route-policy add_path_policy
```
Configures additional paths selection capability for a prefix.

Step 11
```
commit
```

BGP Maximum Prefix

The maximum-prefix feature imposes a maximum limit on the number of prefixes that are received from a neighbor for a given address family. Whenever the number of prefixes received exceeds the maximum number configured, the BGP session is terminated, which is the default behavior, after sending a cease notification to the neighbor. The session is down until a manual clear is performed by the user. The session can be resumed by using the `clear bgp` command. It is possible to configure a period after which the session can be automatically brought up by using the `maximum-prefix` command with the `restart` keyword. The maximum prefix limit can be configured by the user. Default limits are used if the user does not configure the maximum number of prefixes for the address family.

On the same lines, the following describes the actions when the maximum prefix value is changed:

- If the maximum value alone is changed, a route-refresh message is sourced, if applicable.
• If the new maximum value is greater than the current prefix count state, the new prefix states are saved.

• If the new maximum value is less than the current prefix count state, then some existing prefixes are deleted to match the new configured state value.

There is currently no way to control which prefixes are deleted.

Configure Discard Extra Paths

The discard extra paths option in the maximum-prefix configuration allows you to drop all excess prefixes received from the neighbor when the prefixes exceed the configured maximum value. This drop does not, however, result in session flap.

The benefits of discard extra paths option are:

• Limits the memory footprint of BGP.

• Stops the flapping of the peer if the paths exceed the set limit.

When the discard extra paths configuration is removed, BGP sends a route-refresh message to the neighbor if it supports the refresh capability; otherwise the session is flapped.

Note

• When the router drops prefixes, it is inconsistent with the rest of the network, resulting in possible routing loops.

• If prefixes are dropped, the standby and active BGP sessions may drop different prefixes. Consequently, an NSR switchover results in inconsistent BGP tables.

• The discard extra paths configuration cannot co-exist with the soft reconfig configuration.

Perform this task to configure BGP maximum-prefix discard extra paths.

Procedure

Step 1 configure

Example:
RP/0/RP0/CPU0:router# configure
Enters XR Config mode.

Step 2 router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)# router bgp 10
Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3 neighbor ip-address

Example:
RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.0.1

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

Step 5 maximum-prefix maximum discard-extra-paths

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# maximum-prefix 1000 discard-extra-paths

Configures a limit to the number of prefixes allowed.

Configures discard extra paths to discard extra paths when the maximum prefix limit is exceeded.

Step 6 commit

Example

The following example shows how to configure discard extra paths feature for the IPv4 address family:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# router bgp 10
RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.0.1
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# maximum-prefix 1000 discard-extra-paths
RP/0/RP0/CPU0:router(config-bgp-vrf-aff)# commit

The following screen output shows details about the discard extra paths option:

RP/0/RP0/CPU0:ios# show bgp neighbor 10.0.0.1

BGP neighbor is 10.0.0.1
Remote AS 10, local AS 10, internal link
Remote router ID 0.0.0.0
BGP state = Idle (No best local address found)
Last read 00:00:00, Last read before reset 00:00:00
Hold time is 180, keepalive interval is 60 seconds
Configured hold time: 180, keepalive: 60, min acceptable hold time: 3
Last write 00:00:00, attempted 0, written 0
Second last write 00:00:00, attempted 0, written 0
Last write before reset 00:00:00, attempted 0, written 0
Second last write before reset 00:00:00, attempted 0, written 0
Last write pulse rcvd not set last full not set pulse count 0
Last write pulse rcvd before reset 00:00:00
Socket not armed for io, not armed for read, not armed for write
Last write thread event before reset 00:00:00, second last 00:00:00
Last KA expiry before reset 00:00:00, second last 00:00:00
Last KA error before reset 00:00:00, KA not sent 00:00:00
Last KA start before reset 00:00:00, second last 00:00:00
BGP Best-External Path

The best–external path functionality supports advertisement of the best–external path to the iBGP and Route Reflector peers when a locally selected bestpath is from an internal peer. BGP selects one best path and one backup path to every destination. By default, selects one best path. Additionally, BGP selects another bestpath from among the remaining external paths for a prefix. Only a single path is chosen as the best–external path and is sent to other PEs as the backup path. BGP calculates the best–external path only when the best path is an iBGP path. If the best path is an eBGP path, then best–external path calculation is not required.

The procedure to determine the best–external path is as follows:

1. Determine the best path from the entire set of paths available for a prefix.
2. Eliminate the current best path.
3. Eliminate all the internal paths for the prefix.
4. From the remaining paths, eliminate all the paths that have the same next hop as that of the current best path.
5. Rerun the best path algorithm on the remaining set of paths to determine the best–external path.

BGP considers the external and confederations BGP paths for a prefix to calculate the best–external path. BGP advertises the best path and the best–external path as follows:

- On the primary PE—advertises the best path for a prefix to both its internal and external peers
- On the backup PE—advertises the best path selected for a prefix to the external peers and advertises the best–external path selected for that prefix to the internal peers
Configure Best-External Path Advertisement

Perform the following tasks to advertise the best-external path to the iBGP and route-reflector peers:

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>router bgp as-number</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 100
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Do one of the following</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• address-family { vpnv4 unicast</td>
</tr>
<tr>
<td></td>
<td>• vrf vrf-name {ipv4 unicast</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# address-family vpnv4 unicast
```

Specifies the address family or VRF address family and enters the address family or VRF address family configuration submode.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>advertise best-external</th>
</tr>
</thead>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-bgp-af)# advertise best-external
```

Advertise the best-external path to the iBGP and route-reflector peers.

<table>
<thead>
<tr>
<th>Step 5</th>
<th>commit</th>
</tr>
</thead>
</table>

BGP Local Label Retention

When a primary PE-CE link fails, BGP withdraws the route corresponding to the primary path along with its local label and programs the backup path in the Routing Information Base (RIB) and the Forwarding Information Base (FIB), by default.

However, until all the internal peers of the primary PE reconverge to use the backup path as the new bestpath, the traffic continues to be forwarded to the primary PE with the local label that was allocated for the primary path. Hence the previously allocated local label for the primary path must be retained on the primary PE for some configurable time after the reconvergence. BGP Local Label Retention feature enables the retention of the local label for a specified period. If no time is specified, the local label is retained for a default value of five minutes.
Retain Allocated Local Label for Primary Path

Perform the following tasks to retain the previously allocated local label for the primary path on the primary PE for some configurable time after reconvergence:

Procedure

Step 1 configure

Step 2 router bgp as-number

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 100
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3 address-family { vpnv4 unicast | vpnv6 unicast }

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# address-family vpnv4 unicast
```

Specifies the address family and enters the address family configuration submode.

Step 4 retain local-label minutes

Example:

```
RP/0/RP0/CPU0:router(config-bgp-af)# retain local-label 10
```

Retains the previously allocated local label for the primary path on the primary PE for 10 minutes after reconvergence.

Step 5 commit

Allocated Local Label Retention: Example

The following example shows how to retain the previously allocated local label for the primary path on the primary PE for 10 minutes after reconvergence:

```
router bgp 100
address-family l2vpn vpls-vpws
    retain local-label 10
end
```
BGP Labeled Unicast Multiple Label Stack Overview

BGP Labeled Unicast Multiple Label Stack feature enables the user to make the XR router receive and advertise BGP LU updates with a stack of one or more labels associated with the encoded prefix.

This feature provides the ability for a controller to push a multiple label stack through BGP labeled unicast session onto the headend.

Prerequisites

BGP Labelled unicast address-family needs to be supported.

Restrictions

Due to hardware limitations, only a maximum of three label stacks is supported; from Release 6.6.1, a maximum of five labels are supported.

Topology

The following section illustrates the topology for the BGP Labeled Unicast Multiple Label Stack feature.

Based on the multi-label stack pushed by the controller on to the head end E, the traffic is steered through the network. In this topology, as the controller is pushing the label stack 14001, 16001, and 32001 with NH 172.6.0.1, traffic is steered through the nodes B, D, and G sequentially. If the controller needs to change the traffic path to nodes C, F, and G sequentially, it pushes the label stack 15002, 17002, and 32001 with NH of 93.4.3.1.
This section describes how you can configure the BGP Labeled Unicast Multiple Label Stack feature.

Configure the `nexthop mpls forwarding ibgp` command in BGP configuration mode. Configure the BGP labeled unicast session with Nexthop 10.3.2.2 so the "ImpNULL" label is pushed as the first label into the multiple-label stack.

```
Router# configure
Router(config)# router bgp 100
Router(config-bgp)# neighbor 10.0.1.101
Router(config-bgp)# nexthop mpls forwarding ibgp
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# allocate-label all
Router(config-bgp-af)# exit
Router(config-bgp)# neighbor 10.3.2.2
Router(config-bgp-nbr)# remote-as 100
Router(config-bgp-nbr)# address-family ipv4 labeled-unicast
Router(config-bgp-nbr)# exit
Router(config-bgp)# neighbor-group group 1
Router(config-bgp-nbrgrp)# neighbor-group group 1
Router(config-bgp-nbrgrp)# remote-as 65535
Router(config-bgp-nbrgrp)# address-family ipv4 labeled-unicast
Router(config-bgp-nbrgrp-af)# route-policy pass in
```
Running Configuration

router bgp 100
bgp router-id 10.0.1.101
nexthop mpls forwarding ibgp
address-family ipv4 unicast
 allocate-label all
!
neighbor 10.3.2.2
 remote-as 100
 address-family ipv4 labeled-unicast
!
neighbor-group ipv4lu_ng1
 remote-as 100
 address-family ipv4 labeled-unicast
 route-policy pass in
 route-policy pass out
 enforce-multiple-labels

neighbor 10.0.1.101
 use neighbor-group ipv4lu_ng1
!
!
neighbor 10.0.1.101
 remote-as 100
 address-family ipv4 labeled-unicast
 route-policy pass out
 route-policy pass in
 route-reflector-client
 enforce-multiple-labels
!

Verification

The show outputs given in the following section display the details of configuration of the BGP LU Multiple Label Stack feature, and the status of their configuration.

/* Verify the multiple label stack. */
Router# show bgp ipv4 labeled-unicast 10.1.1.1/32

...
10.3.2.2 from 10.0.1.101

Received Label 14001 16001 32001
Origin incomplete, metric 0, localpref 94, valid, internal, best, group-best
Received Path ID 0, Local Path ID 0, version 42
Large Community: 1:2:3 5:6:7

/* Verify if the multiple label stack is enabled.*/
Router# show bgp neighbor 10.0.1.101

... For Address Family: IPv4 Labeled-unicast
BGP neighbor version 177675
Update group: 0.8 Filter-group: 0.4 No Refresh request being processed
Route-Reflector Client
Send Multicast Attributes

Multiple label stack: Enabled

/* Verify that the multiple label stack is enabled. */
Router# show bgp ipv4 labeled-unicast update-group 0.8

Update group for IPv4 Labeled-unicast, index 0.8:
Attributes:
Neighbor sessions are IPv4
Outbound policy: ibgp-rpl1
Internal
Common admin
First neighbor AS: 100
Send communities
Send GSHUT community if originated
Send extended communities
Route Reflector Client
4-byte AS capable
Send AIGP
Send multicast attributes

Multiple label stack: Enabled
/* Verify that the multiple label stack is enabled. */
Router# show bgp labels

... Status codes: s suppressed, d damped, h history, * valid, > best
 i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Rcvd Label</th>
<th>Local Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>*>10.1.1.1/32</td>
<td>10.3.2.2</td>
<td>14001 16001</td>
<td>24193 32001</td>
</tr>
<tr>
<td>*>11.2.2.2/32</td>
<td>10.4.3.1</td>
<td>15002 17002</td>
<td>24199 32002</td>
</tr>
<tr>
<td>*>11.3.3.3/32</td>
<td>10.3.2.2</td>
<td>14001 16001</td>
<td>24200 32002</td>
</tr>
</tbody>
</table>

... /* */

Router# show route 10.1.1.1/32 detail

Routing entry for 10.1.1.1/32

Known via "bgp 100", distance 200, metric 476387081, [ei]-bgp, labeled unicast (3107)

Routing Descriptor Blocks
209.165.201.1, from 10.0.1.101
Route metric is 476387081

Labels: 0x36b1 0x3e81 0x7d01 (14001 16001 32001)

Tunnel ID: None
Binding Label: None
Extended communities count: 0
NHID:0x0(Ref:0)
MPLS eid:0x1380b00000003

/* Verify that the multiple label stack is enabled. */
Router# show cef 10.1.1.1/32 detail
10.1.1.1/32, version 251579, internal 0x5000001 0x0 (ptr 0xa0241200) [1], 0x0 (0xa03feab8), 0xa08 (0x9fced2b0)

... via 10.3.2.2/32, 3 dependencies, recursive [flags 0x6000]

path-idx 0 NHID 0x0 [0x9e873ca0 0x0]
recursion-via-/32
next hop 10.3.2.2/32 via 24192/0/21
local label 24193
next hop 10.3.2.2/32 Te0/0/0/0/1 labels imposed {ImplNull 14001 16001 32001}

/* Verify the maximum supported depth of the label stack. If the number of labels received exceeds the maximum supported by the platform, the prefix is not downloaded to the RIB and hence routing issues may occur. */

Router# show bgp ipv4 labeled-unicast process performance detail

... Address Family: IPv4 Labeled-unicast
State: Normal mode.
BGP Table Version: 177675
Attribute download: Disabled
ASBR functionality enabled
Label retention timer value 5 mins
Soft Reconfig Entries: 367
Table bit-field size : 1 Chunk element size : 3
Maximum supported label-stack depth:
 For IPv4 Nexthop: 3
 For IPv6 Nexthop: 0
...

iBGP Multipath Load Sharing

When a Border Gateway Protocol (BGP) speaking router that has no local policy configured, receives multiple network layer reachability information (NLRI) from the internal BGP (iBGP) for the same destination, the router will choose one iBGP path as the best path. The best path is then installed in the IP routing table of the router. The iBGP Multipath Load Sharing feature enables the BGP speaking router to select multiple iBGP
paths as the best paths to a destination. The best paths or multipaths are then installed in the IP routing table of the router.

iBGP Multipath Load Sharing Reference, on page 137 provides additional details.

Configure iBGP Multipath Load Sharing

Perform this task to configure the iBGP Multipath Load Sharing:

Procedure

| Step 1 | configure |
| Step 2 | router bgp as-number |

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 100
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

| Step 3 | address-family {ipv4|ipv6} {unicast|multicast} |

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 multicast
```

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

| Step 4 | maximum-paths ibgp number |

Example:

```
RP/0/RP0/CPU0:router(config-bgp-af)# maximum-paths ibgp 30
```

Configures the maximum number of iBGP paths for load sharing.

| Step 5 | commit |

iBGP Multipath Loadsharing Configuration: Example

The following is a sample configuration where 30 paths are used for loadsharing:

```
router bgp 100
address-family ipv4 multicast
  maximum-paths ibgp 30
!  
!  
end
```
Route Dampening

Route dampening is a BGP feature that minimizes the propagation of flapping routes across an internetwork. A route is considered to be flapping when it is repeatedly available, then unavailable, then available, then unavailable, and so on.

For example, consider a network with three BGP autonomous systems: autonomous system 1, autonomous system 2, and autonomous system 3. Suppose the route to network A in autonomous system 1 flaps (it becomes unavailable). Under circumstances without route dampening, the eBGP neighbor of autonomous system 1 to autonomous system 2 sends a withdraw message to autonomous system 2. The border router in autonomous system 2, in turn, propagates the withdrawal message to autonomous system 3. When the route to network A reappears, autonomous system 1 sends an advertisement message to autonomous system 2, which sends it to autonomous system 3. If the route to network A repeatedly becomes unavailable, then available, many withdrawal and advertisement messages are sent. Route flapping is a problem in an internetwork connected to the Internet, because a route flap in the Internet backbone usually involves many routes.

The route dampening feature minimizes the flapping problem as follows. Suppose again that the route to network A flaps. The router in autonomous system 2 (in which route dampening is enabled) assigns network A a penalty of 1000 and moves it to history state. The router in autonomous system 2 continues to advertise the status of the route to neighbors. The penalties are cumulative. When the route flaps so often that the penalty exceeds a configurable suppression limit, the router stops advertising the route to network A, regardless of how many times it flaps. Thus, the route is dampened.

The penalty placed on network A is decayed until the reuse limit is reached, upon which the route is once again advertised. At half of the reuse limit, the dampening information for the route to network A is removed.

Note
No penalty is applied to a BGP peer reset when route dampening is enabled, even though the reset withdraws the route.

Configuring BGP Route Dampening

Perform this task to configure and monitor BGP route dampening.

Procedure

Step 1 configure
Step 2 router bgp as-number

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:
Step 4
bgp dampening ([half-life] [reuse suppress max-suppress-time] | route-policy route-policy-name)

Example:

```
RP/0/RP0/CPU0:router(config-bgp-af)# bgp dampening 30 1500 10000 120
```

Configures BGP dampening for the specified address family.

Step 5
commit

Routing Policy Enforcement

External BGP (eBGP) neighbors must have an inbound and outbound policy configured. If no policy is configured, no routes are accepted from the neighbor, nor are any routes advertised to it. This added security measure ensures that routes cannot accidentally be accepted or advertised in the case of a configuration omission error.

Note

This enforcement affects only eBGP neighbors (neighbors in a different autonomous system than this router). For internal BGP (iBGP) neighbors (neighbors in the same autonomous system), all routes are accepted or advertised if there is no policy.

Apply Policy When Updating Routing Table

The table policy feature in BGP allows you to configure traffic index values on routes as they are installed in the global routing table. This feature is enabled using the table-policy command and supports the BGP policy accounting feature. Table policy also provides the ability to drop routes from the RIB based on match criteria. This feature can be useful in certain applications and should be used with caution as it can easily create a routing ‘black hole’ where BGP advertises routes to neighbors that BGP does not install in its global routing table and forwarding table.

Perform this task to apply a routing policy to routes being installed into the routing table.

Procedure

Step 1
configure

Step 2
router bgp as-number

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120.6
```
Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3
address-family \{ ipv4 | ipv6 \} **unicast**
Example:
```
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
```

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode. To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4
table-policy **policy-name**
Example:
```
RP/0/RP0/CPU0:router(config-bgp-af)# table-policy tbl-pcly-A
```

Applies the specified policy to routes being installed into the routing table.

Step 5
commit

Applying routing policy: Example

In the following example, for an eBGP neighbor, if all routes should be accepted and advertised with no modifications, a simple pass-all policy is configured:

```
RP/0/RP0/CPU0:router(config)# route-policy pass-all
RP/0/RP0/CPU0:router(config-ri)# pass
RP/0/RP0/CPU0:router(config-ri)# end-policy
RP/0/RP0/CPU0:router(config)# commit
```

Use the `route-policy (BGP)` command in the neighbor address-family configuration mode to apply the pass-all policy to a neighbor. The following example shows how to allow all IPv4 unicast routes to be received from neighbor 192.168.40.42 and advertise all IPv4 unicast routes back to it:

```
RP/0/RP0/CPU0:router(config)# router bgp 1
RP/0/RP0/CPU0:router(config-bgp)# neighbor 192.168.40.24
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 21
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy pass-all in
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy pass-all out
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# commit
```

Use the `show bgp summary` command to display eBGP neighbors that do not have both an inbound and outbound policy for every active address family. In the following example, such eBGP neighbors are indicated in the output with an exclamation (!) mark:

```
RP/0/RP0/CPU0:router# show bgp all all summary
Address Family: IPv4 Unicast
```

Apply Policy When Updating Routing Table
Configure BGP Neighbor Group and Neighbors

Perform this task to configure BGP neighbor groups and apply the neighbor group configuration to a neighbor. A neighbor group is a template that holds address family-independent and address family-dependent configurations associated with the neighbor.

After a neighbor group is configured, each neighbor can inherit the configuration through the use command. If a neighbor is configured to use a neighbor group, the neighbor (by default) inherits the entire configuration of the neighbor group, which includes the address family-independent and address family-dependent configurations. The inherited configuration can be overridden if you directly configure commands for the neighbor or configure session groups or address family groups through the use command.

You can configure an address family-independent configuration under the neighbor group. An address family-dependent configuration requires you to configure the address family under the neighbor group to enter address family submode. From neighbor group configuration mode, you can configure address family-independent parameters for the neighbor group. Use the address-family command when in the neighbor group configuration mode. After specifying the neighbor group name using the neighbor group command, you can assign options to the neighbor group.

Note

All commands that can be configured under a specified neighbor group can be configured under a neighbor.

Note

In Cisco IOS-XR versions prior to 6.3.2, you cannot remove a autonomous system that belongs to a BGP neighbour and move it under a BGP neighbor group using a single IOS-XR commit. Effective with 6.3.2, you can move the autonomous system from a neighbour to a neighbour group in a single IOS-XR commit.

Procedure

1. **Step 1**
 - `configure`

2. **Step 2**
 - `router bgp as-number`

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120
```
Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3

```
address-family { ipv4 | ipv6 } unicast
```

Example:
```
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
```

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4

```
exit
```

Example:
```
RP/0/RP0/CPU0:router(config-bgp-af)# exit
```

Exits the current configuration mode.

Step 5

```
neighbor-group name
```

Example:
```
RP/0/RP0/CPU0:router(config-bgp)# neighbor-group nbr-grp-A
```

Places the router in neighbor group configuration mode.

Step 6

```
remote-as as-number
```

Example:
```
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# remote-as 2002
```

Creates a neighbor and assigns a remote autonomous system number to it.

Step 7

```
address-family { ipv4 | ipv6 } unicast
```

Example:
```
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# address-family ipv4 unicast
```

 Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 8

```
route-policy route-policy-name { in | out }
```

Example:
```
RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# route-policy drop-as-1234 in
```

(Optional) Applies the specified policy to inbound IPv4 unicast routes.

Step 9

```
exit
```

Example:
```
RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# exit
```
Exits the current configuration mode.

Step 10
exit

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# exit
```

Exits the current configuration mode.

Step 11
neighbor ip-address

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24
```

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 12
use neighbor-group group-name

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr)# use neighbor-group nbr-grp-A
```

(Optional) Specifies that the BGP neighbor inherit configuration from the specified neighbor group.

Step 13
remote-as as-number

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2002
```

Creates a neighbor and assigns a remote autonomous system number to it.

Step 14
commit

BGP Neighbor Configuration: Example

The following example shows how BGP neighbors on an autonomous system are configured to share information. In the example, a BGP router is assigned to autonomous system 109, and two networks are listed as originating in the autonomous system. Then the addresses of three remote routers (and their autonomous systems) are listed. The router being configured shares information about networks 172.16.0.0 and 192.168.7.0 with the neighbor routers. The first router listed is in a different autonomous system; the second neighbor and remote-as commands specify an internal neighbor (with the same autonomous system number) at address 172.26.234.2; and the third neighbor and remote-as commands specify a neighbor on a different autonomous system.

```
route-policy pass-all
  pass
end-policy
router bgp 109
  address-family ipv4 unicast
    network 172.16.0.0 255.255.0.0
    network 192.168.31.7.0 255.255.0.0
    neighbor 172.16.200.1
```
remote-as 167
exit
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-out out
neighbor 172.26.234.2
remote-as 109
exit
address-family ipv4 unicast
neighbor 172.26.64.19
remote-as 99
exit
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

Disable BGP Neighbor

Perform this task to administratively shut down a neighbor session without removing the configuration.

Procedure

Step 1 configure

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 127

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4 shutdown

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# shutdown

Disables all active sessions for the specified neighbor.

Step 5 commit
Resetting Neighbors Using BGP Inbound Soft Reset

Perform this task to trigger an inbound soft reset of the specified address families for the specified group or neighbors. The group is specified by the *, ip-address, as-number, or external keywords and arguments. Resetting neighbors is useful if you change the inbound policy for the neighbors or any other configuration that affects the sending or receiving of routing updates. If an inbound soft reset is triggered, BGP sends a REFRESH request to the neighbor if the neighbor has advertised the ROUTE_REFRESH capability. To determine whether the neighbor has advertised the ROUTE_REFRESH capability, use the show bgp neighbors command.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>show bgp neighbors</td>
<td>Verifies that received route refresh capability from the neighbor is enabled.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>show bgp neighbors</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# show bgp neighbors</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>clear bgp ipv4 unicast 10.0.0.1 soft in</td>
<td></td>
</tr>
</tbody>
</table>

Resetting Neighbors Using BGP Outbound Soft Reset

Perform this task to trigger an outbound soft reset of the specified address families for the specified group or neighbors. The group is specified by the *, ip-address, as-number, or external keywords and arguments. Resetting neighbors is useful if you change the outbound policy for the neighbors or any other configuration that affects the sending or receiving of routing updates.

If an outbound soft reset is triggered, BGP resends all routes for the address family to the given neighbors. To determine whether the neighbor has advertised the ROUTE_REFRESH capability, use the show bgp neighbors command.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>show bgp neighbors</td>
<td>Verifies that received route refresh capability from the neighbor is enabled.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>show bgp neighbors</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# clear bgp ipv4 unicast 10.0.0.1 soft in</td>
<td></td>
</tr>
</tbody>
</table>
Reset Neighbors Using BGP Hard Reset

Perform this task to reset neighbors using a hard reset. A hard reset removes the TCP connection to the neighbor, removes all routes received from the neighbor from the BGP table, and then re-establishes the session with the neighbor. If the `graceful` keyword is specified, the routes from the neighbor are not removed from the BGP table immediately, but are marked as stale. After the session is re-established, any stale route that has not been received again from the neighbor is removed.

Procedure

```plaintext
clear bgp { ipv4 { unicast | labeled-unicast | all | tunnel | mdt } | ipv6 { unicast | all | labeled-unicast } | vrf { vrf-name | all } { ipv4 { unicast | labeled-unicast } | ipv6 { unicast | labeled-unicast } | vpng6 { unicast | labeled-unicast } | labeled-unicast } | * | external } [ graceful ] soft [ in [ prefix-filter ] | out ] clear bgp { ipv4 | ipv6 } { unicast | labeled-unicast }
```

Example:

RP/0/RP0/CPU0:router# clear bgp ipv4 unicast 10.0.0.3

Clears a BGP neighbor.

- The * keyword resets all BGP neighbors.
- The `ip-address` argument specifies the address of the neighbor to be reset.
- The `as-number` argument specifies that all neighbors that match the autonomous system number be reset.
- The `external` keyword specifies that all external neighbors are reset.

The `graceful` keyword specifies a graceful restart.
Configure Software to Store Updates from Neighbor

Perform this task to configure the software to store updates received from a neighbor.

The `soft-reconfiguration inbound` command causes a route refresh request to be sent to the neighbor if the neighbor is route refresh capable. If the neighbor is not route refresh capable, the neighbor must be reset to relearn received routes using the `clear bgp soft` command.

Note

Storing updates from a neighbor works only if either the neighbor is route refresh capable or the `soft-reconfiguration inbound` command is configured. Even if the neighbor is route refresh capable and the `soft-reconfiguration inbound` command is configured, the original routes are not stored unless the `always` option is used with the command. The original routes can be easily retrieved with a route refresh request. Route refresh sends a request to the peer to resend its routing information. The `soft-reconfiguration inbound` command stores all paths received from the peer in an unmodified form and refers to these stored paths during the clear. Soft reconfiguration is memory intensive.

Procedure

Step 1

configure

Step 2

`router bgp as-number`

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3

`neighbor ip-address`

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4

`address-family { ipv4 | ipv6 } unicast`

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode. To see a list of all the possible keywords and arguments for this command, use the CLI help (?)

Step 5

`soft-reconfiguration inbound [always]`

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# soft-reconfiguration inbound always
Configure the software to store updates received from a specified neighbor. Soft reconfiguration inbound causes the software to store the original unmodified route in addition to a route that is modified or filtered. This allows a “soft clear” to be performed after the inbound policy is changed.

Soft reconfiguration enables the software to store the incoming updates before apply policy if route refresh is not supported by the peer (otherwise a copy of the update is not stored). The **always** keyword forces the software to store a copy even when route refresh is supported by the peer.

Step 6
commit

Log Neighbor Changes

Logging neighbor changes is enabled by default. Use the `log neighbor changes disable` command to turn off logging. The `no log neighbor changes disable` command can also be used to turn logging back on if it has been disabled.

BGP Route Reflectors

BGP requires that all iBGP speakers be fully meshed. However, this requirement does not scale well when there are many iBGP speakers. Instead of configuring a confederation, you can reduce the iBGP mesh by using a route reflector configuration. With route reflectors, all iBGP speakers need not be fully meshed because there is a method to pass learned routes to neighbors. In this model, an iBGP peer is configured to be a route reflector responsible for passing iBGP learned routes to a set of iBGP neighbors.

In **Figure 2: Simple BGP Model with a Route Reflector**, Router B is configured as a route reflector. When the route reflector receives routes advertised from Router A, it advertises them to Router C, and vice versa. This scheme eliminates the need for the iBGP session between routers A and C.

Figure 2: Simple BGP Model with a Route Reflector

See **BGP Route Reflectors Reference**, on page 135 for additional details on route reflectors.
Configure Route Reflector for BGP

Perform this task to configure a route reflector for BGP.

All the neighbors configured with the `route-reflector-client` command are members of the client group, and the remaining iBGP peers are members of the nonclient group for the local route reflector.

Together, a route reflector and its clients form a *cluster*. A cluster of clients usually has a single route reflector. In such instances, the cluster is identified by the software as the router ID of the route reflector. To increase redundancy and avoid a single point of failure in the network, a cluster can have more than one route reflector. If it does, all route reflectors in the cluster must be configured with the same 4-byte cluster ID so that a route reflector can recognize updates from route reflectors in the same cluster. The `bgp cluster-id` command is used to configure the cluster ID when the cluster has more than one route reflector.

Procedure

Step 1 configure

Step 2 router bgp *as-number*

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3 bgp cluster-id *cluster-id*

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# bgp cluster-id 192.168.70.1
```

Configures the local router as one of the route reflectors serving the cluster. It is configured with a specified cluster ID to identify the cluster.

Step 4 neighbor *ip-address*

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24
```

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 5 remote-as *as-number*

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2003
```

Creates a neighbor and assigns a remote autonomous system number to it.

Step 6 address-family { ipv4 | ipv6 } unicast

Example:
RP/0/RP0/CPU0:router(config-nbr)# address-family ipv4 unicast
Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode. To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 7
route-reflector-client

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-reflector-client
Configures the router as a BGP route reflector and configures the neighbor as its client.

Step 8
commit

BGP Route Reflector: Example

The following example shows how to use an address family to configure internal BGP peer 10.1.1.1 as a route reflector client for unicast prefixes:

```text
router bgp 140
  address-family ipv4 unicast
  neighbor 10.1.1.1
     remote-as 140
  address-family ipv4 unicast
     route-reflector-client
  exit
```

Configure BGP Route Filtering by Route Policy

Perform this task to configure BGP routing filtering by route policy.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>(Optional) Creates a route policy and enters route policy configuration mode, where you can define the route policy.</td>
</tr>
<tr>
<td>Step 2 route-policy name</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config)# route-policy drop-as-1234
  RP/0/RP0/CPU0:router(config-rpl)# if
  as-path passes-through '1234' then
  RP/0/RP0/CPU0:router(config-rpl)# apply
  check-communities
  RP/0/RP0/CPU0:router(config-rpl)# else
  RP/0/RP0/CPU0:router(config-rpl)# pass
```
Configure BGP Attribute Filtering

The BGP Attribute Filter checks integrity of BGP updates in BGP update messages and optimizes reaction when detecting invalid attributes. BGP Update message contains a list of mandatory and optional attributes. These attributes in the update message include MED, LOCAL_PREF, COMMUNITY, and so on. In some cases, if the attributes are malformed, there is a need to filter these attributes at the receiving end of the router. The BGP Attribute Filter functionality filters the attributes received in the incoming update message. The attribute filter can also be used to filter any attributes that may potentially cause undesirable behavior on the receiving router. Some of the BGP updates are malformed due to wrong formatting of attributes such as the network layer reachability information (NLRI) or other fields in the update message. These malformed updates,

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP/0/RP0/CPU0:router(config-rpl)# endif</td>
<td>(Optional) Ends the definition of a route policy and exits route policy configuration mode.</td>
</tr>
<tr>
<td>Step 3 end-policy</td>
<td>Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-rpl)# end-policy</td>
<td></td>
</tr>
<tr>
<td>Step 4 router bgp as-number</td>
<td>Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# router bgp 120</td>
<td></td>
</tr>
<tr>
<td>Step 5 neighbor ip-address</td>
<td>Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24</td>
<td>To see a list of all the possible keywords and arguments for this command, use the CLI help (?).</td>
</tr>
<tr>
<td>Step 6 address-family { ipv4</td>
<td>ipv6 } unicast</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast</td>
<td></td>
</tr>
<tr>
<td>Step 7 route-policy route-policy-name { in</td>
<td>out }</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy drop-as-1234 in</td>
<td></td>
</tr>
<tr>
<td>Step 8 commit</td>
<td></td>
</tr>
</tbody>
</table>

Step 3

end-policy

Example:

RP/0/RP0/CPU0:router(config-rpl)# end-policy

Step 4

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 5

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24

Step 6

address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast

Step 7

route-policy route-policy-name { in | out }

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy drop-as-1234 in

Step 8

commit
when received, causes undesirable behavior on the receiving routers. Such undesirable behavior may be encountered during update message parsing or during re-advertisement of received NLRIs. In such scenarios, its better to filter these corrupted attributes at the receiving end.

The Attribute-filtering is configured by specifying a single or a range of attribute codes and an associated action. When a received Update message contains one or more filtered attributes, the configured action is applied on the message. Optionally, the Update message is also stored to facilitate further debugging and a syslog message is generated on the console. When an attribute matches the filter, further processing of the attribute is stopped and the corresponding action is taken. Perform the following tasks to configure BGP attribute filtering:

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>router bgp as-number</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 100
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>attribute-filter group attribute-filter group name</th>
</tr>
</thead>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# attribute-filter group ag_discard_med
```

Specifies the attribute-filter group name and enters the attribute-filter group configuration mode, allowing you to configure a specific attribute filter group for a BGP neighbor.

| Step 4 | attribute attribute code { discard | treat-as-withdraw } |
|--------|---------------------|

Example:

```
RP/0/RP0/CPU0:router(config-bgp-attrfg)# attribute 24 discard
```

Specifies a single or a range of attribute codes and an associated action. The allowed actions are:

- Treat-as-withdraw— Considers the update message for withdrawal. The associated IPv4-unicast or MP_REACH NLRIs, if present, are withdrawn from the neighbor's Adj-RIB-In.

- Discard Attribute— Discards this attribute. The matching attributes alone are discarded and the rest of the Update message is processed normally.

BGP Next Hop Tracking

BGP receives notifications from the Routing Information Base (RIB) when next-hop information changes (event-driven notifications). BGP obtains next-hop information from the RIB to:
• Determine whether a next hop is reachable.
• Find the fully recursed IGP metric to the next hop (used in the best-path calculation).
• Validate the received next hops.
• Calculate the outgoing next hops.
• Verify the reachability and connectedness of neighbors.

BGP Next Hop Reference, on page 131 provides additional conceptual details on BGP next hop.

Configure BGP Next-Hop Trigger Delay

Perform this task to configure BGP next-hop trigger delay. The Routing Information Base (RIB) classifies the dampening notifications based on the severity of the changes. Event notifications are classified as critical and noncritical. This task allows you to specify the minimum batching interval for the critical and noncritical events.

Procedure

Step 1 configure

Step 2 router bgp *as-number*

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode. To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 nexthop trigger-delay { critical delay | non-critical delay }

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# nexthop trigger-delay critical 15000

Sets the critical next-hop trigger delay.

Step 5 commit
Disable Next-Hop Processing on BGP Updates

Perform this task to disable next-hop calculation for a neighbor and insert your own address in the next-hop field of BGP updates. Disabling the calculation of the best next hop to use when advertising a route causes all routes to be advertised with the network device as the next hop.

Note

Next-hop processing can be disabled for address family group, neighbor group, or neighbor address family.

Procedure

Step 1

configure

Step 2

router bgp as-number

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3

neighbor ip-address

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24
```

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4

remote-as as-number

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 206
```

Creates a neighbor and assigns a remote autonomous system number to it.

Step 5

address-family { ipv4 | ipv6 } unicast

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# address-family ipv4 unicast
```

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?)

Step 6

next-hop-self

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# next-hop-self
```
Sets the next-hop attribute for all routes advertised to the specified neighbor to the address of the local router. Disabling the calculation of the best next hop to use when advertising a route causes all routes to be advertised with the local network device as the next hop.

Step 7
commit

BGP Cost Community

The BGP cost community is a nontransitive extended community attribute that is passed to internal BGP (iBGP) and confederation peers but not to external BGP (eBGP) peers. The cost community feature allows you to customize the local route preference and influence the best-path selection process by assigning cost values to specific routes. The extended community format defines generic points of insertion (POI) that influence the best-path decision at different points in the best-path algorithm.

BGP Cost Community Reference, on page 131 provides additional conceptual details on BGP cost community.

Configure BGP Cost Community

BGP receives multiple paths to the same destination and it uses the best-path algorithm to decide which is the best path to install in RIB. To enable users to determine an exit point after partial comparison, the cost community is defined to tie-break equal paths during the best-path selection process. Perform this task to configure the BGP cost community.

Procedure

Step 1
configure

Step 2
route-policy *name*

Example:

```
RP/0/RP0/CPU0:router(config)# route-policy costA
```

Enters route policy configuration mode and specifies the name of the route policy to be configured.

Step 3
set extcommunity cost { cost-extcommunity-set-name | cost-inline-extcommunity-set } [additive]

Example:

```
RP/0/RP0/CPU0:router(config)# set extcommunity cost cost_A
```

Specifies the BGP extended community attribute for cost.

Step 4
end-policy

Example:

```
RP/0/RP0/CPU0:router(config)# end-policy
```

Ends the definition of a route policy and exits route policy configuration mode.

Step 5
router bgp *as-number*
Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Enters BGP configuration mode allowing you to configure the BGP routing process.

Step 6
Do one of the following:

- `default-information originate`
- `aggregate-address address/mask-length [as-set] [as-confed-set] [summary-only] [route-policy route-policy-name]`
- `redistribute connected [metric metric-value] [route-policy route-policy-name]`
- `process-id [match { external | internal }] [metric metric-value] [route-policy route-policy-name]`
- `redistribute isis process-id [level { 1 | 1-inter-area | 2 }] [metric metric-value] [route-policy route-policy-name]`
- `redistribute ospf process-id [match { external { 1 | 2 } | internal | nssa-external { 1 | 2 } }] [metric metric-value] [route-policy route-policy-name]`
- `redistribute ospfv3 process-id [match { external { 1 | 2 } | internal | nssa-external { 1 | 2 } }] [metric metric-value] [route-policy route-policy-name]`
- `redistribute rip [metric metric-value] [route-policy route-policy-name]`
- `redistribute static [metric metric-value] [route-policy route-policy-name]`
- `network { ip-address/prefix-length | ip-address mask } [route-policy route-policy-name]`
- `neighbor ip-address remote-as as-number`
- `route-policy route-policy-name { in | out }

Step 7
Do one of the following:

- `redistribute ospfv3 process-id [match { external { 1 | 2 } | internal | nssa-external { 1 | 2 } }] [metric metric-value] [route-policy route-policy-name]`
- `redistribute rip [metric metric-value] [route-policy route-policy-name]`
- `redistribute static [metric metric-value] [route-policy route-policy-name]`
- `network { ip-address/prefix-length | ip-address mask } [route-policy route-policy-name]`
- `neighbor ip-address remote-as as-number`
- `route-policy route-policy-name { in | out }

Step 8
`commit`

Step 9
`show bgp ip-address`

Example:

RP/0/RP0/CPU0:router# show bgp 172.168.40.24

Displays the cost community in the following format:

Cost: **POI** : cost-community-ID : cost-number

Configure BGP Community and Extended-Community Advertisements

Perform this task to specify that community/extended-community attributes should be sent to an eBGP neighbor. These attributes are not sent to an eBGP neighbor by default. By contrast, they are always sent to iBGP neighbors. This section provides examples on how to enable sending community attributes. The `send-community-ebgp` keyword can be replaced by the `send-extended-community-ebgp` keyword to enable sending extended-communities.
If the `send-community-ebgp` command is configured for a neighbor group or address family group, all neighbors using the group inherit the configuration. Configuring the command specifically for a neighbor overrides inherited values.

Note
BGP community and extended-community filtering cannot be configured for iBGP neighbors. Communities and extended-communities are always sent to iBGP neighbors under VPNv4, MDT, IPv4, and IPv6 address families.

Procedure

Step 1
configure

Step 2
router bgp `as-number`

Example:
```
RP/0/RP0/CPU0:router(config)# router bgp 120
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3
neighbor `ip-address`

Example:
```
RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24
```

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4
remote-as `as-number`

Example:
```
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2002
```

Creates a neighbor and assigns a remote autonomous system number to it.

Step 5
address-family `{ipv4 [labeled-unicast | unicast | mdt | mvpn | rt-filter | tunnel] | ipv6 [labeled-unicast | mvpn | unicast]}`

Example:
```
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv6 unicast
```

Enters neighbor address family configuration mode for the specified address family. Use either `ipv4` or `ipv6` address family keyword with one of the specified address family sub mode identifiers.

IPv6 address family mode supports these sub modes:
- labeled-unicast
- mvpn
- unicast

IPv4 address family mode supports these sub modes:
- labeled-unicast
BGP Large Communities

BGP communities provide a way to group destinations and apply routing decisions such as acceptance, rejection, preference, or redistribution on a group of destinations using community attributes. BGP community attributes are variable length attributes consisting of a set of one or more 4-byte values which are split into two parts of 16 bits. The higher-order 16 bits represents the AS number and the lower order bits represents a locally defined value assigned by the operator of the AS.

Since the adoption of 4-byte ASNs (RFC6793), the BGP communities attribute can no longer accommodate the 4 byte ASNs as you need more than 4 bytes to encode the 4-byte ASN and an AS specific value that you want to tag with the route. Although BGP extended community permits a 4-byte AS to be encoded as the global administrator field, the local administrator field has only 2-byte of available space. So, 6-byte extended community attribute is also unsuitable. To overcome this limitation, you can configure a 12-byte BGP large community which is an optional attribute that provides the most significant 4-byte value to encode autonomous system number as the global administrator and the remaining two 4-byte assigned numbers to encode the local values.

Similar to BGP communities, routers can apply BGP large communities to BGP routes by using route policy languages (RPL) and other routers can then perform actions based on the community that is attached to the route. The policy language provides sets as a container for groups of values for matching purposes.

When large communities are specified in other commands, they are specified as three non negative decimal integers separated by colons. For example, 1:2:3. Each integer is stored in 32 bits. The possible range for each integer is 0 to 4294967295.

In route-policy statements, each integer in the BGP large community can be replaced by any of the following expressions:

- [x..y] — This expression specifies a range between x and y, inclusive.

Step 6

Use one of these commands:

- send-community-ebgp
- send-extended-community-ebgp

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# send-community-ebgp

or

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# send-extended-community-ebgp

Specifies that the router send community attributes or extended community attributes (which are disabled by default for eBGP neighbors) to a specified eBGP neighbor.

Step 7

commit
These expressions can be also used in policy-match statements.

IOS regular expression (ios-regex) and DFA style regular expression (dfa-regex) can be used in any of the large-community policy match and delete statements. For example, the IOS regular expression ios-regex ‘^5:.*:7$’ is equivalent to the expression 5:*:7.

The send-community-ebgp command is extended to include BGP large communities. This command is required for the BGP speaker to send large communities to ebgp neighbors.

Restrictions and Guidelines

The following restrictions and guidelines apply for BGP large communities:

- All functionalities of the BGP community attribute is available for the BGP large-community attribute.

- The send-community-ebgp command is required for the BGP speaker to send large communities to ebgp neighbors.

- There are no well-known large-communities.

- The peers-ex expression cannot be used in a large-community-set.

- The peers-ex expression can only be used in large-community match or delete statements that appear in route policies that are applied at the neighbor-in or neighbor-out attach points.

- The not-peers-ex expression cannot be used in a large-community-set or in policy set statements.

Configuration Example: Large Community Set

A large-community set defines a set of large communities. Named large-community sets are used in route-policy match and set statements.

This example shows how to create a named large-community set.

```
RP/0/RP0/CPU0:router(config)# large-community-set catbert
RP/0/RP0/CPU0:router(config-largecomm)# 1: 2: 3,
RP/0/RP0/CPU0:router(config-largecomm)# peers:2:3
RP/0/RP0/CPU0:router(config-largecomm)# end-set
```

Configuration Example: Set Large Community

The following example shows how to set the BGP large community attribute in a route, using the set large-community { large-community-set-name | inline-large-community-set | parameter } [additive] command. You can specify a named large-community-set or an inline set. The additive keyword retains the large communities already present in the route and adds the new set of large communities. However the additive keyword does not result in duplicate entries.
If a particular large community is attached to a route and you specify the same large community again with the additive keyword in the set statement, then the specified large community is not added again. The merging operation removes duplicate entries. This also applies to the peers keyword.

The peers expression in the example is replaced by the AS number of the neighbor from which the BGP large community is received or to which the community is sent, as appropriate.

```
RP/0/RP0/CPU0:router(config)# route-policy mordac
RP/0/RP0/CPU0:router(config-rpl)# set large-community (1:2:3, peeras:2:3)
RP/0/RP0/CPU0:router(config-rpl)# end-set
RP/0/RP0/CPU0:router(config)# large-community-set catbert
RP/0/RP0/CPU0:router(config-largecomm)# 1: 2: 3,
RP/0/RP0/CPU0:router(config-largecomm)# peeras:2:3
RP/0/RP0/CPU0:router(config-largecomm)# end-set
RP/0/RP0/CPU0:router(config)# route-policy wally
RP/0/RP0/CPU0:router(config-rpl)# set large-community catbert additive
RP/0/RP0/CPU0:router(config-rpl)# end-set
```

In this example, if the route-policy mordac is applied to a neighbor, the ASN of which is 1, then the large community (1:2:3) is set only once.

Note

You should configure the `send-community-ebgp` command to send large communities to ebgp neighbors.

Configuration Example: Large Community Matches-any

The following example shows how to configure a route policy to match any element of a large-community set. This is a boolean condition and returns true if any of the large communities in the route match any of the large communities in the match condition.

```
RP/0/RP0/CPU0:router(config)# route-policy elbonia
RP/0/RP0/CPU0:router(config-rpl)# if large-community matches-any (1:2:3, 4:5:*) then
RP/0/RP0/CPU0:router(config-rpl)# set local-preference 94
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy
```

Configuration Example: Large Community Matches-every

The following example shows how to configure a route policy where every match specification in the statement must be matched by at least one large community in the route.

```
RP/0/RP0/CPU0:router(config)# route-policy bob
RP/0/RP0/CPU0:router(config-rpl)# if large-community matches-every (*:*:3, 4:5:*) then
RP/0/RP0/CPU0:router(config-rpl)# set local-preference 94
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy
```

In this example, routes with these sets of large communities return TRUE:

- (1:1:3, 4:5:10)
- (4:5:3) —This single large community matches both specifications.
- (1:1:3, 4:5:10, 7:6:5)

Routes with the following set of large communities return FALSE:

(1:1:3, 5:5:10)—The specification (4:5:*) is not matched.
Configuration Example: Large Community Matches-within

The following example shows how to configure a route policy to match within a large community set. This is similar to the `large-community matches-any` command but every large community in the route must match at least one match specification. Note that if the route has no large communities, then it matches.

```
RP/0/RP0/CPU0:router(config)# route-policy bob
RP/0/RP0/CPU0:router(config-rpl)# if large-community matches-within (*:*:3, 4:5:*) then
RP/0/RP0/CPU0:router(config-rpl)# set local-preference 103
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy
```

For example, routes with these sets of large communities return TRUE:
- (1:1:3, 4:5:10)
- (4:5:3)
- (1:2:3, 6:6:3, 9:4:3)

Routes with this set of large communities return FALSE:
(1:1:3, 4:5:10, 7:6:5) —The large community (7:6:5) does not match

Configuration Example: Community Matches-within

The following example shows how to configure a route policy to match within the elements of a community set. This command is similar to the `community matches-any` command, but every community in the route must match at least one match specification. If the route has no communities, then it matches.

```
RP/0/RP0/CPU0:router(config)# route-policy bob
RP/0/RP0/CPU0:router(config-rpl)# if community matches-within (*:3, 5:* ) then
RP/0/RP0/CPU0:router(config-rpl)# set local-preference 94
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy
```

For example, routes with these sets of communities return TRUE:
- (1:3, 5:10)
- (5:3)
- (2:3, 6:3, 4:3)

Routes with this set of communities return FALSE:
(1:3, 5:10, 6:5) —The community (6:5) does not match.

Configuration Example: Large Community Is-empty

The following example shows using the `large-community is-empty` clause to filter routes that do not have the large-community attribute set.

```
RP/0/RP0/CPU0:router(config)# route-policy lrg_comm rp4
RP/0/RP0/CPU0:router(config-rpl)# if large-community is-empty then
RP/0/RP0/CPU0:router(config-rpl)# set local-preference 104
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy
```
Configuration Example: Attribute Filter Group

The following example shows how to configure and apply the attribute-filter group with large-community attributes for a BGP neighbor. The filter specifies the BGP path attributes and an action to take when BGP update message is received. If an update message is received from the BGP neighbor that contains any of the specified attributes, then the specified action is taken. In this example, the attribute filter named dogbert is created and applied to the BGP neighbor 10.0.1.101. It specifies the large community attribute and the action of discard. That means, if the large community BGP path attribute is received in a BGP UPDATE message from the neighbor 10.0.1.101 then the attribute will be discarded before further processing of the message.

```bash
RP/0/RP0/CPU0:router(config)# router bgp 100
RP/0/RP0/CPU0:router(config-bgp)# attribute-filter group dogbert
RP/0/RP0/CPU0:router(config-bgp-attrfg)# attribute LARGE-COMMUNITY discard
RP/0/RP0/CPU0:router(config-bgp-attrfg)# neighbor 10.0.1.101
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 6461
RP/0/RP0/CPU0:router(config-bgp-nbr)# update in filtering
RP/0/RP0/CPU0:router(config-nbr-upd-filter)# attribute-filter group dogbert
```

Configuration Example: Deleting Large Community

The following example shows how to delete specified BGP large-communities from a route policy using the `delete large-community` command.

```bash
RP/0/RP0/CPU0:router(config)# route-policy lrg_comm_rp2
RP/0/RP0/CPU0:router(config-rpl)# delete large-community in (ios-regex '^100000:')
RP/0/RP0/CPU0:router(config-rpl)# delete large-community all
RP/0/RP0/CPU0:router(config-rpl)# delete large-community not in (peeras:*:*:*, 41289:*:*)
```

Verification

This example displays the routes with large-communities given in the `show bgp large-community list-of-large-communities [exact-match]` command. If the optional keyword exact-match is used, then the listed routes will contain only the specified large communities. Otherwise, the displayed routes may contain additional large communities.

```bash
RP/0/0/CPU0:R1# show bgp large-community 1:2:3 5:6:7
Thu Mar 23 14:40:33.597 PDT
BGP router identifier 4.4.4.4, local AS number 3
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0xe0000000 RD version: 66
BGP main routing table version 66
BGP NSR Initial initsync version 3 (Reached)
BGP NSR/ISSU Sync-Group versions 66/0
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.0.0.3/32</td>
<td>10.10.10.3</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>* 10.0.0.5/32</td>
<td>10.11.11.5</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>?</td>
</tr>
</tbody>
</table>
```

This example displays the large community attached to a network using the `show bgp ip-address/prefix-length` command.
Redistribute iBGP Routes into IGP

Perform this task to redistribute iBGP routes into an Interior Gateway Protocol (IGP), such as Intermediate System-to-Intermediate System (IS-IS) or Open Shortest Path First (OSPF).

Note

Use of the `bgp redistribute-internal` command requires the `clear route *` command to be issued to reinstall all BGP routes into the IP routing table.

Caution

Redistributing iBGP routes into IGPs may cause routing loops to form within an autonomous system. Use this command with caution.

Procedure

Step 1

```
configure
```

Step 2

```
router bgp as-number
```

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3

```
bgp redistribute-internal
```

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# bgp redistribute-internal
```

Allows the redistribution of iBGP routes into an IGP, such as IS-IS or OSPF.
Redistribute IGPs to BGP

Perform this task to configure redistribution of a protocol into the VRF address family. Even if Interior Gateway Protocols (IGPs) are used as the PE-CE protocol, the import logic happens through BGP. Therefore, all IGP routes have to be imported into the BGP VRF table.

Procedure

Step 1 configure
Step 2 router bgp as-number
Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120
```
Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3 vrf vrf-name
Example:

```
RP/0/RP0/CPU0:router(config-bgp)# vrf vrf_a
```
Enables BGP routing for a particular VRF on the PE router.

Step 4 address-family { ipv4 | ipv6 } unicast
Example:

```
RP/0/RP0/CPU0:router(config-vrf)# address-family ipv4 unicast
```
Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?)

Step 5 Do one of the following:

- redistribute connected [metric metric-value] [route-policy route-policy-name]
- redistribute isis process-id [level { 1 | 1-inter-area | 2 }] [metric metric-value] [route-policy route-policy-name]
- redistribute ospf process-id [match { external [1 | 2] | internal | nssa-external [1 | 2] }] [metric metric-value] [route-policy route-policy-name]
- redistribute ospfv3 process-id [match { external [1 | 2] | internal | nssa-external [1 | 2] }] [metric metric-value] [route-policy route-policy-name]
- redistribute rip [metric metric-value] [route-policy route-policy-name]
- redistribute static [metric metric-value] [route-policy route-policy-name]

Example:
RP/0/RP0/CPU0:router(config-bgp-vrf-af)# redistribute ospf 1

Configures redistribution of a protocol into the VRF address family context.

The `redistribute` command is used if BGP is not used between the PE-CE routers. If BGP is used between PE-CE routers, the IGP that is used has to be redistributed into BGP to establish VPN connectivity with other PE sites. Redistribution is also required for inter-table import and export.

Step 6

```
commit
```

Update Groups

The BGP Update Groups feature contains an algorithm that dynamically calculates and optimizes update groups of neighbors that share outbound policies and can share the update messages. The BGP Update Groups feature separates update group replication from peer group configuration, improving convergence time and flexibility of neighbor configuration.

Monitor BGP Update Groups

This task displays information related to the processing of BGP update groups.

Procedure

```
show bgp [ ipv4 { unicast | multicast | all | tunnel } | ipv6 { unicast | all } | all | unicast | multicast | all labeled-unicast | tunnel ] | vpnv4 unicast | vrf { vrf-name | all } [ ipv4 unicast ipv6 unicast ] | vpvn6 unicast ] update-group [ neighbor ip-address | process-id.index [ summary | performance-statistics ]]
```

Example:

RP/0/RP0/CPU0:router# show bgp update-group 0.0

Displays information about BGP update groups.

- The `ip-address` argument displays the update groups to which that neighbor belongs.
- The `process-id.index` argument selects a particular update group to display and is specified as follows: process ID (dot) index. Process ID range is from 0 to 254. Index range is from 0 to 4294967295.
- The `summary` keyword displays summary information for neighbors in a particular update group.
- If no argument is specified, this command displays information for all update groups (for the specified address family).
- The `performance-statistics` keyword displays performance statistics for an update group.
Displaying BGP Update Groups: Example

The following is sample output from the `show bgp update-group` command run in EXEC configuration XR EXEC mode:

```
show bgp update-group
Update group for IPv4 Unicast, index 0.1:
  Attributes:
    Outbound Route map:rm
    Minimum advertisement interval:30
    Messages formatted:2, replicated:2
    Neighbors in this update group:
      10.0.101.92

Update group for IPv4 Unicast, index 0.2:
  Attributes:
    Minimum advertisement interval:30
    Messages formatted:2, replicated:2
    Neighbors in this update group:
      10.0.101.91
```

L3VPN iBGP PE-CE

The L3VPN iBGP PE-CE feature helps establish an iBGP (internal Border Gateway Protocol) session between the provider edge (PE) and customer edge (CE) devices to exchange BGP routing information. A BGP session between two BGP peers is said to be an iBGP session if the BGP peers are in the same autonomous systems.

Restrictions for L3VPN iBGP PE-CE

The following restrictions apply to configuring L3VPN iBGP PE-CE:

- When the iBGP PE CE feature is toggled and the neighbor no longer supports route-refresh or soft-reconfiguration inbound, a manual session flap must be done to see the change. When this occurs, the following message is displayed:

  ```
  RP/0/RP0/CPU0: %ROUTING-BGP-5-CFG_CHG_RESET: Internal VPN client configuration change on neighbor 10.10.10.1 requires HARD reset (clear bgp 10.10.10.1) to take effect.
  ```

- iBGP PE CE CLI configuration is not available for peers under default-VRF, except for neighbor/session-group.

- This feature does not work on regular VPN clients (eBGP VPN clients).

- Attributes packed inside the ATTR_SET reflects changes made by the inbound route-policy on the iBGP CE and does not reflect the changes made by the export route-policy for the specified VRF.

- Different VRFs of the same VPN (that is, in different PE routers) that are configured with iBGP PE-CE peering sessions must use different Route Distinguisher (RD) values under respective VRFs. The iBGP PE CE feature does not work if the RD values are the same for the ingress and egress VRF.
Configuring L3VPN iBGP PE-CE

L3VPN iBGP PE-CE can be enabled on the neighbor, neighbor-group, or session-group. To configure L3VPN iBGP PE-CE, follow these steps:

Before you begin
The CE must be an internal BGP peer.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp as-number</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router bgp 120</td>
</tr>
<tr>
<td></td>
<td>Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.</td>
</tr>
<tr>
<td>Step 3</td>
<td>vrf vrf-name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-bgp)# vrf blue</td>
</tr>
<tr>
<td></td>
<td>Configures a VRF instance.</td>
</tr>
<tr>
<td>Step 4</td>
<td>neighbor ip-address internal-vpn-client</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-bgp-vrf)# neighbor 10.0.0.0 internal-vpn-client</td>
</tr>
<tr>
<td></td>
<td>Configures a CE neighboring device with which to exchange routing information. The neighbor internal-vpn-client command stacks the iBGP-CE neighbor path in the VPN attribute set.</td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
</tr>
<tr>
<td>Step 6</td>
<td>show bgp vrf vrf-name neighbors ip-address</td>
</tr>
<tr>
<td></td>
<td>Displays whether the iBGP PE-CE feature is enabled for the VRF CE peer, or not.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show bgp {vpnv4</td>
</tr>
<tr>
<td></td>
<td>Displays the ATTR_SET attributes in the command output when the L3VPN iBGP PE-CE is enabled on a CE.</td>
</tr>
</tbody>
</table>

Example

Example: Configuring L3VPN iBGP PE-CE
The following example shows how to configure L3VPN iBGP PE-CE:
R1(config-bgp-vrf-nbr)#neighbor 10.10.10.1 ?
 internal-vpn-client Preserve iBGP CE neighbor path in ATTR_SET across VPN core

R1(config-bgp-vrf-nbr)#neighbor 10.10.10.1 internal-vpn-client
 router bgp 65001
 bgp router-id 100.100.100.2
 address-family ipv4 unicast
 address-family vpnv4 unicast

vrf ce-ibgp
 rd 65001:100
 address-family ipv4 unicast

neighbor 10.10.10.1
 remote-as 65001
 internal-vpn-client

The following is an example of the output of the `show bgp vrf vrf-name neighbors ip-address` command when the L3VPN iBGP PE-CE is enabled on a CE peer:

```
R1#show bgp vrf ce-ibgp neighbors 10.10.10.1
BGP neighbor is 10.10.10.1, vrf ce-ibgp
   Remote AS 65001, local AS 65001, internal link
   Remote router ID 100.100.100.1
   BGF state = Established, up for 00:00:19
   Multi-protocol capability received
   Neighbor capabilities:
      Route refresh: advertised (old + new) and received (old + new)
      4-byte AS: advertised and received
   Address family IPv4 Unicast: advertised and received
   CE attributes will be preserved across the core
   Received 2 messages, 0 notifications, 0 in queue
   Sent 2 messages, 0 notifications, 0 in queue
```

The following is an example of the output of the `show bgp vpn4/vpn6 unicast rd` command when the L3VPN iBGP PE-CE is enabled on a CE peer:

```
BGP routing table entry for 1.1.1.0/24, Route Distinguisher: 200:300
   Versions:
      Process bRIB/RIB SendTblVer
      Speaker 10 10
   Last Modified: Aug 28 13:11:17.000 for 00:01:00
   Paths: (1 available, best #1)
      Advertised to update-groups (with more than one peer):
         0.2
   Path #1: Received by speaker 0
      Advertised to update-groups (with more than one peer):
         0.2
      Local, (Received from a RR-client)
         20.20.20.2 from 20.20.20.2 (100.100.100.2)
      Received Label 24000
      Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, not-in-vrf Received Path ID 0, Local Path ID 1, version 10
   Extended community: RT:228:237
```

ATTR-SET [
 Origin-AS: 200
 AS-Path: 51320 52325 59744 12947 21969 50346 18204 36304 41213
 23906 33646
 Origin: incomplete
Flow-tag propagation

The flow-tag propagation feature enables you to establish a co-relation between route-policies and user-policies. Flow-tag propagation using BGP allows user-side traffic-steering based on routing attributes such as, AS number, prefix lists, community strings and extended communities. Flow-tag is a logical numeric identifier that is distributed through RIB as one of the routing attribute of FIB entry in the FIB lookup table. A flow-tag is instantiated using the 'set' operation from RPL and is referenced in the C3PL PBR policy, where it is associated with actions (policy-rules) against the flow-tag value.

You can use flow-tag propagation to:

- Classify traffic based on destination IP addresses (using the Community number) or based on prefixes (using Community number or AS number).
- Select a TE-group that matches the cost of the path to reach a service-edge based on customer site service level agreements (SLA).
- Apply traffic policy (TE-group selection) for specific customers based on SLA with its clients.
- Divert traffic to application or cache server.

Restrictions for Flow-Tag Propagation

Some restrictions are placed with regard to using Quality-of-service Policy Propagation Using Border Gateway Protocol (QPPB) and flow-tag feature together. These include:

- A route-policy can have either 'set qos-group' or 'set flow-tag,' but not both for a prefix-set.
- Route policy for qos-group and route policy flow-tag cannot have overlapping routes. The QPPB and flow tag features can coexist (on same as well as on different interfaces) as long as the route policy used by them do not have any overlapping route.
- Mixing usage of qos-group and flow-tag in route-policy and policy-map is not recommended.

Source and destination-based flow tag

The source-based flow tag feature allows you to match packets based on the flow-tag assigned to the source address of the incoming packets. Once matched, you can then apply any supported PBR action on this policy.

Configure Source and Destination-based Flow Tag

This task applies flow-tag to a specified interface. The packets are matched based on the flow-tag assigned to the source address of the incoming packets.
You will not be able to enable both QPPB and flow tag feature simultaneously on an interface.

Procedure

Step 1
configure

Step 2
interface type interface-path-id

Example:

```
RP/0/RP0/CPU0:router(config-if)# interface
```

Enters interface configuration mode and associates one or more interfaces to the VRF.

Step 3
ipv4 | ipv6 bgp policy propagation input flow-tag {destination | source}

Example:

```
RP/0/RP0/CPU0:router(config-if)# ipv4 bgp policy propagation input flow-tag source
```

Enables flow-tag policy propagation on source or destination IP address on an interface.

Step 4
commit

Example

The following show commands display outputs with PBR policy applied on the router:

```
show running-config interface gigabitEthernet 0/0/0/12
Thu Feb 12 01:51:37.820 UTC
interface GigabitEthernet0/0/0/12
 service-policy type pbr input flowMatchPolicy
 ipv4 bgp policy propagation input flow-tag source
 ipv4 address 192.5.1.2 255.255.255.0
!
```

```
RP/0/RSP0/CPU0:ASR9K-0#show running-config policy-map type pbr flowMatchPolicy
Thu Feb 12 01:51:45.776 UTC
policy-map type pbr flowMatchPolicy
 class type traffic flowMatch36
  transmit
 class type traffic flowMatch38
  transmit
 class type traffic class-default
 end-policy-map
!
```

```
RP/0/RSP0/CPU0:ASR9K-0#show running-config class-map type traffic flowMatch36
Thu Feb 12 01:52:04.838 UTC
class-map type traffic match-any flowMatch36
 match flow-tag 36
```
BGP Keychains

BGP keychains enable keychain authentication between two BGP peers. The BGP endpoints must both comply with draft-bonica-tcp-auth-05.txt and a keychain on one endpoint and a password on the other endpoint does not work.

BGP is able to use the keychain to implement hitless key rollover for authentication. Key rollover specification is time based, and in the event of clock skew between the peers, the rollover process is impacted. The configurable tolerance specification allows for the accept window to be extended (before and after) by that margin. This accept window facilitates a hitless key rollover for applications (for example, routing and management protocols).

The key rollover does not impact the BGP session, unless there is a keychain configuration mismatch at the endpoints resulting in no common keys for the session traffic (send or accept).

Configure Keychains for BGP

Keychains provide secure authentication by supporting different MAC authentication algorithms and provide graceful key rollover. Perform this task to configure keychains for BGP. This task is optional.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
</tr>
<tr>
<td>2</td>
<td>router bgp as-number</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>neighbor ip-address</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24
```

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>remote-as as-number</td>
</tr>
</tbody>
</table>
Master Key Tuple Configuration

This feature specifies TCP Authentication Option (TCP-AO), which replaces the TCP MD5 option. TCP-AO uses the Message Authentication Codes (MACs), which provides the following:

- Protection against replays for long-lived TCP connections
- More details on the security association with TCP connections than TCP MD5
- A larger set of MACs with minimal other system and operational changes

TCP-AO is compatible with Master Key Tuple (MKT) configuration. TCP-AO also protects connections when using the same MKT across repeated instances of a connection. TCP-AO protects the connections by using traffic key that are derived from the MKT, and then coordinates changes between the endpoints.

Note

TCP-AO and TCP MD5 are never permitted to be used simultaneously. TCP-AO supports IPv6, and is fully compatible with the proposed requirements for the replacement of TCP MD5.

Cisco provides the MKT configuration via the following configurations:

- keychain configuration
- tcp ao keychain configuration

The system translates each key, such “key_id” that is under a keychain, as MKT. The keychain configuration owns part of the configuration like secret, lifetimes, and algorithms. While the “tcp ao keychain” mode owns the TCP AO-specific configuration for an MKT (send_id and receive_id).
Keychain Configurations

Configuration Guidelines

In order to run a successful configuration, ensure that you follow the configuration guidelines:

- An allowed value range for both Send_ID and Receive_ID is 0 to 255.
- You can link only one keychain to an application neighbor.
- Under the same keychain, if you configure the same send_id key again under the keys that have an overlapping lifetime, then the old key becomes unusable until you correct the configuration.
- The system sends a warning message in the following scenarios:
 - If there is a change in Send_ID or Receive_ID.
 - If the corresponding key is currently active, and is in use by some connection.

- BGP neighbor can ONLY use one of the authentication options:
 - MD5
 - EA
 - AO

Note

If you configure one of these options, the system rejects the other authentication options during the configuration time.

Configuration Guidelines for TCP AO BGP Neighbor

The configuration guidelines are:

- Configure all the necessary configurations (key_string, MAC_algorithm, send_lifetime, accept_lifetime, send_id, receive_id) under key_id with the desired lifetime it wants to use the key_id for.
- Configure a matching MKT in the peer side with exactly same lifetime.
- Once a keychain-key is linked to tcp-ao, do not change the components of the key. If you want TCP to consider another key for use, you can configure that dynamically. Based on the 'start-time' of send lifetime, TCP AO uses the key.
- Send_ID and Receive_ID under a key_id (under a keychain) must have the same lifetime range. For example, send-lifetime==accept-lifetime.
 TCP considers only expiry of send-lifetime to transition to next active key and it does not consider accept-lifetime at all.
- Do not configure a key with send-lifetime that is covered by another key's send-lifetime.
For example, if there is a key that is already configured with send-lifetime of “04:00:00 November 01, 2017 07:00:00 November 01, 2017” and the user now configures another key with send-lifetime of “05:00:00 November 01, 2017 06:00:00 November 01, 2017”, this might result into connection flap.

TCP AO tries to transition back to the old key once the new key is expired. However, if the new key has already expired, TCP AO can’t use it, which might result in segment loss and hence connection flap.

- Configure minimum of 15 minutes of overlapping time between the two overlapping keys. When a key expires, TCP does not use it and hence out-of-order segments with that key are dropped.
- We recommend configuring send_id and receive_id to be same for a key_id for simplicity.
- TCP does not have any restriction on the number of keychains and keys under a keychain. The system does not support more than 4000 keychains, any number higher than 4000 might result in unexpected behaviors.

Keychain Configuration

```
key chain <keychain_name>
  key <key_id>
    accept-lifetime <start-time> <end-time>
    key-string <master-key>
    send-lifetime <start-time> <end-time>
    cryptographic-algorithm <algorithm>
  !
!
```

TCP Configuration

TCP provides a new tcp ao submode that specifies SendID and ReceiveID per key_id per keychain.

```
tcp ao
  keychain <keychain_name1>
    key-id <key_id> send_id <0-255> receive_id <0-255>
  !
Example:

tcp ao
  keychain bgp_ao
    key 0 SendID 0 ReceiveID 0
    key 1 SendID 1 ReceiveID 1
    key 2 SendID 3 ReceiveID 4
  !
  keychain ldp_ao
    key 1 SendID 100 ReceiveID 200
    key 120 SendID 1 ReceiveID 1
  !
```

BGP Configurations

Applications like BGP provide the tcp-ao keychain and related information that it uses per neighbor. Following are the optional configurations per tcp-ao keychain:

- include-tcp-options
- accept-non-ao-connections
router bgp <AS-number>
neighbor <neighbor-ip>
 remote-as <remote-as-number>
 ao <keychain-name> include-tcp-options enable/disable <accept-ao-mismatch-connections>
!

XML Configurations

BGP XML

TCP-A0 XML

```xml
<?xml version="1.0" encoding="UTF-8"?>
<Request>
  <Set>
    <Configuration>
      <IP_TCP>
        <AO>
          <Enable>true</Enable>
          <KeychainTable>
            <Keychain>
              <Naming>
                <Name> bgp_ao_xml </Name>
              </Naming>
              <Enable>true</Enable>
              <KeyTable>
                <Key>
                  <Naming>
                    <KeyID> 0 </KeyID>
                  </Naming>
                  <SendID> 0 </SendID>
                  <ReceiveID> 0 </ReceiveID>
                </Key>
              </KeyTable>
            </Keychain>
          </KeychainTable>
        </AO>
      </IP_TCP>
    </Configuration>
  </Set>
  <Commit/>
</Request>
```

BGP Nonstop Routing

The Border Gateway Protocol (BGP) Nonstop Routing (NSR) with Stateful Switchover (SSO) feature enables all bgp peerings to maintain the BGP state and ensure continuous packet forwarding during events that could interrupt service. Under NSR, events that might potentially interrupt service are not visible to peer routers. Protocol sessions are not interrupted and routing states are maintained across process restarts and switchovers.

BGP Nonstop Routing Reference, on page 134 for additional details.
Configure BGP Nonstop Routing

BGP Nonstop Routing (BGP NSR) is enabled by default. If BGP NSR is disabled, use the `no nsr disable` command to turn BGP NSR back on.

In some scenarios, it is possible that some or all bgp sessions are not NSR-READY. The `show redundancy` command may still show that the bgp sessions are NSR-ready. Hence, we recommend that you verify the bgp nsr state by using the `show bgp sessions` command.

Disable BGP Nonstop Routing

Perform this task to disable BGP Nonstop Routing (NSR):

Procedure

Step 1 configure
Step 2 router bgp `as-number`

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120
```

Specifies the BGP AS number, and enters the BGP configuration mode, for configuring BGP routing processes.

Step 3 nsr disable

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# nsr disable
```

Disables BGP Nonstop routing.

Step 4 commit

Disable BGP Nonstop Routing: Example

The following example shows how to disable BGP NSR:

```
configure
router bgp 120
no nsr
end
```

Re-enable BGP Nonstop Routing

If BGP Nonstop Routing (NSR) is disabled, use the following steps to turn BGP NSR back on using the following steps:
Procedure

Step 1
configure

Step 2
routerr bgp *as-number*

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120
```

Specifies the BGP AS number, and enters the BGP configuration mode, for configuring BGP routing processes.

Step 3
no nsr disable

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# nsr disable
```

Enables BGP Nonstop routing.

Step 4
commit

Accumulated Interior Gateway Protocol Attribute

The Accumulated Interior Gateway Protocol (AiGP) Attribute is an optional non-transitive BGP Path Attribute. The attribute type code for the AiGP Attribute is to be assigned by IANA. The value field of the AiGP Attribute is defined as a set of Type/Length/Value elements (TLVs). The AiGP TLV contains the Accumulated IGP Metric.

The AiGP feature is required in the 3107 network to simulate the current OSPF behavior of computing the distance associated with a path. OSPF/LDP carries the prefix/label information only in the local area. Then, BGP carries the prefix/label to all the remote areas by redistributing the routes into BGP at area boundaries. The routes/labels are then advertised using LSPs. The next hop for the route is changed at each ABR to local router which removes the need to leak OSPF routes across area boundaries. The bandwidth available on each of the core links is mapped to OSPF cost, hence it is imperative that BGP carries this cost correctly between each of the PEs. This functionality is achieved by using the AiGP.

Originate Prefixes with AiGP

Perform this task to configure origination of routes with the AiGP metric:
Before you begin

Origination of routes with the accumulated interior gateway protocol (AiGP) metric is controlled by configuration. AiGP attributes are attached to redistributed routes that satisfy the following conditions:

- The protocol redistributing the route is enabled for AiGP.
- The route is an interior gateway protocol (iGP) route redistributed into border gateway protocol (BGP). The value assigned to the AiGP attribute is the value of iGP next hop to the route or as set by a route-policy.
- The route is a static route redistributed into BGP. The value assigned is the value of next hop to the route or as set by a route-policy.
- The route is imported into BGP through network statement. The value assigned is the value of next hop to the route or as set by a route-policy.

Procedure

Step 1 configure

Step 2 route-policy *aigp_policy*

Example:

```
RP/0/RP0/CPU0:router(config)# route-policy aigp_policy
```

Enters route-policy configuration mode and sets the route-policy.

Step 3 set aigp-metric igp-cost

Example:

```
RP/0/RP0/CPU0:router(config-rpl)# set aigp-metric igp-cost
```

Sets the internal routing protocol cost as the aigp metric.

Step 4 exit

Example:

```
RP/0/RP0/CPU0:router(config-rpl)# exit
```

Exits route-policy configuration mode.

Step 5 router bgp *as-number*

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 100
```

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 6 address-family {ipv4 | ipv6} unicast

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
```

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

Step 7 redistribute ospf *osp route-policy plcy_name metric value*

Example:

```
RP/0/RP0/CPU0:router(config)# redistribute ospf 1 route-policy plcy_name metric value
```
Example:

```
RP/0/RP0/CPU0:router(config-bgp-af)#redistribute ospf osp route-policy aigp_policy metric 1
```

Allows the redistribution of AiBGP metric into OSPF.

Step 8

```
commit
```

Originating Prefixes With AiGP: Example

The following is a sample configuration for originating prefixes with the AiGP metric attribute:

```
route-policy aigp-policy
  set aigp-metric 4
  set aigp-metric igp-cost
end-policy
!
router bgp 100
  address-family ipv4 unicast
    network 10.2.3.4/24 route-policy aigp-policy
    redistribute ospf ospf1 metric 4 route-policy aigp-policy
  !
end
```

Configure BGP Accept Own

The BGP Accept Own feature allows you to handle self-originated VPN routes, which a BGP speaker receives from a route-reflector (RR). A 'self-originated' route is one which was originally advertized by the speaker itself. As per BGP protocol [RFC4271], a BGP speaker rejects advertisements that were originated by the speaker itself. However, the BGP Accept Own mechanism enables a router to accept the prefixes it has advertised, when reflected from a route-reflector that modifies certain attributes of the prefix. A special community called ACCEPT-OWN is attached to the prefix by the route-reflector, which is a signal to the receiving router to bypass the ORIGINATOR_ID and NEXTTHOP/MP_REACH_NLRI check. Generally, the BGP speaker detects prefixes that are self-originated through the self-origination check (ORIGINATOR_ID, NEXTTHOP/MP_REACH_NLRI) and drops the received updates. However, with the Accept Own community present in the update, the BGP speaker handles the route.

One of the applications of BGP Accept Own is auto-configuration of extranets within MPLS VPN networks. In an extranet configuration, routes present in one VRF is imported into another VRF on the same PE. Normally, the extranet mechanism requires that either the import-rt or the import policy of the extranet VRFs be modified to control import of the prefixes from another VRF. However, with Accept Own feature, the route-reflector can assert that control without the need for any configuration change on the PE. This way, the Accept Own feature provides a centralized mechanism for administering control of route imports between different VRFs.

Note

BGP Accept Own is supported only for VPNv4 and VPNv6 address families in neighbor configuration mode.

Perform this task to configure BGP Accept Own:
Procedure

Step 1 configure
Step 2 router bgp as-number
Example:
RP/0/RP0/CPU0:router(config)#router bgp 100
Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3 neighbor ip-address
Example:
RP/0/RP0/CPU0:router(config-bgp)#neighbor 10.1.2.3
Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4 remote-as as-number
Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)#remote-as 100
Assigns a remote autonomous system number to the neighbor.

Step 5 update-source type interface-path-id
Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)#update-source Loopback0
Allows sessions to use the primary IP address from a specific interface as the local address when forming a session with a neighbor.

Step 6 address-family {vpnv4 unicast | vpnv6 unicast}
Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)#address-family vpnv6 unicast
Specifies the address family as VPNv4 or VPNv6 and enters neighbor address family configuration mode.

Step 7 accept-own [inheritance-disable]
Example:
RP/0/RP0/CPU0:router(config-bgp-nbr-af)#accept-own
Enables handling of self-originated VPN routes containing Accept_Own community.
Use the inheritance-disable keyword to disable the "accept own" configuration and to prevent inheritance of "acceptown" from a parent configuration.
In this configuration example:

- PE11 is configured with Customer VRF and Service VRF.
- OSPF is used as the IGP.
- VPNv4 unicast and VPNv6 unicast address families are enabled between the PE and RR neighbors and IPv4 and IPv6 are enabled between PE and CE neighbors.

The Accept Own configuration works as follows:

1. CE1 originates prefix X.
2. Prefix X is installed in customer VRF as (RD1:X).
3. Prefix X is advertised to IntraAS-RR11 as (RD1:X, RT1).
4. IntraAS-RR11 advertises X to InterAS-RR1 as (RD1:X, RT1).
5. InterAS-RR1 attaches RT2 to prefix X on the inbound and ACCEPT_OWN community on the outbound and advertises prefix X to IntraAS-RR31.
6. IntraAS-RR31 advertises X to PE11.
7. PE11 installs X in Service VRF as (RD2:X,RT1, RT2, ACCEPT_OWN).

This example shows how to configure BGP Accept Own on a PE router.

```
router bgp 100
neighbor 45.1.1.1
    remote-as 100
    update-source Loopback0
    address-family vpnv4 unicast
        route-policy pass-all in
        accept-own
        route-policy drop_111.x.x.x out
    address-family vpnv6 unicast
        route-policy pass-all in
```
This example shows an InterAS-RR configuration for BGP Accept Own.

```
router bgp 100
  neighbor 45.1.1.1
    remote-as 100
    update-source Loopback0
    address-family vpnv4 unicast
      route-policy rt_stitch1 in
      route-reflector-client
      route-policy add_bgp_ao out
    !
    address-family vpnv6 unicast
      route-policy rt_stitch1 in
      route-reflector-client
      route-policy add_bgp_ao out
    !
  extcommunity-set rt cs_100:1
    100:1
    end-set
  extcommunity-set rt cs_1001:1
    1001:1
    end-set
  route-policy rt_stitch1
    if extcommunity rt matches-any cs_100:1 then
      set extcommunity rt cs_1000:1 additive
    endif
  end-policy
  !
  route-policy add_bgp_ao
    set community (accept-own) additive
  end-policy
```

BGP Link-State

BGP Link-State (LS) is an Address Family Identifier (AFI) and Sub-address Family Identifier (SAFI) defined to carry interior gateway protocol (IGP) link-state database through BGP. BGP LS delivers network topology information to topology servers and Application Layer Traffic Optimization (ALTO) servers. BGP LS allows policy-based control to aggregation, information-hiding, and abstraction. BGP LS supports IS-IS and OSPFv2.

Note

IGPs do not use BGP LS data from remote peers. BGP does not download the received BGP LS data to any other component on the router.

Configure BGP Link-state

To exchange BGP link-state (LS) information with a BGP neighbor, perform these steps:
Procedure

Step 1
configure

Step 2
router bgp
as-number

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 100
```

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3
neighbor
ip-address

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.0.2
```

Configures a CE neighbor. The ip-address argument must be a private address.

Step 4
remote-as
as-number

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 1
```

Configures the remote AS for the CE neighbor.

Step 5
address-family
link-state link-state

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family link-state link-state
```

Distributes BGP link-state information to the specified neighbor.

Step 6
commit

Configure Domain Distinguisher

To configure unique identifier four-octet ASN, perform these steps:

Procedure

Step 1
configure

Step 2
router bgp
as-number

Example:
RP/0/RP0/CPU0:router(config)# router bgp 100

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3
`address-family link-state link-state`

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family link-state link-state

Enters address-family link-state configuration mode.

Step 4
`domain-distinguisher unique-id`

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# domain-distinguisher 1234

Configures unique identifier four-octet ASN. Range is from 1 to 4294967295.

Step 5
`commit`

BGP Permanent Network

BGP permanent network feature supports static routing through BGP. BGP routes to IPv4 or IPv6 destinations (identified by a route-policy) can be administratively created and selectively advertised to BGP peers. These routes remain in the routing table until they are administratively removed. A permanent network is used to define a set of prefixes as permanent, that is, there is only one BGP advertisement or withdrawal in upstream for a set of prefixes. For each network in the prefix-set, a BGP permanent path is created and treated as less preferred than the other BGP paths received from its peer. The BGP permanent path is downloaded into RIB when it is the best-path.

The `permanent-network` command in global address family configuration mode uses a route-policy to identify the set of prefixes (networks) for which permanent paths is to be configured. The `advertise permanent-network` command in neighbor address-family configuration mode is used to identify the peers to whom the permanent paths must be advertised. The permanent paths is always advertised to peers having the advertise permanent-network configuration, even if a different best-path is available. The permanent path is not advertised to peers that are not configured to receive permanent path.

The permanent network feature supports only prefixes in IPv4 unicast and IPv6 unicast address-families under the default Virtual Routing and Forwarding (VRF).

Restrictions

These restrictions apply while configuring the permanent network:

- Permanent network prefixes must be specified by the route-policy on the global address family.
- You must configure the permanent network with route-policy in global address family configuration mode and then configure it on the neighbor address family configuration mode.
Configure BGP Permanent Network

Perform this task to configure BGP permanent network. You must configure at least one route-policy to identify the set of prefixes (networks) for which the permanent network (path) is to be configured.

Procedure

Step 1 configure
Step 2 prefix-set prefix-set-name

Example:

```
RP/0/RP0/CPU0:router(config)# prefix-set PERMANENT-NETWORK-IPv4
RP/0/RP0/CPU0:router(config-pfx)# 1.1.1.1/32,
RP/0/RP0/CPU0:router(config-pfx)# 2.2.2.2/32,
RP/0/RP0/CPU0:router(config-pfx)# 3.3.3.3/32
RP/0/RP0/CPU0:router(config-pfx)# end-set
```

Enters prefix set configuration mode and defines a prefix set for contiguous and non-contiguous set of bits.

Step 3 exit

Example:

```
RP/0/RP0/CPU0:router(config-pfx)# exit
```

Exits prefix set configuration mode and enters global configuration mode.

Step 4 route-policy route-policy-name

Example:

```
RP/0/RP0/CPU0:router(config)# route-policy POLICY-PERMANENT-NETWORK-IPv4
RP/0/RP0/CPU0:router(config-rpl)# if destination in PERMANENT-NETWORK-IPv4 then
RP/0/RP0/CPU0:router(config-rpl)# pass
RP/0/RP0/CPU0:router(config-rpl)# endif
```

Creates a route policy and enters route policy configuration mode, where you can define the route policy.

Step 5 end-policy

Example:

```
RP/0/RP0/CPU0:router(config-rpl)# end-policy
```

Ends the definition of a route policy and exits route policy configuration mode.

Step 6 router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode.

Step 7
_address-family \{ ipv4 | ipv6 \} unicast

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

Step 8
permanent-network route-policy route-policy-name

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# permanent-network route-policy POLICY-PERMANENT-NETWORK-IPv4

Configures the permanent network (path) for the set of prefixes as defined in the route-policy.

Step 9
commit

Step 10
show bgp \{ipv4 | ipv6\} unicast prefix-set

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# show bgp ipv4 unicast

(Optional) Displays whether the prefix-set is a permanent network in BGP.

Advertise Permanent Network

Perform this task to identify the peers to whom the permanent paths must be advertised.

Procedure

Step 1
configure

Step 2
router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode.

Step 3
neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config)# neighbor 10.0.0.1

RP/0/RP0/CPU0:router(config-router)# address-family ipv4 unicast

Specify the address-family to advertise the prefix set.
RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.255.255.254

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4
remote-as
as-number
Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 4713

Assigns the neighbor a remote autonomous system number.

Step 5
address-family
ipv4 | ipv6
unicast
Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

Step 6
advertise permanent-network
Example:
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# advertise permanent-network

Specifies the peers to whom the permanent network (path) is advertised.

Step 7
commit

Step 8
show bgp
ipv4 | ipv6
unicast neighbor
ip-address
Example:
RP/0/RP0/CPU0:router show bgp ipv4 unicast neighbor 10.255.255.254

(Optional) Displays whether the neighbor is capable of receiving BGP permanent networks.

Enable BGP Unequal Cost Recursive Load Balancing

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp as-number
Example: <code>RP/0/RP0/CPU0:router(config)# router bgp 120</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>**address-family { ipv4</td>
</tr>
<tr>
<td>Step 4</td>
<td>**maximum-paths { ebgp</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit
Example: <code>RP/0/RP0/CPU0:router(config-bgp-af)# exit</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>neighbor ip-address
Example: <code>RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.0.0</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>dmz-link-bandwidth
Example: <code>RP/0/RP0/CPU0:router(config-bgp-nbr)# dmz-link-bandwidth</code></td>
</tr>
<tr>
<td>Step 8</td>
<td>commit</td>
</tr>
</tbody>
</table>
BGP Configuration Guide for Cisco NCS 540 Series Routers, IOS XR Release 6.6.x

BGP Unequal Cost Recursive Load Balancing: Example

This is a sample configuration for unequal cost recursive load balancing:

```plaintext
interface Loopback0
  ipv4 address 20.20.20.20 255.255.255.255

interface MgmtEth0/RSP0/CPU0/0
  ipv4 address 8.43.0.10 255.255.255.0

interface TenGigE0/3/0/0
  bandwidth 8000000
  ipv4 address 11.11.11.11 255.255.255.0
  ipv6 address 11:11:0:1::11/64

interface TenGigE0/3/0/1
  bandwidth 7000000
  ipv4 address 11.11.12.11 255.255.255.0
  ipv6 address 11:11:0:2::11/64

interface TenGigE0/3/0/2
  bandwidth 6000000
  ipv4 address 11.11.13.11 255.255.255.0
  ipv6 address 11:11:0:3::11/64

interface TenGigE0/3/0/3
  bandwidth 5000000
  ipv4 address 11.11.14.11 255.255.255.0
  ipv6 address 11:11:0:4::11/64

interface TenGigE0/3/0/4
  bandwidth 4000000
  ipv4 address 11.11.15.11 255.255.255.0
  ipv6 address 11:11:0:5::11/64

interface TenGigE0/3/0/5
  bandwidth 3000000
  ipv4 address 11.11.16.11 255.255.255.0
  ipv6 address 11:11:0:6::11/64

interface TenGigE0/3/0/6
  bandwidth 2000000
  ipv4 address 11.11.17.11 255.255.255.0
  ipv6 address 11:11:0:7::11/64

interface TenGigE0/3/0/7
  bandwidth 1000000
  ipv4 address 11.11.18.11 255.255.255.0
  ipv6 address 11:11:0:8::11/64

interface TenGigE0/4/0/0
  description CONNECTED TO IXIA 1/3
  transceiver permit pid all

interface TenGigE0/4/0/2
  ipv4 address 9.9.9.9 255.255.0.0
  ipv6 address 9:9::9/64
  ipv6 enable

route-policy pass-all
  pass
```
end-policy
!
routing static
 address-family ipv4 unicast
 202.153.144.0/24 8.43.0.1
 !
router bgp 100
 bgp router-id 20.20.20.20
 address-family ipv4 unicast
 maximum-paths eibgp 8
 redistribute connected
 !
neighbor 11.11.11.12
 remote-as 200
 dmz-link-bandwidth
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
 !
neighbor 11.11.12.12
 remote-as 200
 dmz-link-bandwidth
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
 !
neighbor 11.11.13.12
 remote-as 200
 dmz-link-bandwidth
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
 !
neighbor 11.11.14.12
 remote-as 200
 dmz-link-bandwidth
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
 !
neighbor 11.11.15.12
 remote-as 200
 dmz-link-bandwidth
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
 !
neighbor 11.11.16.12
 remote-as 200
 dmz-link-bandwidth
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
 !
neighbor 11.11.17.12
 remote-as 200
 dmz-link-bandwidth
DMZ Link Bandwidth for Unequal Cost Recursive Load Balancing

The demilitarized zone (DMZ) link bandwidth for unequal cost recursive load balancing feature provides support for unequal cost load balancing for recursive prefixes on local node using DMZ link bandwidth. Use the dmz-link-bandwidth command in BGP neighbor configuration mode and the bandwidth command in interface configuration mode to achieve the unequal load balance.

When the PE router includes the link bandwidth extended community in its updates to the remote PE through the Multiprotocol Interior BGP (MP-iBGP) session (either IPv4 or VPNv4), the remote PE automatically does load balancing if the maximum-paths command is enabled.

Note
Unequal cost recursive load balancing happens across maximum eight paths only.

Enable BGP Unequal Cost Recursive Load Balancing

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp as-number</td>
<td>Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# router bgp 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>address-family { ipv4</td>
<td>ipv6 } unicast</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast</td>
<td>To see a list of all the possible keywords and arguments for this command, use the CLI help (?).</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>maximum-paths { ebgp</td>
<td>ibgp</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• ebgp maximum : Consider only eBGP paths for multipath.</td>
</tr>
<tr>
<td></td>
<td>RP/O/RP0/CPU0:router(config-bgp-af)# maximum-paths ebgp 3</td>
<td>• ibgp maximum [unequal-cost]: Consider load balancing between iBGP learned paths.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• eibgp maximum : Consider both eBGP and iBGP learned paths for load balancing. eBGP load balancing always does unequal-cost load balancing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When eBGP is applied, eBGP or iBGP load balancing cannot be configured; however, eBGP and iBGP load balancing can coexist.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/O/RP0/CPU0:router(config-bgp-af)# exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>neighbor ip-address</td>
<td>Configures a CE neighbor. The ip-address argument must be a private address.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/O/RP0/CPU0:router(config-bgp)# neighbor 10.0.0.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dmz-link-bandwidth</td>
<td>Originates a demilitarized-zone (DMZ) link-bandwidth extended community for the link to an eBGP/iBGP neighbor.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/O/RP0/CPU0:router(config-bgp-nbr)# dmz-link-bandwidth</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

BGP Unequal Cost Recursive Load Balancing: Example

This is a sample configuration for unequal cost recursive load balancing:

interface Loopback0
 ipv4 address 20.20.20.20 255.255.255.255
!
interface MgmtEth0/RSP0/CPU0/0
 ipv4 address 8.43.0.10 255.255.255.0
!
interface TenGigE0/3/0/0
 bandwidth 8000000
ipv4 address 11.11.11.11 255.255.255.0
ipv6 address 11:11:0:1::11/64

interface TenGigE0/3/0/1
bandwidth 7000000
ipv4 address 11.11.12.11 255.255.255.0
ipv6 address 11:11:0:2::11/64

interface TenGigE0/3/0/2
bandwidth 6000000
ipv4 address 11.11.13.11 255.255.255.0
ipv6 address 11:11:0:3::11/64

interface TenGigE0/3/0/3
bandwidth 5000000
ipv4 address 11.11.14.11 255.255.255.0
ipv6 address 11:11:0:4::11/64

interface TenGigE0/3/0/4
bandwidth 4000000
ipv4 address 11.11.15.11 255.255.255.0
ipv6 address 11:11:0:5::11/64

interface TenGigE0/3/0/5
bandwidth 3000000
ipv4 address 11.11.16.11 255.255.255.0
ipv6 address 11:11:0:6::11/64

interface TenGigE0/3/0/6
bandwidth 2000000
ipv4 address 11.11.17.11 255.255.255.0
ipv6 address 11:11:0:7::11/64

interface TenGigE0/3/0/7
bandwidth 1000000
ipv4 address 11.11.18.11 255.255.255.0
ipv6 address 11:11:0:8::11/64

interface TenGigE0/4/0/0
description CONNECTED TO IXIA 1/3
transceiver permit pid all

interface TenGigE0/4/0/2
ipv4 address 9.9.9.9 255.255.255.0
ipv6 address 9:9::/64
ipv6 enable

route-policy pass-all
pass
end-policy

router static
 address-family ipv4 unicast
 202.153.144.0/24 8.43.0.1

router bgp 100
 bgp router-id 20.20.20.20
 address-family ipv4 unicast
 maximum-paths eibgp 8
 redistribute connected

neighbor 11.11.11.12
 remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
!
neighbor 11.11.12.12
 remote-as 200
dmz-link-bandwidth
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
!
neighbor 11.11.13.12
 remote-as 200
dmz-link-bandwidth
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
!
neighbor 11.11.14.12
 remote-as 200
dmz-link-bandwidth
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
!
neighbor 11.11.15.12
 remote-as 200
dmz-link-bandwidth
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
!
neighbor 11.11.16.12
 remote-as 200
dmz-link-bandwidth
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
!
neighbor 11.11.17.12
 remote-as 200
dmz-link-bandwidth
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
!
neighbor 11.11.18.12
 remote-as 200
dmz-link-bandwidth
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
!
end
DMZ Link Bandwidth Over EBGP Peer

The demilitarized zone (DMZ) link bandwidth extended community is an optional non-transitive attribute; therefore, it is not advertised to eBGP peers by default but it is advertised only to iBGP peers. This extended community is meant for load balancing over multi-paths. However, Cisco IOS-XR enables advertising of the DMZ link bandwidth to an eBGP peer, or receiving the DMZ link bandwidth by an eBGP peer. This feature also gives the user the option to send the bandwidth unchanged, or take the accumulated bandwidth over all the egress links and advertise that to the upstream eBGP peer.

Use the `ebgp-send-community-dmz` command to send the community to eBGP peers. By default, the link bandwidth extended-community attribute associated with the best path is sent.

When the `cumulative` keyword is used, the value of the link bandwidth extended community is set to the sum of link bandwidth values of all the egress-multipaths. If the DMZ link bandwidth value of the multipaths is unknown, for instance, some paths do not have that attribute, then unequal cost load-balancing is not done at that node. However, the sum of the known DMZ link bandwidth values is calculated and sent to the eBGP peer.

Use the `ebgp-receive-community-dmz` command to receive the community from eBGP peers.

Note

The `ebgp-send-community-dmz` and `ebgp-receive-community-dmz` commands can be configured in the neighbor, neighbour-group, and session-group configuration mode.

Use the `bgp bestpath as-path multipath-relax` and `bgp bestpath as-path ignore` commands to handle multipath across different autonomous systems.

Sending and Receiving DMZ Link Bandwidth Extended Community over eBGP Peer

Procedure

1. **Step 1**
 - `configure`

2. **Step 2**
 - `router bgp as-number`

 Example:

   ```
   RP/0/RP0/CPU0:router(config)# router bgp 100
   ```

 Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

3. **Step 3**
 - `neighbor ip-address`

 Example:

   ```
   RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.1.1.1
   ```

 Enters the neighbor configuration mode for configuring BGP routing sessions.

4. **Step 4**
 - `ebgp-send-extcommunity-dmz ip-address`

 Example:

   ```
   RP/0/RP0/CPU0:router(config-bgp)# ebgp-send-extcommunity-dmz
   ```
Sends the DMZ link bandwidth extended community to the eBGP neighbor.

Note Use the **cumulative** keyword with this command to set the value of the link bandwidth extended community to the sum of link bandwidth values of all the egress multipaths.

Step 5
`exit ip-address`

Example:
```
RP/0/RP0/CPU0:router(config-bgp-nbr)# exit
```
Exits the neighbor configuration mode and enters into BGP configuration mode.

Step 6
`neighbor ip-address`

Example:
```
RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.16.0.1
```
Enters the neighbor configuration mode for configuring BGP routing sessions.

Step 7
`ebgp-recv-extcommunity-dmz`

Example:
```
RP/0/RP0/CPU0:router(config-bgp-nbr)# ebgp-recv-extcommunity-dmz
```
Receives the DMZ link bandwidth extended community to the eBGP neighbor.

Step 8
`exit ip-address`

Example:
```
RP/0/RP0/CPU0:router(config-bgp-nbr)# exit
```
Exits the neighbor configuration mode and enters into BGP configuration mode.

DMZ Link Bandwidth: Example

The following examples shows how Router R1 sends DMZ link bandwidth extended communities to Router R2 over eBGP peer connection:

R1: sending router
```
neighbour 10.3.3.3  
  remote-as 2  
  ebgp-send-extcommunity-dmz  
  address-family ipv4 unicast  
  route-policy pass in  
  route-policy pass out
```

R2: Receiving router
```
neighbor 192.0.2.1  
  remote-as 3  
  ebgp-recv-extcommunity-dmz  
  address-family ipv4 unicast  
  route-policy pass in
```
The following is a sample configuration that displays the DMZ link bandwidth configuration in the sending (R1) router:

```
RP/0/RP0/CPU0:router) # show bgp ipv4 unicast 10.1.1.1/32 detail
```

Path #1: Received by speaker 0
 Flags: 0x4000000001040003, import: 0x20
 Advertised to update-groups (with more than one peer):
 0.4
 Advertised to peers (in unique update groups):
 20.0.0.1
 3
 11.1.0.2 from 11.1.0.2 (11.1.0.2)
 Origin incomplete, metric 20, localpref 100, valid, external, best, group-best
 Received Path ID 0, Local Path ID 0, version 21
 Extended community: LB:3:192
 Origin-AS validity: not-found

The following is a sample configuration that displays DMZ link bandwidth configuration in the receiving (R2) router:

```
RP/0/RP0/CPU0:router) # show bgp ipv4 unicast 10.1.1.1/32 detail
```

Paths: (1 available, best #1)
 Not advertised to any peer
 Path #1: Received by speaker 0
 Not advertised to any peer
 1 3
 20.0.0.2 from 20.0.0.2 (10.0.0.81)
 Origin incomplete, localpref 100, valid, external, best, group-best
 Received Path ID 0, Local Path ID 0, version 17
 Extended community: LB:1:192
 Origin-AS validity: not-found

BGP Prefix Origin Validation using RPKI

A BGP route associates an address prefix with a set of autonomous systems (AS) that identify the interdomain path the prefix has traversed in the form of BGP announcements. This set is represented as the AS_PATH attribute in BGP and starts with the AS that originated the prefix.

To help reduce well-known threats against BGP including prefix mis-announcing and monkey-in-the-middle attacks, one of the security requirements is the ability to validate the origination AS of BGP routes. The AS number claiming to originate an address prefix (as derived from the AS_PATH attribute of the BGP route) needs to be verified and authorized by the prefix holder.

The Resource Public Key Infrastructure (RPKI) is an approach to build a formally verifiable database of IP addresses and AS numbers as resources. The RPKI is a globally distributed database containing, among other things, information mapping BGP (internet) prefixes to their authorized origin-AS numbers. Routers running BGP can connect to the RPKI to validate the origin-AS of BGP paths.
Configure RPKI Cache-server

Perform this task to configure Resource Public Key Infrastructure (RPKI) cache-server parameters.

Configure the RPKI cache-server parameters in rpki-server configuration mode. Use the `rpki server` command in router BGP configuration mode to enter into the rpki-server configuration mode

Procedure

Step 1
`configure`

Step 2
`router bgp as-number`

Example:
RP/0/RP0/CPU0:router(config)#router bgp 100

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3
`rpki cache {host-name | ip-address}`

Example:
RP/0/RP0/CPU0:router(config-bgp)#rpki server 10.2.3.4

Enters rpki-server configuration mode and enables configuration of RPKI cache parameters.

Step 4
Use one of these commands:

- `transport ssh port port_number`
- `transport tcp port port_number`

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#transport ssh port 22

Or
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#transport tcp port 2

Specifies a transport method for the RPKI cache.

- `ssh`—Select `ssh` to connect to the RPKI cache using SSH.
- `tcp`—Select `tcp` to connect to the RPKI cache using TCP (unencrypted).
- `port port_number`—Specify a port number for the specified RPKI cache transport. For tcp, the range of supported port number is 1 to 65535. For ssh, use port number 22.

Note
- Do not specify a custom port number for RPKI cache transport over SSH. You must use port 22 for RPKI over SSH.
- You can set the transport to either TCP or SSH. Change of transport causes the cache session to flap.

Step 5
(Optional) `username user_name`

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#username ssh_rpki_cache
Specifies a (SSH) username for the RPKI cache-server.

Step 6
(Optional) **password**

Example:
```
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#password ssh_rpki_pass
```

Specifies a (SSH) password for the RPKI cache-server.

Note The “username” and “password” configurations only apply if the SSH method of transport is active.

Step 7
preference preference_value

Example:
```
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#preference 1
```

Specifies a preference value for the RPKI cache. Range for the preference value is 1 to 10. Setting a lower preference value is better.

Step 8
purge-time time

Example:
```
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#purge-time 30
```

Configures the time BGP waits to keep routes from a cache after the cache session drops. Set purge time in seconds. Range for the purge time is 30 to 360 seconds.

Step 9
Use one of these commands.

- **refresh-time** time
- **refresh-time** off

Example:
```
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#refresh-time 20
```

Or
```
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#refresh-time off
```

Configures the time BGP waits in between sending periodic serial queries to the cache. Set refresh-time in seconds. Range for the refresh time is 15 to 3600 seconds.

Configure the **off** option to specify not to send serial-queries periodically.

Step 10
Use one these commands.

- **response-time** time
- **response-time** off

Example:
```
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#response-time 30
```

Or
```
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#response-time off
```

Configures the time BGP waits for a response after sending a serial or reset query. Set response-time in seconds. Range for the response time is 15 to 3600 seconds.

Configure the **off** option to wait indefinitely for a response.
Step 11 shutdown

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#shutdown

Configures shut down of the RPKI cache.

Step 12 commit

Configure BGP Prefix Validation

Starting from Release 6.5.1, RPKI is disabled by default. From Release 6.5.1, use the following task to configure RPKI Prefix Validation.

Router(config)# router bgp 100
/* The bgp origin-as validation time and bgp origin-as validity signal ibgp commands are optional. */.
Router(config-bgp)# bgp origin-as validation time 50
Router(config-bgp)# bgp origin-as validation time off
Router(config-bgp)# bgp origin-as validation signal ibgp
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# bgp origin-as validation enable

Use the following commands to verify the origin-as validation configuration:

Router# show bgp origin-as validity

Thu Mar 14 04:18:09.656 PDT
BGP router identifier 10.1.1.1, local AS number 1
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0xe0000000 RD version: 514
BGP main routing table version 514
BGP NSR Initial initsync version 2 (Reached)
BGP NSR/ISSU Sync-Group versions 0/0
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Origin-AS validation codes: V valid, I invalid, N not-found, D disabled

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 209.165.200.223/27</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>*> 209.165.200.225/27</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>*> 19.1.2.0/24</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>*> 19.1.3.0/24</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>*> 10.1.2.0/24</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>*> 10.1.3.0/24</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>*> 10.1.4.0/24</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>*> 198.51.100.1/24</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>*> 203.0.113.235/24</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
Configure RPKI Bestpath Computation

Perform this task to configure RPKI bestpath computation options.

Procedure

Step 1 configure

Step 2 router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)#router bgp 100

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3 rpki bestpath use origin-as validity

Example:
RP/0/RP0/CPU0:router(config-bgp)#rpki bestpath use origin-as validity

Enables the validity states of BGP paths to affect the path's preference in the BGP bestpath process. This configuration can also be done in router BGP address family submode.

Step 4 rpki bestpath origin-as allow invalid

Example:
RP/0/RP0/CPU0:router(config-bgp)#rpki bestpath origin-as allow invalid

Allows all "invalid" paths to be considered for BGP bestpath computation.
This configuration can also be done at global address family, neighbor, and neighbor address family submodes. Configuring rpki bestpath origin-as allow invalid in router BGP and address family submodes allow all "invalid" paths to be considered for BGP bestpath computation. By default, all such paths are not bestpath candidates. Configuring pki bestpath origin-as allow invalid in neighbor and neighbor address family submodes allow all "invalid" paths from that specific neighbor or neighbor address family to be considered as bestpath candidates. The neighbor must be an eBGP neighbor.

This configuration takes effect only when the `rpki bestpath use origin-as validity` configuration is enabled.

Resilient Per-CE Label Allocation Mode

The Resilient Per-CE Label Allocation is an extension of the Per-CE label allocation mode to support Prefix Independent Convergence (PIC) and load balancing. At present, the three label allocation modes, Per-Prefix, Per-CE, and Per-VRF have these restrictions:
- No support for ASR 9000 Ethernet Line Card and A9K-SIP-700
- No support for PIC
- No support for load balancing across CEs
- Temporary forwarding loop during local traffic diversion to support PIC
- No support for EIBGP multipath load balancing
- Forwarding performance impact
- Per-prefix label allocation mode causes scale issues on another vendor router in a network

In the Resilient Per-CE label allocation scheme, BGP installs a unique rewrite label in LSD for every unique set of CE paths or next hops. There may be one or more prefixes in BGP table that points to this label. BGP also installs the CE paths (primary) and optionally a backup PE path into RIB. FIB learns about the label rewrite information from LSD and the IP paths from RIB. In steady state, labeled traffic destined to the resilient per-CE label is load balanced across all the CE next hops. When all the CE paths fail, any traffic destined to that label will result in an IP lookup and will be forwarded towards the backup PE path, if available. This action is performed on the label independently of the number of prefixes that may point to the label, resulting in the PIC behavior during primary paths failure.

Configure Resilient Per-CE Label Allocation Mode Under VRF Address Family

Perform this task to configure resilient per-ce label allocation mode under VRF address family.

Procedure

Step 1

Configure

Example:
Step 2 router bgp as-number
Example:

```bash
RP/0/RP0/CPU0:router(config)# router bgp 666
RP/0/RP0/CPU0:router(config-bgp)#
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3 vrf vrf-instance
Example:

```bash
RP/0/RP0/CPU0:router(config-bgp)# vrf vrf-pe
RP/0/RP0/CPU0:router(config-bgp-vrf)#
```

Configures a VRF instance.

Step 4 address-family {ipv4 | ipv6} unicast
Example:

```bash
RP/0/RP0/CPU0:router(config-bgp-vrf)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-vrf-af)#
```

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

Step 5 label-mode per-ce
Example:

```bash
RP/0/RP0/CPU0:router(config-bgp-vrf-af)# label-mode per-ce
RP/0/RP0/CPU0:router(config-bgp-vrf-af)#
```

Configures resilient per-ce label allocation mode.

Step 6 Do one of the following:
• end
• commit

Example:

```bash
RP/0/RP0/CPU0:router(config-bgp-vrf-af)# end
```

or

```bash
RP/0/RP0/CPU0:router(config-bgp-vrf-af)# commit
```

Saves configuration changes.

• When you issue the end command, the system prompts you to commit changes:

 Uncommitted changes found, commit them before exiting(yes/no/cancel)?[cancel]:

Configure Resilient Per-CE Label Allocation Mode Using Route-Policy

Perform this task to configure resilient per-CE label allocation mode using a route-policy.

Procedure

Step 1 configure
Example:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)#

Enters global configuration mode.

Step 2 route-policy policy-name
Example:

RP/0/RP0/CPU0:router(config)# route-policy routel
RP/0/RP0/CPU0:router(config-rpl)#

Creates a route policy and enters route policy configuration mode.

Step 3 set label-mode per-ce
Example:

RP/0/RP0/CPU0:router(config-rpl)# set label-mode per-ce
RP/0/RP0/CPU0:router(config-rpl)#

This example shows how to configure resilient per-ce label allocation mode under VRF address family:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# router bgp 666
RP/0/RP0/CPU0:router(config-bgp)# vrf vrf-pe
RP/0/RP0/CPU0:router(config-bgp-vrf)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-vrf-af)# label-mode per-ce
RP/0/RP0/CPU0:router(config-bgp-vrf-af)# end
```
Step 4

Do one of the following:

- `end`
- `commit`

Example:

```
RP/0/RP0/CPU0:router(config-rpl)# end
```

or

```
RP/0/RP0/CPU0:router(config-rpl)# commit
```

Saves configuration changes.

- When you issue the `end` command, the system prompts you to commit changes:

 Uncommitted changes found, commit them before exiting(yes/no/cancel)?[cancel]:

 - Entering `yes` saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.

 - Entering `no` exits the configuration session and returns the router to EXEC mode without committing the configuration changes.

 - Entering `cancel` leaves the router in the current configuration session without exiting or committing the configuration changes.

 - Use the `commit` command to save the configuration changes to the running configuration file and remain within the configuration session.

This example shows how to configure resilient per-ce label allocation mode using a route-policy:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# route-policy route1
RP/0/RP0/CPU0:router(config-rpl)# set label-mode per-ce
RP/0/RP0/CPU0:router(config-rpl)# end
```

BGP VRF Dynamic Route Leaking

The Border Gateway Protocol (BGP) dynamic route leaking feature provides the ability to import routes between the default-vrf (Global VRF) and any other non-default VRF, to provide connectivity between a global and a VPN host. The import process installs the Internet route in a VRF table or a VRF route in the Internet table, providing connectivity.
Directly connected routes cannot be leaked using BGP VRF Dynamic Route Leaking from default VRF to non-default VRF.

The dynamic route leaking is enabled by:

- Importing from default-VRF to non-default-VRF, using the `import from default-vrf route-policy route-policy-name [advertise-as-vpn]` command in VRF address-family configuration mode.

 If the `advertise-as-vpn` option is configured, the paths imported from the default-VRF to the non-default-VRF are advertised to the PEs as well as to the CEs. If the `advertise-as-vpn` option is not configured, the paths imported from the default-VRF to the non-default-VRF are not advertised to the PE. However, the paths are still advertised to the CEs.

- Importing from non-default-VRF to default VRF, using the `export to default-vrf route-policy route-policy-name` command in VRF address-family configuration mode.

A route-policy is mandatory to filter the imported routes. This reduces the risk of unintended import of routes between the Internet table and the VRF tables and the corresponding security issues. There is no hard limit on the number of prefixes that can be imported. The import creates a new prefix in the destination VRF, which increases the total number of prefixes and paths. However, each VRF importing global routes adds workload equivalent to a neighbor receiving the global table. This is true even if the user filters out all but a few prefixes. Hence, importing five to ten VRFs is ideal.

Configure VRF Dynamic Route Leaking

Perform these steps to import routes from default-VRF to non-default VRF or to import routes from non-default VRF to default VRF.

Before you begin

A route-policy is mandatory for configuring dynamic route leaking. Use the `route-policy route-policy-name` command in global configuration mode to configure a route-policy.

Procedure

1. **Step 1** configure
2. **Step 2** vrf vrf_name

 Example:

 RP/0/RSP0/CPU0:PE51 ASR-9010(config)#vrf vrf_1

 Enters VRF configuration mode.

3. **Step 3** address-family {ipv4 | ipv6} unicast

 Example:

 RP/0/RP0/CPU0:router(config-vrf)#address-family ipv6 unicast

 Enters VRF address-family configuration mode.

4. **Step 4** Use one of these options:
VRF Dynamic Route Leaking Configuration: Example

Import Routes from default-VRF to non-default-VRF:

```
vrf vrf_1
  address-family ipv6 unicast
    import from default-vrf route-policy rpl_dynamic_route_import
  !
end
```

Import Routes from non-default-VRF to default-VRF

```
vrf vrf_1
  address-family ipv6 unicast
    export to default-vrf route-policy rpl_dynamic_route_export
  !
end
```

What to do next

These `show bgp` command output displays information from the dynamic route leaking configuration:

- Use the `show bgp prefix` command to display the source RD and the source VRF for imported paths, including the cases when IPv4 or IPv6 unicast prefixes have imported paths.
- Use the `show bgp imported-routes` command to display IPv4 unicast and IPv6 unicast address-families under the default-VRF.
Configuring a VPN Routing and Forwarding Instance in BGP

Layer 3 (virtual private network) VPN can be configured only if there is an available Layer 3 VPN license for the line card slot on which the feature is being configured. If advanced IP license is enabled, 4096 Layer 3 VPN routing and forwarding instances (VRFs) can be configured on an interface. If the infrastructure VRF license is enabled, eight Layer 3 VRFs can be configured on the line card.

The following error message appears if the appropriate licence is not enabled:

RP/0/RP0/CPU0:router#LC/0/0/CPU0:Dec 15 17:57:53.653 : rsi_agent[247]:
%LICENSE-ASR9K_LICENSE-2-INFRA_VRF_NEEDED : 5 VRF(s) are configured without license
A9K-LVRP-LIC in violation of the Software Right To Use Agreement.
This feature may be disabled by the system without the appropriate license.
Contact Cisco to purchase the license immediately to avoid potential service interruption.

Note
An AIP license is not required for configuring L2VPN services.

The following tasks are used to configure a VPN routing and forwarding (VRF) instance in BGP:

Define Virtual Routing and Forwarding Tables in Provider Edge Routers

Perform this task to define the VPN routing and forwarding (VRF) tables in the provider edge (PE) routers.

Procedure

Step 1 configure
Step 2 vrf vrf-name

Example:

RP/0/RP0/CPU0:router(config)# vrf vrf_pe

Configures a VRF instance.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-vrf)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.
To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 maximum prefix maximum [threshold]

Example:

RP/0/RP0/CPU0:router(config-vrf#af)# maximum prefix 2300

Configures a limit to the number of prefixes allowed in a VRF table.
A maximum number of routes is applicable to dynamic routing protocols as well as static or connected routes. You can specify a threshold percentage of the prefix limit using the mid-threshold argument.

Step 5 import route-policy
Example:

```
RP/0/RP0/CPU0:router(config-vrf-af)# import route-policy policy_a
```

(Optional) Provides finer control over what is imported into a VRF. This import filter discards prefixes that do not match the specified policy-name argument.

Step 6 import route-target [as-number : nn | ip-address : nn]

Example:

```
RP/0/RP0/CPU0:router(config-vrf-af)# import route-target 234:222
```

Specifies a list of route target (RT) extended communities. Only prefixes that are associated with the specified import route target extended communities are imported into the VRF.

Step 7 export route-policy
Example:

```
RP/0/RP0/CPU0:router(config-vrf-af)# export route-policy policy_b
```

(Optional) Provides finer control over what gets exported into a VRF. This export filter discards prefixes that do not match the specified policy-name argument.

Step 8 export route-target [as-number : nn | ip-address : nn]

Example:

```
RP/0/RP0/CPU0:router(config-vrf-af)# export route-target 123;234
```

Specifies a list of route target extended communities. Export route target communities are associated with prefixes when they are advertised to remote PEs. The remote PEs import them into VRFs which have import RTs that match these exported route target communities.

Step 9 commit

Configure Route Distinguisher

The route distinguisher (RD) makes prefixes unique across multiple VPN routing and forwarding (VRF) instances.

In the L3VPN multipath same route distinguisher (RD) environment, the determination of whether to install a prefix in RIB or not is based on the prefix’s bestpath. In a rare misconfiguration situation, where the best path is not a valid path to be installed in RIB, BGP drops the prefix and does not consider the other paths. The behavior is different for different RD setup, where the non-best multipath will be installed if the best multipath is invalid to be installed in RIB.

Perform this task to configure the RD.
Configure Route Distinguisher

Procedure

Step 1 configure

Step 2 router bgp *as-number*

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 120
```

Enters BGP configuration mode allowing you to configure the BGP routing process.

Step 3 bgp router-id *ip-address*

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# bgp router-id 10.0.0.0
```

Configures a fixed router ID for the BGP-speaking router.

Step 4 vrf *vrf-name*

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# vrf vrf_pe
```

Configures a VRF instance.

Step 5 rd *{ as-number : nn | ip-address : nn | auto }*

Example:

```
RP/0/RP0/CPU0:router(config-bgp-vrf)# rd 345:567
```

Configures the route distinguisher.

Use the **auto** keyword if you want the router to automatically assign a unique RD to the VRF.

Automatic assignment of RDs is possible only if a router ID is configured using the **bgp router-id** command in router configuration mode. This allows you to configure a globally unique router ID that can be used for automatic RD generation. The router ID for the VRF does not need to be globally unique, and using the VRF router ID would be incorrect for automatic RD generation. Having a single router ID also helps in checkpointing RD information for BGP graceful restart, because it is expected to be stable across reboots.

Step 6 Do one of the following:

- **end**
- **commit**

Example:

```
RP/0/RP0/CPU0:router(config-bgp-vrf)# end
```

or

```
RP/0/RP0/CPU0:router(config-bgp-vrf)# commit
```

Saves configuration changes.

- When you issue the **end** command, the system prompts you to commit changes:
Configure PE-PE or PE-RR Interior BGP Sessions

To enable BGP to carry VPN reachability information between provider edge (PE) routers you must configure the PE-PE interior BGP (iBGP) sessions. A PE uses VPN information carried from the remote PE router to determine VPN connectivity and the label value to be used so the remote (egress) router can demultiplex the packet to the correct VPN during packet forwarding.

The PE-PE, PE-router reflector (RR) iBGP sessions are defined to all PE and RR routers that participate in the VPNs configured in the PE router.

Perform this task to configure PE-PE iBGP sessions and to configure global VPN options on a PE.

Procedure

Step 1 configure
Step 2 router bgp as-number
Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3 address-family vpn4 unicast
Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family vpn4 unicast

Enters VPN address family configuration mode.

Step 4 exit
Example:

RP/0/RP0/CPU0:router(config-bgp-af)# exit
Exits the current configuration mode.

Step 5

`neighbor ip-address`

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.16.1.1
```

Configures a PE iBGP neighbor.

Step 6

`remote-as as-number`

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 1
```

Assigns the neighbor a remote autonomous system number.

Step 7

`description text`

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr)# description neighbor 172.16.1.1
```

(Optional) Provides a description of the neighbor. The description is used to save comments and does not affect software function.

Step 8

`password { clear | encrypted } password`

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr)# password encrypted 123abc
```

Enables Message Digest 5 (MD5) authentication on the TCP connection between the two BGP neighbors.

Step 9

`shutdown`

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr)# shutdown
```

Terminates any active sessions for the specified neighbor and removes all associated routing information.

Step 10

`timers keepalive hold-time`

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr)# timers 12000 200
```

Set the timers for the BGP neighbor.

Step 11

`update-source type interface-id`

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr)# update-source gigabitEthernet 0/1/5/0
```

Allows iBGP sessions to use the primary IP address from a specific interface as the local address when forming an iBGP session with a neighbor.

Step 12

`address-family vpnv4 unicast`
Configure BGP as PE-CE Protocol

Perform this task to configure BGP on the PE and establish PE-CE communication using BGP.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp as-number</td>
<td>Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router bgp 120</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>vrf vrf-name</td>
<td>Enables BGP routing for a particular VRF on the PE router.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-bgp)# vrf vrf_pe_2</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>bgp router-id ip-address</td>
<td>Configures a fixed router ID for a BGP-speaking router.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-bgp-vrf)# bgp router-id 172.16.9.9</td>
<td></td>
</tr>
</tbody>
</table>
Step 5

Command or Action:

| label-allocation-mode | per-ce |

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf)#

| label-allocation-mode | per-ce |

Purpose:

- Configures The **per-ce** keyword configures the per-CE label allocation mode to avoid an extra lookup on the PE router and conserve label space (per-prefix is the default label allocation mode). In this mode, the PE router allocates one label for every immediate next-hop (in most cases, this would be a CE router). This label is directly mapped to the next hop, so there is no VRF route lookup performed during data forwarding. However, the number of labels allocated would be one for each CE rather than one for each VRF. Because BGP knows all the next hops, it assigns a label for each next hop (not for each PE-CE interface). When the outgoing interface is a multiaccess interface and the media access control (MAC) address of the neighbor is not known, Address Resolution Protocol (ARP) is triggered during packet forwarding.

- The **per-vrf** keyword configures the same label to be used for all the routes advertised from a unique VRF.

Step 6

Command or Action:

| address-family { ipv4 | ipv6 } | unicast |

Example:

RP/0/RP0/CPU0:router(config-vrf)#

| address-family ipv4 unicast |

Purpose:

- Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

 - To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 7

Command or Action:

| network { ip-address / prefix-length | ip-address mask } |

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-af)#

| network 172.16.5.5 |

Purpose:

- Originates a network prefix in the address family table in the VRF context.

Step 8

Command or Action:

| aggregate-address address / mask-length |

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-af)#

| aggregate-address 10.0.0.0/24 |

Purpose:

- Configures aggregation in the VRF address family context to summarize routing information to reduce the state maintained in the core. This summarization introduces some inefficiency in the PE edge, because an additional lookup is required to determine the ultimate next hop for a packet. When
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configured, a summary prefix is advertised instead of a set of component prefixes, which are more specifics of the aggregate. The PE advertises only one label for the aggregate. Because component prefixes could have different next hops to CEs, an additional lookup has to be performed during data forwarding.</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-bgp-vrf-af)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>neighbor ip-address</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures a CE neighbor. The ip-address argument must be a private address.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-bgp-vrf)# neighbor 10.0.0.0</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>remote-as as-number</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures the remote AS for the CE neighbor.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-bgp-vrf-nbr)# remote-as 2</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>password { clear</td>
</tr>
<tr>
<td>Example:</td>
<td>Enable Message Digest 5 (MD5) authentication on a TCP connection between two BGP neighbors.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-bgp-vrf-nbr)# password encrypted 234xyz</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>ebgp-multihop [ttl-value]</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures the CE neighbor to accept and attempt BGP connections to external peers residing on networks that are not directly connected.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-bgp-vrf-nbr)# ebgp-multihop 55</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td>• address-family { ipv4</td>
<td>ipv6 } unicast</td>
</tr>
<tr>
<td>• address-family { ipv4</td>
<td>unicast</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode. To see a list of all the possible keywords and arguments for this command, use the CLI help (?).</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-vrf)# address-family ipv4 unicast</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>15</td>
<td><code>site-of-origin</code></td>
</tr>
<tr>
<td></td>
<td>`[as-number : nn</td>
</tr>
<tr>
<td>16</td>
<td><code>as-override</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>RP/0/RP0/CPU0:router(config-bgp-vrf-nbr-af)# as-override</code></td>
</tr>
<tr>
<td>17</td>
<td><code>allowas-in</code></td>
</tr>
<tr>
<td></td>
<td><code>[as-occurrence-number]</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td><code>route-policy</code></td>
</tr>
<tr>
<td></td>
<td><code>route-policy-name in</code></td>
</tr>
<tr>
<td>19</td>
<td><code>route-policy</code></td>
</tr>
<tr>
<td></td>
<td><code>route-policy-name out</code></td>
</tr>
<tr>
<td>20</td>
<td><code>commit</code></td>
</tr>
</tbody>
</table>
Resetting an eBGP Session Immediately Upon Link Failure

By default, if a link goes down, all BGP sessions of any directly adjacent external peers are immediately reset. Use the `bgp fast-external-fallover disable` command to disable automatic resetting. Turn the automatic reset back on using the `no bgp fast-external-fallover disable` command.

eBGP sessions flap when the node reaches 3500 eBGP sessions with BGP timer values set as 10 and 30. To support more than 3500 eBGP sessions, increase the packet rate by using the `lpts pifib hardware police location location-id` command. Following is a sample configuration to increase the eBGP sessions:

```plaintext
RP/0/RP0/CPU0:router#configure
RP/0/RP0/CPU0:router(config)#lpts pifib hardware police location 0/2/CPU0
RP/0/RP0/CPU0:router(config-pifib-policer-per-node)#flow bgp configured rate 4000
RP/0/RP0/CPU0:router(config-pifib-policer-per-node)#flow bgp known rate 4000
RP/0/RP0/CPU0:router(config-pifib-policer-per-node)#flow bgp default rate 4000
RP/0/RP0/CPU0:router(config-pifib-policer-per-node)#commit
```

Information about Implementing BGP

To implement BGP, you need to understand the following concepts:

BGP Router Identifier

For BGP sessions between neighbors to be established, BGP must be assigned a router ID. The router ID is sent to BGP peers in the OPEN message when a BGP session is established.

BGP attempts to obtain a router ID in the following ways (in order of preference):

- By means of the address configured using the `bgp router-id` command in router configuration mode.
- By using the highest IPv4 address on a loopback interface in the system if the router is booted with saved loopback address configuration.
- By using the primary IPv4 address of the first loopback address that gets configured if there are not any in the saved configuration.

If none of these methods for obtaining a router ID succeeds, BGP does not have a router ID and cannot establish any peering sessions with BGP neighbors. In such an instance, an error message is entered in the system log, and the `show bgp summary` command displays a router ID of 0.0.0.0. After BGP has obtained a router ID, it continues to use it even if a better router ID becomes available. This usage avoids unnecessary flapping for all BGP sessions. However, if the router ID currently in use becomes invalid (because the interface goes down or its configuration is changed), BGP selects a new router ID (using the rules described) and all established peering sessions are reset.

Note

We strongly recommend that the `bgp router-id` command is configured to prevent unnecessary changes to the router ID (and consequent flapping of BGP sessions).
BGP Default Limits

BGP imposes maximum limits on the number of neighbors that can be configured on the router and on the maximum number of prefixes that are accepted from a peer for a given address family. This limitation safeguards the router from resource depletion caused by misconfiguration, either locally or on the remote neighbor. The following limits apply to BGP configurations:

- The default maximum number of peers that can be configured is 4000. The default can be changed using the `bgp maximum neighbor` command. The limit range is 1 to 15000. Any attempt to configure additional peers beyond the maximum limit or set the maximum limit to a number that is less than the number of peers currently configured will fail.

- To prevent a peer from flooding BGP with advertisements, a limit is placed on the number of prefixes that are accepted from a peer for each supported address family. The default limits can be overridden through configuration of the maximum-prefix `limit` command for the peer for the appropriate address family. The following default limits are used if the user does not configure the maximum number of prefixes for the address family:
 - 512K (524,288) prefixes for IPv4 unicast
 - 128K (131,072) prefixes for IPv6 unicast
 - 512K (524,288) prefixes for VPNv4 unicast

A cease notification message is sent to the neighbor and the peering with the neighbor is terminated when the number of prefixes received from the peer for a given address family exceeds the maximum limit (either set by default or configured by the user) for that address family.

It is possible that the maximum number of prefixes for a neighbor for a given address family has been configured after the peering with the neighbor has been established and a certain number of prefixes have already been received from the neighbor for that address family. A cease notification message is sent to the neighbor and peering with the neighbor is terminated immediately after the configuration if the configured maximum number of prefixes is fewer than the number of prefixes that have already been received from the neighbor for the address family.
BGP Attributes and Operators

This table summarizes the BGP attributes and operators per attach points.

Table 2: BGP Attributes and Operators

<table>
<thead>
<tr>
<th>Attach Point</th>
<th>Attribute</th>
<th>Match</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregation</td>
<td>as-path</td>
<td>in</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is-local length</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>neighbor-is originates-from passes-through unique-length</td>
<td></td>
</tr>
<tr>
<td></td>
<td>as-path-length</td>
<td>is, ge, le, eq</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>as-path-unique-length</td>
<td>is, ge, le, eq</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>community</td>
<td>is-empty</td>
<td>set set additive delete in delete not in delete all</td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-any</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-every</td>
<td></td>
</tr>
<tr>
<td></td>
<td>destination</td>
<td>in</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>extcommunity cost</td>
<td>—</td>
<td>set set additive</td>
</tr>
<tr>
<td></td>
<td>local-preference</td>
<td>is, ge, le, eq</td>
<td>set</td>
</tr>
<tr>
<td></td>
<td>med</td>
<td>is, eg, ge, le</td>
<td>setset +set -</td>
</tr>
<tr>
<td></td>
<td>next-hop</td>
<td>in</td>
<td>set</td>
</tr>
<tr>
<td></td>
<td>origin</td>
<td>is</td>
<td>set</td>
</tr>
<tr>
<td></td>
<td>source</td>
<td>in</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>suppress-route</td>
<td>—</td>
<td>suppress-route</td>
</tr>
<tr>
<td></td>
<td>weight</td>
<td>—</td>
<td>set</td>
</tr>
<tr>
<td>Attach Point</td>
<td>Attribute</td>
<td>Match</td>
<td>Set</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>allocate-label</td>
<td>as-path</td>
<td>in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>is-local</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>length</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>neighbor-is</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>originates-from</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>passes-through</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>unique-length</td>
<td></td>
</tr>
<tr>
<td>as-path-length</td>
<td></td>
<td>is, ge, le, eq</td>
<td></td>
</tr>
<tr>
<td>as-path-unique-length</td>
<td></td>
<td>is, ge, le, eq</td>
<td></td>
</tr>
<tr>
<td>community</td>
<td></td>
<td>is-empty</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-any</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-every</td>
<td></td>
</tr>
<tr>
<td>destination</td>
<td></td>
<td>in</td>
<td></td>
</tr>
<tr>
<td>label</td>
<td></td>
<td></td>
<td>set</td>
</tr>
<tr>
<td>local-preference</td>
<td></td>
<td>is, ge, le, eq</td>
<td></td>
</tr>
<tr>
<td>med</td>
<td></td>
<td>is, eg, ge, le</td>
<td></td>
</tr>
<tr>
<td>next-hop</td>
<td></td>
<td>in</td>
<td></td>
</tr>
<tr>
<td>origin</td>
<td></td>
<td>is</td>
<td></td>
</tr>
<tr>
<td>source</td>
<td></td>
<td>in</td>
<td></td>
</tr>
<tr>
<td>clear-policy</td>
<td>as-path</td>
<td>in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>is-local</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>length</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>neighbor-is</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>originates-from</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>passes-through</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>unique-length</td>
<td></td>
</tr>
<tr>
<td>as-path-length</td>
<td></td>
<td>is, ge, le, eq</td>
<td></td>
</tr>
<tr>
<td>as-path-unique-length</td>
<td></td>
<td>is, ge, le, eq</td>
<td></td>
</tr>
<tr>
<td>Attach Point</td>
<td>Attribute</td>
<td>Match</td>
<td>Set</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>dampening</td>
<td>as-path</td>
<td>in</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is-local length</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>neighbor-is</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>originates-from</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>passes-through</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>unique-length</td>
<td></td>
</tr>
<tr>
<td>as-path-length</td>
<td></td>
<td>is, ge, le, eq</td>
<td>—</td>
</tr>
<tr>
<td>as-path-unique-length</td>
<td></td>
<td>is, ge, le, eq</td>
<td>—</td>
</tr>
<tr>
<td>community</td>
<td></td>
<td>is-empty</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-any</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-every</td>
<td></td>
</tr>
<tr>
<td>dampening</td>
<td>—/</td>
<td>set dampening</td>
<td></td>
</tr>
<tr>
<td>destination</td>
<td>in</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>local-preference</td>
<td></td>
<td>is, ge, le, eq</td>
<td>—</td>
</tr>
<tr>
<td>med</td>
<td>is, eg, ge, le</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>next-hop</td>
<td>in</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>origin</td>
<td>is</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>source</td>
<td>in</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>debug</td>
<td>destination</td>
<td>in</td>
<td>—</td>
</tr>
<tr>
<td>default</td>
<td>originate</td>
<td>med</td>
<td>set dampening</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>set +</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set -</td>
</tr>
<tr>
<td>rib-has-route</td>
<td></td>
<td>in</td>
<td>—</td>
</tr>
<tr>
<td>Attach Point</td>
<td>Attribute</td>
<td>Match</td>
<td>Set</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>neighbor-in</td>
<td>as-path</td>
<td>in</td>
<td>prepend</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is-local length</td>
<td>prepend most-recent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NA</td>
<td>remove as-path private-as</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neighbor-is originates-from passes-through</td>
<td>replace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unique-length</td>
<td></td>
</tr>
<tr>
<td>as-path-length</td>
<td></td>
<td>is, ge, le, eq</td>
<td>—</td>
</tr>
<tr>
<td>as-path-unique-length</td>
<td></td>
<td>is, ge, le, eq</td>
<td>—</td>
</tr>
<tr>
<td>community</td>
<td>community with 'peeras'</td>
<td>is-empty</td>
<td>set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-any</td>
<td>set additive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-every</td>
<td>delete-in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>delete-not-in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>delete-all</td>
</tr>
<tr>
<td>destination</td>
<td></td>
<td>in</td>
<td>—</td>
</tr>
<tr>
<td>extcommunity cost</td>
<td></td>
<td></td>
<td>set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set additive</td>
</tr>
<tr>
<td>extcommunity rt</td>
<td></td>
<td>is-empty</td>
<td>set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-any</td>
<td>additive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-every</td>
<td>delete-in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-within</td>
<td>delete-not-in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>delete-all</td>
</tr>
<tr>
<td>extcommunity soo</td>
<td></td>
<td>is-empty</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-any</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-every</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-within</td>
<td></td>
</tr>
<tr>
<td>local-preference</td>
<td></td>
<td>is, ge, le, eq</td>
<td>set</td>
</tr>
<tr>
<td>med</td>
<td></td>
<td>is, eg, ge, le</td>
<td>set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set +</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set -</td>
</tr>
<tr>
<td>Attach Point</td>
<td>Attribute</td>
<td>Match</td>
<td>Set</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>--------</td>
<td>------------------------</td>
</tr>
<tr>
<td>next-hop</td>
<td>in</td>
<td>set</td>
<td>set peer address</td>
</tr>
<tr>
<td>origin</td>
<td>is</td>
<td>set</td>
<td></td>
</tr>
<tr>
<td>route-aggregated</td>
<td>route-aggregated</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>source</td>
<td>in</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>weight</td>
<td>—</td>
<td>set</td>
<td></td>
</tr>
<tr>
<td>Attach Point</td>
<td>Attribute</td>
<td>Match</td>
<td>Set</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>neighbor-out</td>
<td>as-path</td>
<td>in</td>
<td>prepend</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is-local length</td>
<td>prepend most-recent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>remove as-path private-as</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neighbor-is originates-from passes-through</td>
<td>replace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unique-length</td>
<td></td>
</tr>
<tr>
<td>as-path-length</td>
<td></td>
<td>is, ge, le, eq</td>
<td></td>
</tr>
<tr>
<td>as-path-unique-length</td>
<td></td>
<td>is, ge, le, eq</td>
<td></td>
</tr>
<tr>
<td>community</td>
<td>community with ’peeras’</td>
<td>is-empty</td>
<td>set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-any</td>
<td>set additive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-every</td>
<td>delete-in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>delete-not-in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>delete-all</td>
</tr>
<tr>
<td>destination</td>
<td></td>
<td>in</td>
<td></td>
</tr>
<tr>
<td>extcommunity</td>
<td>cost</td>
<td>—</td>
<td>set</td>
</tr>
<tr>
<td>extcommunity</td>
<td>rt</td>
<td>is-empty</td>
<td>set additive</td>
</tr>
<tr>
<td>extcommunity</td>
<td>soo</td>
<td>is-empty</td>
<td>delete-in</td>
</tr>
<tr>
<td>extcommunity</td>
<td>soo</td>
<td>matches-any</td>
<td>delete-not-in</td>
</tr>
<tr>
<td>extcommunity</td>
<td>soo</td>
<td>matches-every</td>
<td>delete-all</td>
</tr>
<tr>
<td>extcommunity</td>
<td>soo</td>
<td>matches-within</td>
<td></td>
</tr>
<tr>
<td>local-preference</td>
<td></td>
<td>is, ge, le, eq</td>
<td>set</td>
</tr>
<tr>
<td>med</td>
<td></td>
<td>is, ge, le</td>
<td></td>
</tr>
<tr>
<td>Attach Point</td>
<td>Attribute</td>
<td>Match</td>
<td>Set</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set +</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set max-unreachable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set igp-cost</td>
</tr>
<tr>
<td>next-hop</td>
<td>in</td>
<td>set</td>
<td>set self</td>
</tr>
<tr>
<td>origin</td>
<td>is</td>
<td></td>
<td>set</td>
</tr>
<tr>
<td>path-type</td>
<td>is</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>rd</td>
<td>in</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>route-aggregated</td>
<td>route-aggregated</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>source</td>
<td>in</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>unsuppress-route</td>
<td>—</td>
<td>unsuppress-route</td>
<td></td>
</tr>
<tr>
<td>vpn-distinguisher</td>
<td>—</td>
<td></td>
<td>set</td>
</tr>
<tr>
<td>neighbor-orf</td>
<td>orf-prefix</td>
<td>in</td>
<td>n/a</td>
</tr>
<tr>
<td>Attach Point</td>
<td>Attribute</td>
<td>Match</td>
<td>Set</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------</td>
<td>---------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>network</td>
<td>as-path</td>
<td>—</td>
<td>prepend</td>
</tr>
<tr>
<td>community</td>
<td>—</td>
<td>set</td>
<td>set additive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>delete-in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>delete-not-in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>delete-all</td>
</tr>
<tr>
<td>destination</td>
<td>in</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>extcommunity cost</td>
<td>—</td>
<td>set</td>
<td>set additive</td>
</tr>
<tr>
<td>mpls-label</td>
<td>route-has-label</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>local-preference</td>
<td>—</td>
<td>set</td>
<td>—</td>
</tr>
<tr>
<td>med</td>
<td>—</td>
<td>set</td>
<td>set+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set-</td>
</tr>
<tr>
<td>next-hop</td>
<td>in</td>
<td>set</td>
<td>—</td>
</tr>
<tr>
<td>origin</td>
<td>—</td>
<td>set</td>
<td>—</td>
</tr>
<tr>
<td>route-type</td>
<td>is</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>tag</td>
<td>is, ge, le, eq</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>weight</td>
<td>—</td>
<td>set</td>
<td>—</td>
</tr>
<tr>
<td>next-hop</td>
<td>destination</td>
<td>in</td>
<td>—</td>
</tr>
<tr>
<td>protocol</td>
<td>is, in</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>source</td>
<td>in</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Attach Point</td>
<td>Attribute</td>
<td>Match</td>
<td>Set</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------</td>
<td>-------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>redistribute</td>
<td>as-path</td>
<td>—</td>
<td>prepend</td>
</tr>
<tr>
<td></td>
<td>community</td>
<td>—</td>
<td>set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set additive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>delete in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>delete not in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>delete all</td>
</tr>
<tr>
<td></td>
<td>destination</td>
<td>in</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>extcommunity cost</td>
<td>—</td>
<td>setset additive</td>
</tr>
<tr>
<td></td>
<td>local-preference</td>
<td>—</td>
<td>set</td>
</tr>
<tr>
<td></td>
<td>med</td>
<td>—</td>
<td>set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set-</td>
</tr>
<tr>
<td></td>
<td>next-hop</td>
<td>in</td>
<td>set</td>
</tr>
<tr>
<td></td>
<td>origin</td>
<td>—</td>
<td>set</td>
</tr>
<tr>
<td></td>
<td>mpls-label</td>
<td>route-has-label</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>route-type</td>
<td>is</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>tag</td>
<td>is, eq, ge, le</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>weight</td>
<td>—</td>
<td>set</td>
</tr>
<tr>
<td></td>
<td>retain-rt</td>
<td>extcommunity rt</td>
<td>is-empty matches-any matches-every matches-within</td>
</tr>
<tr>
<td>Attach Point</td>
<td>Attribute</td>
<td>Match</td>
<td>Set</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>show</td>
<td>as-path</td>
<td>in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>is-local length</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>neighbor-is-originates-from</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>passes-through unique-length</td>
<td></td>
</tr>
<tr>
<td></td>
<td>as-path-length</td>
<td>is, ge, le, eq</td>
<td></td>
</tr>
<tr>
<td></td>
<td>as-path-unique-length</td>
<td>is, ge, le, eq</td>
<td></td>
</tr>
<tr>
<td></td>
<td>community</td>
<td>is-empty</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-any</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-every</td>
<td></td>
</tr>
<tr>
<td></td>
<td>destination</td>
<td>in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>extcommunity rt</td>
<td>is-empty</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-any</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-every</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-within</td>
<td></td>
</tr>
<tr>
<td></td>
<td>extcommunity soo</td>
<td>is-empty</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-any</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-every</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>matches-within</td>
<td></td>
</tr>
<tr>
<td></td>
<td>med</td>
<td>is, eg, ge, le</td>
<td></td>
</tr>
<tr>
<td></td>
<td>next-hop</td>
<td>in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>origin</td>
<td>is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>source</td>
<td>in</td>
<td></td>
</tr>
</tbody>
</table>

Some BGP route attributes are inaccessible from some BGP attach points for various reasons. For example, the `set med igp-cost only` command makes sense when there is a configured igp-cost to provide a source value.
This table summarizes which operations are valid and where they are valid.

Table 3: Restricted BGP Operations by Attach Point

<table>
<thead>
<tr>
<th>Command</th>
<th>import</th>
<th>export</th>
<th>aggregation</th>
<th>redistribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>prepend as-path most-recent</td>
<td>eBGP</td>
<td>eBGP</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>replace as-path</td>
<td>eBGP</td>
<td>eBGP</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>set med igp-cost</td>
<td>forbidden</td>
<td>eBGP</td>
<td>forbidden</td>
<td>forbidden</td>
</tr>
<tr>
<td>set weight</td>
<td>n/a</td>
<td>forbidden</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>suppress</td>
<td>forbidden</td>
<td>forbidden</td>
<td>n/a</td>
<td>forbidden</td>
</tr>
</tbody>
</table>

BGP Best Path Algorithm

BGP routers typically receive multiple paths to the same destination. The BGP best-path algorithm determines the best path to install in the IP routing table and to use for forwarding traffic. This section describes the Cisco IOS XR software implementation of BGP best-path algorithm, as specified in Section 9.1 of the Internet Engineering Task Force (IETF) Network Working Group draft-ietf-idr-bgp4-24.txt document.

The BGP best-path algorithm implementation is in three parts:

- Part 1—Compares two paths to determine which is better.
- Part 2—Iterates over all paths and determines which order to compare the paths to select the overall best path.
- Part 3—Determines whether the old and new best paths differ enough so that the new best path should be used.

Note

The order of comparison determined by Part 2 is important because the comparison operation is not transitive; that is, if three paths, A, B, and C exist, such that when A and B are compared, A is better, and when B and C are compared, B is better, it is not necessarily the case that when A and C are compared, A is better. This nontransitivity arises because the multi exit discriminator (MED) is compared only among paths from the same neighboring autonomous system (AS) and not among all paths.

Comparing Pairs of Paths

Perform the following steps to compare two paths and determine the better path:

1. If either path is invalid (for example, a path has the maximum possible MED value or it has an unreachable next hop), then the other path is chosen (provided that the path is valid).
2. If the paths have unequal pre-bestpath cost communities, the path with the lower pre-bestpath cost community is selected as the best path.
3. If the paths have unequal weights, the path with the highest weight is chosen.

Note
The weight is entirely local to the router, and can be set with the `weight` command or using a routing policy.

4. If the paths have unequal local preferences, the path with the higher local preference is chosen.

Note
If a local preference attribute was received with the path or was set by a routing policy, then that value is used in this comparison. Otherwise, the default local preference value of 100 is used. The default value can be changed using the `bgp default local-preference` command.

5. If one of the paths is a redistributed path, which results from a `redistribute` or `network` command, then it is chosen. Otherwise, if one of the paths is a locally generated aggregate, which results from an `aggregate-address` command, it is chosen.

Note
Step 1 through Step 4 implement the “Path Selection with BGP” of RFC 1268.

6. If the paths have unequal AS path lengths, the path with the shorter AS path is chosen. This step is skipped if `bgp bestpath as-path ignore` command is configured.

Note
When calculating the length of the AS path, confederation segments are ignored, and AS sets count as 1.

Note
ciBGP specifies internal and external BGP multipath peers. ciBGP allows simultaneous use of internal and external paths.

7. If the paths have different origins, the path with the lower origin is selected. Interior Gateway Protocol (IGP) is considered lower than EGP, which is considered lower than INCOMPLETE.

8. If appropriate, the MED of the paths is compared. If they are unequal, the path with the lower MED is chosen.

A number of configuration options exist that affect whether or not this step is performed. In general, the MED is compared if both paths were received from neighbors in the same AS; otherwise, the MED comparison is skipped. However, this behavior is modified by certain configuration options, and there are also some corner cases to consider.

If the `bgp bestpath med always` command is configured, then the MED comparison is always performed, regardless of neighbor AS in the paths. Otherwise, MED comparison depends on the AS paths of the two paths being compared, as follows:

- If a path has no AS path or the AS path starts with an AS_SET, then the path is considered to be internal, and the MED is compared with other internal paths.
If the AS path starts with an AS_SEQUENCE, then the neighbor AS is the first AS number in the sequence, and the MED is compared with other paths that have the same neighbor AS.

If the AS path contains only confederation segments or starts with confederation segments followed by an AS_SET, then the MED is not compared with any other path unless the `bgp bestpath med confed` command is configured. In that case, the path is considered internal and the MED is compared with other internal paths.

If the AS path starts with confederation segments followed by an AS_SEQUENCE, then the neighbor AS is the first AS number in the AS_SEQUENCE, and the MED is compared with other paths that have the same neighbor AS.

If no MED attribute was received with the path, then the MED is considered to be 0 unless the `bgp bestpath med missing-as-worst` command is configured. In that case, if no MED attribute was received, the MED is considered to be the highest possible value.

9. If one path is received from an external peer and the other is received from an internal (or confederation) peer, the path from the external peer is chosen.

10. If the paths have different IGP metrics to their next hops, the path with the lower IGP metric is chosen.

11. If the paths have unequal IP cost communities, the path with the lower IP cost community is selected as the best path.

12. If all path parameters in Step 1 through Step 10 are the same, then the router IDs are compared. If the path was received with an originator attribute, then that is used as the router ID to compare; otherwise, the router ID of the neighbor from which the path was received is used. If the paths have different router IDs, the path with the lower router ID is chosen.

Where the originator is used as the router ID, it is possible to have two paths with the same router ID. It is also possible to have two BGP sessions with the same peer router, and therefore receive two paths with the same router ID.

13. If the paths have different cluster lengths, the path with the shorter cluster length is selected. If a path was not received with a cluster list attribute, it is considered to have a cluster length of 0.

14. Finally, the path received from the neighbor with the lower IP address is chosen. Locally generated paths (for example, redistributed paths) are considered to have a neighbor IP address of 0.

Order of Comparisons

The second part of the BGP best-path algorithm implementation determines the order in which the paths should be compared. The order of comparison is determined as follows:

1. The paths are partitioned into groups such that within each group the MED can be compared among all paths. The same rules as in Comparing Pairs of Paths, on page 127 are used to determine whether MED can be compared between any two paths. Normally, this comparison results in one group for each neighbor AS. If the `bgp bestpath med always` command is configured, then there is just one group containing all the paths.
2. The best path in each group is determined. Determining the best path is achieved by iterating through all paths in the group and keeping track of the best one seen so far. Each path is compared with the best-so-far, and if it is better, it becomes the new best-so-far and is compared with the next path in the group.

3. A set of paths is formed containing the best path selected from each group in Step 2. The overall best path is selected from this set of paths, by iterating through them as in Step 2.

Best Path Change Suppression

The third part of the implementation is to determine whether the best-path change can be suppressed or not—whether the new best path should be used, or continue using the existing best path. The existing best path can continue to be used if the new one is identical to the point at which the best-path selection algorithm becomes arbitrary (if the router-id is the same). Continuing to use the existing best path can avoid churn in the network.

Note

This suppression behavior does not comply with the IETF Networking Working Group draft-ietf-idr-bgp4-24.txt document, but is specified in the IETF Networking Working Group draft-ietf-idr-avoid-transition-00.txt document.

The suppression behavior can be turned off by configuring the `bgp bestpath compare-routerid` command. If this command is configured, the new best path is always preferred to the existing one.

Otherwise, the following steps are used to determine whether the best-path change can be suppressed:

1. If the existing best path is no longer valid, the change cannot be suppressed.
2. If either the existing or new best paths were received from internal (or confederation) peers or were locally generated (for example, by redistribution), then the change cannot be suppressed. That is, suppression is possible only if both paths were received from external peers.
3. If the paths were received from the same peer (the paths would have the same router-id), the change cannot be suppressed. The router ID is calculated using rules in Comparing Pairs of Paths, on page 127.
4. If the paths have different weights, local preferences, origins, or IGP metrics to their next hops, then the change cannot be suppressed. Note that all these values are calculated using the rules in Comparing Pairs of Paths, on page 127.
5. If the paths have different-length AS paths and the `bgp bestpath as-path ignore` command is not configured, then the change cannot be suppressed. Again, the AS path length is calculated using the rules in Comparing Pairs of Paths, on page 127.
6. If the MED of the paths can be compared and the MEDs are different, then the change cannot be suppressed. The decision as to whether the MEDs can be compared is exactly the same as the rules in Comparing Pairs of Paths, on page 127, as is the calculation of the MED value.
7. If all path parameters in Step 1 through Step 6 do not apply, the change can be suppressed.

BGP Update Generation and Update Groups

The BGP Update Groups feature separates BGP update generation from neighbor configuration. The BGP Update Groups feature introduces an algorithm that dynamically calculates BGP update group membership
BGP Functional Overview

based on outbound routing policies. This feature does not require any configuration by the network operator. Update group-based message generation occurs automatically and independently.

BGP Update Group

When a change to the configuration occurs, the router automatically recalculates update group memberships and applies the changes.

For the best optimization of BGP update group generation, we recommend that the network operator keeps outbound routing policy the same for neighbors that have similar outbound policies. This feature contains commands for monitoring BGP update groups.

BGP Cost Community Reference

The cost community attribute is applied to internal routes by configuring the `set extcommunity cost` command in a route policy. The cost community set clause is configured with a cost community ID number (0–255) and cost community number (0–4294967295). The cost community number determines the preference for the path. The path with the lowest cost community number is preferred. Paths that are not specifically configured with the cost community number are assigned a default cost community number of 2147483647 (the midpoint between 0 and 4294967295) and evaluated by the best-path selection process accordingly. When two paths have been configured with the same cost community number, the path selection process prefers the path with the lowest cost community ID. The cost-extended community attribute is propagated to iBGP peers when extended community exchange is enabled.

The following commands include the `route-policy` keyword, which you can use to apply a route policy that is configured with the cost community set clause:

- `aggregate-address`
- `redistribute`
- `network`

BGP Next Hop Reference

Event notifications from the RIB are classified as critical and noncritical. Notifications for critical and noncritical events are sent in separate batches. BGP is notified when any of the following events occurs:

- Next hop becomes unreachable
- Next hop becomes reachable
- Fully recursed IGP metric to the next hop changes
- First hop IP address or first hop interface change
- Next hop becomes connected
- Next hop becomes unconnected
- Next hop becomes a local address
- Next hop becomes a nonlocal address
Reachability and recursed metric events trigger a best-path recalculation.

However, a noncritical event is sent along with the critical events if the noncritical event is pending and there is a request to read the critical events.

- Critical events are related to the reachability (reachable and unreachable), connectivity (connected and unconnected), and locality (local and nonlocal) of the next hops. Notifications for these events are not delayed.
- Noncritical events include only the IGP metric changes. These events are sent at an interval of 3 seconds. A metric change event is batched and sent 3 seconds after the last one was sent.

BGP is notified when any of the following events occurs:

- Next hop becomes unreachable
- Next hop becomes reachable
- Fully recursed IGP metric to the next hop changes
- First hop IP address or first hop interface change
- Next hop becomes connected
- Next hop becomes unconnected
- Next hop becomes a local address
- Next hop becomes a nonlocal address

Reachability and recursed metric events trigger a best-path recalculation.

The next-hop trigger delay for critical and noncritical events can be configured to specify a minimum batching interval for critical and noncritical events using the `next-hop trigger-delay` command. The trigger delay is address family dependent.

The BGP next-hop tracking feature allows you to specify that BGP routes are resolved using only next hops whose routes have the following characteristics:

- To avoid the aggregate routes, the prefix length must be greater than a specified value.
- The source protocol must be from a selected list, ensuring that BGP routes are not used to resolve next hops that could lead to oscillation.

This route policy filtering is possible because RIB identifies the source protocol of route that resolved a next hop as well as the mask length associated with the route. The `next-hop route-policy` command is used to specify the route-policy.

Next Hop as the IPv6 Address of Peering Interface

BGP can carry IPv6 prefixes over an IPv4 session. The next hop for the IPv6 prefixes can be set through a nexthop policy. In the event that the policy is not configured, the nexthops are set as the IPv6 address of the
peering interface (IPv6 neighbor interface or IPv6 update source interface, if any one of the interfaces is configured).

If the next-hop policy is not configured and neither the IPv6 neighbor interface nor the IPv6 update source interface is configured, the next hop is the IPv4 mapped IPv6 address.

Scoped IPv4/VPNv4 Table Walk

To determine which address family to process, a next-hop notification is received by first de-referencing the gateway context associated with the next hop, then looking into the gateway context to determine which address families are using the gateway context. The IPv4 unicast and VPNv4 unicast address families share the same gateway context, because they are registered with the IPv4 unicast table in the RIB. As a result, both the global IPv4 unicast table and the VPNv4 table are is processed when an IPv4 unicast next-hop notification is received from the RIB. A mask is maintained in the next hop, indicating if whether the next hop belongs to IPv4 unicast or VPNv4 unicast, or both. This scoped table walk localizes the processing in the appropriate address family table.

Reordered Address Family Processing

The software walks address family tables based on the numeric value of the address family. When a next-hop notification batch is received, the order of address family processing is reordered to the following order:

- IPv4 tunnel
- VPNv4 unicast
- VPNv6 unicast
- IPv4 labeled unicast
- IPv4 unicast
- IPv4 MDT
- IPv6 unicast
- IPv6 labeled unicast
- IPv4 tunnel
- VPNv4 unicast
- IPv4 unicast
- IPv6 unicast

New Thread for Next-Hop Processing

The critical-event thread in the spkr process handles only next-hop, Bidirectional Forwarding Detection (BFD), and fast-external-failover (FEF) notifications. This critical-event thread ensures that BGP convergence is not adversely impacted by other events that may take a significant amount of time.

show, clear, and debug Commands

The `show bgp nexthops` command provides statistical information about next-hop notifications, the amount of time spent in processing those notifications, and details about each next hop registered with the RIB. The `clear bgp nexthop performance-statistics` command ensures that the cumulative statistics associated with the processing part of the next-hop `show` command can be cleared to help in monitoring. The `clear bgp nexthop registration` command performs an asynchronous registration of the next hop with the RIB.
The **debug bgp nexthop** command displays information on next-hop processing. The **out** keyword provides debug information only about BGP registration of next hops with RIB. The **in** keyword displays debug information about next-hop notifications received from RIB. The **out** keyword displays debug information about next-hop notifications sent to the RIB.

BGP Nonstop Routing Reference

BGP NSR provides nonstop routing during the following events:

- Route processor switchover
- Process crash or process failure of BGP or TCP

Note

BGP NSR is enabled by default. Use the **nsr disable** command to turn off BGP NSR. The **no nsr disable** command can also be used to turn BGP NSR back on if it has been disabled.

In case of process crash or process failure, NSR will be maintained only if **nsr process-failures switchover** command is configured. In the event of process failures of active instances, the **nsr process-failures switchover** command configures failover as a recovery action and switches over to a standby route processor (RP) or a standby distributed route processor (DRP) thereby maintaining NSR. An example of the configuration command is `RP/0/RSP0/CPU0:router(config)# nsr process-failures switchover`

The **nsr process-failures switchover** command maintains both the NSR and BGP sessions in the event of a BGP or TCP process crash. Without this configuration, BGP neighbor sessions flap in case of a BGP or TCP process crash. This configuration does not help if the BGP or TCP process is restarted in which case the BGP neighbors are expected to flap.

When the `l2vpn_mgr` process is restarted, the NSR client (te-control) flaps between the **Ready** and **Not Ready** state. This is the expected behavior and there is no traffic loss.

During route processor switchover and In-Service System Upgrade (ISSU), NSR is achieved by stateful switchover (SSO) of both TCP and BGP.

NSR does not force any software upgrades on other routers in the network, and peer routers are not required to support NSR.

When a route processor switchover occurs due to a fault, the TCP connections and the BGP sessions are migrated transparently to the standby route processor, and the standby route processor becomes active. The existing protocol state is maintained on the standby route processor when it becomes active, and the protocol state does not need to be refreshed by peers.

Events such as soft reconfiguration and policy modifications can trigger the BGP internal state to change. To ensure state consistency between active and standby BGP processes during such events, the concept of post-it is introduced that act as synchronization points.

BGP NSR provides the following features:

- NSR-related alarms and notifications
• Configured and operational NSR states are tracked separately
• NSR statistics collection
• NSR statistics display using `show` commands
• XML schema support
• Auditing mechanisms to verify state synchronization between active and standby instances
• CLI commands to enable and disable NSR

BGP Route Reflectors Reference

Figure 3: Three Fully Meshed iBGP Speakers, on page 135 illustrates a simple iBGP configuration with three iBGP speakers (routers A, B, and C). Without route reflectors, when Router A receives a route from an external neighbor, it must advertise it to both routers B and C. Routers B and C do not readvertise the iBGP learned route to other iBGP speakers because the routers do not pass on routes learned from internal neighbors to other internal neighbors, thus preventing a routing information loop.

Figure 3: Three Fully Meshed iBGP Speakers

With route reflectors, all iBGP speakers need not be fully meshed because there is a method to pass learned routes to neighbors. In this model, an iBGP peer is configured to be a route reflector responsible for passing iBGP learned routes to a set of iBGP neighbors. In Figure 4: Simple BGP Model with a Route Reflector, on page 136, Router B is configured as a route reflector. When the route reflector receives routes advertised from Router A, it advertises them to Router C, and vice versa. This scheme eliminates the need for the iBGP session between routers A and C.
The internal peers of the route reflector are divided into two groups: client peers and all other routers in the autonomous system (nonclient peers). A route reflector reflects routes between these two groups. The route reflector and its client peers form a cluster. The nonclient peers must be fully meshed with each other, but the client peers need not be fully meshed. The clients in the cluster do not communicate with iBGP speakers outside their cluster.

When the route reflector receives an advertised route, depending on the neighbor, it takes the following actions:

- A route from an external BGP speaker is advertised to all clients and nonclient peers.
• A route from a nonclient peer is advertised to all clients.

• A route from a client is advertised to all clients and nonclient peers. Hence, the clients need not be fully meshed.

Along with route reflector-aware BGP speakers, it is possible to have BGP speakers that do not understand the concept of route reflectors. They can be members of either client or nonclient groups, allowing an easy and gradual migration from the old BGP model to the route reflector model. Initially, you could create a single cluster with a route reflector and a few clients. All other iBGP speakers could be nonclient peers to the route reflector and then more clusters could be created gradually.

An autonomous system can have multiple route reflectors. A route reflector treats other route reflectors just like other iBGP speakers. A route reflector can be configured to have other route reflectors in a client group or nonclient group. In a simple configuration, the backbone could be divided into many clusters. Each route reflector would be configured with other route reflectors as nonclient peers (thus, all route reflectors are fully meshed). The clients are configured to maintain iBGP sessions with only the route reflector in their cluster.

Usually, a cluster of clients has a single route reflector. In that case, the cluster is identified by the router ID of the route reflector. To increase redundancy and avoid a single point of failure, a cluster might have more than one route reflector. In this case, all route reflectors in the cluster must be configured with the cluster ID so that a route reflector can recognize updates from route reflectors in the same cluster. All route reflectors serving a cluster should be fully meshed and all of them should have identical sets of client and nonclient peers.

By default, the clients of a route reflector are not required to be fully meshed and the routes from a client are reflected to other clients. However, if the clients are fully meshed, the route reflector need not reflect routes to clients.

As the iBGP learned routes are reflected, routing information may loop. The route reflector model has the following mechanisms to avoid routing loops:

• Originator ID is an optional, nontransitive BGP attribute. It is a 4-byte attributed created by a route reflector. The attribute carries the router ID of the originator of the route in the local autonomous system. Therefore, if a misconfiguration causes routing information to come back to the originator, the information is ignored.

• Cluster-list is an optional, nontransitive BGP attribute. It is a sequence of cluster IDs that the route has passed. When a route reflector reflects a route from its clients to nonclient peers, and vice versa, it appends the local cluster ID to the cluster-list. If the cluster-list is empty, a new cluster-list is created. Using this attribute, a route reflector can identify if routing information is looped back to the same cluster due to misconfiguration. If the local cluster ID is found in the cluster-list, the advertisement is ignored.

iBGP Multipath Load Sharing Reference

When there are multiple border BGP routers having reachability information heard over eBGP, if no local policy is applied, the border routers will choose their eBGP paths as best. They advertise that bestpath inside the ISP network. For a core router, there can be multiple paths to the same destination, but it will select only one path as best and use that path for forwarding. iBGP multipath load sharing adds the ability to enable load sharing among multiple equi-distant paths. Configuring multiple iBGP best paths enables a router to evenly share the traffic destined for a particular site. The iBGP Multipath Load Sharing feature functions similarly in a Multiprotocol Label Switching (MPLS) Virtual Private Network (VPN) with a service provider backbone.

For multiple paths to the same destination to be considered as multipaths, the following criteria must be met:
• All attributes must be the same. The attributes include weight, local preference, autonomous system path (entire attribute and not just length), origin code, Multi Exit Discriminator (MED), and Interior Gateway Protocol (iGP) distance.

• The next hop router for each multipath must be different.

Even if the criteria are met and multiple paths are considered multipaths, the BGP speaking router designates one of the multipaths as the best path and advertises this best path to its neighbors.

Note

• Overwriting of next-hop calculation for multipath prefixes is not allowed. The `next-hop-unchanged multipath` command disables overwriting of next-hop calculation for multipath prefixes.

• The ability to ignore as-path onwards while computing multipath is added. The `bgp multipath as-path ignore onwards` command ignores as-path onwards while computing multipath.

L3VPN iBGP PE-CE Reference

When BGP is used as the provider edge (PE) or the customer edge (CE) routing protocol, the peering sessions are configured as external peering between the VPN provider autonomous system (AS) and the customer network autonomous system. The L3VPN iBGP PE-CE feature enables the PE and CE devices to exchange Border Gateway Protocol (BGP) routing information by peering as internal Border Gateway Protocol (iBGP) instead of the widely-used external BGP peering between the PE and the CE. This mechanism applies at each PE device where a VRF-based CE is configured as iBGP. This eliminates the need for service providers (SPs) to configure autonomous system override for the CE. With this feature enabled, there is no need to configure the virtual private network (VPN) sites using different autonomous systems.

The `neighbor internal-vpn-client` command enables PE devices to make an entire VPN cloud act as an internal VPN client to the CE devices. These CE devices are connected internally to the VPN cloud through the iBGP PE-CE connection inside the VRF. After this connection is established, the PE device encapsulates the CE-learned path into an attribute called ATTR_SET and carries it in the iBGP-sourced path throughout the VPN core to the remote PE device. At the remote PE device, this attribute is assigned with individual attributes and the source CE path is extracted and sent to the remote CE devices.

ATTR_SET is an optional transitive attribute that carries the CE path attributes received. The ATTR_SET attribute is encoded inside the BGP update message as follows:

```
+-----------------------------------+
| Attr Flags (O|T) Code = 128 |
+-----------------------------------+
| Attr. Length (1 or 2 octets) |
+-----------------------------------+
| Origin AS (4 octets) |
+-----------------------------------+
| Path attributes (variable) |
+-----------------------------------+
```

Origin AS is the AS of the VPN customer for which the ATTR_SET is generated. The minimum length of ATTR_SET is four bytes and the maximum is the maximum supported for a path attribute after taking into consideration the mandatory fields and attributes in the BGP update message. It is recommended that the maximum length is limited to 3500 bytes. ATTR_SET must not contain the following attributes: MP_REACH, MP_UNREACH, NEW_AS_PATH, NEW_AGGR, NEXT_HOP and ATTR_SET itself.
ATTR_SET). If these attributes are found inside the ATTR_SET, the ATTR_SET is considered invalid and the corresponding error handling mechanism is invoked.

MPLS VPN Carrier Supporting Carrier

Carrier supporting carrier (CSC) is a term used to describe a situation in which one service provider allows another service provider to use a segment of its backbone network. The service provider that provides the segment of the backbone network to the other provider is called the **backbone carrier**. The service provider that uses the segment of the backbone network is called the **customer carrier**.

A backbone carrier offers Border Gateway Protocol and Multiprotocol Label Switching (BGP/MPLS) VPN services. The customer carrier can be either:

- An Internet service provider (ISP) (By definition, an ISP does not provide VPN service.)
- A BGP/MPLS VPN service provider

You can configure a CSC network to enable BGP to transport routes and MPLS labels between the backbone carrier provider edge (PE) routers and the customer carrier customer edge (CE) routers using multiple paths. The benefits of using BGP to distribute IPv4 routes and MPLS label routes are:

- BGP takes the place of an Interior Gateway Protocol (IGP) and Label Distribution Protocol (LDP) in a VPN routing and forwarding (VRF) table. You can use BGP to distribute routes and MPLS labels. Using a single protocol instead of two simplifies the configuration and troubleshooting.
- BGP is the preferred routing protocol for connecting two ISPs, mainly because of its routing policies and ability to scale. ISPs commonly use BGP between two providers. This feature enables those ISPs to use BGP.

For detailed information on configuring MPLS VPN CSC with BGP, see the *Implementing MPLS Layer 3 VPNs on* module of the *MPLS Configuration Guide*.

Per VRF and Per CE Label for IPv6 Provider Edge

The per VRF and per CE label for IPv6 feature makes it possible to save label space by allocating labels per default VRF or per CE nexthop.

All IPv6 Provider Edge (6PE) labels are allocated per prefix by default. Each prefix that belongs to a VRF instance is advertised with a single label, causing an additional lookup to be performed in the VRF forwarding table to determine the customer edge (CE) next hop for the packet.

However, use the `label-allocation-mode` command with the `per-ce` keyword or the `per-vrf` keyword to avoid the additional lookup on the PE router and conserve label space.

Use `per-ce` keyword to specify that the same label be used for all the routes advertised from a unique customer edge (CE) peer router. Use the `per-vrf` keyword to specify that the same label be used for all the routes advertised from a unique VRF.

IPv6 Unicast Routing

Cisco provides complete Internet Protocol Version 6 (IPv6) unicast capability.
An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast address is delivered to the interface identified by that address. Cisco IOS XR software supports the following IPv6 unicast address types:

- Global aggregatable address
- Site-local address
- Link-local address
- IPv4-compatible IPv6 address

For more information on IPv6 unicast addressing, refer the IP Addresses and Services Configuration Guide.

Remove and Replace Private AS Numbers from AS Path in BGP

Private autonomous system numbers (ASNs) are used by Internet Service Providers (ISPs) and customer networks to conserve globally unique AS numbers. Private AS numbers cannot be used to access the global Internet because they are not unique. AS numbers appear in eBGP AS paths in routing updates. Removing private ASNs from the AS path is necessary if you have been using private ASNs and you want to access the global Internet.

Public AS numbers are assigned by InterNIC and are globally unique. They range from 1 to 64511. Private AS numbers are used to conserve globally unique AS numbers, and they range from 64512 to 65535. Private AS numbers cannot be leaked to a global BGP routing table because they are not unique, and BGP best path calculations require unique AS numbers. Therefore, it might be necessary to remove private AS numbers from an AS path before the routes are propagated to a BGP peer.

External BGP (eBGP) requires that globally unique AS numbers be used when routing to the global Internet. Using private AS numbers (which are not unique) would prevent access to the global Internet. The remove and replace private AS Numbers from AS Path in BGP feature allows routers that belong to a private AS to access the global Internet. A network administrator configures the routers to remove private AS numbers from the AS path contained in outgoing update messages and optionally, to replace those numbers with the ASN of the local router, so that the AS Path length remains unchanged.

The ability to remove and replace private AS numbers from the AS Path is implemented in the following ways:

- The `remove-private-as` command removes private AS numbers from the AS path even if the path contains both public and private ASNs.
- The `remove-private-as` command removes private AS numbers even if the AS path contains only private AS numbers. There is no likelihood of a 0-length AS path because this command can be applied to eBGP peers only, in which case the AS number of the local router is appended to the AS path.
- The `remove-private-as` command removes private AS numbers even if the private ASNs appear before the confederation segments in the AS path.
- The `replace-as` command replaces the private AS numbers being removed from the path with the local AS number, thereby retaining the same AS path length.

The feature can be applied to neighbors per address family (address family configuration mode). Therefore, you can apply the feature for a neighbor in one address family and not on another, affecting update messages on the outbound side for only the address family for which the feature is configured.
Use `show bgp neighbors` and `show bgp update-group` commands to verify that the that private AS numbers were removed or replaced.

BGP Update Message Error Handling

The BGP UPDATE message error handling changes BGP behavior in handling error UPDATE messages to avoid session reset. Based on the approach described in IETF IDR I-D:draft-ietf-idr-error-handling, the Cisco IOS XR BGP UPDATE Message Error handling implementation classifies BGP update errors into various categories based on factors such as, severity, likelihood of occurrence of UPDATE errors, or type of attributes. Errors encountered in each category are handled according to the draft. Session reset will be avoided as much as possible during the error handling process. Error handling for some of the categories are controlled by configuration commands to enable or disable the default behavior.

According to the base BGP specification, a BGP speaker that receives an UPDATE message containing a malformed attribute is required to reset the session over which the offending attribute was received. This behavior is undesirable as a session reset would impact not only routes with the offending attribute, but also other valid routes exchanged over the session.

BGP Error Handling and Attribute Filtering Syslog Messages

When a router receives a malformed update packet, an ios_msg of type ROUTING-BGP-3-MALFORM_UPDATE is printed on the console. This is rate limited to 1 message per minute across all neighbors. For malformed packets that result in actions "Discard Attribute" (A5) or "Local Repair" (A6), the ios_msg is printed only once per neighbor per action. This is irrespective of the number of malformed updates received since the neighbor last reached an "Established" state.

This is a sample BGP error handling syslog message:

```
%ROUTING-BGP-3-MALFORM_UPDATE : Malformed UPDATE message received from neighbor 13.0.3.50
- message length 90 bytes,
  error flags 0x00000840, action taken "TreatAsWithdraw".
  Error details: "Error 0x00000800, Field "Attr-missing", Attribute 1 (Flags 0x00, Length 0),
  Data []"
```

This is a sample BGP attribute filtering syslog message for the "discard attribute" action:

```
[4843.46]RP/0/0/0RP0/CPU0:Aug 21 17:06:17.919 : bgp[1037]: %ROUTING-BGP-5-UPDATE_FILTERED :
One or more attributes were filtered from UPDATE message received from neighbor 40.0.101.1
- message length 173 bytes,
  action taken "DiscardAttr".
  Filtering details: "Attribute 16 (Flags 0xc0): Action "DiscardAttr"". NLRIs: [IPv4 Unicast]
  88.2.0.0/17
```

This is a sample BGP attribute filtering syslog message for the "treat-as-withdraw" action:

```
[391.01]RP/0/0/0RP0/CPU0:Aug 20 19:41:29.243 : bgp[1037]: %ROUTING-BGP-5-UPDATE_FILTERED :
One or more attributes were filtered from UPDATE message received from neighbor 40.0.101.1
- message length 166 bytes,
  action taken "TreatAsWdr".
  Filtering details: "Attribute 4 (Flags 0xc0): Action "TreatAsWdr"". NLRIs: [IPv4 Unicast]
  88.2.0.0/17
```
BGP-RIB Feedback Mechanism for Update Generation

The Border Gateway Protocol-Routing Information Base (BGP-RIB) feedback mechanism for update generation feature avoids premature route advertisements and subsequent packet loss in a network. This mechanism ensures that routes are installed locally, before they are advertised to a neighbor.

BGP waits for feedback from RIB indicating that the routes that BGP installed in RIB are installed in forwarding information base (FIB) before BGP sends out updates to the neighbors. RIB uses the BCDL feedback mechanism to determine which version of the routes have been consumed by FIB, and updates the BGP with that version. BGP will send out updates of only those routes that have versions up to the version that FIB has installed. This selective update ensures that BGP does not send out premature updates resulting in attracting traffic even before the data plane is programmed after router reload, LC OIR, or flap of a link where an alternate path is made available.

To configure BGP to wait for feedback from RIB indicating that the routes that BGP installed in RIB are installed in FIB, before BGP sends out updates to neighbors, use the update wait-install command in router address-family IPv4 or router address-family VPNv4 configuration mode. The show bgp, show bgp neighbors, and show bgp process performance-statistics commands display the information from update wait-install configuration.

Use-defined Martian Check

The solution allows disabling the Martian check for these IP address prefixes:

- IPv4 address prefixes
 - 0.0.0.0/8
 - 127.0.0.0/8
 - 224.0.0.0/4

- IPv6 address prefixes
 - ::
 - ::0002 - ::ffff
 - ::ffff:a.b.c.d
 - fe80:xxxx
 - ffxx:xxxx
CHAPTER 2

Information About EVPN-VPWS Single Homed

The EVPN-VPWS single homed solution requires per EVI Ethernet Auto Discovery route. EVPN defines a new BGP Network Layer Reachability Information (NLRI) used to carry all EVPN routes. BGP Capabilities Advertisement used to ensure that two speakers support EVPN NLRI (AFI 25, SAFI 70) as per RFC 4760.

The architecture for EVPN VPWS is that the PEs run Multi-Protocol BGP in control-plane. The following image describes the EVPN-VPWS configuration:

- The VPWS service on PE1 requires the following three elements to be specified at configuration time:
 - The VPN ID (EVI)
 - The local AC identifier (AC1) that identifies the local end of the emulated service.
 - The remote AC identifier (AC2) that identifies the remote end of the emulated service.

PE1 allocates a MPLS label per local AC for reachability.

- The VPWS service on PE2 is set in the same manner as PE1. The three same elements are required and the service configuration must be symmetric.

PE2 allocates a MPLS label per local AC for reachability.

- PE1 advertise a single EVPN per EVI Ethernet AD route for each local endpoint (AC) to remote PEs with the associated MPLS label.

PE2 performs the same task.

- On reception of EVPN per EVI EAD route from PE2, PE1 adds the entry to its local L2 RIB. PE1 knows the path list to reach AC2, for example, next hop is PE2 IP address and MPLS label for AC2.

PE2 performs the same task.
Configuring L2VPN EVPN Address Family Under BGP

Perform this task to configure L2VPN EVPN address family under BGP.

Note

Other than enabling RTC (route target constraint) with `address-family ipv4 rtfilter` command, there is no separate configuration needed to enable RTC for BGP EVPN.

Procedure

Step 1

configure

Example:

```
RP/0/RP0/CPU0:router# configure
```

Enters the Global Configuration mode.

Step 2

router bgp autonomous-system-number

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 100
```

Enters router configuration mode for the specified routing process.

Step 3

address-family l2vpn evpn

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# address-family l2vpn evpn
```

Specifies the L2VPN address family and enters address family configuration mode.

Step 4

neighbor ip-address

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.10.10.1
```

Adds the IP address of the neighbor in the specified autonomous system.

Step 5

address-family l2vpn evpn

Example:
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# **address-family l2vpn evpn**

Specifies the L2VPN address family of the neighbor and enters address family configuration mode.

Step 6

Use the **commit** or **end** command.

- **commit** - Saves the configuration changes and remains within the configuration session.
- **end** - Prompts user to take one of these actions:
 - **Yes** - Saves configuration changes and exits the configuration session.
 - **No** - Exits the configuration session without committing the configuration changes.
 - **Cancel** - Remains in the configuration mode, without committing the configuration changes.

Configuring EVPN-VPWS

Perform this task to configure EVPN-VPWS.

Procedure

Step 1

configure

Example:

RP/0/RP0/CPU0:router# configure

Enters the Global Configuration mode.

Step 2

interface type interface-path-id

Example:

RP/0/RP0/CPU0:router(config)# interface TenGigE0/1/0/12

Enters interface configuration mode and configures an interface.

Step 3

l2vpn

Example:

RP/0/RP0/CPU0:router(config)# l2vpn

Enters Layer 2 VPN configuration mode.

Step 4

xconnect group group-name

Example:

RP/0/RP0/CPU0:router(config)# l2vpn

Enters Layer 2 VPN configuration mode.
Configuring EVPN-VPWS: Example

The following example shows how to configure EVPN-VPWS service.

```
RP/0/RP0/CPU0:router(config-l2vpn)# xconnect group evpn-vpws

Configures a cross-connect group name using a free-format 32-character string.

Step 5  p2p  xconnect-name
Example:

RP/0/RP0/CPU0:router(config-l2vpn-xc)# p2p evpn1

Enters P2P configuration submode.

Step 6  interface  type  interface-path-id
Example:

RP/0/RP0/CPU0:router(config-l2vpn-xc-p2p)# interface TenGigE0/1/0/2

Specifies the interface type and instance.

Step 7  neighbor  evpn  evi  vpn-id/target  ac-id  source  ac-id
Example:

RP/0/RP0/CPU0:router(config-l2vpn-xc-p2p)# neighbor evpn evi 100 target 12 source 10

Enables EVPN-VPWS endpoint on the p2p cross-connect.

Step 8
Use the commit or end command.

commit - Saves the configuration changes and remains within the configuration session.
end - Prompts user to take one of these actions:
  • Yes - Saves configuration changes and exits the configuration session.
  • No - Exits the configuration session without committing the configuration changes.
  • Cancel - Remains in the configuration mode, without committing the configuration changes.
```
Configuring VPWS with BGP Autodiscovery and Signaling

Perform this task to configure BGP-based autodiscovery and signaling.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure</code></td>
<td><code>RP/0/RP0/CPU0:router# configure</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>l2vpn</code></td>
<td><code>RP/0/RP0/CPU0:router(config)# l2vpn</code></td>
<td>Enters L2VPN configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td><code>xconnect group group name</code></td>
<td><code>RP/0/RP0/CPU0:router(config-l2vpn)# xconnect group gr1</code></td>
<td>Enters configuration mode for the named xconnect group.</td>
</tr>
<tr>
<td>4</td>
<td><code>mp2mp vpws-domain name</code></td>
<td><code>RP/0/RP0/CPU0:router(config-l2vpn-xc)# mp2mp mp1</code></td>
<td>Enters configuration mode for the named vpws domain.</td>
</tr>
</tbody>
</table>
Example:

RP/0/RP0/CPU0:router(config-l2vpn-mp2mp)# vpn-id 100

Specifies the identifier for the VPWS service.

Step 6 l2 encapsulation vlan

Example:

RP/0/RP0/CPU0:router(config-l2vpn-mp2mp)# l2-encapsulation vlan

Configure the L2 encapsulation for this L2VPN MP2MP Instance.

Step 7 autodiscovery bgp

Example:

RP/0/RP0/CPU0:router(config-l2vpn-mp2mp)# autodiscovery bgp

Enters BGP autodiscovery configuration mode where all BGP autodiscovery parameters are configured.

Step 8 rd { as-number:nn | ip-address:nn | auto }

Example:

RP/0/RP0/CPU0:router(config-l2vpn-mp2mp-ad)# rd auto

Specifies the route distinguisher (RD).

Step 9 route-target { as-number:nn | ip-address:nn | export | import }

Example:

RP/0/RP0/CPU0:router(config-l2vpn-mp2mp-ad)# route-target 500:99

Specifies the route target (RT).

Step 10 signaling-protocol bgp

Example:

RP/0/RP0/CPU0:router(config-l2vpn-mp2mp-ad)# signaling-protocol bgp

Enables BGP signaling, and enters the BGP signaling configuration submode where BGP signaling parameters are configured.

Step 11 ce-id { number }

Example:

RP/0/RP0/CPU0:router(config-l2vpn-mp2mp-ad-sig)# ce-id 10

Specifies the local Customer Edge Identifier.
Step 12

Use the **commit** or **end** command.

commit - Saves the configuration changes and remains within the configuration session.

end - Prompts user to take one of these actions:

- **Yes** - Saves configuration changes and exits the configuration session.
- **No** - Exits the configuration session without committing the configuration changes.
- **Cancel** - Remains in the configuration mode, without committing the configuration changes.

VPWS with BGP Autodiscovery and BGP Signaling

The following figure illustrates an example of configuring and verifying VPWS with BGP autodiscovery (AD) and BGP Signaling.

Figure 6: VPLS with BGP autodiscovery and BGP signaling

Configuration at PE1:

```
12vpn
 xconnect group gr1
 mp2mp m1
 vpn-id 100
 l2 encapsulation vlan
 autodiscovery bgp
 rd auto
 route-target 2.2.2.2:100
 ! Signaling attributes
 signaling-protocol bgp
 ce-id 1
 interface GigabitEthernet0/1/0/1.1 remote-ce-id 2
```

Configuration at PE2:

```
12vpn
 xconnect group gr1
 mp2mp m1
 vpn-id 100
 l2 encapsulation vlan
 autodiscovery bgp
 rd auto
 route-target 2.2.2.2:100
 ! Signaling attributes
 signaling-protocol bgp
```
ce-id 2
interface GigabitEthernet0/1/0/2.1 remote-ce-id 1

Verification:

PE1:

PE1# show l2vpn discovery xconnect
Service Type: VPWS, Connected
List of VPNs (1 VPNs):
XC Group: gr1, MP2MP mp1
List of Local Edges (1 Edges):
Local Edge ID: 1, Label Blocks (1 Blocks)
Label base Offset Size Time Created
---------- ------ ---- -------------------
16030 1 10 01/24/2009 21:23:04
Status Vector: 9f ff
List of Remote Edges (1 Edges):
Remote Edge ID: 2, NLRIs (1 NLRIs)
Label base Offset Size Peer ID Time Created
---------- ------ ---- --------------- -------------------
16045 1 10 1.1.1.1 01/24/2009 21:29:35
Status Vector: 7f ff

PE1# show l2vpn xconnect mp2mp detail
Group gr1, MP2MP mp1, state: up
VPN ID: 100
VPN MTU: 1500
L2 Encapsulation: VLAN
Auto Discovery: BGP, state is Advertised (Service Connected)
Route Distinguisher: (auto) 3.3.3.3:32770
Import Route Targets:
2.2.2.2:100
Export Route Targets:
2.2.2.2:100
Signaling protocol:BGP
CE Range: 10

Group gr1, XC mp1.1:2, state is up; Interworking none
Local CE ID: 1, Remote CE ID: 2, Discovery State: Advertised
AC: GigabitEthernet0/1/0/1.1, state is up
 Type VLAN; Num Ranges: 1
 VLAN ranges: [1, 1]
 MTU 1500; XC ID 0x2000013; interworking none
PW: neighbor 1.1.1.1, PW ID 65538, state is up (established)
 PW class not set, XC ID 0x2000013
Encapsulation MPLS, Auto-discovered (BGP), protocol BGP

<table>
<thead>
<tr>
<th>MPLS</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>16031</td>
<td>16045</td>
</tr>
<tr>
<td>MTU</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Control word enabled</td>
<td>enabled</td>
<td>enabled</td>
</tr>
<tr>
<td>PW type</td>
<td>Ethernet VLAN</td>
<td>Ethernet VLAN</td>
</tr>
<tr>
<td>CE-ID</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

PE1# show bgp l2vpn vpws
BGP router identifier 3.3.3.3, local AS number 100
BGP generic scan interval 60 secs
BGP table state: Active
Table ID: 0x0
BGP main routing table version 913
BGP NSR converge version 3
BGP NSR converged
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
 i - internal, S stale
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Rcvd Label</th>
<th>Local Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Distinguisher: 1.1.1.1:32775</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 12:1/32</td>
<td>1.1.1.1</td>
<td>16045</td>
<td>nolabel</td>
</tr>
<tr>
<td>* 13:1/32</td>
<td>1.1.1.1</td>
<td>16060</td>
<td>nolabel</td>
</tr>
<tr>
<td>Route Distinguisher: 3.3.3.3:32770 (default for vrf gr1:mp1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 1:1/32</td>
<td>0.0.0.0</td>
<td>nolabel</td>
<td>16030</td>
</tr>
<tr>
<td>* 12:1/32</td>
<td>1.1.1.1</td>
<td>16045</td>
<td>nolabel</td>
</tr>
<tr>
<td>* 13:1/32</td>
<td>1.1.1.1</td>
<td>16060</td>
<td>nolabel</td>
</tr>
</tbody>
</table>

Processed 5 prefixes, 5 paths

PE2:

PE2# show l2vpn discovery xconnect

Service Type: VPWS, Connected

List of VPNs (1 VPNs):

XC Group: gr1, MP2MP mp1

List of Local Edges (2 Edges):

Local Edge ID: 2, Label Blocks (1 Blocks)

<table>
<thead>
<tr>
<th>Label base Offset</th>
<th>Size</th>
<th>Time Created</th>
</tr>
</thead>
<tbody>
<tr>
<td>16045</td>
<td>1</td>
<td>01/24/2009 21:09:14</td>
</tr>
</tbody>
</table>

Status Vector: 7f ff

Local Edge ID: 3, Label Blocks (1 Blocks)

<table>
<thead>
<tr>
<th>Label base Offset</th>
<th>Size</th>
<th>Time Created</th>
</tr>
</thead>
<tbody>
<tr>
<td>16060</td>
<td>1</td>
<td>01/24/2009 21:09:14</td>
</tr>
</tbody>
</table>

Status Vector: 7f ff

List of Remote Edges (1 Edges):

Remote Edge ID: 1, NLRIs (1 NLRIs)

<table>
<thead>
<tr>
<th>Label base Offset</th>
<th>Size</th>
<th>Peer ID</th>
<th>Time Created</th>
</tr>
</thead>
<tbody>
<tr>
<td>16030</td>
<td>1</td>
<td>3.3.3.3</td>
<td>01/24/2009 21:09:16</td>
</tr>
</tbody>
</table>

Status Vector: 9f ff
Group gr1, MP2MP mp1, state: up
VPN ID: 100
VPN MTU: 1500
L2 Encapsulation: VLAN
Auto Discovery: BGP, state is Advertised (Service Connected)
 Route Distinguisher: (auto) 1.1.1.1:32775
Import Route Targets:
 2.2.2.2:100
Export Route Targets:
 2.2.2.2:100
 Signaling protocol: BGP
 CE Range: 10

Group gr1, XC mp1.2:1, state is up; Interworking none
Local CE ID: 2, Remote CE ID: 1, Discovery State: Advertised
AC: GigabitEthernet0/1/0/2.1, state is up
 Type VLAN; Num Ranges: 1
 VLAN ranges: [1, 1]
 MTU 1500; XC ID 0x200008; interworking none
PW: neighbor 3.3.3.3, PW ID 131073, state is up (established)
 PW class not set, XC ID 0x200008
Encapsulation MPLS, Auto-discovered (BGP), protocol BGP

<table>
<thead>
<tr>
<th></th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>16045</td>
<td>16031</td>
</tr>
<tr>
<td>MTU</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Control word enabled</td>
<td>enabled</td>
<td></td>
</tr>
<tr>
<td>PW type</td>
<td>Ethernet VLAN</td>
<td>Ethernet VLAN</td>
</tr>
<tr>
<td>CE-ID</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PE2# show bgp l2vpn vpws
BGP router identifier 1.1.1.1, local AS number 100
BGP generic scan interval 60 secs
BGP table state: Active
Table ID: 0x0
BGP main routing table version 819
BGP NSR converge version 7
BGP NSR converged
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
 i - internal, S stale
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Rcvd Label</th>
<th>Local Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>*i1:1/32</td>
<td>3.3.3.3</td>
<td>16030</td>
<td>nolabel</td>
</tr>
<tr>
<td>*i2:1/32</td>
<td>0.0.0.0</td>
<td>nolabel</td>
<td>16045</td>
</tr>
<tr>
<td>*i3:1/32</td>
<td>0.0.0.0</td>
<td>nolabel</td>
<td>16060</td>
</tr>
</tbody>
</table>

Route Distinguisher: 3.3.3.3:32770
*>i1:1/32 3.3.3.3 16030 nolabel

Processed 4 prefixes, 4 paths
CHAPTER 4

Configuring BGP Dynamic Neighbors using Address Range

The existing neighbor command is extended to accept a prefix instead of an address.

In the following task, Router B is configured as a remote BGP peer. After a subnet range is configured, a TCP session is initiated by Router B which has an IP address in the subnet range and a new BGP neighbor is dynamically established.

After the initial configuration of subnet ranges and activation of the peer neighbor, dynamic BGP neighbor creation does not require any further CLI configuration on the Router A.

Configuration

```
Router# configure
Router(config)# router bgp as-number
Router(config-bgp)# neighbor address prefix
Router(config-bgp-nbr)# remote-as as-number
Router(config-bgp-nbr)# update-source interface
Router(config-bgp-nbr)# address-family ipv4 unicast
```

Running Configuration

```
Router# show running-config router bgp

router bgp 100
address-family ipv4 unicast
!
neighbor 12.12.0.24
  remote-as 100
  update-source TenGigE0/0/0/5
  address-family ipv4 unicast
!
!
```

- Configuring BGP Dynamic Neighbors Using Address Range With Authentication, on page 156
- Maximum-peers and Idle-watch timeout, on page 157
Configuring BGP Dynamic Neighbors Using Address Range With Authentication

The following task shows how to configure BGP dynamic neighbors using address range with Message Digest 5 (MD5) authentication.

Router# configure
Router(config)# router bgp as-number
Router(config-bgp)# neighbor address prefix
Router(config-bgp-nbr)# remote-as as-number
Router(config-bgp-nbr)# password {clear | encrypted} password
Router(config-bgp-nbr)# update-source interface
Router(config-bgp-nbr)# address-family ipv4 unicast
Router# commit

Running Configuration

Router# show running-config router bgp

router bgp 100
address-family ipv4 unicast
!
neighbor 12.12.12.0/24
 remote-as 100
 password encrypted 053816063349401D
 update-source TenGigE0/0/0/5
 address-family ipv4 unicast
!
!

Configuring EA Authentication

The following task shows how to configure the EA authentication.

Note

Configuring EA authentication is a prerequisite for configuring BGP dynamic neighbors with EA authentication.

RP/0/RP0/CPU0:R1(config)# key chain bgp_ea
 key-string bgp_ea_key
 send-lifetime RP/0/RP0/CPU0:R1(config-bgp_ea-1)# key 1
 00:00:00 January 01 2019 infinite
 cryptographic-algorithm HMAC-SHA1-12
 key-string bgp_ea_key
 send-lifetime RP/0/RP0/CPU0:R1(config-bgp_ea-1)# key 1
 00:00:00 January 01 2019 infinite
 cryptographic-algorithm HMAC-SHA1-12
 !
 !

BGP Configuration Guide for Cisco NCS 540 Series Routers, IOS XR Release 6.6.x
key chain bgp_ea
key 1
 accept-lifetime 00:00:00 january 01 2019 infinite
 key-string password 070D265C710C183A1C1712
 send-lifetime 00:00:00 january 01 2019 infinite
 cryptographic-algorithm HMAC-SHA1-12

The following task shows how to configure BGP dynamic neighbors using address range with EA authentication.

```bash
Router# configure
Router(config)# router bgp as-number
Router(config-bgp)# neighbor address prefix
Router(config-bgp-nbr)# remote-as as-number
Router(config-bgp-nbr)# keychain bgp_ea
Router(config-bgp-nbr)# address-family ipv4 unicast
Router(config-bgp-nbr)# route-policy name
Router(config-bgp-nbr)# route-policy name
Router# commit

Running Configuration

router bgp 100
neighbor 6.1.1.2
  remote-as 200
  keychain bgp_ea
  address-family ipv4 unicast
    route-policy bgp_policy in
    route-policy bgp_policy out
```

Maximum-peers and Idle-watch timeout

In the following task, **maximum-peers** and **idle-watch timeout** commands are configured for a remote BGP peer.

Configuration

```bash
Router# configure
Router(config)# router bgp as-number
Router(config-bgp)# neighbor address prefix
Router(config-bgp-nbr)# remote-as as-number
Router(config-bgp-nbr)# password {clear | encrypted} password
Router(config-bgp-nbr)# maximum-peers number
Router(config-bgp-nbr)# update-source interface
Router(config-bgp-nbr)# idle-watch-time number
Router(config-bgp-nbr)# address-family ipv4 unicast
Router# commit

Running Configuration

Router# show running-config router bgp
router bgp 100
  address-family ipv4 unicast
  neighbor 12.12.12.0/24
    remote-as 100
    password encrypted 053816063349401D
    maximum-peers 10
    update-source TenGigE0/0/0/5
```
idle-watch-time 40
address-family ipv4 unicast
CHAPTER 5

BGP PIC (Prefix Independent Convergence) Edge for IP and MPLS-VPN

The BGP PIC (Prefix Independent Convergence) Edge for IP and MPLS-VPN feature improves BGP convergence after a network failure. This convergence is applicable to both core and edge failures and can be used in both IP and MPLS networks. The BGP PIC Edge for IP and MPLS-VPN feature creates and stores a backup or alternate path in the routing information base (RIB), forwarding information base (FIB), and Cisco Express Forwarding. When a failure is detected, the backup or alternate path immediately takes over, thus enabling fast failover.

In this document, the BGP PIC Edge for IP and MPLS-VPN feature is called by the short name BGP PIC.

Prerequisites for BGP PIC

- Ensure that the Border Gateway Protocol (BGP) and the IP or Multiprotocol Label Switching (MPLS) network is up and running at the customer site that is connected to the provider site by more than one path (multihomed).

- Ensure that the backup or alternate path has a unique next hop that is not the same as the next hop of the best path.

- Enable the Bidirectional Forwarding Detection (BFD) protocol to quickly detect link failures of neighbors that are directly connected.

Note

- Prerequisites for BGP PIC, on page 159
- Restrictions for BGP PIC, on page 160
- Benefits, on page 160
- BGP Convergence, on page 160
- Improve Convergence, on page 160
- Detect a Failure, on page 162
- MPLS VPN–BGP Local Convergence, on page 163
- Enable BGP PIC, on page 163
- BGP PIC Scenario, on page 163
- Configure BGP PIC, on page 164
Restrictions for BGP PIC

- Unlabeled BGP PIC EDGE for global prefixes is not supported.
- TE, SR, SR-TE, flex-LSP are not supported.
- BVI as a core is not supported.
- Only one primary and one backup path is supported. No support for multiple primary paths and one backup path.
- PIC EDGE is supported for Global IPv4, IPv6 (6PE), and MPLS-VPN prefixes (VPNv4 and VPNv6).

Benefits

- An extra path for failover allows faster restoration of connectivity when a primary path is invalid or withdrawn.
- Reduction of traffic loss.
- Constant convergence time so that the switching time is the same for all prefixes.

BGP Convergence

Under normal circumstances, BGP can take several seconds to a few minutes to converge after a change in the network. At a high level, BGP goes through the steps of the following process:

1. BGP learns of failures through either Interior Gateway Protocol (IGP) or BFD events or interface events.
2. BGP withdraws the routes from the routing information base (RIB), and the RIB withdraws the routes from the forwarding information base (FIB) and distributed FIB (dFIB). This process clears the data path for the affected prefixes.
3. BGP sends withdrawn messages to its neighbors.
4. BGP calculates the next best path to the affected prefixes.
5. BGP inserts the next best path for affected prefixes into the RIB, and the RIB installs them in the FIB and dFIB.

This process may take from few seconds to a few minutes to complete. It depends on, the latency of the network, the convergence time across the network, and the local load on the devices. The data plane converges only after the control plane converges.

Improve Convergence

The BGP PIC functionality is achieved by an extra functionality in the BGP, RIB, Cisco Express Forwarding, and MPLS.
• BGP Functionality

BGP PIC affects prefixes under IPv4 and VPNv4 address families. For those prefixes, BGP calculates an extra second best path, along with the primary best path. (The second best path is called the backup or alternate path.) BGP installs the best and backup or alternate paths for the affected prefixes into the BGP RIB. The backup or alternate path provides a fast reroute mechanism to counter a singular network failure. BGP also includes the alternate or backup path in its application programming interface (API) to the IP RIB.

• RIB Functionality

For BGP PIC, RIB installs an alternate path per route if one is available. If the RIB selects a BGP route containing a backup or alternate path, it installs the backup or alternate path with the best path. The RIB also includes the alternate path in its API with the FIB.

• Cisco Express Forwarding Functionality

With BGP PIC, Cisco Express Forwarding stores an alternate path per prefix. When the primary path goes down, Cisco Express Forwarding searches for the backup or alternate path in a prefix-independent manner. Cisco Express Forwarding also listens to BFD events to rapidly detect local failures.

• MPLS Functionality

MPLS Forwarding is similar to Cisco Express Forwarding in that it stores alternate paths and switches to an alternate path if the primary path goes down.

When the BGP PIC feature is enabled, BGP calculates a backup or alternate path per prefix and installs it into BGP RIB, IP RIB, and FIB. This improves convergence after a network failure. There are two types of network failures that the BGP PIC feature detects:

• Core node or link failure (internal Border Gateway Protocol [iBGP] node failure): If a PE node or link fails, then the failure is detected through IGP convergence. IGP conveys the failure through the RIB to the FIB.

• Local link or immediate neighbor node failure (external Border Gateway Protocol [eBGP] node or link failure): To detect a local link failure or eBGP single-hop peer node failure in less than a second, you must enable BFD. Cisco Express Forwarding looks for BFD events to detect a failure of an eBGP single-hop peer.

Convergence in the Data Plane

Upon detecting a failure, Cisco Express Forwarding detects the alternate next hop for all prefixes that are affected by the failure. The data plane convergence is achieved in subseconds depending on whether the BGP PIC implementation exists in the software or hardware.

Convergence in the Control Plane

Upon detecting a failure, BGP learns about the failure through IGP convergence or BFD events and sends withdrawn messages for the prefixes, recalculating the best and backup or alternate paths, and advertising the next best path across the network.
BGP Fast Reroute

BGP Fast Reroute (FRR) provides a best path and a backup or alternate path in BGP, RIB, and Cisco Express Forwarding. BGP FRR provides a fast reroute mechanism into the RIB and Cisco Express Forwarding (CEF) on the backup BGP next hop to reach a destination when the current best path is not available.

BGP FRR precomputes a second best path in BGP and gives it to the RIB and Cisco Express Forwarding as a backup or alternate path, and CEF programs it into line cards.

The BGP PIC feature provides the ability for CEF to quickly switch the traffic to the other egress ports if the current next hop or the link to this next hop goes down.

Detect a Failure

IGP detects a failure in the iBGP (remote) peer; it may take a few seconds to detect the failure. Convergence can occur in subseconds or seconds, depending on whether PIC is enabled on the line cards.

If the failure is among the directly connected neighbors (eBGP), and if you use BFD to detect when a neighbor has gone down. Depending on whether PIC is enabled on the line cards, the detection may happen within subseconds and the convergence can occur in subseconds or few seconds.
MPLS VPN–BGP Local Convergence

The BGP PIC is an enhancement to the MPLS VPN–BGP Local Convergence feature. It provides a failover mechanism that recalculates the best path after a link failure. It then installs the new path in forwarding. To minimize traffic loss, the feature maintains the local label for 5 minutes to ensure that the traffic uses the backup or alternate path.

The BGP PIC improves the LoC time to under a second by calculating a backup or alternate path in advance. When a link failure occurs, the traffic is sent to the backup or alternate path.

When you configure BGP PIC, it overrides the functionality of the MPLS VPN–BGP Local Convergence feature. Do not remove the protection local-prefixes command from the configuration.

Enable BGP PIC

BGP PIC Edge can be enabled on the following address families:

- IPv4
- IPv6
- VPNv4
- VPNv6

BGP PIC Scenario

You can configure the BGP PIC functionality to achieve fast convergence.

IP PE-CE Link and Node Protection

The network includes the following components:

- Traffic from CE1 (161.x.x.x) uses PE1 to reach network 171.x.x.x through router CE3. CE1 has two paths:
 - PE1 as the primary path.
 - PE2 as the backup or alternate path.

PE1, PE2, PE3, and PE4 are configured with the BGP PIC Edge feature. PE1 learns about prefixes 161.x.x.x from CE1. Also PE1 learns about the same prefix through PE2, from Route Reflectors (RR1 and RR2). PE1 installs primary and backup for prefix 161.x.x.x. When the link between PE1-CE1 goes down, PIC Edge is triggered on PE1, so the BGP PIC Edge becomes active and sends traffic to CE1 through PE2. This is BGP PIC Edge during a PE-CE link failure.
Figure 8: Using BGP PIC to Protect the PE-CE Link

- Similarly, PE1 has two paths to reach network 171.x.x.x through router CE3:
 - PE3 as the primary path.
 - PE4 as the backup or alternate path.

PE1 learns about prefixes 171.x.x.x from PE3 and PE4 through RR1 and RR2 and it installs primary and backup for this prefix. When PE3 goes down, BGP PIC Edge is triggered on PE1 and traffic is rerouted to PE4. This is BGP PIC Edge during a node failure.

Configure BGP PIC

Procedure

Step 1

`cef encap-sharing disable`

Example:

```
RP/0/RP0/CPU0:router(config)# cef encap-sharing disable
```

By default, IPv4 global prefixes are installed with primary and backup path (if available) in the hardware. To install the protection in IPv6 (6 PE), VPNv4, and VPNv6 prefixes in the hardware, you must configure CLI `cef encap-sharing disable` command in global configuration mode.

Caution This CLI reprograms the CEF completely and impacts traffic. We recommend that you do it in the maintenance window.

Step 2

`router bgp as-number`

Example:

```
RP/0/RP0/CPU0:router(config)# router bgp 100
```

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.
Step 3
address-family \{**vpnv4 unicast** | **vpnv6 unicast** | **ipv4 unicast** | **ipv6 unicast**\}

Example:

```
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
address-family ipv4 unicast
  additional-paths receive
  additional-paths selection route-policy backup 1
  allocate-label all
!
```

Step 4
additional-paths selection route-policy *route-policy-name*

Example:

```
RP/0/RP0/CPU0:router(config-bgp-af)# additional-paths selection route-policy ap1
```

Configures extra paths selection mode for a prefix.

Note
Use the **additional-paths selection** command with an appropriate route-policy to calculate backup paths and to enable Prefix-Independent Convergence (PIC) functionality.

The route-policy configuration is a prerequisite for configuring the additional-paths selection mode for a prefix. This is an example route-policy configuration to use with additional-selection command:

```
route-policy ap1
  set path-selection backup 1 install
end-policy
```
Master Key Tuple Configuration

This feature specifies TCP Authentication Option (TCP-AO), which replaces the TCP MD5 option. TCP-AO uses the Message Authentication Codes (MACs), which provides the following:

- Protection against replays for long-lived TCP connections
- More details on the security association with TCP connections than TCP MD5
- A larger set of MACs with minimal other system and operational changes

TCP-AO is compatible with Master Key Tuple (MKT) configuration. TCP-AO also protects connections when using the same MKT across repeated instances of a connection. TCP-AO protects the connections by using traffic key that are derived from the MKT, and then coordinates changes between the endpoints.

TCP-AO and TCP MD5 are never permitted to be used simultaneously. TCP-AO supports IPv6, and is fully compatible with the proposed requirements for the replacement of TCP MD5.

Cisco provides the MKT configuration via the following configurations:

- keychain configuration
- tcp ao keychain configuration

The system translates each key, such “key_id” that is under a keychain, as MKT. The keychain configuration owns part of the configuration like secret, lifetimes, and algorithms. While the “tcp ao keychain” mode owns the TCP AO-specific configuration for an MKT (send_id and receive_id).

- Keychain Configurations, on page 167

Keychain Configurations

Configuration Guidelines

In order to run a successful configuration, ensure that you follow the configuration guidelines:

- An allowed value range for both Send_ID and Receive_ID is 0 to 255.
- You can link only one keychain to an application neighbor.
• Under the same keychain, if you configure the same send_id key again under the keys that have an overlapping lifetime, then the old key becomes unusable until you correct the configuration.

• The system sends a warning message in the following scenarios:
 • If there is a change in Send_ID or Receive_ID.
 • If the corresponding key is currently active, and is in use by some connection.

• BGP neighbor can ONLY use one of the authentication options:
 • MD5
 • EA
 • AO

Note

If you configure one of these options, the system rejects the other authentication options during the configuration time.

Configuration Guidelines for TCP AO BGP Neighbor

The configuration guidelines are:

• Configure all the necessary configurations (key_string, MAC_algorithm, send_lifetime, accept_lifetime, send_id, receive_id) under key_id with the desired lifetime it wants to use the key_id for.

• Configure a matching MKT in the peer side with exactly same lifetime.

• Once a keychain-key is linked to tcp-ao, do not change the components of the key. If you want TCP to consider another key for use, you can configure that dynamically. Based on the ‘start-time’ of send lifetime, TCP AO uses the key.

• Send_ID and Receive_ID under a key_id (under a keychain) must have the same lifetime range. For example, send-lifetime=accept-lifetime.

 TCP considers only expiry of send-lifetime to transition to next active key and it does not consider accept-lifetime at all.

• Do not configure a key with send-lifetime that is covered by another key’s send-lifetime.

 For example, if there is a key that is already configured with send-lifetime of “04:00:00 November 01, 2017 07:00:00 November 01, 2017” and the user now configures another key with send-lifetime of “05:00:00 November 01, 2017 06:00:00 November 01, 2017”, this might result into connection flap.

 TCP AO tries to transition back to the old key once the new key is expired. However, if the new key has already expired, TCP AO can’t use it, which might result in segment loss and hence connection flap.

• Configure minimum of 15 minutes of overlapping time between the two overlapping keys. When a key expires, TCP does not use it and hence out-of-order segments with that key are dropped.

• We recommend configuring send_id and receive_id to be same for a key_id for simplicity.
TCP does not have any restriction on the number of keychains and keys under a keychain. The system does not support more than 4000 keychains, any number higher than 4000 might result in unexpected behaviors.

Keychain Configuration

```
key chain <keychain_name>
  key <key_id>
    accept-lifetime <start-time> <end-time>
    key-string <master-key>
    send-lifetime <start-time> <end-time>
    cryptographic-algorithm <algorithm>

TCP Configuration

TCP provides a new tcp ao submode that specifies SendID and ReceiveID per key_id per keychain.
```

```
tcp ao
  keychain <keychain_name1>
    key-id <key_id> send_id <0-255> receive_id <0-255>
```

Example:

```
tcp ao
  keychain bgp_ao
    key 0 SendID 0 ReceiveID 0
    key 1 SendID 1 ReceiveID 1
    key 2 SendID 3 ReceiveID 4
  !
  keychain ldp_ao
    key 1 SendID 100 ReceiveID 200
    key 120 SendID 1 ReceiveID 1
  !
```

BGP Configurations

Applications like BGP provide the tcp-ao keychain and related information that it uses per neighbor. Following are the optional configurations per tcp-ao keychain:

- include-tcp-options
- accept-non-ao-connections

```
router bgp <AS-number>
  neighbor <neighbor-ip>
    remote-as <remote-as-number>
    ao <keychain-name> include-tcp-options enable/disable <accept-ao-mismatch-connections>
  !
```
XML Configurations

BGP XML

TCP-AO XML

<?xml version="1.0" encoding="UTF-8"?>
<Request>
 <Set>
 <Configuration>
 <IP_TCP>
 <AO>
 <Enable>true</Enable>
 <KeychainTable>
 <Keychain>
 <Naming>
 <Name> bgp_ao_xml </Name>
 </Naming>
 <Enable>true</Enable>
 <KeyTable>
 <Key>
 <Naming>
 <KeyID> 0 </KeyID>
 </Naming>
 <SendID> 0 </SendID>
 <ReceiveID> 0 </ReceiveID>
 </Key>
 </KeyTable>
 </Keychain>
 </KeychainTable>
 </AO>
 </IP_TCP>
 </Configuration>
 </Set>
 <Commit/>
</Request>

Verification

To verify the keychain database, use the show tcp authentication keychain <keychain-name> command in EXEC mode. The following output displays all the keychain database details:

Keychain name: tcp_ao_keychain1, configured for tcp-ao
Desired key: 1
Detail of last notification from keychain:
Total number of keys: 1
Key details:
 Key ID: 1, Active, Valid
 Active state: 1, invalid_bits: 0x0, state: 0x110
 Key is configured for tcp-ao, Send ID: 1, Receive ID: 1
 Crypto algorithm: AES_128_CMAC_96, key string chksum: 00028222
Detail of last notification from keychain:
 No valid overlapping key
 No keys invalidated
Total number of usable (Active & Valid) keys: 1
 Keys: 1,
Total number of peers: 24
Peer details:
 Peer: 0x7fc2f00242f8,
 Current key not yet available
 RNext key: 1
 Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
 Peer: 0x7fc2f0024618,
 Current key not yet available
 RNext key: 1
 Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
 Peer: 0x7fc2f00247f8,
 Current key not yet available
 RNext key: 1
 Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
 Peer: 0x7fc2f00249d8,
 Current key not yet available
 RNext key: 1
 Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
 Peer: 0x7fc2f0024bb8,
 Current key not yet available
 RNext key: 1
 Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
 Peer: 0x7fc320037a08,
 Current key not yet available
 RNext key: 1
 Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
 Peer: 0x7fc320037d78,
 Current key not yet available
 RNext key: 1
 Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
 Peer: 0x7fc3200386d8,
 Current key not yet available
 RNext key: 1
 Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
 Peer: 0x7fc320038a98,
 Current key not yet available
 RNext key: 1
 Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
 Peer: 0x7fc320038e78,
 Current key not yet available
 RNext key: 1
 Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
 Peer: 0x7fc35000d3f8,
 Current key: 1
 Traffic keys: send_non_SYN: 00476017, recv_non_SYN: ffd520f9
 RNext key: 1
 Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
Last 1 keys used:
 key: 1, time: Jan 23 12:07:41.953, reason: Peer requested rollover
 Peer: 0x7fc320038e78,
Current key not yet available
RNext key: 1
Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
Peer: 0x7fc350012758,
Current key not yet available
RNext key: 1
Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
Peer: 0x7fc2f0026bc8,
Current key not yet available
RNext key: 1
Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
Peer: 0x7fc320048b08,
Current key: 1
Traffic keys: send_non_SYN: 004a05b5, recv_non_SYN: fff639b2
RNext key: 1
Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
Last 1 keys used:
 key: 1, time: Jan 23 12:07:44.209, reason: No current key set
Peer: 0x7fc2f4008388,
Current key: 1
Traffic keys: send_non_SYN: 0029837c, recv_non_SYN: 002af030
RNext key: 1
Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
Last 1 keys used:
 key: 1, time: Jan 23 12:07:44.229, reason: No current key set
Peer: 0x7fc350017198,
Current key: 1
Traffic keys: send_non_SYN: ffdb7322, recv_non_SYN: fff1fb23
RNext key: 1
Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
Last 1 keys used:
 key: 1, time: Jan 23 12:07:45.419, reason: Peer requested rollover
Peer: 0x7fc320049098,
Current key: 1
Traffic keys: send_non_SYN: ffed0d67, recv_non_SYN: ffe4f959
RNext key: 1
Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
Last 1 keys used:
 key: 1, time: Jan 23 12:07:55.180, reason: No current key set
Peer: 0x7fc32005d2a8,
Current key: 1
Traffic keys: send_non_SYN: 0021b461, recv_non_SYN: fffe679e
RNext key: 1
Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
Last 1 keys used:
 key: 1, time: Jan 23 12:07:56.894, reason: No current key set
Peer: 0x7fc350035c88,
Current key: 1
Traffic keys: send_non_SYN: 00296167, recv_non_SYN: fff1c236
RNext key: 1
Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
Last 1 keys used:
 key: 1, time: Jan 23 12:07:57.859, reason: Peer requested rollover
Peer: 0x7fc35003fb18,
Current key: 1
Traffic keys: send_non_SYN: ffc95844, recv_non_SYN: ffcd4d4f
RNext key: 1
Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
Last 1 keys used:
 key: 1, time: Jan 23 12:08:00.754, reason: Peer requested rollover

Peer: 0x7fc350049638,
 Current key: 1
Traffic keys: send_non_SYN: 002ff48b, recv_non_SYN: ffbe71b9
RNext key: 1
Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
Last 1 keys used:
 key: 1, time: Jan 23 12:08:10.014, reason: Peer requested rollover

Peer: 0x7fc350053928,
 Current key: 1
Traffic keys: send_non_SYN: 00206914, recv_non_SYN: 001df9bc
RNext key: 1
Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000
Last 1 keys used:
 key: 1, time: Jan 23 12:08:12.422, reason: Peer requested rollover

Peer: 0x7fc2f401f3b8,
 Current key not yet available
RNext key: 1
Traffic keys: send_non_SYN: 00000000, recv_non_SYN: 00000000

Total number of Send IDs: 1
Send ID details:
 SendID: 1, Total number of keys: 1
 Keys: 1,
Total number of Receive IDs: 1
Receive ID details:
 ReceiveID: 1, Total number of keys: 1
 Keys: 1,