
Implementing BGP

Border Gateway Protocol (BGP) is an Exterior Gateway Protocol (EGP) that allows you to create loop-free
interdomain routing between autonomous systems. An autonomous system is a set of routers under a single
technical administration. Routers in an autonomous system can use multiple Interior Gateway Protocols (IGPs)
to exchange routing information inside the autonomous system and an EGP to route packets outside the
autonomous system.

This module provides conceptual and configuration information on BGP.

Restrictions for Implementing BGP

• When paths of different technologies are resolved over ECMP, it results in heterogeneous ECMP, leading
to severe network traffic issues. Don’t use ECMP for any combination of the following technologies:

• LDP.

• BGP-LU, including services over BGP-LU loopback peering or recursive services at Level-3.

• VPNv4.

• 6PE and 6VPE.

• EVPN.

• Recursive static routing.

• BGP Functional Overview, on page 1
• Reduce Recursions for eBGP Peering on Loopback Address on Bridge-Group Virtual Interface, on page
147

• Peering Between BGP Routers Within a Confederation, on page 150
• Virtual Routing Forwarding Next Hop Routing Policy, on page 154

BGP Functional Overview
BGP uses TCP as its transport protocol. Two BGP routers form a TCP connection between one another (peer
routers) and exchange messages to open and confirm the connection parameters.

BGP routers exchange network reachability information. This information is mainly an indication of the full
paths (BGP autonomous system numbers) that a route should take to reach the destination network. This

Implementing BGP
1

information helps construct a graph that shows which autonomous systems are loop free and where routing
policies can be applied to enforce restrictions on routing behavior.

Any two routers forming a TCP connection to exchange BGP routing information are called peers or neighbors.
BGP peers initially exchange their full BGP routing tables. After this exchange, incremental updates are sent
as the routing table changes. BGP keeps a version number of the BGP table, which is the same for all of its
BGP peers. The version number changes whenever BGP updates the table due to routing information changes.
Keepalive packets are sent to ensure that the connection is alive between the BGP peers and notification
packets are sent in response to error or special conditions.

VPNv4 address family is supported effective from Cisco IOS XR Release 6.1.31. However, VPNv6 and VPN
routing and forwarding (VRF) address families will be supported in a future release.

Note

Enable BGP Routing
Perform this task to enable BGP routing and establish a BGP routing process. Configuring BGP neighbors is
included as part of enabling BGP routing.

• At least one neighbor and at least one address family must be configured to enable BGP routing. At least
one neighbor with both a remote AS and an address family must be configured globally using the address
family and remote as commands.

• When one BGP session has both IPv4 unicast and IPv4 labeled-unicast AFI/SAF, then the routing behavior
is nondeterministic. Therefore, the prefixes may not be correctly advertised. Incorrect prefix advertisement
results in reachability issues. In order to avoid such reachability issues, you must explicitly configure a
route policy to advertise prefixes either through IPv4 unicast or through IPv4 labeled-unicast address
families.

Note

Before you begin

BGP must be able to obtain a router identifier (for example, a configured loopback address). At least, one
address family must be configured in the BGP router configuration and the same address family must also be
configured under the neighbor.

If the neighbor is configured as an external BGP (eBGP) peer, you must configure an inbound and outbound
route policy on the neighbor using the route-policy command.

Note

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Implementing BGP
2

Implementing BGP
Enable BGP Routing

Enters mode.

Step 2 route-policy route-policy-name

Example:

RP/0/RP0/CPU0:router(config)# route-policy drop-as-1234
RP/0/RP0/CPU0:router(config-rpl)# if as-path passes-through '1234' then
RP/0/RP0/CPU0:router(config-rpl)# apply check-communities
RP/0/RP0/CPU0:router(config-rpl)# else
RP/0/RP0/CPU0:router(config-rpl)# pass
RP/0/RP0/CPU0:router(config-rpl)# endif

(Optional) Creates a route policy and enters route policy configuration mode, where you can define the route
policy.

Step 3 end-policy

Example:

RP/0/RP0/CPU0:router(config-rpl)# end-policy

(Optional) Ends the definition of a route policy and exits route policy configuration mode.

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 5 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 6 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 7 bgp router-id ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp router-id 192.168.70.24

Configures the local router with a specified router ID.

Implementing BGP
3

Implementing BGP
Enable BGP Routing

Step 8 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 9 exit

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Exits the current configuration mode.

Step 10 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as
a BGP peer.

Step 11 remote-as as-number

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2002

Creates a neighbor and assigns a remote autonomous system number to it.

Step 12 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 13 route-policy route-policy-name { in | out }

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy drop-as-1234 in

(Optional) Applies the specified policy to inbound IPv4 unicast routes.

Step 14 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

Implementing BGP
4

Implementing BGP
Enable BGP Routing

• Cancel —Remains in the configuration session, without committing the configuration changes.

Enabling BGP: Example

The following shows how to enable BGP.

prefix-set static
2020::/64,
2012::/64,
10.10.0.0/16,
10.2.0.0/24

end-set

route-policy pass-all
pass

end-policy
route-policy set_next_hop_agg_v4
set next-hop 10.0.0.1

end-policy

route-policy set_next_hop_static_v4
if (destination in static) then
set next-hop 10.1.0.1

else
drop

endif
end-policy

route-policy set_next_hop_agg_v6
set next-hop 2003::121

end-policy

route-policy set_next_hop_static_v6
if (destination in static) then

set next-hop 2011::121
else

drop
endif

end-policy

router bgp 65000
bgp fast-external-fallover disable
bgp confederation peers
65001
65002

bgp confederation identifier 1
bgp router-id 1.1.1.1
address-family ipv4 unicast
aggregate-address 10.2.0.0/24 route-policy set_next_hop_agg_v4
aggregate-address 10.3.0.0/24
redistribute static route-policy set_next_hop_static_v4

address-family ipv6 unicast
aggregate-address 2012::/64 route-policy set_next_hop_agg_v6
aggregate-address 2013::/64
redistribute static route-policy set_next_hop_static_v6
neighbor 10.0.101.60
remote-as 65000
address-family ipv4 unicast
neighbor 10.0.101.61

Implementing BGP
5

Implementing BGP
Enable BGP Routing

remote-as 65000
address-family ipv4 unicast
neighbor 10.0.101.62
remote-as 3
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

neighbor 10.0.101.64
remote-as 5
update-source Loopback0
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

Adjust BGP Timers
BGP uses certain timers to control periodic activities, such as the sending of keepalive messages and the
interval after which a neighbor is assumed to be down if no messages are received from the neighbor during
the interval. The values set using the timers bgp command in router configuration mode can be overridden
on particular neighbors using the timers command in the neighbor configuration mode.

Perform this task to set the timers for BGP neighbors.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 123

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 timers bgp keepalive hold-time

Example:

RP/0/RP0/CPU0:router(config-bgp)# timers bgp 30 90

Sets a default keepalive time and a default hold time for all neighbors.

Step 4 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24

Implementing BGP
6

Implementing BGP
Adjust BGP Timers

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as
a BGP peer.

Step 5 timers keepalive hold-time

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# timers 60 220

(Optional) Sets the keepalive timer and the hold-time timer for the BGP neighbor.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Change BGP Default Local Preference Value
Perform this task to set the default local preference value for BGP paths.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 bgp default local-preference value

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp default local-preference 200

Sets the default local preference value from the default of 100, making it either a more preferable path (over
100) or less preferable path (under 100).

Implementing BGP
7

Implementing BGP
Change BGP Default Local Preference Value

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure MED Metric for BGP
Perform this task to set the multi exit discriminator (MED) to advertise to peers for routes that do not already
have a metric set (routes that were received with no MED attribute).

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 default-metric value

Example:

RP/0/RP0/CPU0:router(config-bgp)# default-metric

Sets the default metric, which is used to set the MED to advertise to peers for routes that do not already have
a metric set (routes that were received with no MED attribute).

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

Implementing BGP
8

Implementing BGP
Configure MED Metric for BGP

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure BGP Weights
A weight is a number that you can assign to a path so that you can control the best-path selection process. If
you have particular neighbors that you want to prefer for most of your traffic, you can use theweight command
to assign a higher weight to all routes learned from that neighbor. Perform this task to assign a weight to routes
received from a neighbor.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as
a BGP peer.

Step 4 remote-as as-number

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2002

Creates a neighbor and assigns a remote autonomous system number to it.

Step 5 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Implementing BGP
9

Implementing BGP
Configure BGP Weights

Step 6 weight weight-value

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# weight 41150

Assigns a weight to all routes learned through the neighbor.

Step 7 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

What to do next

You the clear bgp command for the newly configured weight to take effect.

Tune BGP Best-Path Calculation
BGP routers typically receivemultiple paths to the same destination. The BGP best-path algorithm determines
the best path to install in the IP routing table and to use for forwarding traffic. The BGP best-path comprises
of three steps:

• Step 1—Compare two paths to determine which is better.

• Step 2—Iterate over all paths and determines which order to compare the paths to select the overall best
path.

• Step 3—Determine whether the old and new best paths differ enough so that the new best path should
be used.

The order of comparison determined by Step 2 is important because the comparison operation is not transitive;
that is, if three paths, A, B, and C exist, such that when A and B are compared, A is better, and when B and
C are compared, B is better, it is not necessarily the case that when A and C are compared, A is better. This
nontransitivity arises because the multi exit discriminator (MED) is compared only among paths from the
same neighboring autonomous system (AS) and not among all paths. BGP Best Path Algorithm, on page 134
provides additional conceptual details.

Note

Perform this task to change the default BGP best-path calculation behavior.

Procedure

Step 1 configure

Implementing BGP
10

Implementing BGP
Tune BGP Best-Path Calculation

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 126

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 bgp bestpath med missing-as-worst

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath med missing-as-worst

Directs the BGP software to consider a missing MED attribute in a path as having a value of infinity, making
this path the least desirable path.

Step 4 bgp bestpath med always

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath med always

Configures the BGP speaker in the specified autonomous system to compare MEDs among all the paths for
the prefix, regardless of the autonomous system from which the paths are received.

Step 5 bgp bestpath med confed

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath med confed

Enables BGP software to compare MED values for paths learned from confederation peers.

Step 6 bgp bestpath as-path ignore

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath as-path ignore

Configures the BGP software to ignore the autonomous system length when performing best-path selection.

Step 7 bgp bestpath compare-routerid

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath compare-routerid

Configure the BGP speaker in the autonomous system to compare the router IDs of similar paths.

Step 8 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

Implementing BGP
11

Implementing BGP
Tune BGP Best-Path Calculation

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Set BGP Administrative Distance
An administrative distance is a rating of the trustworthiness of a routing information source. In general, the
higher the value, the lower the trust rating. Normally, a route can be learned through more than one protocol.
Administrative distance is used to discriminate between routes learned from more than one protocol. The
route with the lowest administrative distance is installed in the IP routing table. By default, BGP uses the
administrative distances shown in here:

Table 1: BGP Default Administrative Distances

FunctionDefault
Value

Distance

Applied to routes learned from eBGP.20External

Applied to routes learned from iBGP.200Internal

Applied to routes originated by the router.200Local

Distance does not influence the BGP path selection algorithm, but it does influence whether BGP-learned
routes are installed in the IP routing table.

Note

Perform this task to specify the use of administrative distances that can be used to prefer one class of route
over another.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Implementing BGP
12

Implementing BGP
Set BGP Administrative Distance

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 distance bgp external-distance internal-distance local-distance

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# distance bgp 20 20 200

Sets the external, internal, and local administrative distances to prefer one class of routes over another. The
higher the value, the lower the trust rating.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Indicate BGP Back-door Routes
In most cases, when a route is learned through eBGP, it is installed in the IP routing table because of its
distance. Sometimes, however, two ASs have an IGP-learned back-door route and an eBGP-learned route.
Their policy might be to use the IGP-learned path as the preferred path and to use the eBGP-learned path
when the IGP path is down.

Perform this task to set the administrative distance on an external Border Gateway Protocol (eBGP) route to
that of a locally sourced BGP route, causing it to be less preferred than an Interior Gateway Protocol (IGP)
route.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Implementing BGP
13

Implementing BGP
Indicate BGP Back-door Routes

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 network { ip-address / prefix-length | ip-address mask } backdoor

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# network 172.20.0.0/16

Configures the local router to originate and advertise the specified network.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Back Door: Example

Here, Routers A and C and Routers B and C are running eBGP. Routers A and B are running an IGP
(such as Routing Information Protocol [RIP], Interior Gateway Routing Protocol [IGRP], Enhanced
IGRP, or Open Shortest Path First [OSPF]). The default distances for RIP, IGRP, Enhanced IGRP,

Implementing BGP
14

Implementing BGP
Indicate BGP Back-door Routes

and OSPF are 120, 100, 90, and 110, respectively. All these distances are higher than the default
distance of eBGP, which is 20. Usually, the route with the lowest distance is preferred.

Router A receives updates about 160.10.0.0 from two routing protocols: eBGP and IGP. Because
the default distance for eBGP is lower than the default distance of the IGP, Router A chooses the
eBGP-learned route from Router C. If you want Router A to learn about 160.10.0.0 from Router B
(IGP), establish a BGP back door. See .

In the following example, a network back-door is configured:

RP/0/RP0/CPU0:router(config)# router bgp 100
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-af)# network 160.10.0.0/16 backdoor

Router A treats the eBGP-learned route as local and installs it in the IP routing table with a distance
of 200. The network is also learned through Enhanced IGRP (with a distance of 90), so the Enhanced
IGRP route is successfully installed in the IP routing table and is used to forward traffic. If the
Enhanced IGRP-learned route goes down, the eBGP-learned route is installed in the IP routing table
and is used to forward traffic.

Although BGP treats network 160.10.0.0 as a local entry, it does not advertise network 160.10.0.0
as it normally would advertise a local entry.

Configure Aggregate Addresses
Perform this task to create aggregate entries in a BGP routing table.

For optimal CPU utilization when deploying BGP aggregate for supernet addresses with a higher scale such
as internet bgp table, it is recommended to:

• Use aggregate subnet of size not exceeding /24.

• Tune the subnet mask size based on network scale and churn.

• Use the default-originate or network 0.0.0.0 CLI instead of 0.0.0.0 as aggregate, when advertising the
default route 0.0.0.0.

Note

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

Implementing BGP
15

Implementing BGP
Configure Aggregate Addresses

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/bgp/b-ncs5500-bgp-cli-reference/b-ncs5500-bgp-cli-reference_chapter_01.html#wp1511380096
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/bgp/b-ncs5500-bgp-cli-reference/b-ncs5500-bgp-cli-reference_chapter_01.html#wp3163077880

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 aggregate-address address/mask-length [as-set] [as-confed-set] [summary-only] [route-policy
route-policy-name]

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# aggregate-address 10.0.0.0/8 as-set

Creates an aggregate address. The path advertised for this route is an autonomous system set consisting of all
elements contained in all paths that are being summarized.

• The as-set keyword generates autonomous system set path information and community information
from contributing paths.

• The as-confed-set keyword generates autonomous system confederation set path information from
contributing paths.

• The summary-only keyword filters all more specific routes from updates.

• The route-policy route-policy-name keyword and argument specify the route policy used to set the
attributes of the aggregate route.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Understanding BGP MD5 Authentication
BGP provides a mechanism, known as Message Digest 5 (MD5) authentication, for authenticating a TCP
segment between two BGP peers by using a clear text or encrypted password.

Implementing BGP
16

Implementing BGP
Understanding BGP MD5 Authentication

MD5 authentication is configured at the BGP neighbor level. BGP peers using MD5 authentication are
configured with the same password. If the password authentication fails, then the packets are not transmitted
along the segment.

Configuring BGP MD5 Authentication
You can use the configuration in this section to configure BGP MD5 authentication between two BGP peers.

The configuration for MD5 authentication is identical on both peers.Note

Configuration

Use the following configuration to configure BGP MD5:
RP/0/RP0/CPU0:router(config)# router bgp 50
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-af)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.1.1.1
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 51
RP/0/RP0/CPU0:router(config-bgp-nbr)# password encrypted a1b2c3
RP/0/RP0/CPU0:router(config-bgp-nbr)# commit

Running Configuration

Validate the configuration.
RP/0/RP0/CPU0:router# show running-config
...
!
router bgp 50
address-family ipv4 unicast
!
neighbor 10.1.1.1
remote-as 51
password encrypted a1b2c3
!
!

Hiding the Local AS Number for BGP Networks
Changing the autonomous system number is necessary when two separate BGP networks are combined under
a single autonomous system. The neighbor local-as command is used to configure BGP peers to support two
local autonomous system numbers to maintain peering between two separate BGP networks.

However, when the neighbor local-as command is configured on a BGP peer, the local AS number is
automatically prepended to all routes that are learned from eBGP peers by default. This behavior, however,
makes changing the autonomous system number for a service provider or large BGP network difficult, because
the routes with the prepended AS number are rejected by internal BGP (iBGP) peers that belong to the same
AS.

Hiding the local AS number by using the no-prepend command simplifies the process of changing the
autonomous system number in a Border Gateway Protocol (BGP) network.Without this feature, internal BGP
(iBGP) peers reject external routes from peers with a local AS number in the as-path attribute to prevent
routing loops. Hiding the local AS number allows you to transparently change the autonomous system number

Implementing BGP
17

Implementing BGP
Configuring BGP MD5 Authentication

for the entire BGP network and ensure that routes can be propagated throughout the autonomous system,
while the AS number transition is incomplete.

Configuring BGP to Hide the Local AS Number
Hiding the local AS number for eBGP peers by using the no-prepend command can be used to transparently
change the AS number of a BGP network, and ensure that routes are propagated throughout the AS during
the transition. Because the local AS number is not prepended to these routes, external routes are not rejected
by internal peers during the transition from one AS number to another.

This section describes the configuration and verification of the feature.

BGP prepends the autonomous system number from each BGP network that a route traverses. This behavior
is designed to maintain network reachability information and to prevent routing loops from occurring.
Configuring the no-prepend command incorrectly could create routing loops. So, the configuration of this
command should only be attempted by an experienced network operator.

Note

Configuration

Use the following configuration to hide the local AS number for eBGP peers.
Router# config
Router(config)# router bgp 100
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# network 172.20.1.1 255.255.240.0
Router(config-bgp-af)# neighbor 172.20.1.1
Router(config-bgp-af)# remote-as 150
Router(config-bgp-af)# local-as 300 no-prepend
Router(config-bgp-af)# commit

Running Configuration

RP/0/RP0/CPU0:router# show running-configuration
...
!
router bgp 100
address-family ipv4 unicast
network 10.1.1.1 255.255.0.0
neighbor 10.1.1.1 remote-as 100
neighbor 10.1.1.1 local-as 300 no-prepend
!

Verification

Use the following command to verify your configuration.
RP/0/RP0/CPU0:router# show ip bgp neighbors
BGP neighbor is 10.1.1.1, remote AS 100, local AS 300 no-prepend, external link
BGP version 4, remote router ID 10.1.1.1
BGP state = Established, up for 00:00:49
Last read 00:00:49, hold time is 180, keepalive interval is 60 seconds
Neighbor capabilities:
Route refresh: advertised and received(new)
Address family IPv4 Unicast: advertised and received
IPv4 MPLS Label capability:

Implementing BGP
18

Implementing BGP
Configuring BGP to Hide the Local AS Number

Received 10 messages, 1 notifications, 0 in queue
Sent 10 messages, 0 notifications, 0 in queue
Default minimum time between advertisement runs is 30 seconds

Autonomous System Number Formats in BGP
Autonomous system numbers (ASNs) are globally unique identifiers used to identify autonomous systems
(ASs) and enable ASs to exchange exterior routing information between neighboring ASs. A unique ASN is
allocated to each AS for use in BGP routing. ASNs are encoded as 2-byte numbers and 4-byte numbers in
BGP.

RP/0/RP0/CPU0:router(config)# as-format [asdot | asplain]
RP/0/RP0/CPU0:router(config)# as-format asdot

ASN change for BGP process is not currently supported via commit replacecommand.Note

2-byte Autonomous System Number Format
The 2-byte ASNs are represented in asplain notation. The 2-byte range is 1 to 65535.

4-byte Autonomous System Number Format
To prepare for the eventual exhaustion of 2-byte Autonomous SystemNumbers (ASNs), BGP has the capability
to support 4-byte ASNs. The 4-byte ASNs are represented both in asplain and asdot notations.

The byte range for 4-byte ASNs in asplain notation is 1-4294967295. The AS is represented as a 4-byte
decimal number. The 4-byte ASN asplain representation is defined in draft-ietf-idr-as-representation-01.txt.

For 4-byte ASNs in asdot format, the 4-byte range is 1.0 to 65535.65535 and the format is:

high-order-16-bit-value-in-decimal . low-order-16-bit-value-in-decimal

The BGP 4-byte ASN capability is used to propagate 4-byte-based AS path information across BGP speakers
that do not support 4-byte AS numbers. See draft-ietf-idr-as4bytes-12.txt for information on increasing the
size of an ASN from 2 bytes to 4 bytes. AS is represented as a 4-byte decimal number

as-format Command
The as-format command configures the ASN notation to asdot. The default value, if the as-format command
is not configured, is asplain.

BGP Multi-Instance and Multi-AS
Multi-AS BGP enables configuring each instance of a multi-instance BGP with a different AS number.
Multi-Instance and Multi-AS BGP provides these capabilities:

• Mechanism to consolidate the services provided bymultiple routers using a common routing infrastructure
into a single IOS-XR router.

• Mechanism to achieve AF isolation by configuring the different AFs in different BGP instances.

Implementing BGP
19

Implementing BGP
Autonomous System Number Formats in BGP

https://datatracker.ietf.org/
https://tools.ietf.org/html/draft-ietf-idr-as4bytes-12

• Means to achieve higher session scale by distributing the overall peering sessions between multiple
instances.

• Mechanism to achieve higher prefix scale (especially on a RR) by having different instances carrying
different BGP tables.

• Improved BGP convergence under certain scenarios.

• All BGP functionalities including NSR are supported for all the instances.

• The load and commit router-level operations can be performed on previously verified or applied
configurations.

Restrictions

• The router supports maximum of 4 BGP instances.

• Each BGP instance needs a unique router-id.

• Only one Address Family can be configured under each BGP instance (VPNv4, VPNv6 and RT-Constrain
can be configured under multiple BGP instances).

• IPv4/IPv6 Unicast should be within the same BGP instance in which IPv4/IPv6 Labeled-Unicast is
configured.

• IPv4/IPv6 Multicast should be within the same BGP instance in which IPv4/IPv6 Unicast is configured.

• All configuration changes for a single BGP instance can be committed together. However, configuration
changes for multiple instances cannot be committed together.

• Cisco recommends that BGP update-source should be unique in the default VRF over all instances while
peering with the same remote router.

Configure Multiple BGP Instances for a Specific Autonomous System

Perform this task to configure multiple BGP instances for a specific autonomous system. All configuration
changes for a single BGP instance can be committed together. However, configuration changes for multiple
instances cannot be committed together.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number [instance instance name]

Example:
RP/0/RSP0/CPU0:router(config)# router bgp 100 instance inst1

Enters BGP configuration mode for the user specified BGP instance.

Implementing BGP
20

Implementing BGP
Configure Multiple BGP Instances for a Specific Autonomous System

Step 3 bgp router-idip-address

Example:
RP/0/RSP0/CPU0:router(config-bgp)# bgp router-id 10.0.0.0

Configures a fixed router ID for the BGP-speaking router (BGP instance).

You must manually configure unique router ID for each BGP instance.Note

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

BGP Routing Domain Confederation
One way to reduce the iBGP mesh is to divide an autonomous system into multiple sub-autonomous systems
and group them into a single confederation. To the outside world, the confederation looks like a single
autonomous system. Each autonomous system is fully meshed within itself and has a few connections to other
autonomous systems in the same confederation. Although the peers in different autonomous systems have
eBGP sessions, they exchange routing information as if they were iBGP peers. Specifically, the next hop,
MED, and local preference information is preserved. This feature allows you to retain a single IGP for all of
the autonomous systems.

Configure Routing Domain Confederation for BGP
Perform this task to configure the routing domain confederation for BGP. This includes specifying a
confederation identifier and autonomous systems that belong to the confederation.

Configuring a routing domain confederation reduces the internal BGP (iBGP)mesh by dividing an autonomous
system into multiple autonomous systems and grouping them into a single confederation. Each autonomous
system is fully meshed within itself and has a few connections to another autonomous system in the same
confederation. The confederation maintains the next hop and local preference information, and that allows
you to retain a single Interior Gateway Protocol (IGP) for all autonomous systems. To the outside world, the
confederation looks like a single autonomous system.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Implementing BGP
21

Implementing BGP
BGP Routing Domain Confederation

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 bgp confederation identifier as-number

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp confederation identifier 5

Specifies a BGP confederation identifier.

Step 4 bgp confederation peers as-number

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp confederation peers 1091
RP/0/RP0/CPU0:router(config-bgp)# bgp confederation peers 1092
RP/0/RP0/CPU0:router(config-bgp)# bgp confederation peers 1093
RP/0/RP0/CPU0:router(config-bgp)# bgp confederation peers 1094
RP/0/RP0/CPU0:router(config-bgp)# bgp confederation peers 1095
RP/0/RP0/CPU0:router(config-bgp)# bgp confederation peers 1096

Specifies that the BGP autonomous systems belong to a specified BGP confederation identifier. You can
associate multiple AS numbers to the same confederation identifier, as shown in the example.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

BGP Confederation: Example

The following is a sample configuration that shows several peers in a confederation. The confederation
consists of three internal autonomous systems with autonomous system numbers 6001, 6002, and
6003. To the BGP speakers outside the confederation, the confederation looks like a normal
autonomous system with autonomous system number 666 (specified using the bgp confederation
identifier command).

In a BGP speaker in autonomous system 6001, the bgp confederation peers command marks the
peers from autonomous systems 6002 and 6003 as special eBGP peers. Hence, peers 171.16 .232.55
and 171.16 .232.56 get the local preference, next hop, and MED unmodified in the updates. The

Implementing BGP
22

Implementing BGP
Configure Routing Domain Confederation for BGP

router at 171 .19 .69.1 is a normal eBGP speaker, and the updates received by it from this peer are
just like a normal eBGP update from a peer in autonomous system 666.

router bgp 6001
bgp confederation identifier 666
bgp confederation peers
6002
6003
exit

address-family ipv4 unicast
neighbor 171.16.232.55
remote-as 6002
exit

address-family ipv4 unicast
neighbor 171.16.232.56
remote-as 6003
exit

address-family ipv4 unicast
neighbor 171.19.69.1
remote-as 777

In a BGP speaker in autonomous system 6002, the peers from autonomous systems 6001 and 6003
are configured as special eBGP peers. Peer 171 .17 .70.1 is a normal iBGP peer, and peer 199.99.99.2
is a normal eBGP peer from autonomous system 700.

router bgp 6002
bgp confederation identifier 666
bgp confederation peers
6001
6003
exit

address-family ipv4 unicast
neighbor 171.17.70.1
remote-as 6002
exit

address-family ipv4 unicast
neighbor 171.19.232.57
remote-as 6001
exit

address-family ipv4 unicast
neighbor 171.19.232.56
remote-as 6003
exit

address-family ipv4 unicast
neighbor 171.19.99.2
remote-as 700
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

In a BGP speaker in autonomous system 6003, the peers from autonomous systems 6001 and 6002
are configured as special eBGP peers. Peer 192 .168 .200.200 is a normal eBGP peer from autonomous
system 701.

router bgp 6003
bgp confederation identifier 666

Implementing BGP
23

Implementing BGP
Configure Routing Domain Confederation for BGP

bgp confederation peers
6001
6002
exit

address-family ipv4 unicast
neighbor 171.19.232.57
remote-as 6001
exit

address-family ipv4 unicast
neighbor 171.19.232.55
remote-as 6002
exit

address-family ipv4 unicast
neighbor 192.168.200.200
remote-as 701
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

The following is a part of the configuration from the BGP speaker 192 .168 .200.205 from autonomous
system 701 in the same example. Neighbor 171.16 .232.56 is configured as a normal eBGP speaker
from autonomous system 666. The internal division of the autonomous system into multiple
autonomous systems is not known to the peers external to the confederation.

router bgp 701
address-family ipv4 unicast
neighbor 172.16.232.56
remote-as 666
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
exit

address-family ipv4 unicast
neighbor 192.168.200.205
remote-as 701

BGP Additional Paths
The Border Gateway Protocol (BGP) Additional Paths feature modifies the BGP protocol machinery for a
BGP speaker to be able to send multiple paths for a prefix. This gives 'path diversity' in the network. The add
path enables BGP prefix independent convergence (PIC) at the edge routers.

BGP add path enables add path advertisement in an iBGP network and advertises the following types of paths
for a prefix:

• Backup paths—to enable fast convergence and connectivity restoration.

• Group-best paths—to resolve route oscillation.

• All paths—to emulate an iBGP full-mesh.

Configure BGP Additional Paths
Perform these tasks to configure BGP Additional Paths capability:

Implementing BGP
24

Implementing BGP
BGP Additional Paths

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 route-policy route-policy-name

Example:
RP/0/RP0/CPU0:router (config)#route-policy add_path_policy

Defines the route policy and enters route-policy configuration mode.

Step 3 if conditional-expression then action-statement else

Example:
RP/0/RP0/CPU0:router (config-rpl)#if community matches-any (*) then

set path-selection all advertise
else

Decides the actions and dispositions for the given route.

Step 4 pass endif

Example:

RP/0/RP0/CPU0:router(config-rpl-else)#pass
RP/0/RP0/CPU0:router(config-rpl-else)#endif

Passes the route for processing and ends the if statement.

Step 5 end-policy

Example:
RP/0/RP0/CPU0:router(config-rpl)#end-policy

Ends the route policy definition of the route policy and exits route-policy configuration mode.

Step 6 router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)#router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 7 address-family {ipv4 {unicast } | ipv6 {unicast | l2vpn vpls-vpws | vpnv4 unicast | vpnv6 unicast }

Example:
RP/0/RP0/CPU0:router(config-bgp)#address-family ipv4 unicast

Specifies the address family and enters address family configuration submode.

Step 8 additional-paths receive

Example:

Implementing BGP
25

Implementing BGP
Configure BGP Additional Paths

RP/0/RP0/CPU0:router(config-bgp-af)#additional-paths receive

Configures receive capability of multiple paths for a prefix to the capable peers.

Step 9 additional-paths send

Example:
RP/0/RP0/CPU0:router(config-bgp-af)#additional-paths send

Configures send capability of multiple paths for a prefix to the capable peers .

Step 10 additional-paths selection route-policy route-policy-name

Example:
RP/0/RP0/CPU0:router(config-bgp-af)#additional-paths selection route-policy add_path_policy

Configures additional paths selection capability for a prefix.

Step 11 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

BGP Maximum Prefix
The maximum-prefix feature imposes a maximum limit on the number of prefixes that are received from a
neighbor for a given address family.Whenever the number of prefixes received exceeds themaximum number
configured, the BGP session is terminated, which is the default behavior, after sending a cease notification to
the neighbor. The session is down until a manual clear is performed by the user. The session can be resumed
by using the clear bgp command. It is possible to configure a period after which the session can be automatically
brought up by using the maximum-prefix command with the restart keyword. The maximum prefix limit
can be configured by the user. Default limits are used if the user does not configure the maximum number of
prefixes for the address family.

Discard Extra Paths

An option to discard extra paths is added to the maximum-prefix configuration. Configuring the discard extra
paths option drops all excess prefixes received from the neighbor when the prefixes exceed the configured
maximum value. This drop does not, however, result in session flap.

The benefits of discard extra paths option are:

• Limits the memory footstamp of BGP.

• Stops the flapping of the peer if the paths exceed the set limit.

When the discard extra paths configuration is removed, BGP sends a route-refresh message to the neighbor
if it supports the refresh capability; otherwise the session is flapped.

Implementing BGP
26

Implementing BGP
BGP Maximum Prefix

On the same lines, the following describes the actions when the maximum prefix value is changed:

• If the maximum value alone is changed, a route-refresh message is sourced, if applicable.

• If the new maximum value is greater than the current prefix count state, the new prefix states are saved.

• If the new maximum value is less than the current prefix count state, then some existing prefixes are
deleted to match the new configured state value.

There is currently no way to control which prefixes are deleted.

Configure Discard Extra Paths
The discard extra paths option in the maximum-prefix configuration allows you to drop all excess prefixes
received from the neighbor when the prefixes exceed the configured maximum value. This drop does not,
however, result in session flap.

The benefits of discard extra paths option are:

• Limits the memory footstamp of BGP.

• Stops the flapping of the peer if the paths exceed the set limit.

When the discard extra paths configuration is removed, BGP sends a route-refresh message to the neighbor
if it supports the refresh capability; otherwise the session is flapped.

• When the router drops prefixes, it is inconsistent with the rest of the network, resulting in possible routing
loops.

• If prefixes are dropped, the standby and active BGP sessions may drop different prefixes. Consequently,
an NSR switchover results in inconsistent BGP tables.

• The discard extra paths configuration cannot co-exist with the soft reconfig configuration.

• When the system runs out of physical memory, bgp process exits and you must manually restart bpm.
To manually restart, use the process restart bpm command.

Note

Perform this task to configure BGP maximum-prefix discard extra paths.

Procedure

Step 1 configure

Example:
RP/0/RP0/CPU0:router# configure

Enters XR Config mode.

Step 2 router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)# router bgp 10

Implementing BGP
27

Implementing BGP
Configure Discard Extra Paths

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 neighbor ip-address

Example:
RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.0.1

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as
a BGP peer.

Step 4 address-family { ipv4 | ipv6 } unicast

Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

Step 5 maximum-prefix maximum discard-extra-paths

Example:
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# maximum-prefix 1000 discard-extra-paths

Configures a limit to the number of prefixes allowed.

Configures discard extra paths to discard extra paths when the maximum prefix limit is exceeded.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Example

The following example shows how to configure discard extra paths feature for the IPv4 address
family:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# router bgp 10
RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.0.1
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# maximum-prefix 1000 discard-extra-paths
RP/0/RP0/CPU0:router(config-bgp-vrf-af)# commit

The show bgp neighbor output shows the cumulative number for the Prefix advertised count if the
same prefixes are withdrawn and re-advertised.

The following screen output shows details about the discard extra paths option:

Implementing BGP
28

Implementing BGP
Configure Discard Extra Paths

RP/0/RP0/CPU0:ios# show bgp neighbor 10.0.0.1

BGP neighbor is 10.0.0.1
Remote AS 10, local AS 10, internal link
Remote router ID 0.0.0.0
BGP state = Idle (No best local address found)
Last read 00:00:00, Last read before reset 00:00:00
Hold time is 180, keepalive interval is 60 seconds
Configured hold time: 180, keepalive: 60, min acceptable hold time: 3
Last write 00:00:00, attempted 0, written 0
Second last write 00:00:00, attempted 0, written 0
Last write before reset 00:00:00, attempted 0, written 0
Second last write before reset 00:00:00, attempted 0, written 0
Last write pulse rcvd not set last full not set pulse count 0
Last write pulse rcvd before reset 00:00:00
Socket not armed for io, not armed for read, not armed for write
Last write thread event before reset 00:00:00, second last 00:00:00
Last KA expiry before reset 00:00:00, second last 00:00:00
Last KA error before reset 00:00:00, KA not sent 00:00:00
Last KA start before reset 00:00:00, second last 00:00:00
Precedence: internet
Multi-protocol capability not received
Received 0 messages, 0 notifications, 0 in queue
Sent 0 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 0 secs

For Address Family: IPv4 Unicast
BGP neighbor version 0
Update group: 0.1 Filter-group: 0.0 No Refresh request being processed
Route refresh request: received 0, sent 0
0 accepted prefixes, 0 are bestpaths
Cumulative no. of prefixes denied: 0.
Prefix advertised 0, suppressed 0, withdrawn 0
Maximum prefixes allowed 10 (discard-extra-paths) <<<<<<<<<<<<<<<<<<<<<
Threshold for warning message 75%, restart interval 0 min
AIGP is enabled
An EoR was not received during read-only mode
Last ack version 1, Last synced ack version 0
Outstanding version objects: current 0, max 0
Additional-paths operation: None
Send Multicast Attributes

Connections established 0; dropped 0
Local host: 0.0.0.0, Local port: 0, IF Handle: 0x00000000
Foreign host: 10.0.0.1, Foreign port: 0
Last reset 00:00:00

BGP Best-External Path
The best–external path functionality supports advertisement of the best–external path to the iBGP and Route
Reflector peers when a locally selected bestpath is from an internal peer. BGP selects one best path and one
backup path to every destination. By default, selects one best path . Additionally, BGP selects another bestpath
from among the remaining external paths for a prefix. Only a single path is chosen as the best–external path
and is sent to other PEs as the backup path. BGP calculates the best–external path only when the best path is
an iBGP path. If the best path is an eBGP path, then best–external path calculation is not required.

The procedure to determine the best–external path is as follows:

1. Determine the best path from the entire set of paths available for a prefix.

Implementing BGP
29

Implementing BGP
BGP Best-External Path

2. Eliminate the current best path.

3. Eliminate all the internal paths for the prefix.

4. From the remaining paths, eliminate all the paths that have the same next hop as that of the current best
path.

5. Rerun the best path algorithm on the remaining set of paths to determine the best–external path.

BGP considers the external and confederations BGP paths for a prefix to calculate the best–external path.
BGP advertises the best path and the best–external path as follows:

• On the primary PE—advertises the best path for a prefix to both its internal and external peers

• On the backup PE—advertises the best path selected for a prefix to the external peers and advertises the
best–external path selected for that prefix to the internal peers

Configure Best-External Path Advertisement
Perform the following tasks to advertise the best–external path to the iBGP and route-reflector peers:

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 Do one of the following

• address-family { vpnv4 unicast | vpnv6 unicast }

• vrfvrf-name{ipv4 unicast|ipv6 unicast}

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family vpnv4 unicast

Specifies the address family or VRF address family and enters the address family or VRF address family
configuration submode.

Step 4 advertise best-external

Example:

Implementing BGP
30

Implementing BGP
Configure Best-External Path Advertisement

RP/0/RP0/CPU0:router(config-bgp-af)# advertise best-external

Advertise the best–external path to the iBGP and route-reflector peers.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

BGP Local Label Retention
When a primary PE-CE link fails, BGP withdraws the route corresponding to the primary path along with its
local label and programs the backup path in the Routing Information Base (RIB) and the Forwarding Information
Base (FIB), by default.

However, until all the internal peers of the primary PE reconverge to use the backup path as the new bestpath,
the traffic continues to be forwarded to the primary PE with the local label that was allocated for the primary
path. Hence the previously allocated local label for the primary path must be retained on the primary PE for
some configurable time after the reconvergence. BGP Local Label Retention feature enables the retention of
the local label for a specified period. If no time is specified, the local lable is retained for a default value of
five minutes.

Retain Allocated Local Label for Primary Path
Perform the following tasks to retain the previously allocated local label for the primary path on the primary
PE for some configurable time after reconvergence:

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Implementing BGP
31

Implementing BGP
BGP Local Label Retention

Step 3 address-family { vpnv4 unicast | vpnv6 unicast }

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family vpnv4 unicast

Specifies the address family and enters the address family configuration submode.

Step 4 retain local-label minutes

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# retain local-label 10

Retains the previously allocated local label for the primary path on the primary PE for 10 minutes after
reconvergence.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Allocated Local Label Retention: Example

The following example shows how to retain the previously allocated local label for the primary path
on the primary PE for 10 minutes after reconvergence:

router bgp 100
address-family l2vpn vpnv4 unicast
retain local-label 10

end

iBGP Multipath Load Sharing
When a Border Gateway Protocol (BGP) speaking router that has no local policy configured, receives multiple
network layer reachability information (NLRI) from the internal BGP (iBGP) for the same destination, the
router will choose one iBGP path as the best path. The best path is then installed in the IP routing table of the
router. The iBGP Multipath Load Sharing feature enables the BGP speaking router to select multiple iBGP
paths as the best paths to a destination. The best paths or multipaths are then installed in the IP routing table
of the router.

iBGP Multipath Load Sharing Reference, on page 143 provides additional details.

Configure iBGP Multipath Load Sharing
Perform this task to configure the iBGP Multipath Load Sharing:

Implementing BGP
32

Implementing BGP
iBGP Multipath Load Sharing

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 address-family {ipv4|ipv6} {unicast|multicast}

Example:
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 multicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

Step 4 maximum-paths ibgp number

Example:
RP/0/RP0/CPU0:router(config-bgp-af)# maximum-paths ibgp 30

Configures the maximum number of iBGP paths for load sharing.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

iBGP Multipath Loadsharing Configuration: Example

The following is a sample configuration where 30 paths are used for loadsharing:

router bgp 100
address-family ipv4 multicast
maximum-paths ibgp 30
!
!
end

Implementing BGP
33

Implementing BGP
Configure iBGP Multipath Load Sharing

Persistent Loadbalancing
Traditional ECMP or equal cost multipath loadbalances traffic over a number of available paths towards a
destination. When one path fails, the traffic gets re-shuffled over the available number of paths. This flow
distribution can be a problem in data center loadbalancing.

Persistent Loadbalancing or Sticky ECMP defines a prefix in such a way that it do not rehash flows on existing
paths and only replace those bucket assignments of the failed server. The advantage is that the established
sessions to servers will not get rehashed.

The following section describes how you can configure persistent load balancing:
/*Configure persistent load balancing. */

Router(config)# router bgp 7500
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# table-policy sticky-ecmp
Router(config-bgp-af)# bgp attribute-download
Router(config-bgp-af)# maximum-paths ebgp 64
Router(config-bgp-af)# maximum-paths ibgp 32
Router(config-bgp-af)# exit
Router(config-bgp)# exit
Router(config)# route-policy sticky-ecmp
Router(config-rpl)# if destination in (192.1.1.1/24) then
Router(config-rpl-if)# set load-balance ecmp-consistent
Router(config-rpl-if)# else
Router(config-rpl-else)# pass
Router(config-rpl-else)# endif
RP/0/0/CPU0:ios(config-rpl)# end-policy
RP/0/0/CPU0:ios(config)#

/* Enable autocovery and hence recover the original hashing state
after failed paths become active. */
Router(config)# cef consistent-hashing auto-recovery

/* Recover to the original hashing state after failed paths come up
and avoid affecting newly formed flows after path failure. */
Router(config)# clear route 192.0.2.0/24

Running Configuration

/* Configure persistent loadbalancing. */
router bgp 7500
address-family ipv4 unicast
table-policy sticky-ecmp
bgp attribute-download
maximum-paths ebgp 64
maximum-paths ibgp 32

cef consistent-hashing auto-recovery

clear route 192.0.2.0/24

Verification

Verify that the path distribution with persistent loadbalancing is configured.

The following show output displays the status of path distribution before a link fails. In this output, three paths
are identified with three next hops (10.1/2/3.0.1) through three different GigabitEthernet interfaces.

show cef 192.0.2.0/24

Implementing BGP
34

Implementing BGP
Persistent Loadbalancing

LDI Update time Sep 5 11:22:38.201
via 10.1.0.1/32, 3 dependencies, recursive, bgp-multipath [flags 0x6080]
path-idx 0 NHID 0x0 [0x57ac4e74 0x0]
next hop 10.1.0.1/32 via 10.1.0.1/32
via 10.2.0.1/32, 3 dependencies, recursive, bgp-multipath [flags 0x6080]
path-idx 1 NHID 0x0 [0x57ac4a74 0x0]
next hop 10.2.0.1/32 via 10.2.0.1/32
via 10.3.0.1/32, 3 dependencies, recursive, bgp-multipath [flags 0x6080]
path-idx 2 NHID 0x0 [0x57ac4f74 0x0]
next hop 10.3.0.1/32 via 10.3.0.1/32

Load distribution (consistent): 0 1 2 (refcount 1)

Hash OK Interface Address
0 Y GigabitEthernet0/0/0/0 10.1.0.1
1 Y GigabitEthernet0/0/0/1 10.2.0.1
2 Y GigabitEthernet0/0/0/2 10.3.0.1

The following show output displays the status of the path distribution after a link fails. The replacement of
bucket 1 with GigabitEthernet 0/0/0/0 and the "*" symbol denotes that this path is a replacement for a failed
path.

show cef 192.0.2.0/24
LDI Update time Sep 5 11:23:13.434
via 10.1.0.1/32, 3 dependencies, recursive, bgp-multipath [flags 0x6080]
path-idx 0 NHID 0x0 [0x57ac4e74 0x0]
next hop 10.1.0.1/32 via 10.1.0.1/32
via 10.3.0.1/32, 3 dependencies, recursive, bgp-multipath [flags 0x6080]
path-idx 1 NHID 0x0 [0x57ac4f74 0x0]
next hop 10.3.0.1/32 via 10.3.0.1/32

Load distribution (consistent) : 0 1 2 (refcount 1)
Hash OK Interface Address
0 Y GigabitEthernet0/0/0/0 10.1.0.1

1* Y GigabitEthernet0/0/0/0 10.1.0.1
2 Y GigabitEthernet0/0/0/2 10.3.0.1

Route Dampening
Route dampening is a BGP feature that minimizes the propagation of flapping routes across an internetwork.
A route is considered to be flapping when it is repeatedly available, then unavailable, then available, then
unavailable, and so on.

For example, consider a network with three BGP autonomous systems: autonomous system 1, autonomous
system 2, and autonomous system 3. Suppose the route to network A in autonomous system 1 flaps (it becomes
unavailable). Under circumstances without route dampening, the eBGP neighbor of autonomous system 1 to
autonomous system 2 sends a withdraw message to autonomous system 2. The border router in autonomous
system 2, in turn, propagates the withdrawal message to autonomous system 3. When the route to network A
reappears, autonomous system 1 sends an advertisement message to autonomous system 2, which sends it to
autonomous system 3. If the route to network A repeatedly becomes unavailable, then available, many
withdrawal and advertisement messages are sent. Route flapping is a problem in an internetwork connected
to the Internet, because a route flap in the Internet backbone usually involves many routes.

The route dampening feature minimizes the flapping problem as follows. Suppose again that the route to
network A flaps. The router in autonomous system 2 (in which route dampening is enabled) assigns network
A a penalty of 1000 and moves it to history state. The router in autonomous system 2 continues to advertise

Implementing BGP
35

Implementing BGP
Route Dampening

the status of the route to neighbors. The penalties are cumulative.When the route flaps so often that the penalty
exceeds a configurable suppression limit, the router stops advertising the route to network A, regardless of
how many times it flaps. Thus, the route is dampened.

The penalty placed on network A is decayed until the reuse limit is reached, upon which the route is once
again advertised. At half of the reuse limit, the dampening information for the route to network A is removed.

No penalty is applied to a BGP peer reset when route dampening is enabled, even though the reset withdraws
the route.

Note

Configuring BGP Route Dampening
Perform this task to configure and monitor BGP route dampening.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 bgp dampening [half-life [reuse suppress max-suppress-time] | route-policy route-policy-name]

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# bgp dampening 30 1500 10000 120

Configures BGP dampening for the specified address family.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

Implementing BGP
36

Implementing BGP
Configuring BGP Route Dampening

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Routing Policy Enforcement
External BGP (eBGP) neighbors must have an inbound and outbound policy configured. If no policy is
configured, no routes are accepted from the neighbor, nor are any routes advertised to it. This added security
measure ensures that routes cannot accidentally be accepted or advertised in the case of a configuration
omission error.

This enforcement affects only eBGP neighbors (neighbors in a different autonomous system than this router).
For internal BGP (iBGP) neighbors (neighbors in the same autonomous system), all routes are accepted or
advertised if there is no policy.

Note

Apply Policy When Updating Routing Table
The table policy feature in BGP allows you to configure traffic index values on routes as they are installed in
the global routing table. This feature is enabled using the table-policy command and supports the BGP policy
accounting feature. Table policy also provides the ability to drop routes from the RIB based on match criteria.
This feature can be useful in certain applications and should be used with caution as it can easily create a
routing traffic drop where BGP advertises routes to neighbors that BGP does not install in its global routing
table and forwarding table.

Perform this task to apply a routing policy to routes being installed into the routing table.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120.6

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Implementing BGP
37

Implementing BGP
Routing Policy Enforcement

Step 3 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 table-policy policy-name

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# table-policy tbl-plcy-A

Applies the specified policy to routes being installed into the routing table.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Applying routing policy: Example

In the following example, for an eBGP neighbor, if all routes should be accepted and advertised with
no modifications, a simple pass-all policy is configured:

RP/0/RP0/CPU0:router(config)# route-policy pass-all
RP/0/RP0/CPU0:router(config-rpl)# pass
RP/0/RP0/CPU0:router(config-rpl)# end-policy
RP/0/RP0/CPU0:router(config)# commit

Use the route-policy (BGP) command in the neighbor address-family configuration mode to apply
the pass-all policy to a neighbor. The following example shows how to allow all IPv4 unicast routes
to be received from neighbor 192.168.40.42 and advertise all IPv4 unicast routes back to it:

RP/0/RP0/CPU0:router(config)# router bgp 1
RP/0/RP0/CPU0:router(config-bgp)# neighbor 192.168.40.24
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 21
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy pass-all in
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy pass-all out
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# commit

Implementing BGP
38

Implementing BGP
Apply Policy When Updating Routing Table

Use the show bgp summary command to display eBGP neighbors that do not have both an inbound
and outbound policy for every active address family. In the following example, such eBGP neighbors
are indicated in the output with an exclamation (!) mark:

RP/0/RP0/CPU0:router# show bgp all all summary

Address Family: IPv4 Unicast
============================

BGP router identifier 10.0.0.1, local AS number 1
BGP generic scan interval 60 secs
BGP main routing table version 41
BGP scan interval 60 secs
BGP is operating in STANDALONE mode.

Process RecvTblVer bRIB/RIB SendTblVer
Speaker 41 41 41

Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd
10.0.101.1 0 1 919 925 41 0 0 15:15:08 10
10.0.101.2 0 2 0 0 0 0 0 00:00:00 Idle

Configure BGP Neighbor Group and Neighbors
Perform this task to configure BGP neighbor groups and apply the neighbor group configuration to a neighbor.
A neighbor group is a template that holds address family-independent and address family-dependent
configurations that are associated with the neighbor.

After a neighbor group is configured, each neighbor can inherit the configuration through the usecommand.
If a neighbor is configured to use a neighbor group, the neighbor (by default) inherits the entire configuration
of the neighbor group, which includes the address family-independent and address family-dependent
configurations. The inherited configuration can be overridden if you directly configure commands for the
neighbor or configure session groups or address family groups through the usecommand.

You can configure an address family-independent configuration under the neighbor group. An address
family-dependent configuration requires you to configure the address family under the neighbor group to
enter address family submode. From neighbor group configuration mode, you can configure address
family-independent parameters for the neighbor group. Use the address-familycommandwhen in the neighbor
group configuration mode. After specifying the neighbor group name using the neighbor group command,
you can assign options to the neighbor group.

All commands that can be configured under a specified neighbor group can be configured under a neighbor.Note

Starting with Cisco IOS XR Release 7.3.1, the maximum allowed BGP neighbor value is only 110 for Cisco
6Z18G-SYS-A/D, and N540X-8Z16G-SYS-A/D variants.

Note

Implementing BGP
39

Implementing BGP
Configure BGP Neighbor Group and Neighbors

In Cisco IOS-XR versions prior to 6.3.2, you cannot remove a autonomous system that belongs to a BGP
neighbor and move it under a BGP neigbhorgroup using a single IOS-XR commit. Effective with 6.3.2, you
can move the autonoums system from a neighbor to a neighbor group in a single IOS-XR commit.

Note

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 exit

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Exits the current configuration mode.

Step 5 neighbor-group name

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor-group nbr-grp-A

Places the router in neighbor group configuration mode.

Step 6 remote-as as-number

Example:

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# remote-as 2002

Implementing BGP
40

Implementing BGP
Configure BGP Neighbor Group and Neighbors

Creates a neighbor and assigns a remote autonomous system number to it.

Step 7 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 8 route-policy route-policy-name { in | out }

Example:

RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# route-policy drop-as-1234 in

(Optional) Applies the specified policy to inbound IPv4 unicast routes.

Step 9 exit

Example:

RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# exit

Exits the current configuration mode.

Step 10 exit

Example:

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# exit

Exits the current configuration mode.

Step 11 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as
a BGP peer.

Step 12 use neighbor-group group-name

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# use neighbor-group nbr-grp-A

(Optional) Specifies that the BGP neighbor inherit configuration from the specified neighbor group.

Step 13 remote-as as-number

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2002

Creates a neighbor and assigns a remote autonomous system number to it.

Implementing BGP
41

Implementing BGP
Configure BGP Neighbor Group and Neighbors

Step 14 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

BGP Neighbor Configuration: Example

The following example shows howBGP neighbors on an autonomous system are configured to share
information. In the example, a BGP router is assigned to autonomous system 109, and two networks
are listed as originating in the autonomous system. Then the addresses of three remote routers (and
their autonomous systems) are listed. The router being configured shares information about networks
172 .16 .0.0 and 192.168 .7.0 with the neighbor routers. The first router listed is in a different
autonomous system; the second neighbor and remote-as commands specify an internal neighbor
(with the same autonomous system number) at address 172 .26 .234.2; and the third neighbor and
remote-as commands specify a neighbor on a different autonomous system.

route-policy pass-all
pass
end-policy
router bgp 109
address-family ipv4 unicast
network 172.16.0.0 255.255.0.0
network 192.168.7.0 255.255.0.0
neighbor 172.16.200.1
remote-as 167

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-out out
neighbor 172.26.234.2
remote-as 109

address-family ipv4 unicast
neighbor 172.26.64.19
remote-as 99

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

Disable BGP Neighbor
Perform this task to administratively shut down a neighbor session without removing the configuration.

Implementing BGP
42

Implementing BGP
Disable BGP Neighbor

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 127

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as
a BGP peer.

Step 4 shutdown

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# shutdown

Disables all active sessions for the specified neighbor.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Resetting Neighbors Using BGP Inbound Soft Reset
Perform this task to trigger an inbound soft reset of the specified address families for the specified group or
neighbors. The group is specified by the * , ip-address , as-number , or external keywords and arguments.

Resetting neighbors is useful if you change the inbound policy for the neighbors or any other configuration
that affects the sending or receiving of routing updates. If an inbound soft reset is triggered, BGP sends a
REFRESH request to the neighbor if the neighbor has advertised the ROUTE_REFRESH capability. To

Implementing BGP
43

Implementing BGP
Resetting Neighbors Using BGP Inbound Soft Reset

determinewhether the neighbor has advertised the ROUTE_REFRESH capability, use the show bgp neighbors
command.

Procedure

PurposeCommand or Action

Verifies that received route refresh capability
from the neighbor is enabled.

show bgp neighbors

Example:

Step 1

RP/0/RP0/CPU0:router# show bgp neighbors

Soft resets a BGP neighbor.soft [in [prefix-filter] | out]Step 2

Example: • The * keyword resets all BGP neighbors.

RP/0/RP0/CPU0:router# clear bgp ipv4
unicast 10.0.0.1 soft in

• The ip-address argument specifies the
address of the neighbor to be reset.

• The as-number argument specifies that
all neighbors that match the autonomous
system number be reset.

• The external keyword specifies that all
external neighbors are reset.

Resetting Neighbors Using BGP Outbound Soft Reset
Perform this task to trigger an outbound soft reset of the specified address families for the specified group or
neighbors. The group is specified by the * , ip-address , as-number , or external keywords and arguments.

Resetting neighbors is useful if you change the outbound policy for the neighbors or any other configuration
that affects the sending or receiving of routing updates.

If an outbound soft reset is triggered, BGP resends all routes for the address family to the given neighbors.

To determine whether the neighbor has advertised the ROUTE_REFRESH capability, use the show bgp
neighbors command.

Procedure

PurposeCommand or Action

Verifies that received route refresh capability
from the neighbor is enabled.

show bgp neighbors

Example:

Step 1

RP/0/RP0/CPU0:router# show bgp neighbors

Soft resets a BGP neighbor.Example:Step 2

RP/0/RP0/CPU0:router# clear bgp ipv4
unicast 10.0.0.2 soft out

• The * keyword resets all BGP neighbors.

• The ip-address argument specifies the
address of the neighbor to be reset.

Implementing BGP
44

Implementing BGP
Resetting Neighbors Using BGP Outbound Soft Reset

PurposeCommand or Action

• The as-number argument specifies that
all neighbors that match the autonomous
system number be reset.

• The external keyword specifies that all
external neighbors are reset.

Reset Neighbors Using BGP Hard Reset
Perform this task to reset neighbors using a hard reset. A hard reset removes the TCP connection to the
neighbor, removes all routes received from the neighbor from the BGP table, and then re-establishes the
session with the neighbor. If the graceful keyword is specified, the routes from the neighbor are not removed
from the BGP table immediately, but are marked as stale. After the session is re-established, any stale route
that has not been received again from the neighbor is removed.

Procedure

clear bgp { ipv4 { unicast | labeled-unicast | all | tunnel tunnel | mdt } | ipv6 unicast | all |
labeled-unicast } | all { unicast | multicast | all | labeled-unicast | mdt | tunnel } | vpnv4 unicast
| vrf { vrf-name | all } { ipv4 unicast | labeled-unicast } | ipv6 unicast } | vpnv6 unicast } { * |
ip-address | as as-number | external } [graceful] soft [in [prefix-filter] | out] clear bgp { ipv4 |
ipv6} { unicast | labeled-unicast }

Example:

RP/0/RP0/CPU0:router# clear bgp ipv4 unicast 10.0.0.3 long-lived-stale

Clears a BGP neighbor.

• The * keyword resets all BGP neighbors.

• The ip-address argument specifies the address of the neighbor to be reset.

• The as-number argument specifies that all neighbors that match the autonomous system number be
reset.

• The external keyword specifies that all external neighbors are reset.

The graceful keyword specifies a graceful restart.

Configure Software to Store Updates from Neighbor
Perform this task to configure the software to store updates received from a neighbor.

The soft-reconfiguration inbound command causes a route refresh request to be sent to the neighbor if the
neighbor is route refresh capable. If the neighbor is not route refresh capable, the neighbor must be reset to
relearn received routes using the clear bgp soft command.

Implementing BGP
45

Implementing BGP
Reset Neighbors Using BGP Hard Reset

Storing updates from a neighbor works only if either the neighbor is route refresh capable or the
soft-reconfiguration inbound command is configured. Even if the neighbor is route refresh capable and the
soft-reconfiguration inbound command is configured, the original routes are not stored unless the always
option is used with the command. The original routes can be easily retrieved with a route refresh request.
Route refresh sends a request to the peer to resend its routing information. The soft-reconfiguration inbound
command stores all paths received from the peer in an unmodified form and refers to these stored paths during
the clear. Soft reconfiguration is memory intensive.

Note

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as
a BGP peer.

Step 4 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 5 soft-reconfiguration inbound [always]

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# soft-reconfiguration inbound always

Implementing BGP
46

Implementing BGP
Configure Software to Store Updates from Neighbor

Configures the software to store updates received from a specified neighbor. Soft reconfiguration inbound
causes the software to store the original unmodified route in addition to a route that is modified or filtered.
This allows a “soft clear” to be performed after the inbound policy is changed.

Soft reconfiguration enables the software to store the incoming updates before apply policy if route refresh
is not supported by the peer (otherwise a copy of the update is not stored). The always keyword forces the
software to store a copy even when route refresh is supported by the peer.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Log Neighbor Changes
Logging neighbor changes is enabled by default. Use thebgp log neighbor changes disable command to turn
off logging. Use the no bgp log neighbor changes disable command to turn logging back on, if it has been
disabled.

RP/0/RP0/CPU0:(config)# router bgp 100
RP/0/RP0/CPU0:(config-bgp)# bgp log neighbor changes disable

RP/0/RP0/CPU0:(config)# router bgp 100
RP/0/RP0/CPU0:(config-bgp)# no bgp log neighbor changes disable

BGP Route Reflectors
BGP requires that all iBGP speakers be fully meshed. However, this requirement does not scale well when
there are many iBGP speakers. Instead of configuring a confederation, you can reduce the iBGP mesh by
using a route reflector configuration.With route reflectors, all iBGP speakers need not be fully meshed because
there is a method to pass learned routes to neighbors. In this model, an iBGP peer is configured to be a
route reflector responsible for passing iBGP learned routes to a set of iBGP neighbors.

In #unique_49 unique_49_Connect_42_fig_3980C23832D84D43BB58222F040E5A96 , Router B is configured
as a route reflector. When the route reflector receives routes advertised from Router A, it advertises them to
Router C, and vice versa. This scheme eliminates the need for the iBGP session between routers A and C.

See BGP Route Reflectors Reference, on page 142 for additional details on route reflectors.

Configure Route Reflector for BGP
Perform this task to configure a route reflector for BGP.

All the neighbors configured with the route-reflector-clientcommand are members of the client group, and
the remaining iBGP peers are members of the nonclient group for the local route reflector.

Implementing BGP
47

Implementing BGP
Log Neighbor Changes

Together, a route reflector and its clients form a cluster. A cluster of clients usually has a single route reflector.
In such instances, the cluster is identified by the software as the router ID of the route reflector. To increase
redundancy and avoid a single point of failure in the network, a cluster can have more than one route reflector.
If it does, all route reflectors in the cluster must be configured with the same 4-byte cluster ID so that a route
reflector can recognize updates from route reflectors in the same cluster. The bgp cluster-id command is used
to configure the cluster ID when the cluster has more than one route reflector.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 bgp cluster-id cluster-id

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp cluster-id 192.168.70.1

Configures the local router as one of the route reflectors serving the cluster. It is configured with a specified
cluster ID to identify the cluster.

Step 4 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as
a BGP peer.

Step 5 remote-as as-number

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2003

Creates a neighbor and assigns a remote autonomous system number to it.

Step 6 address-family { ipv4 | ipv6 } unicast

Example:

Implementing BGP
48

Implementing BGP
Configure Route Reflector for BGP

RP/0/RP0/CPU0:router(config-nbr)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 7 route-reflector-client

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-reflector-client

Configures the router as a BGP route reflector and configures the neighbor as its client.

Step 8 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

BGP Route Reflector: Example

The following example shows how to use an address family to configure internal BGP peer 10.1.1.1
as a route reflector client for unicast prefixes:

router bgp 140
address-family ipv4 unicast
neighbor 10.1.1.1
remote-as 140
address-family ipv4 unicast
route-reflector-client
exit

Configure BGP Route Filtering by Route Policy
Perform this task to configure BGP routing filtering by route policy.

Procedure

PurposeCommand or Action

Enters mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Implementing BGP
49

Implementing BGP
Configure BGP Route Filtering by Route Policy

PurposeCommand or Action

(Optional) Creates a route policy and enters
route policy configurationmode, where you can
define the route policy.

route-policy name

Example:

RP/0/RP0/CPU0:router(config)#

Step 2

route-policy drop-as-1234
RP/0/RP0/CPU0:router(config-rpl)# if

as-path passes-through '1234' then
RP/0/RP0/CPU0:router(config-rpl)# apply
check-communities
RP/0/RP0/CPU0:router(config-rpl)# else

RP/0/RP0/CPU0:router(config-rpl)# pass

RP/0/RP0/CPU0:router(config-rpl)# endif

(Optional) Ends the definition of a route policy
and exits route policy configuration mode.

end-policy

Example:

Step 3

RP/0/RP0/CPU0:router(config-rpl)#
end-policy

Specifies the autonomous system number and
enters the BGP configuration mode, allowing
you to configure the BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp
120

Step 4

Places the router in neighbor configuration
mode for BGP routing and configures the
neighbor IP address as a BGP peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)#
neighbor 172.168.40.24

Step 5

Specifies either an IPv4 or IPv6 address family
unicast and enters address family configuration
submode.

address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)#
address-family ipv4 unicast

Step 6

To see a list of all the possible keywords and
arguments for this command, use the CLI help
(?).

Applies the specified policy to inbound routes.route-policy route-policy-name { in | out
}

Step 7

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)#
route-policy drop-as-1234 in

commit—Saves the configuration changes and
remains within the configuration session.

Use the commit or end command.Step 8

Implementing BGP
50

Implementing BGP
Configure BGP Route Filtering by Route Policy

PurposeCommand or Action

end—Prompts user to take one of these actions:

• Yes — Saves configuration changes and
exits the configuration session.

• No —Exits the configuration session
without committing the configuration
changes.

• Cancel —Remains in the configuration
session, without committing the
configuration changes.

Configure BGP Attribute Filtering
The BGP Attribute Filter checks integrity of BGP updates in BGP update messages and optimizes reaction
when detecting invalid attributes. BGP Update message contains a list of mandatory and optional attributes.
These attributes in the update message include MED, LOCAL_PREF, COMMUNITY, and so on. In some
cases, if the attributes are malformed, there is a need to filter these attributes at the receiving end of the router.
The BGP Attribute Filter functionality filters the attributes received in the incoming update message. The
attribute filter can also be used to filter any attributes that may potentially cause undesirable behavior on the
receiving router. Some of the BGP updates are malformed due to wrong formatting of attributes such as the
network layer reachability information (NLRI) or other fields in the update message. These malformed updates,
when received, causes undesirable behavior on the receiving routers. Such undesirable behavior may be
encountered during update message parsing or during re-advertisement of received NLRIs. In such scenarios,
its better to filter these corrupted attributes at the receiving end.

The Attribute-filtering is configured by specifying a single or a range of attribute codes and an associated
action. When a received Update message contains one or more filtered attributes, the configured action is
applied on the message. Optionally, the Update message is also stored to facilitate further debugging and a
syslog message is generated on the console. When an attribute matches the filter, further processing of the
attribute is stopped and the corresponding action is taken. Perform the following tasks to configure BGP
attribute filtering:

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Implementing BGP
51

Implementing BGP
Configure BGP Attribute Filtering

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 attribute-filter group attribute-filter group name

Example:

RP/0/RP0/CPU0:router(config-bgp)# attribute-filter group ag_discard_med

Specifies the attribute-filter group name and enters the attribute-filter group configuration mode, allowing
you to configure a specific attribute filter group for a BGP neighbor.

Step 4 attribute attribute code { discard | treat-as-withdraw }

Example:

RP/0/RP0/CPU0:router(config-bgp-attrfg)# attribute 24 discard

Specifies a single or a range of attribute codes and an associated action. The allowed actions are:

• Treat-as-withdraw— Considers the update message for withdrawal. The associated IPv4-unicast or
MP_REACH NLRIs, if present, are withdrawn from the neighbor's Adj-RIB-In.

• Discard Attribute— Discards this attribute. The matching attributes alone are discarded and the rest of
the Update message is processed normally.

BGP Next Hop Tracking
BGP receives notifications from the Routing Information Base (RIB) when next-hop information changes
(event-driven notifications). BGP obtains next-hop information from the RIB to:

• Determine whether a next hop is reachable.

• Find the fully recursed IGP metric to the next hop (used in the best-path calculation).

• Validate the received next hops.

• Calculate the outgoing next hops.

• Verify the reachability and connectedness of neighbors.

BGP Next Hop Reference, on page 138 provides additional conceptual details on BGP next hop.

Configure BGP Next-Hop Trigger Delay
Perform this task to configure BGP next-hop trigger delay. The Routing Information Base (RIB) classifies
the dampening notifications based on the severity of the changes. Event notifications are classified as critical
and noncritical. This task allows you to specify the minimum batching interval for the critical and noncritical
events.

Implementing BGP
52

Implementing BGP
BGP Next Hop Tracking

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 nexthop trigger-delay { critical delay | non-critical delay }

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# nexthop trigger-delay critical 15000

Sets the critical next-hop trigger delay.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Disable Next-Hop Processing on BGP Updates
Perform this task to disable next-hop calculation for a neighbor and insert your own address in the next-hop
field of BGP updates. Disabling the calculation of the best next hop to use when advertising a route causes
all routes to be advertised with the network device as the next hop.

Implementing BGP
53

Implementing BGP
Disable Next-Hop Processing on BGP Updates

Next-hop processing can be disabled for address family group, neighbor group, or neighbor address family.Note

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as
a BGP peer.

Step 4 remote-as as-number

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 206

Creates a neighbor and assigns a remote autonomous system number to it.

Step 5 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 6 next-hop-self

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# next-hop-self

Implementing BGP
54

Implementing BGP
Disable Next-Hop Processing on BGP Updates

Sets the next-hop attribute for all routes advertised to the specified neighbor to the address of the local router.
Disabling the calculation of the best next hop to use when advertising a route causes all routes to be advertised
with the local network device as the next hop.

Step 7 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

BGP Cost Community
The BGP cost community is a nontransitive extended community attribute that is passed to internal BGP
(iBGP) and confederation peers but not to external BGP (eBGP) peers. The cost community feature allows
you to customize the local route preference and influence the best-path selection process by assigning cost
values to specific routes. The extended community format defines generic points of insertion (POI) that
influence the best-path decision at different points in the best-path algorithm.

BGPCost Community Reference, on page 138 provides additional conceptual details on BGP cost community.

Configure BGP Cost Community
BGP receives multiple paths to the same destination and it uses the best-path algorithm to decide which is the
best path to install in RIB. To enable users to determine an exit point after partial comparison, the cost
community is defined to tie-break equal paths during the best-path selection process. Perform this task to
configure the BGP cost community.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 route-policy name

Example:

RP/0/RP0/CPU0:router(config)# route-policy costA

Enters route policy configuration mode and specifies the name of the route policy to be configured.

Step 3 set extcommunity cost { cost-extcommunity-set-name | cost-inline-extcommunity-set } [additive]

Implementing BGP
55

Implementing BGP
BGP Cost Community

Example:

RP/0/RP0/CPU0:router(config)# set extcommunity cost cost_A

Specifies the BGP extended community attribute for cost.

Step 4 end-policy

Example:

RP/0/RP0/CPU0:router(config)# end-policy

Ends the definition of a route policy and exits route policy configuration mode.

Step 5 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Enters BGP configuration mode allowing you to configure the BGP routing process.

Step 6 Do one of the following:

• default-information originate
• aggregate-address address/mask-length [as-set] [as-confed-set] [summary-only] [route-policy

route-policy-name]
• redistribute connected [metric metric-value] [route-policy route-policy-name]
• process-id [match { external | internal }] [metric metric-value] [route-policy route-policy-name
]

• redistribute isis process-id [level { 1 | 1-inter-area | 2 }] [metric metric-value] [route-policy
route-policy-name]

• redistribute ospf process-id [match { external [1 | 2] | internal | nssa-external [1 | 2]}] [
metric metric-value] [route-policy route-policy-name]

Applies the cost community to the attach point (route policy).

Step 7 Do one of the following:

• redistribute ospfv3 process-id [match { external [1 | 2] | internal | nssa-external [1 | 2]}]
[metric metric-value] [route-policy route-policy-name]

• redistribute rip [metric metric-value] [route-policy route-policy-name]
• redistribute static [metric metric-value] [route-policy route-policy-name]
• network { ip-address/prefix-length | ip-address mask } [route-policy route-policy-name]
• neighbor ip-address remote-as as-number
• route-policy route-policy-name { in | out }

Step 8 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Implementing BGP
56

Implementing BGP
Configure BGP Cost Community

Step 9 show bgp ip-address

Example:

RP/0/RP0/CPU0:router# show bgp 172.168.40.24

Displays the cost community in the following format:

Cost: POI : cost-community-ID : cost-number

Configure BGP Community and Extended-Community Advertisements
Perform this task to specify that community/extended-community attributes should be sent to an eBGP
neighbor. These attributes are not sent to an eBGP neighbor by default. By contrast, they are always sent to
iBGP neighbors. This section provides examples on how to enable sending community attributes. The
send-community-ebgp keyword can be replaced by the send-extended-community-ebgp keyword to
enable sending extended-communities.

If the send-community-ebgp command is configured for a neighbor group or address family group, all
neighbors using the group inherit the configuration. Configuring the command specifically for a neighbor
overrides inherited values.

BGP community and extended-community filtering cannot be configured for iBGP neighbors. Communities
and extended-communities are always sent to iBGP neighbors under VPNv4, MDT, IPv4, and IPv6 address
families.

Note

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 neighbor ip-address

Example:
RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as
a BGP peer.

Implementing BGP
57

Implementing BGP
Configure BGP Community and Extended-Community Advertisements

Step 4 remote-as as-number

Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2002

Creates a neighbor and assigns a remote autonomous system number to it.

Step 5 address-family{ipv4 {labeled-unicast | unicast |mdt | | mvpn | rt-filter | tunnel} | ipv6 {labeled-unicast
| mvpn | unicast}}

Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv6 unicast

Enters neighbor address family configuration mode for the specified address family. Use either ipv4 or ipv6
address family keyword with one of the specified address family sub mode identifiers.

IPv6 address family mode supports these sub modes:

• labeled-unicast

• mvpn

• unicast

IPv4 address family mode supports these sub modes:

• labeled-unicast

• mdt

• mvpn

• rt-filter

• tunnel

• unicast

Step 6 Use one of these commands:

• send-community-ebgp
• send-extended-community-ebgp

Example:
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# send-community-ebgp

or
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# send-extended-community-ebgp

Specifies that the router send community attributes or extended community attributes (which are disabled by
default for eBGP neighbors) to a specified eBGP neighbor.

Step 7 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

Implementing BGP
58

Implementing BGP
Configure BGP Community and Extended-Community Advertisements

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring BGP Large Communities
BGP communities provide a way to group destinations and apply routing decisions such as acceptance,
rejection, preference, or redistribution on a group of destinations using community attributes. BGP community
attributes are variable length attributes consisting of a set of one or more 4-byte values which are split into
two parts of 16 bits. The higher-order 16 bits represents the AS number and the lower order bits represents a
locally defined value assigned by the operator of the AS.

Since the adoption of 4-byte ASNs (RFC6793), the BGP communities attribute can no longer accommodate
the 4 byte ASNs as you need more than 4 bytes to encode the 4-byte ASN and an AS specific value that you
want to tag with the route. Although BGP extended community permits a 4-byte AS to be encoded as the
global administrator field, the local administrator field has only 2-byte of available space. So, 6-byte extended
community attribute is also unsuitable. To overcome this limitation, you can configure a 12-byte BGP large
community which is an optional attribute that provides the most significant 4-byte value to encode autonomous
system number as the global administrator and the remaining two 4-byte assigned numbers to encode the local
values.

Similar to BGP communities, routers can apply BGP large communities to BGP routes by using route policy
languages (RPL) and other routers can then perform actions based on the community that is attached to the
route. The policy language provides sets as a container for groups of values for matching purposes.

When large communities are specified in other commands, they are specified as three non negative decimal
integers separated by colons. For example, 1:2:3. Each integer is stored in 32 bits. The possible range for each
integer is 0 to 4294967295.

In route-policy statements, each integer in the BGP large community can be replaced by any of the following
expressions :

• [x..y] — This expression specifies a range between x and y, inclusive.

• * —This expression stands for any number.

• peeras — This expression is replaced by the AS number of the neigbhor from which the community is
received or to which the community is sent, as appropriate.

• not-peeras —This expression matches any number other than the peeras.

• private-as — This expression specifies any number in the private ASN range: [64512..65534] and
[4200000000..4294967294].

These expressions can be also used in policy-match statements.

IOS regular expression (ios-regex) and DFA style regular expression (dfa-regex) can be used in any of the
large-community policy match and delete statements. For example, the IOS regular expression ios-regex
'^5:.*:7$' is equivalent to the expression 5:*:7.

The send-community-ebgp command is extended to include BGP large communities. This command is
required for the BGP speaker to send large communities to ebgp neighbors.

Restrictions and Guidelines

The following restrictions and guidelines apply for BGP large communities:

Implementing BGP
59

Implementing BGP
Configuring BGP Large Communities

• All functionalities of the BGP community attribute is available for the BGP large-community attribute.

• The send-community-ebgp command is required for the BGP speaker to send large communities to
ebgp neighbors.

• There are no well-known large-communities.

• The peeras expression cannot be used in a large-community-set.

• The peeras expression can only be used in large-community match or delete statements that appear in
route policies that are applied at the neighbor-in or neighbor-out attach points.

• The not-peeras expression cannot be used in a large-community-set or in policy set statements.

Configuration Example: Large Community Set

A large-community set defines a set of large communities. Named large-community sets are used in route-policy
match and set statements.

This example shows how to create a named large-community set.
RP/0/RP0/CPU0:router(config)# large-community-set catbert
RP/0/RP0/CPU0:router(config-largecomm)# 1: 2: 3,
RP/0/RP0/CPU0:router(config-largecomm)# peeras:2:3
RP/0/RP0/CPU0:router(config-largecomm)# end-set

Configuration Example: Set Large Community

The following example shows how to set the BGP large community attribute in a route, using the set
large-community {large-community-set-name | inline-large-community-set | parameter } [additive]
command. You can specify a named large-community-set or an inline set. The additive keyword retains the
large communities already present in the route and adds the new set of large communities. However the
additive keyword does not result in duplicate entries.

If a particular large community is attached to a route and you specify the same large community again with
the additive keyword in the set statement, then the specified large community is not added again. The merging
operation removes duplicate entries. This also applies to the peeras keyword.

The peeras expression in the example is replaced by the AS number of the neighbor from which the BGP
large community is received or to which the community is sent, as appropriate.
RP/0/RP0/CPU0:router(config)# route-policy mordac
RP/0/RP0/CPU0:router(config-rpl)# set large-community (1:2:3, peeras:2:3)
RP/0/RP0/CPU0:router(config-rpl)# end-set
RP/0/RP0/CPU0:router(config)# large-community-set catbert
RP/0/RP0/CPU0:router(config-largecomm)# 1: 2: 3,
RP/0/RP0/CPU0:router(config-largecomm)# peeras:2:3
RP/0/RP0/CPU0:router(config-largecomm)# end-set
RP/0/RP0/CPU0:router(config)# route-policy wally
RP/0/RP0/CPU0:router(config-rpl)# set large-community catbert additive
RP/0/RP0/CPU0:router(config-rpl)# end-set

In this example, if the route-policy mordac is applied to a neighbor, the ASN of which is 1, then the large
community (1:2:3) is set only once.

You should configure the send-community-ebgp command to send large communities to ebgp neighbors.Note

Implementing BGP
60

Implementing BGP
Configuring BGP Large Communities

Configuration Example: Large Community Matches-any

The following example shows how to configure a route policy to match any element of a large -community
set. This is a boolean condition and returns true if any of the large communities in the route match any of the
large communities in the match condition.
RP/0/RP0/CPU0:router(config)# route-policy elbonia
RP/0/RP0/CPU0:router(config-rpl)# if large-community matches-any (1:2:3, 4:5:*) then
RP/0/RP0/CPU0:router(config-rpl)# set local-preference 94
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy

Configuration Example: Large Community Matches-every

The following example shows how to configure a route policy where every match specification in the statement
must be matched by at least one large community in the route.
RP/0/RP0/CPU0:router(config)# route-policy bob
RP/0/RP0/CPU0:router(config-rpl)# if large-community matches-every (*:*:3, 4:5:*) then
RP/0/RP0/CPU0:router(config-rpl)# set local-preference 94
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy

In this example, routes with these sets of large communities return TRUE:

• (1:1:3, 4:5:10)

• (4:5:3) —This single large community matches both specifications.

• (1:1:3, 4:5:10, 7:6:5)

Routes with the following set of large communities return FALSE:

(1:1:3, 5:5:10)—The specification (4:5:*) is not matched.

Configuration Example: Large Community Matches-within

The following example shows how to configure a route policy to match within a large community set. This
is similar to the large-community matches-any command but every large community in the route must match
at least one match specification. Note that if the route has no large communities, then it matches.
RP/0/RP0/CPU0:router(config)# route-policy bob
RP/0/RP0/CPU0:router(config-rpl)# if large-community matches-within (*:*:3, 4:5:*) then
RP/0/RP0/CPU0:router(config-rpl)# set local-preference 103
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy

For example, routes with these sets of large communities return TRUE:

• (1:1:3, 4:5:10)

• (4:5:3)

• (1:2:3, 6:6:3, 9:4:3)

Routes with this set of large communities return FALSE:

(1:1:3, 4:5:10, 7:6:5) —The large community (7:6:5) does not match

Implementing BGP
61

Implementing BGP
Configuring BGP Large Communities

Configuration Example: Community Matches-within

The following example shows how to configure a route policy to match within the elements of a community
set. This command is similar to the community matches-any command, but every community in the route
must match at least one match specification. If the route has no communities, then it matches.
RP/0/RP0/CPU0:router(config)# route-policy bob
RP/0/RP0/CPU0:router(config-rpl)# if community matches-within (*:3, 5:*) then
RP/0/RP0/CPU0:router(config-rpl)# set local-preference 94
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy

For example, routes with these sets of communities return TRUE:

• (1:3, 5:10)

• (5:3)

• (2:3, 6:3, 4:3)

Routes with this set of communities return FALSE:

(1:3, 5:10, 6:5) —The community (6:5) does not match.

Configuration Example: Large Community Is-empty

The following example shows using the large-community is-empty clause to filter routes that do not have
the large-community attribute set.
RP/0/RP0/CPU0:router(config)# route-policy lrg_comm_rp4
RP/0/RP0/CPU0:router(config-rpl)# if large-community is-empty then
RP/0/RP0/CPU0:router(config-rpl)# set local-preference 104
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy

Configuration Example: Attribute Filter Group

The following example shows how to configure and apply the attribute-filter group with large-community
attributes for a BGP neighbor. The filter specifies the BGP path attributes and an action to take when BGP
update message is received. If an update message is received from the BGP neighbor that contains any of the
specified attributes, then the specified action is taken. In this example, the attribute filter named dogbert is
created and applied to the BGP neighbor 10.0.1.101. It specifies the large community attribute and the action
of discard. That means, if the large community BGP path attribute is received in a BGP UPDATE message
from the neighbor 10.0.1.101 then the attribute will be discarded before further processing of the message.

RP/0/RP0/CPU0:router(config)# router bgp 100
RP/0/RP0/CPU0:router(config-bgp)# attribute-filter group dogbert
RP/0/RP0/CPU0:router(config-bgp-attrfg)# attribute LARGE-COMMUNITY discard
RP/0/RP0/CPU0:router(config-bgp-attrfg)# neighbor 10.0.1.101
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 6461
RP/0/RP0/CPU0:router(config-bgp-nbr)# update in filtering
RP/0/RP0/CPU0:router(config-nbr-upd-filter)# attribute-filter group dogbert

Configuration Example: Deleting Large Community

The following example shows how to delete specified BGP large-communities from a route policy using the
delete large-community command.

Implementing BGP
62

Implementing BGP
Configuring BGP Large Communities

RP/0/RP0/CPU0:router(config)# route-policy lrg_comm_rp2
RP/0/RP0/CPU0:router(config-rpl)# delete large-community in (ios-regex '^100000:’)
RP/0/RP0/CPU0:router(config-rpl)# delete large-community all
RP/0/RP0/CPU0:router(config-rpl)# delete large-community not in (peeras:*:*, 41289:*:*)

Verification

This example displays the routes with large-communities given in the show bgp large-community
list-of-large-communities [exact-match] command. If the optional keyword exact-match is used, then the
listed routes will contain only the specified large communities. Otherwise, the displayed routes may contain
additional large communities.

RP/0/0/CPU0:R1# show bgp large-community 1:2:3 5:6:7
Thu Mar 23 14:40:33.597 PDT
BGP router identifier 4.4.4.4, local AS number 3
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0xe0000000 RD version: 66
BGP main routing table version 66
BGP NSR Initial initsync version 3 (Reached)
BGP NSR/ISSU Sync-Group versions 66/0
BGP scan interval 60 secs

Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard

Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path

* 10.0.0.3/32 10.10.10.3 0 94 0 ?
* 10.0.0.5/32 10.11.11.5 0 0 5 ?

This example displays the large community attached to a network using the show bgp ip-address/ prefix-length
command.

RP/0/0/CPU0:R4# show bgp 10.3.3.3/32
Thu Mar 23 14:36:15.301 PDT
BGP routing table entry for 10.3.3.3/32
Versions:
Process bRIB/RIB SendTblVer
Speaker 42 42

Last Modified: Mar 22 20:04:46.000 for 18:31:30
Paths: (1 available, best #1)
Advertised to peers (in unique update groups):
10.11.11.5

Path #1: Received by speaker 0
Advertised to peers (in unique update groups):
10.11.11.5

Local
10.10.10.3 from 10.10.10.3 (10.3.3.3)
Origin incomplete, metric 0, localpref 94, valid, internal, best, group-best
Received Path ID 0, Local Path ID 0, version 42
Community: 258:259 260:261 262:263 264:265
Large Community: 1:2:3 5:6:7 4123456789:4123456780:4123456788

Redistribute iBGP Routes into IGP
Perform this task to redistribute iBGP routes into an Interior Gateway Protocol (IGP), such as Intermediate
System-to-Intermediate System (IS-IS) or Open Shortest Path First (OSPF).

Implementing BGP
63

Implementing BGP
Redistribute iBGP Routes into IGP

Use of the bgp redistribute-internal command requires the clear route * command to be issued to reinstall
all BGP routes into the IP routing table.

Note

Redistributing iBGP routes into IGPs may cause routing loops to form within an autonomous system. Use
this command with caution.

Caution

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 bgp redistribute-internal

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp redistribute-internal

Allows the redistribution of iBGP routes into an IGP, such as IS-IS or OSPF.

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Redistribute IGPs to BGP
Perform this task to configure redistribution of a protocol into the VRF address family.

Implementing BGP
64

Implementing BGP
Redistribute IGPs to BGP

Even if Interior Gateway Protocols (IGPs) are used as the PE-CE protocol, the import logic happens through
BGP. Therefore, all IGP routes have to be imported into the BGP VRF table.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 vrf vrf-name

Example:

RP/0/RP0/CPU0:router(config-bgp)# vrf vrf_a

Enables BGP routing for a particular VRF on the PE router.

Step 4 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-vrf)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 5 Do one of the following:

• redistribute connected [metric metric-value] [route-policy route-policy-name]
• redistribute isis process-id [level { 1 | 1-inter-area | 2 }] [metric metric-value] [route-policy

route-policy-name]
• redistribute ospf process-id [match { external [1 | 2] | internal | nssa-external [1 | 2]}] [

metric metric-value] [route-policy route-policy-name]
• redistribute ospfv3 process-id [match { external [1 | 2] | internal | nssa-external [1 | 2]}]
[metric metric-value] [route-policy route-policy-name]

• redistribute rip [metric metric-value] [route-policy route-policy-name]
• redistribute static [metric metric-value] [route-policy route-policy-name]

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-af)# redistribute ospf 1

Configures redistribution of a protocol into the VRF address family context.

Implementing BGP
65

Implementing BGP
Redistribute IGPs to BGP

The redistribute command is used if BGP is not used between the PE-CE routers. If BGP is used between
PE-CE routers, the IGP that is used has to be redistributed into BGP to establish VPN connectivity with other
PE sites. Redistribution is also required for inter-table import and export.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Update Groups
The BGP Update Groups feature contains an algorithm that dynamically calculates and optimizes update
groups of neighbors that share outbound policies and can share the update messages. The BGPUpdate Groups
feature separates update group replication from peer group configuration, improving convergence time and
flexibility of neighbor configuration.

Monitor BGP Update Groups
This task displays information related to the processing of BGP update groups.

Procedure

show bgp [ipv4 { unicast | multicast | all | tunnel } | ipv6 { unicast | all } | all { unicast |
multicast | all labeled-unicast | tunnel } | vpnv4 unicast | vrf { vrf-name | all } [ipv4 unicast
ipv6 unicast] | vpvn6 unicast] update-group [neighbor ip-address | process-id.index [summary
| performance-statistics]]

Example:

RP/0/RP0/CPU0:router# show bgp update-group 0.0

Displays information about BGP update groups.

• The ip-address argument displays the update groups to which that neighbor belongs.

• The process-id.index argument selects a particular update group to display and is specified as follows:
process ID (dot) index. Process ID range is from 0 to 254. Index range is from 0 to 4294967295.

• The summary keyword displays summary information for neighbors in a particular update group.

• If no argument is specified, this command displays information for all update groups (for the specified
address family).

Implementing BGP
66

Implementing BGP
Update Groups

• The performance-statistics keyword displays performance statistics for an update group.

Displaying BGP Update Groups: Example

The following is sample output from the show bgp update-group command run in EXEC
configurationXR EXEC mode:

show bgp update-group

Update group for IPv4 Unicast, index 0.1:
Attributes:
Outbound Route map:rm
Minimum advertisement interval:30

Messages formatted:2, replicated:2
Neighbors in this update group:
10.0.101.92

Update group for IPv4 Unicast, index 0.2:
Attributes:
Minimum advertisement interval:30

Messages formatted:2, replicated:2
Neighbors in this update group:
10.0.101.91

L3VPN iBGP PE-CE
The L3VPN iBGP PE-CE feature helps establish an iBGP (internal Border Gateway Protocol) session between
the provider edge (PE) and customer edge (CE) devices to exchange BGP routing information. A BGP session
between two BGP peers is said to be an iBGP session if the BGP peers are in the same autonomous systems.

Restrictions for L3VPN iBGP PE-CE
The following restrictions apply to configuring L3VPN iBGP PE-CE:

• When the iBGP PE CE feature is toggled and the neighbor no longer supports route-refresh or
soft-reconfiguration inbound, a manual session flap must be done to see the change. When this occurs,
the following message is displayed:
RP/0/RP0/CPU0: %ROUTING-BGP-5-CFG_CHG_RESET: Internal VPN client configuration change
on neighbor 10.10.10.1 requires HARD reset
(clear bgp 10.10.10.1) to take effect.

• iBGP PE CE CLI configuration is not available for peers under default-VRF, except for
neighbor/session-group.

• This feature does not work on regular VPN clients (eBGP VPN clients).

• Attributes packed inside the ATTR_SET reflects changes made by the inbound route-policy on the iBGP
CE and does not reflect the changes made by the export route-policy for the specified VRF.

Implementing BGP
67

Implementing BGP
L3VPN iBGP PE-CE

• Different VRFs of the same VPN (that is, in different PE routers) that are configured with iBGP PE-CE
peering sessions must use different Route Distinguisher (RD) values under respective VRFs. The iBGP
PE CE feature does ot work if the RD values are the same for the ingress and egress VRF.

Configuring L3VPN iBGP PE-CE
L3VPN iBGP PE-CE can be enabled on the neighbor, neighbor-group, or session-group. To configure L3VPN
iBGP PE-CE, follow these steps:

Before you begin

The CE must be an internal BGP peer.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 vrf vrf-name

Example:

RP/0/RP0/CPU0:router(config-bgp)# vrf blue

Configures a VRF instance.

Step 4 neighbor ip-address internal-vpn-client

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf)# neighbor 10.0.0.0 internal-vpn-client

Configures a CE neighboring device with which to exchange routing information. The neighbor
internal-vpn-client command stacks the iBGP-CE neighbor path in the VPN attribute set.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

Implementing BGP
68

Implementing BGP
Configuring L3VPN iBGP PE-CE

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 6 show bgp vrf vrf-name neighbors ip-address

Displays whether the iBGP PE-CE feature is enabled for the VRF CE peer, or not.

Step 7 show bgp {vpnv4|vpnv6 } unicast rd

Displays the ATTR_SET attributes in the command output when the L3VPN iBGP PE-CE is enabled on a
CE.

Example

Example: Configuring L3VPN iBGP PE-CE

The following example shows how to configure L3VPN iBGP PE-CE:

R1(config-bgp-vrf-nbr)#neighbor 10.10.10.1 ?
. . .
internal-vpn-client Preserve iBGP CE neighbor path in ATTR_SET across VPN core
. . .
R1(config-bgp-vrf-nbr)#neighbor 10.10.10.1 internal-vpn-client
router bgp 65001
bgp router-id 100.100.100.2
address-family ipv4 unicast
address-family vpnv4 unicast
!
vrf ce-ibgp
rd 65001:100
address-family ipv4 unicast
!
neighbor 10.10.10.1
remote-as 65001
internal-vpn-client

The following is an example of the output of the show bgp vrf vrf-name neighbors ip-address
command when the L3VPN iBGP PE-CE is enabled on a CE peer:
R1#show bgp vrf ce-ibgp neighbors 10.10.10.1
BGP neighbor is 10.10.10.1, vrf ce-ibgp
Remote AS 65001, local AS 65001, internal link
Remote router ID 100.100.100.1
BGP state = Established, up for 00:00:19
. . .
Multi-protocol capability received
Neighbor capabilities:
Route refresh: advertised (old + new) and received (old + new)
4-byte AS: advertised and received
Address family IPv4 Unicast: advertised and received

CE attributes will be preserved across the core
Received 2 messages, 0 notifications, 0 in queue
Sent 2 messages, 0 notifications, 0 in queue
. . .

The following is an example of the output of the show bgp vpn4/vpn6 unicast rd command when
the L3VPN iBGP PE-CE is enabled on a CE peer:

Implementing BGP
69

Implementing BGP
Configuring L3VPN iBGP PE-CE

BGP routing table entry for 1.1.1.0/24, Route Distinguisher: 200:300
Versions:
Process bRIB/RIB SendTblVer
Speaker 10 10

Last Modified: Aug 28 13:11:17.000 for 00:01:00
Paths: (1 available, best #1)
Advertised to update-groups (with more than one peer):
0.2

Path #1: Received by speaker 0
Advertised to update-groups (with more than one peer):
0.2

Local, (Received from a RR-client)
20.20.20.2 from 20.20.20.2 (100.100.100.2)
Received Label 24000
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate,
not-in-vrf Received Path ID 0, Local Path ID 1, version 10
Extended community: RT:228:237
ATTR-SET [

Origin-AS: 200
AS-Path: 51320 52325 59744 12947 21969 50346 18204 36304 41213

23906 33646
Origin: incomplete
Metric: 204
Local-Pref: 234
Aggregator: 304 34.3.3.3
Atomic Aggregator
Community: 1:60042 2:41661 3:47008 4:9280 5:39778 6:1069 7:15918

8:8994 9:52701
10:10268 11:26276 12:8506 13:7131 14:65464 15:14304 16:33615 17:54991
18:40149 19:19401

Extended community: RT:100:1 RT:1.1.1.1:1]

Flow-tag propagation
The flow-tag propagation feature enables you to establish a co-relation between route-policies and user-policies.
Flow-tag propagation using BGP allows user-side traffic-steering based on routing attributes such as, AS
number, prefix lists, community strings and extended communities. Flow-tag is a logical numeric identifier
that is distributed through RIB as one of the routing attribute of FIB entry in the FIB lookup table. A flow-tag
is instantiated using the 'set' operation from RPL and is referenced in the C3PL PBR policy, where it is
associated with actions (policy-rules) against the flow-tag value.

You can use flow-tag propagation to:

• Classify traffic based on destination IP addresses (using the Community number) or based on prefixes
(using Community number or AS number).

• Select a TE-group that matches the cost of the path to reach a service-edge based on customer site service
level agreements (SLA).

• Apply traffic policy (TE-group selection) for specific customers based on SLA with its clients.

• Divert traffic to application or cache server.

Implementing BGP
70

Implementing BGP
Flow-tag propagation

Restrictions for Flow-Tag Propagation
Some restrictions are placed with regard to using Quality-of-service Policy Propagation Using Border Gateway
Protocol (QPPB) and flow-tag feature together. These include:

• A route-policy can have either 'set qos-group' or 'set flow-tag,' but not both for a prefix-set.
• Route policy for qos-group and route policy flow-tag cannot have overlapping routes. The QPPB and
flow tag features can coexist (on same as well as on different interfaces) as long as the route policy used
by them do not have any overlapping route.

• Mixing usage of qos-group and flow-tag in route-policy and policy-map is not recommended.

Source and destination-based flow tag
The source-based flow tag feature allows you to match packets based on the flow-tag assigned to the source
address of the incoming packets. Once matched, you can then apply any supported PBR action on this policy.

Configure Source and Destination-based Flow Tag

This task applies flow-tag to a specified interface. The packets are matched based on the flow-tag assigned
to the source address of the incoming packets.

You will not be able to enable both QPPB and flow tag feature simultaneously on an interface.Note

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 interface type interface-path-id

Example:

RP/0/RP0/CPU0:router(config-if)# interface

Enters interface configuration mode and associates one or more interfaces to the VRF.

Step 3 ipv4 | ipv6 bgp policy propagation input flow-tag{destination |source}

Example:

RP/0/RP0/CPU0:router(config-if)# ipv4 bgp policy propagation input flow-tag source

Enables flow-tag policy propagation on source or destination IP address on an interface.

Step 4 Use the commit or end command.

commit —Saves the configuration changes, and remains within the configuration session.

end —Prompts user to take one of these actions:

Implementing BGP
71

Implementing BGP
Restrictions for Flow-Tag Propagation

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration mode, without committing the configuration changes.

Example

The following show commands display outputs with PBR policy applied on the router:
show running-config interface gigabitEthernet 0/0/0/12
Thu Feb 12 01:51:37.820 UTC
interface GigabitEthernet0/0/0/12
service-policy type pbr input flowMatchPolicy
ipv4 bgp policy propagation input flow-tag source
ipv4 address 192.5.1.2 255.255.255.0
!

RP/0/RSP0/CPU0:ASR9K-0#show running-config policy-map type pbr flowMatchPolicy
Thu Feb 12 01:51:45.776 UTC
policy-map type pbr flowMatchPolicy
class type traffic flowMatch36
transmit
!
class type traffic flowMatch38
transmit
!
class type traffic class-default
!
end-policy-map
!

RP/0/RSP0/CPU0:ASR9K-0#show running-config class-map type traffic flowMatch36
Thu Feb 12 01:52:04.838 UTC
class-map type traffic match-any flowMatch36
match flow-tag 36
end-class-map
!

BGP Keychains
BGP keychains enable keychain authentication between two BGP peers. The BGP endpoints must both comply
with draft-bonica-tcp-auth-05.txt and a keychain on one endpoint and a password on the other endpoint does
not work.

BGP is able to use the keychain to implement hitless key rollover for authentication. Key rollover specification
is time based, and in the event of clock skew between the peers, the rollover process is impacted. The
configurable tolerance specification allows for the accept window to be extended (before and after) by that
margin. This accept window facilitates a hitless key rollover for applications (for example, routing and
management protocols).

The key rollover does not impact the BGP session, unless there is a keychain configuration mismatch at the
endpoints resulting in no common keys for the session traffic (send or accept).

Implementing BGP
72

Implementing BGP
BGP Keychains

Configure Keychains for BGP
Keychains provide secure authentication by supporting different MAC authentication algorithms and provide
graceful key rollover. Perform this task to configure keychains for BGP. This task is optional.

If a keychain is configured for a neighbor group or a session group, a neighbor using the group inherits the
keychain. Values of commands configured specifically for a neighbor override inherited values.

Note

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as
a BGP peer.

Step 4 remote-as as-number

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2002

Creates a neighbor and assigns a remote autonomous system number to it.

Step 5 keychain name

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# keychain kych_a

Configures keychain-based authentication.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

Implementing BGP
73

Implementing BGP
Configure Keychains for BGP

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Master Key Tuple Configuration
This feature specifies TCP Authentication Option (TCP-AO), which replaces the TCPMD5 option. TCP-AO
uses the Message Authentication Codes (MACs), which provides the following:

• Protection against replays for long-lived TCP connections

• More details on the security association with TCP connections than TCP MD5

• A larger set of MACs with minimal other system and operational changes

TCP-AO is compatible with Master Key Tuple (MKT) configuration. TCP-AO also protects connections
when using the same MKT across repeated instances of a connection. TCP-AO protects the connections by
using traffic key that are derived from the MKT, and then coordinates changes between the endpoints.

TCPAO and TCP MD5 are never permitted to be used simultaneously. TCP-AO supports IPv6, and is fully
compatible with the proposed requirements for the replacement of TCP MD5.

Note

Cisco provides the MKT configuration via the following configurations:

• keychain configuration

• tcp ao keychain configuration

The system translates each key, such “key_id” that is under a keychain, as MKT. The keychain configuration
owns part of the configuration like secret, lifetimes, and algorithms. While the “tcp ao keychain” mode owns
the TCP AO-specific configuration for an MKT (send_id and receive_id).

Keychain Configurations

Configuration Guidelines
In order to run a successful configuration, ensure that you follow the configuration guidelines:

• An allowed value range for both Send_ID and Receive_ID is 0 to 255.

• You can link only one keychain to an application neighbor.

• Under the same keychain, if you configure the same send_id key again under the keys that have an
overlapping lifetime, then the old key becomes unusable until you correct the configuration.

• The system sends a warning message in the following scenarios:

Implementing BGP
74

Implementing BGP
Master Key Tuple Configuration

If there is a change in Send_ID or Receive_ID.•
• If the corresponding key is currently active, and is in use by some connection.

• BGP neighbor can ONLY use one of the authentication options:

• MD5

• EA

• AO

If you configure one of these options, the system rejects the other authentication
options during the configuration time.

Note

Configuration Guidelines for TCP AO BGP Neighbor
The configuration guidelines are:

• Configure all the necessary configurations (key_string,MAC_algorithm, send_lifetime, accept_lifetime,
send_id, receive_id) under key_id with the desired lifetime it wants to use the key_id for.

• Configure a matching MKT in the peer side with exactly same lifetime.

• Once a keychain-key is linked to tcp-ao, do not change the components of the key. If you want TCP to
consider another key for use, you can configure that dynamically. Based on the ‘start-time’of send
lifetime, TCP AO uses the key.

• Send_ID and Receive_ID under a key_id (under a keychain) must have the same lifetime range. For
example, send-lifetime==accept-lifetime.

TCP considers only expiry of send-lifetime to transition to next active key and it does not consider
accept-lifetime at all.

• Do not configure a key with send-lifetime that is covered by another key’s send-lifetime.

For example, if there is a key that is already configured with send-lifetime of “04:00:00 November 01,
2017 07:00:00 November 01, 2017” and the user now configures another key with send-lifetime of
“05:00:00 November 01, 2017 06:00:00 November 01, 2017”, this might result into connection flap.

TCP AO tries to transition back to the old key once the new key is expired. However, if the new key has
already expired, TCP AO can’t use it, which might result in segment loss and hence connection flap.

• Configure minimum of 15 minutes of overlapping time between the two overlapping keys. When a key
expires, TCP does not use it and hence out-of-order segments with that key are dropped.

• We recommend configuring send_id and receive_id to be same for a key_id for simplicity.

• TCP does not have any restriction on the number of keychains and keys under a keychain. The system
does not support more than 4000 keychains, any number higher than 4000 might result in unexpected
behaviors.

Implementing BGP
75

Implementing BGP
Configuration Guidelines for TCP AO BGP Neighbor

Keychain Configuration
key chain <keychain_name>

key <key_id>
accept-lifetime <start-time> <end-time>
key-string <master-key>
send-lifetime <start-time> <end-time>
cryptographic-algorithm <algorithm>

!
!

TCP Configuration
TCP provides a new tcp ao submode that specifies SendID and ReceiveID per key_id per keychain.
tcp ao

keychain <keychain_name1>
key-id <key_id> send_id <0-255> receive_id <0-255>
!

Example:
tcp ao
keychain bgp_ao
key 0 SendID 0 ReceiveID 0
key 1 SendID 1 ReceiveID 1
key 2 SendID 3 ReceiveID 4
!
keychain ldp_ao
key 1 SendID 100 ReceiveID 200
key 120 SendID 1 ReceiveID 1
!

BGP Configurations
Applications like BGP provide the tcp-ao keychain and related information that it uses per neighbor. Following
are the optional configurations per tcp-ao keychain:

• include-tcp-options

• accept-non-ao-connections

router bgp <AS-number>
neighbor <neighbor-ip>
remote-as <remote-as-number>
ao <keychain-name> include-tcp-options enable/disable <accept-ao-mismatch-connections>

!

XML Configurations

BGP XML

TCP-AO XML

<?xml version="1.0" encoding="UTF-8"?>
<Request>
<Set>
<Configuration>
<IP_TCP>
<AO>
<Enable>

Implementing BGP
76

Implementing BGP
Keychain Configuration

true
</Enable>
<KeychainTable>
<Keychain>
<Naming>
<Name> bgp_ao_xml </Name>
</Naming>
<Enable>
true
</Enable>
<KeyTable>
<Key>
<Naming>
<KeyID> 0 </KeyID>
</Naming>
<SendID> 0 </SendID>
<ReceiveID> 0 </ReceiveID>

</Key>
</KeyTable>

</Keychain>
</KeychainTable>

</AO>
</IP_TCP>
</Configuration>
</Set>
<Commit/>
</Request>

BGP Nonstop Routing
The Border Gateway Protocol (BGP) Nonstop Routing (NSR) with Stateful Switchover (SSO) feature enables
all bgp peerings to maintain the BGP state and ensure continuous packet forwarding during events that could
interrupt service. Under NSR, events that might potentially interrupt service are not visible to peer routers.
Protocol sessions are not interrupted and routing states are maintained across process restarts and switchovers.

BGP Nonstop Routing Reference, on page 140 for additional details.

Configure BGP Nonstop Routing
BGP Nonstop Routing (BGP NSR) is enabled by default. If BGP NSR is disabled, use the no nsr disable
command to turn BGP NSR back on.

In some scenarios, it is possible that some or all bgp sessions are not NSR-READY. The show redundancy

command may still show that the bgp sessions are NSR-ready. Hence, we recommend that you verify the bgp
nsr state by using the show bgp sessions command.

Note

Disable BGP Nonstop Routing
Perform this task to disable BGP Nonstop Routing (NSR):

Procedure

Step 1 configure

Implementing BGP
77

Implementing BGP
BGP Nonstop Routing

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the BGPAS number, and enters the BGP configurationmode, for configuring BGP routing processes.

Step 3 nsr disable

Example:

RP/0/RP0/CPU0:router(config-bgp)# nsr disable

Disables BGP Nonstop routing.

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Disable BGP Nonstop Routing: Example

The following example shows how to disable BGP NSR:

configure
router bgp 120
no nsr
end

Re-enable BGP Nonstop Routing
If BGP Nonstop Routing (NSR) is disabled, use the following steps to turn BGP NSR back on using the
following steps:

Procedure

Step 1 configure

Example:

Implementing BGP
78

Implementing BGP
Re-enable BGP Nonstop Routing

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the BGPAS number, and enters the BGP configurationmode, for configuring BGP routing processes.

Step 3 no nsr disable

Example:

RP/0/RP0/CPU0:router(config-bgp)# nsr disable

Enables BGP Nonstop routing.

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Re-enable BGP Nonstop Routing: Example

The following example shows how to enable BGP NSR:

configure
router bgp 120
nsr
end

Accumulated Interior Gateway Protocol Attribute
The Accumulated Interior Gateway Protocol (AiGP)Attribute is an optional non-transitive BGP Path Attribute.
The attribute type code for the AiGPAttribute is to be assigned by IANA. The value field of the AiGPAttribute
is defined as a set of Type/Length/Value elements (TLVs). The AiGP TLV contains the Accumulated IGP
Metric.

The AiGP feature is required in the 3107 network to simulate the current OSPF behavior of computing the
distance associated with a path. OSPF/LDP carries the prefix/label information only in the local area. Then,
BGP carries the prefix/lable to all the remote areas by redistributing the routes into BGP at area boundaries.
The routes/labels are then advertised using LSPs. The next hop for the route is changed at each ABR to local
router which removes the need to leak OSPF routes across area boundaries. The bandwidth available on each

Implementing BGP
79

Implementing BGP
Accumulated Interior Gateway Protocol Attribute

of the core links is mapped to OSPF cost, hence it is imperative that BGP carries this cost correctly between
each of the PEs. This functionality is achieved by using the AiGP.

Originate Prefixes with AiGP
Perform this task to configure origination of routes with the AiGP metric:

Before you begin

Origination of routes with the accumulated interior gateway protocol (AiGP) metric is controlled by
configuration. AiGP attributes are attached to redistributed routes that satisfy following conditions:

• The protocol redistributing the route is enabled for AiGP.

• The route is an interior gateway protocol (iGP) route redistributed into border gateway protocol (BGP).
The value assigned to the AiGP attribute is the value of iGP next hop to the route or as set by a
route-policy.

• The route is a static route redistributed into BGP. The value assigned is the value of next hop to the route
or as set by a route-policy.

• The route is imported into BGP through network statement. The value assigned is the value of next hop
to the route or as set by a route-policy.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 route-policy aigp_policy

Example:
RP/0/RP0/CPU0:router(config)# route-policy aip_policy

Enters route-policy configuration mode and sets the route-policy

Step 3 set aigp-metricigp-cost

Example:
RP/0/RP0/CPU0:router(config-rpl)# set aigp-metric igp-cost

Sets the internal routing protocol cost as the aigp metric.

Step 4 exit

Example:
RP/0/RP0/CPU0:router(config-rpl)# exit

Exits route-policy configuration mode.

Step 5 router bgp as-number

Implementing BGP
80

Implementing BGP
Originate Prefixes with AiGP

Example:
RP/0/RP0/CPU0:router(config)# router bgp 100

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 6 address-family {ipv4 | ipv6} unicast

Example:
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

Step 7 redistribute ospf osp route-policy plcy_namemetric value

Example:
RP/0/RP0/CPU0:router(config-bgp-af)#redistribute ospf osp route-policy aigp_policy metric
1

Allows the redistribution of AiBGP metric into OSPF.

Step 8 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Originating Prefixes With AiGP: Example

The following is a sample configuration for originating prefixes with the AiGP metric attribute:

route-policy aigp-policy
set aigp-metric 4
set aigp-metric igp-cost

end-policy
!
router bgp 100
address-family ipv4 unicast
network 10.2.3.4/24 route-policy aigp-policy
redistribute ospf osp1 metric 4 route-policy aigp-policy
!
!
end

Configure BGP Accept Own
The BGPAccept Own feature allows you to handle self-originated VPN routes, which a BGP speaker receives
from a route-reflector (RR). A 'self-originated' route is one which was originally advertized by the speaker
itself. As per BGP protocol [RFC4271], a BGP speaker rejects advertisements that were originated by the

Implementing BGP
81

Implementing BGP
Configure BGP Accept Own

speaker itself. However, the BGP Accept Own mechanism enables a router to accept the prefixes it has
advertised, when reflected from a route-reflector that modifies certain attributes of the prefix. A special
community called ACCEPT-OWN is attached to the prefix by the route-reflector, which is a signal to the
receiving router to bypass the ORIGINATOR_ID and NEXTHOP/MP_REACH_NLRI check. Generally, the
BGP speaker detects prefixes that are self-originated through the self-origination check (ORIGINATOR_ID,
NEXTHOP/MP_REACH_NLRI) and drops the received updates. However, with the Accept Own community
present in the update, the BGP speaker handles the route.

One of the applications of BGP Accept Own is auto-configuration of extranets within MPLS VPN networks.
In an extranet configuration, routes present in one VRF is imported into another VRF on the same PE. Normally,
the extranet mechanism requires that either the import-rt or the import policy of the extranet VRFs be modified
to control import of the prefixes from another VRF. However, with Accept Own feature, the route-reflector
can assert that control without the need for any configuration change on the PE. This way, the Accept Own
feature provides a centralized mechanism for administering control of route imports between different VRFs.

BGP Accept Own is supported only for VPNv4 and VPNv6 address families in neighbor configuration mode.Note

Perform this task to configure BGP Accept Own:

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)#router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 neighbor ip-address

Example:
RP/0/RP0/CPU0:router(config-bgp)#neighbor 10.1.2.3

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as
a BGP peer.

Step 4 remote-as as-number

Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)#remote-as 100

Assigns a remote autonomous system number to the neighbor.

Step 5 update-source type interface-path-id

Implementing BGP
82

Implementing BGP
Configure BGP Accept Own

Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)#update-source Loopback0

Allows sessions to use the primary IP address from a specific interface as the local address when forming a
session with a neighbor.

Step 6 address-family {vpnv4 unicast | vpnv6 unicast}

Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)#address-family vpnv6 unicast

Specifies the address family as VPNv4 or VPNv6 and enters neighbor address family configuration mode.

Step 7 accept-own [inheritance-disable]

Example:
RP/0/RP0/CPU0:router(config-bgp-nbr-af)#accept-own

Enables handling of self-originated VPN routes containing Accept_Own community.

Use the inheritance-disable keyword to disable the "accept own" configuration and to prevent inheritance
of "acceptown" from a parent configuration.

BGP Accept Own Configuration: Example

In this configuration example:

• PE11 is configured with Customer VRF and Service VRF.

• OSPF is used as the IGP.

• VPNv4 unicast and VPNv6 unicast address families are enabled between the PE and RR
neighbors and IPv4 and IPv6 are enabled between PE and CE neighbors.

The Accept Own configuration works as follows:

1. CE1 originates prefix X.

Implementing BGP
83

Implementing BGP
Configure BGP Accept Own

2. Prefix X is installed in customer VRF as (RD1:X).

3. Prefix X is advertised to IntraAS-RR11 as (RD1:X, RT1).

4. IntraAS-RR11 advertises X to InterAS-RR1 as (RD1:X, RT1).

5. InterAS-RR1 attaches RT2 to prefix X on the inbound and ACCEPT_OWN community on the
outbound and advertises prefix X to IntraAS-RR31.

6. IntraAS-RR31 advertises X to PE11.

7. PE11 installs X in Service VRF as (RD2:X,RT1, RT2, ACCEPT_OWN).

This example shows how to configure BGP Accept Own on a PE router.
router bgp 100
neighbor 45.1.1.1
remote-as 100
update-source Loopback0
address-family vpnv4 unicast
route-policy pass-all in
accept-own
route-policy drop_111.x.x.x out
!
address-family vpnv6 unicast
route-policy pass-all in
accept-own
route-policy drop_111.x.x.x out
!
!

This example shows an InterAS-RR configuration for BGP Accept Own.
router bgp 100
neighbor 45.1.1.1
remote-as 100
update-source Loopback0
address-family vpnv4 unicast
route-policy rt_stitch1 in
route-reflector-client
route-policy add_bgp_ao out
!
address-family vpnv6 unicast
route-policy rt_stitch1 in
route-reflector-client
route-policy add_bgp_ao out
!
!
extcommunity-set rt cs_100:1
100:1

end-set
!
extcommunity-set rt cs_1001:1
1001:1

end-set
!
route-policy rt_stitch1
if extcommunity rt matches-any cs_100:1 then
set extcommunity rt cs_1000:1 additive

endif
end-policy
!
route-policy add_bgp_ao
set community (accept-own) additive

Implementing BGP
84

Implementing BGP
Configure BGP Accept Own

end-policy
!

BGP Link-State
BGPLink-State (LS) is an Address Family Identifier (AFI) and Sub-address Family Identifier (SAFI) originally
defined to carry interior gateway protocol (IGP) link-state information through BGP. The BGPNetwork Layer
Reachability Information (NLRI) encoding format for BGP-LS and a new BGP Path Attribute called the
BGP-LS attribute are defined in RFC7752. The identifying key of each Link-State object, namely a node,
link, or prefix, is encoded in the NLRI and the properties of the object are encoded in the BGP-LS attribute.

IGPs do not use BGP LS data from remote peers. BGP does not download the received BGP LS data to any
other component on the router.

Note

An example of a BGP-LS application is the Segment Routing Path Computation Element (SR-PCE). The
SR-PCE can learn the SR capabilities of the nodes in the topology and the mapping of SR segments to those
nodes. This can enable the SR-PCE to perform path computations based on SR-TE and to steer traffic on
paths different from the underlying IGP-based distributed best-path computation.

The following figure shows a typical deployment scenario. In each IGP area, one or more nodes (BGP speakers)
are configured with BGP-LS. These BGP speakers form an iBGP mesh by connecting to one or more
route-reflectors. This way, all BGP speakers (specifically the route-reflectors) obtain Link-State information
from all IGP areas (and from other ASes from eBGP peers).

Implementing BGP
85

Implementing BGP
BGP Link-State

https://datatracker.ietf.org/doc/rfc7752

Exchange Link State Information with BGP Neighbor

The following example shows how to exchange link-state information with a BGP neighbor:

Router# configure
Router(config)# router bgp 1
Router(config-bgp)# neighbor 10.0.0.2
Router(config-bgp-nbr)# remote-as 1
Router(config-bgp-nbr)# address-family link-state link-state
Router(config-bgp-nbr-af)# exit

IGP Link-State Database Distribution

A given BGP node may have connections to multiple, independent routing domains. IGP link-state database
distribution into BGP-LS is supported for both OSPF and IS-IS protocols in order to distribute this information
on to controllers or applications that desire to build paths spanning or including these multiple domains.

To distribute OSPFv2 link-state data using BGP-LS, use the distribute link-state command in router
configuration mode.

Router# configure
Router(config)# router ospf 100
Router(config-ospf)# distribute link-state instance-id 32

Implementing BGP
86

Implementing BGP
BGP Link-State

Usage Guidelines and Limitations

• BGP-LS supports IS-IS and OSPFv2.

• The identifier field of BGP-LS (referred to as the Instance-ID) identifies the IGP routing domain where
the NLRI belongs. The NLRIs representing link-state objects (nodes, links, or prefixes) from the same
IGP routing instance must use the same Instance-ID value.

• When there is only a single protocol instance in the network where BGP-LS is operational, we recommend
configuring the Instance-ID value to 0.

• Assign consistent BGP-LS Instance-ID values on all BGP-LS Producers within a given IGP domain.

• NLRIs with different Instance-ID values are considered to be from different IGP routing instances.

• Unique Instance-ID values must be assigned to routing protocol instances operating in different IGP
domains. This allows the BGP-LS Consumer (for example, SR-PCE) to build an accurate segregated
multi-domain topology based on the Instance-ID values, even when the topology is advertised via BGP-LS
by multiple BGP-LS Producers in the network.

• If the BGP-LS Instance-ID configuration guidelines are not followed, a BGP-LS Consumer may see
duplicate link-state objects for the same node, link, or prefix when there are multiple BGP-LS Producers
deployed. This may also result in the BGP-LS Consumers getting an inaccurate network-wide topology.

• The following table defines the supported extensions to the BGP-LS address family for carrying IGP
topology information (including SR information) via BGP. For more information on the BGP-LS TLVs,
refer to Border Gateway Protocol - Link State (BGP-LS) Parameters.

Table 2: IOS XR Supported BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs

Produced by
BGP

Produced by
OSPFv2

Produced by
IS-IS

DescriptionTLV Code Point

—XXLocal Node Descriptors256

—XXRemote Node Descriptors257

—XXLink Local/Remote Identifiers258

—XXIPv4 interface address259

XIPv4 neighbor address260

——XIPv6 interface address261

——XIPv6 neighbor address262

——XMulti-Topology ID263

—X—OSPF Route Type264

—XXIP Reachability Information265

—XXNode MSD TLV266

—XXLink MSD TLV267

X——Autonomous System512

X——BGP-LS Identifier513

Implementing BGP
87

Implementing BGP
BGP Link-State

https://www.iana.org/assignments/bgp-ls-parameters/bgp-ls-parameters.xhtml#node-descriptor-link-descriptor-prefix-descriptor-attribute-tlv

Produced by
BGP

Produced by
OSPFv2

Produced by
IS-IS

DescriptionTLV Code Point

—X—OSPF Area-ID514

—XXIGP Router-ID515

X——BGP Router-ID TLV516

X——BGP Confederation Member TLV517

—XXNode Flag Bits1024

—XXNode Name1026

——XIS-IS Area Identifier1027

—XXIPv4 Router-ID of Local Node1028

——XIPv6 Router-ID of Local Node1029

—XXIPv4 Router-ID of Remote Node1030

——XIPv6 Router-ID of Remote Node1031

—XXSR Capabilities TLV1034

—XXSR Algorithm TLV1035

—XXSR Local Block TLV1036

—XXFlex Algo Definition (FAD) TLV1039

—XXFlex Algorithm Prefix Metric (FAPM)
TLV

1044

—XXAdministrative group (color)1088

—XXMaximum link bandwidth1089

—XXMax. reservable link bandwidth1090

—XXUnreserved bandwidth1091

—XXTE Default Metric1092

—XXLink Protection Type1093

—XXMPLS Protocol Mask1094

—XXIGP Metric1095

—XXShared Risk Link Group1096

—XXAdjacency SID TLV1099

—XXLAN Adjacency SID TLV1100

X——PeerNode SID TLV1101

X——PeerAdj SID TLV1102

X——PeerSet SID TLV1103

—XXUnidirectional Link Delay TLV1114

Implementing BGP
88

Implementing BGP
BGP Link-State

Produced by
BGP

Produced by
OSPFv2

Produced by
IS-IS

DescriptionTLV Code Point

—XXMin/MaxUnidirectional LinkDelay TLV1115

—XXUnidirectional Delay Variation TLV1116

—XXUnidirectional Link Loss1117

—XXUnidirectional Residual Bandwidth1118

—XXUnidirectional Available Bandwidth1119

—XXUnidirectional Utilized Bandwidth1120

—XXApplication-Specific Link Attribute TLV1122

—XXIGP Flags1152

—XXIGP Route Tag1153

——XIGP Extended Route Tag1154

—XXPrefix Metric1155

—X—OSPF Forwarding Address1156

—XXPrefix-SID1158

—XXRange1159

—XXSID/Label TLV1161

—XXPrefix Attribute Flags1170

——XSource Router Identifier1171

——XL2 Bundle Member Attributes TLV1172

—XXExtended Administrative Group1173

Configure BGP Link-state
To exchange BGP link-state (LS) information with a BGP neighbor, perform these steps:

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

Implementing BGP
89

Implementing BGP
Configure BGP Link-state

RP/0/RP0/CPU0:router(config)# router bgp 100

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family link-state link-state

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family link-state link-state

Distributes BGP link-state information to the specified neighbor.

Step 4 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.0.2

Configures a CE neighbor. The ip-address argument must be a private address.

Step 5 remote-as as-number

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 1

Configures the remote AS for the CE neighbor.

Step 6 address-family link-state link-state

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family link-state link-state

Distributes BGP link-state information to the specified neighbor.

Step 7 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Implementing BGP
90

Implementing BGP
Configure BGP Link-state

Example

router bgp 100
address-family link-state link-state
!
neighbor 10.0.0.2
remote-as 1
address-family link-state link-state

Configure Domain Distinguisher
To configure unique identifier four-octet ASN, perform these steps:

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family link-state link-state

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family link-state link-state

Enters address-family link-state configuration mode.

Step 4 domain-distinguisher unique-id

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# domain-distinguisher 1234:1.2.3.4

Configures unique identifier four-octet ASN. Range is from 1 to 4294967295.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

Implementing BGP
91

Implementing BGP
Configure Domain Distinguisher

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

BGP Permanent Network
BGP permanent network feature supports static routing through BGP. BGP routes to IPv4 or IPv6 destinations
(identified by a route-policy) can be administratively created and selectively advertised to BGP peers. These
routes remain in the routing table until they are administratively removed. A permanent network is used to
define a set of prefixes as permanent, that is, there is only one BGP advertisement or withdrawal in upstream
for a set of prefixes. For each network in the prefix-set, a BGP permanent path is created and treated as less
preferred than the other BGP paths received from its peer. The BGP permanent path is downloaded into RIB
when it is the best-path.

The permanent-network command in global address family configurationmode uses a route-policy to identify
the set of prefixes (networks) for which permanent paths is to be configured. The advertise permanent-network
command in neighbor address-family configuration mode is used to identify the peers to whom the permanent
paths must be advertised. The permanent paths is always advertised to peers having the advertise
permanent-network configuration, even if a different best-path is available. The permanent path is not advertised
to peers that are not configured to receive permanent path.

The permanent network feature supports only prefixes in IPv4 unicast and IPv6 unicast address-families under
the default Virtual Routing and Forwarding (VRF).

Restrictions

These restrictions apply while configuring the permanent network:

• Permanent network prefixes must be specified by the route-policy on the global address family.

• You must configure the permanent network with route-policy in global address family configuration
mode and then configure it on the neighbor address family configuration mode.

• When removing the permanent network configuration, remove the configuration in the neighbor address
family configuration mode and then remove it from the global address family configuration mode.

Configure BGP Permanent Network
Perform this task to configure BGP permanent network. You must configure at least one route-policy to
identify the set of prefixes (networks) for which the permanent network (path) is to be configured.

Procedure

Step 1 configure

Example:

Implementing BGP
92

Implementing BGP
BGP Permanent Network

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 prefix-set prefix-set-name

Example:

RP/0/RP0/CPU0:router(config)# prefix-set PERMANENT-NETWORK-IPv4
RP/0/RP0/CPU0:router(config-pfx)# 1.1.1.1/32,
RP/0/RP0/CPU0:router(config-pfx)# 2.2.2.2/32,
RP/0/RP0/CPU0:router(config-pfx)# 3.3.3.3/32
RP/0/RP0/CPU0:router(config-pfx)# end-set

Enters prefix set configuration mode and defines a prefix set for contiguous and non-contiguous set of bits.

Step 3 exit

Example:

RP/0/RP0/CPU0:router(config-pfx)# exit

Exits prefix set configuration mode and enters global configuration mode.

Step 4 route-policy route-policy-name

Example:

RP/0/RP0/CPU0:router(config)# route-policy POLICY-PERMANENT-NETWORK-IPv4
RP/0/RP0/CPU0:router(config-rpl)# if destination in PERMANENT-NETWORK-IPv4 then
RP/0/RP0/CPU0:router(config-rpl)# pass
RP/0/RP0/CPU0:router(config-rpl)# endif

Creates a route policy and enters route policy configuration mode, where you can define the route policy.

Step 5 end-policy

Example:

RP/0/RP0/CPU0:router(config-rpl)# end-policy

Ends the definition of a route policy and exits route policy configuration mode.

Step 6 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode.

Step 7 address-family { ipv4 | ipv6 } unicast

Example:

Implementing BGP
93

Implementing BGP
Configure BGP Permanent Network

RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

Step 8 permanent-network route-policy route-policy-name

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# permanent-network route-policy
POLICY-PERMANENT-NETWORK-IPv4

Configures the permanent network (path) for the set of prefixes as defined in the route-policy.

Step 9 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 10 show bgp {ipv4 | ipv6} unicast prefix-set

Example:

RP/0/RP0/CPU0:routershow bgp ipv4 unicast

(Optional) Displays whether the prefix-set is a permanent network in BGP.

Advertise Permanent Network
Perform this task to identify the peers to whom the permanent paths must be advertised.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Implementing BGP
94

Implementing BGP
Advertise Permanent Network

Specifies the autonomous system number and enters the BGP configuration mode.

Step 3 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.255.255.254

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as
a BGP peer.

Step 4 remote-as as-number

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 4713

Assigns the neighbor a remote autonomous system number.

Step 5 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

Step 6 advertise permanent-network

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# advertise permanent-network

Specifies the peers to whom the permanent network (path) is advertised.

Step 7 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 8 show bgp {ipv4 | ipv6} unicast neighbor ip-address

Example:

RP/0/RP0/CPU0:routershow bgp ipv4 unicast neighbor 10.255.255.254

(Optional) Displays whether the neighbor is capable of receiving BGP permanent networks.

Implementing BGP
95

Implementing BGP
Advertise Permanent Network

Enable BGP Unequal Cost Recursive Load Balancing

Procedure

PurposeCommand or Action

Enters mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and
enters the BGP configuration mode, allowing
you to configure the BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp
120

Step 2

Specifies either an IPv4 or IPv6 address family
unicast and enters address family configuration
submode.

address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp)#
address-family ipv4 unicast

Step 3

To see a list of all the possible keywords and
arguments for this command, use the CLI help
(?).

Configures the maximum number of parallel
routes that BGP installs in the routing table.

maximum-paths { ebgp | ibgp | eibgp }
maximum [unequal-cost]

Step 4

Example: • ebgp maximum : Consider only eBGP
paths for multipath.

RP/0/RP0/CPU0:router(config-bgp-af)#
maximum-paths ebgp 3 • ibgp maximum [unequal-cost]:

Consider load balancing between iBGP
learned paths.

• eibgp maximum : Consider both eBGP
and iBGP learned paths for load balancing.
eiBGP load balancing always does
unequal-cost load balancing.

When eiBGP is applied, eBGP or iBGP load
balancing cannot be configured; however, eBGP
and iBGP load balancing can coexist.

Exits the current configuration mode.exit

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Configures a CE neighbor. The ip-address
argument must be a private address.

neighbor ip-address

Example:

Step 6

Implementing BGP
96

Implementing BGP
Enable BGP Unequal Cost Recursive Load Balancing

PurposeCommand or Action

RP/0/RP0/CPU0:router(config-bgp)#
neighbor 10.0.0.0

Originates a demilitarized-zone (DMZ)
link-bandwidth extended community for the
link to an eBGP/iBGP neighbor.

dmz-link-bandwidth

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)#
dmz-link-bandwidth

Step 7

commit—Saves the configuration changes and
remains within the configuration session.

Use the commit or end command.Step 8

end—Prompts user to take one of these actions:

• Yes — Saves configuration changes and
exits the configuration session.

• No —Exits the configuration session
without committing the configuration
changes.

• Cancel —Remains in the configuration
session, without committing the
configuration changes.

DMZ Link Bandwidth for Unequal Cost Recursive Load Balancing
The demilitarized zone (DMZ) link bandwidth for unequal cost recursive load balancing feature provides
support for unequal cost load balancing for recursive prefixes on local node using DMZ link bandwidth. Use
the dmz-link-bandwidth command in BGP neighbor configuration mode and the bandwidth command in
interface configuration mode to The unequal load balance is achieved.

When the PE router includes the link bandwidth extended community in its updates to the remote PE through
theMultiprotocol Interior BGP (MP-iBGP) session (either IPv4 or VPNv4), the remote PE automatically does
load balancing if the maximum-paths command is enabled.

Unequal cost recursive load balancing happens across maximum eight paths only.Note

Enable BGP Unequal Cost Recursive Load Balancing

Procedure

PurposeCommand or Action

Enters mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Implementing BGP
97

Implementing BGP
DMZ Link Bandwidth for Unequal Cost Recursive Load Balancing

PurposeCommand or Action

Specifies the autonomous system number and
enters the BGP configuration mode, allowing
you to configure the BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp
120

Step 2

Specifies either an IPv4 or IPv6 address family
unicast and enters address family configuration
submode.

address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp)#
address-family ipv4 unicast

Step 3

To see a list of all the possible keywords and
arguments for this command, use the CLI help
(?).

Configures the maximum number of parallel
routes that BGP installs in the routing table.

maximum-paths { ebgp | ibgp | eibgp }
maximum [unequal-cost]

Step 4

Example: • ebgp maximum : Consider only eBGP
paths for multipath.

RP/0/RP0/CPU0:router(config-bgp-af)#
maximum-paths ebgp 3 • ibgp maximum [unequal-cost]:

Consider load balancing between iBGP
learned paths.

• eibgp maximum : Consider both eBGP
and iBGP learned paths for load balancing.
eiBGP load balancing always does
unequal-cost load balancing.

When eiBGP is applied, eBGP or iBGP load
balancing cannot be configured; however, eBGP
and iBGP load balancing can coexist.

Exits the current configuration mode.exit

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Configures a CE neighbor. The ip-address
argument must be a private address.

neighbor ip-address

Example:

Step 6

RP/0/RP0/CPU0:router(config-bgp)#
neighbor 10.0.0.0

Originates a demilitarized-zone (DMZ)
link-bandwidth extended community for the
link to an eBGP/iBGP neighbor.

dmz-link-bandwidth

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)#
dmz-link-bandwidth

Step 7

Implementing BGP
98

Implementing BGP
Enable BGP Unequal Cost Recursive Load Balancing

PurposeCommand or Action

commit—Saves the configuration changes and
remains within the configuration session.

Use the commit or end command.Step 8

end—Prompts user to take one of these actions:

• Yes — Saves configuration changes and
exits the configuration session.

• No —Exits the configuration session
without committing the configuration
changes.

• Cancel —Remains in the configuration
session, without committing the
configuration changes.

DMZ Link Bandwidth Over EBGP Peer
The demilitarized zone (DMZ) link bandwidth extended community is an optional non-transitive attribute;
therefore, it is not advertised to eBGP peers by default but it is advertised only to iBGP peers. This extended
community is meant for load balancing over multi-paths. However, Cisco IOS-XR enables advertising of the
DMZ link bandwidth to an eBGP peer, or receiving the DMZ link bandwidth by an eBGP peer. This feature
also gives the user the option to send the bandwidth unchanged, or take the accumulated bandwidth over all
the egress links and advertise that to the upstream eBGP peer.

Use the ebgp-send-community-dmz command to send the community to eBGP peers. By default, the link
bandwidth extended-community attribute associated with the best path is sent.

When the cumulative keyword is used, the value of the link bandwidth extended community is set to the sum
of link bandwidth values of all the egress-multipaths. If the DMZ link bandwidth value of the multipaths is
unknown, for instance, some paths do not have that attribute, then unequal cost load-balancing is not done at
that node. However, the sum of the known DMZ link bandwidth values is calculated and sent to the eBGP
peer.

Use the ebgp-recv-community-dmz command to receive the community from eBGP peers.

The ebgp-send-community-dmz and ebgp-recv-community-dmz commands can be configured in the
neigbor, neighbour-group, and session-group configuration mode.

Note

Use the bgp bestpath as-path multipath-relaxand bgp bestpath as-path ignore commands to handle
multipath across different autonomous systems.

Sending and Receiving DMZ Link Bandwidth Extended Community over eBGP Peer

Procedure

Step 1 configure

Example:

Implementing BGP
99

Implementing BGP
DMZ Link Bandwidth Over EBGP Peer

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.1.1.1

Enters the neighbor configuration mode for configuring BGP routing sessions.

Step 4 ebgp-send-extcommunity-dmz ip-address

Example:
RP/0/RP0/CPU0:router(config-bgp)# ebgp-send-extcommunity-dmz

Sends the DMZ link bandwidth extended community to the eBGP neighbor.

Use the cumulative keyword with this command to set the value of the link bandwidth extended
community to the sum of link bandwidth values of all the egress multipaths.

Note

Step 5 exit

Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)# exit

Exits the neighbor configuration mode and enters into BGP configuration mode.

Step 6 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.16.0.1

Enters the neighbor configuration mode for configuring BGP routing sessions.

Step 7 ebgp-recv-extcommunity-dmz

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# ebgp-recv-extcommunity-dmz

Receives the DMZ link bandwidth extended community to the eBGP neighbor.

Step 8 exit

Example:
RP/0/RP0/CPU0:router(config-bgp-nbr)# exit

Implementing BGP
100

Implementing BGP
Sending and Receiving DMZ Link Bandwidth Extended Community over eBGP Peer

Exits the neighbor configuration mode and enters into BGP configuration mode.

DMZ Link Bandwidth: Example

The following examples shows how Router R1 sends DMZ link bandwidth extended communities
to Router R2 over eBGP peer connection:

R1: sending router

neighbour 10.3.3.3
remote-as 2
ebgp-send-extcommunity-dmz
address-family ipv4 unicast
route-policy pass in
route-policy pass out
!

R2: Receiving router

neighbor 192.0.2.1
remote-as 3
ebgp-recv-extcommunity-dmz
address-family ipv4 unicast
route-policy pass in
!

route-policy pass out
!

The following is a sample configuration that displays the DMZ link bandwidth configuration in the
sending (R1) router:
RP/0/RP0/CPU0:router)# show bgp ipv4 unicast 10.1.1.1/32 detail

Path #1: Received by speaker 0
Flags: 0x4000000001040003, import: 0x20
Advertised to update-groups (with more than one peer):
0.4

Advertised to peers (in unique update groups):
20.0.0.1

3
11.1.0.2 from 11.1.0.2 (11.1.0.2)
Origin incomplete, metric 20, localpref 100, valid, external, best, group-best
Received Path ID 0, Local Path ID 0, version 21
Extended community: LB:3:192
Origin-AS validity: not-found

The following is a sample configuration that displays DMZ link bandwidth configuration in the
receiving (R2) router:
RP/0/RP0/CPU0:router)# show bgp ipv4 unicast 10.1.1.1/32 detail

Paths: (1 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
1 3
20.0.0.2 from 20.0.0.2 (10.0.0.81)
Origin incomplete, localpref 100, valid, external, best, group-best

Implementing BGP
101

Implementing BGP
Sending and Receiving DMZ Link Bandwidth Extended Community over eBGP Peer

Received Path ID 0, Local Path ID 0, version 17
Extended community: LB:1:192
Origin-AS validity: not-found

BGP Prefix Origin Validation using RPKI
ABGP route associates an address prefix with a set of autonomous systems (AS) that identify the interdomain
path the prefix has traversed in the form of BGP announcements. This set is represented as the AS_PATH
attribute in BGP and starts with the AS that originated the prefix.

To help reduce well-known threats against BGP including prefix mis-announcing and monkey-in-the-middle
attacks, one of the security requirements is the ability to validate the origination AS of BGP routes. The AS
number claiming to originate an address prefix (as derived from the AS_PATH attribute of the BGP route)
needs to be verified and authorized by the prefix holder.

The Resource Public Key Infrastructure (RPKI) is an approach to build a formally verifiable database of IP
addresses and AS numbers as resources. The RPKI is a globally distributed database containing, among other
things, information mapping BGP (internet) prefixes to their authorized origin-AS numbers. Routers running
BGP can connect to the RPKI to validate the origin-AS of BGP paths.

Configure RPKI Cache-server
Perform this task to configure Resource Public Key Infrastructure (RPKI) cache-server parameters.

Configure the RPKI cache-server parameters in rpki-server configurationmode. Use the rpki server command
in router BGP configuration mode to enter into the rpki-server configuration mode

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)#router bgp 100

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 rpki cache {host-name | ip-address}

Example:
RP/0/RP0/CPU0:router(config-bgp)#rpki server 10.2.3.4

Enters rpki-server configuration mode and enables configuration of RPKI cache parameters.

Step 4 Use one of these commands:

Implementing BGP
102

Implementing BGP
BGP Prefix Origin Validation using RPKI

• transport ssh port port_number
• transport tcp port port_number

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#transport ssh port 22

Or
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#transport tcp port 2

Specifies a transport method for the RPKI cache.

• ssh—Select ssh to connect to the RPKI cache using SSH.

• tcp—Select tcp to connect to the RPKI cache using TCP (unencrypted).

• port port_number—Specify the port number for the RPKI cache transport over TCP and SSH protocols.
The port number ranges from 1 to 65535.

• SSH supports custom ports in addition to the default port number 22.

• You can set the transport to either TCP or SSH. Change of transport causes the cache session
to flap.

Note

Step 5 (Optional) username user_name

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#username ssh_rpki_cache

Specifies a (SSH) username for the RPKI cache-server.

Step 6 (Optional) password

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#password ssh_rpki_pass

Specifies a (SSH) password for the RPKI cache-server.

The “username” and “password” configurations only apply if the SSH method of transport is
active.

Note

Step 7 preference preference_value

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#preference 1

Specifies a preference value for the RPKI cache. Range for the preference value is 1 to 10. Setting a lower
preference value is better.

Step 8 purge-time time

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#purge-time 30

Configures the time BGP waits to keep routes from a cache after the cache session drops. Set purge time in
seconds. Range for the purge time is 30 to 360 seconds.

Step 9 Use one of these commands.

Implementing BGP
103

Implementing BGP
Configure RPKI Cache-server

• refresh-time time
• refresh-time off

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#refresh-time 20

Or
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#refresh-time off

Configures the time BGP waits in between sending periodic serial queries to the cache. Set refresh-time in
seconds. Range for the refresh time is 15 to 3600 seconds.

Configure the off option to specify not to send serial-queries periodically.

Step 10 Use one these commands.

• response-time time
• response-time off

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#response-time 30

Or
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#response-time off

Configures the time BGP waits for a response after sending a serial or reset query. Set response-time in
seconds. Range for the response time is 15 to 3600 seconds.

Configure the off option to wait indefinitely for a response.

Step 11 shutdown

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#shutdown

Configures shut down of the RPKI cache.

Step 12 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure BGP Prefix Validation
Starting from Release 6.5.1, RPKI is disabled by default. From Release 6.5.1, use the following task to
configure RPKI Prefix Validation.
Router(config)# router bgp 100
/* The bgp origin-as validation time and bgp origin-as validity signal ibgp commands are
optional. */.

Implementing BGP
104

Implementing BGP
Configure BGP Prefix Validation

Router(config-bgp)# bgp origin-as validation time 50
Router(config-bgp)# bgp origin-as validation time off
Router(config-bgp)# bgp origin-as validation signal ibgp
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# bgp origin-as validation enable

Use the following commands to verify the origin-as validation configuration:
Router# show bgp origin-as validity

Thu Mar 14 04:18:09.656 PDT
BGP router identifier 10.1.1.1, local AS number 1
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0xe0000000 RD version: 514
BGP main routing table version 514
BGP NSR Initial initsync version 2 (Reached)
BGP NSR/ISSU Sync-Group versions 0/0
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best

i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Origin-AS validation codes: V valid, I invalid, N not-found, D disabled

Network Next Hop Metric LocPrf Weight Path
*> 209.165.200.223/27 0.0.0.0 0 32768 ?

*> 209.165.200.225/27 0.0.0.0 0 32768 ?

*> 19.1.2.0/24 0.0.0.0 0 32768 ?

*> 19.1.3.0/24 0.0.0.0 0 32768 ?

*> 10.1.2.0/24 0.0.0.0 0 32768 ?

*> 10.1.3.0/24 0.0.0.0 0 32768 ?

*> 10.1.4.0/24 0.0.0.0 0 32768 ?

*> 198.51.100.1/24 0.0.0.0 0 32768 ?

*> 203.0.113.235/24 0.0.0.0 0 32768 ?

V*> 209.165.201.0/27 10.1.2.1 0 4002 i

N*> 198.51.100.2/24 10.1.2.1 0 4002 i

I*> 198.51.100.1/24 10.1.2.1 0 4002 i

*> 192.0.2.1.0/24 0.0.0.0 0 32768 ?

Router# show bgp process
Mon Jul 9 16:47:39.428 PDT

BGP Process Information:
...
Use origin-AS validity in bestpath decisions
Allow (origin-AS) INVALID paths
Signal origin-AS validity state to neighbors

Address family: IPv4 Unicast
...
Origin-AS validation is enabled for this address-family
Use origin-AS validity in bestpath decisions for this address-family

Implementing BGP
105

Implementing BGP
Configure BGP Prefix Validation

Allow (origin-AS) INVALID paths for this address-family
Signal origin-AS validity state to neighbors with this address-family

Configure RPKI Bestpath Computation
Perform this task to configure RPKI bestpath computation options.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)#router bgp 100

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 rpki bestpath use origin-as validity

Example:
RP/0/RP0/CPU0:router(config-bgp)#bgp bestpath origin-as use validity

Enables the validity states of BGP paths to affect the path's preference in the BGP bestpath process. This
configuration can also be done in router BGP address family submode.

Step 4 rpki bestpath origin-as allow invalid

Example:
RP/0/RP0/CPU0:router(config-bgp)#bgp bestpath origin-as allow invalid

Allows all "invalid" paths to be considered for BGP bestpath computation.

This configuration can also be done at global address family, neighbor, and neighbor address
family submodes. Configuring rpki bestpath origin-as allow invalid in router BGP and address
family submodes allow all "invalid" paths to be considered for BGP bestpath computation. By
default, all such paths are not bestpath candidates. Configuring pki bestpath origin-as allow invalid
in neighbor and neighbor address family submodes allow all "invalid" paths from that specific
neighbor or neighbor address family to be considered as bestpath candidates. The neighbor must
be an eBGP neighbor.

Note

This configuration takes effect only when the rpki bestpath use origin-as validity configuration is enabled.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

Implementing BGP
106

Implementing BGP
Configure RPKI Bestpath Computation

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Resilient Per-CE Label Allocation Mode
Table 3: Feature History Table

Feature DescriptionRelease InformationFeature Name

You can configure connected routes and static routes in
per-prefix mode on the BVI. However, dynamic protocols
such as BGP in per-prefix mode on the BVI is not
supported.

Release 7.3.1Per-Prefix Label
Allocation
Support on BVI

The Resilient Per-CE Label Allocation is an extension of the Per-CE label allocation mode to support Prefix
Independent Convergence (PIC) and load balancing. At present, the three label allocation modes, Per-Prefix,
Per-CE, and Per-VRF have these restrictions:

• No support for load balancing across CEs

• Temporary forwarding loop during local traffic diversion to support PIC

• No support for EIBGP multipath load balancing

• Forwarding performance impact

In the Resilient Per-CE label allocation scheme, BGP installs a unique rewrite label in LSD for every unique
set of CE paths or next hops. There may be one or more prefixes in BGP table that points to this label. BGP
also installs the CE paths (primary) and optionally a backup PE path into RIB. FIB learns about the label
rewrite information from LSD and the IP paths fromRIB. In steady state, labeled traffic destined to the resilient
per-CE label is load balanced across all the CE next hops. When all the CE paths fail, any traffic destined to
that label will result in an IP lookup and will be forwarded towards the backup PE path, if available. This
action is performed on the label independently of the number of prefixes that may point to the label, resulting
in the PIC behavior during primary paths failure.

Configure Resilient Per-CE Label Allocation Mode Under VRF Address Family
Perform this task to configure resilient per-ce label allocation mode under VRF address family.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)#

Enters global configuration mode.

Implementing BGP
107

Implementing BGP
Resilient Per-CE Label Allocation Mode

Step 2 router bgpas-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 666
RP/0/RP0/CPU0:router(config-bgp)#

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 vrfvrf-instance

Example:

RP/0/RP0/CPU0:router(config-bgp)# vrf vrf-pe
RP/0/RP0/CPU0:router(config-bgp-vrf)#

Configures a VRF instance.

Step 4 address-family {ipv4 | ipv6} unicast

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-vrf-af)#

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

Step 5 label-mode per-ce

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-af)# label mode per-ce
RP/0/RP0/CPU0:router(config-bgp-vrf-af)#

Configures resilient per-ce label allocation mode.

Step 6 Do one of the following:

• end
• commit

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-af)# end

or

RP/0/RP0/CPU0:router(config-bgp-vrf-af)# commit

Saves configuration changes.

• When you issue the end command, the system prompts you to commit changes:

Uncommitted changes found, commit them before exiting(yes/no/cancel)?[cancel]:

• Entering yes saves configuration changes to the running configuration file, exits the configuration
session, and returns the router to EXEC mode.

Implementing BGP
108

Implementing BGP
Configure Resilient Per-CE Label Allocation Mode Under VRF Address Family

• Entering no exits the configuration session and returns the router to EXECmode without committing
the configuration changes.

• Entering cancel leaves the router in the current configuration session without exiting or committing
the configuration changes.

• Use the commit command to save the configuration changes to the running configuration file and remain
within the configuration session.

This example shows how to configure resilient per-ce label allocation mode under VRF address
family:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# router bgp 666
RP/0/RP0/CPU0:router(config-bgp)# vrf vrf-pe
RP/0/RP0/CPU0:router(config-bgp-vrf)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-vrf-af)# label mode per-ce
RP/0/RP0/CPU0:router(config-bgp-vrf-af)# end

Configure Resilient Per-CE Label Allocation Mode Using Route-Policy
Perform this task to configure resilient per-ce label allocation mode using a route-policy.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)#

Enters global configuration mode.

Step 2 route-policypolicy-name

Example:

RP/0/RP0/CPU0:router(config)# route-policy route1
RP/0/RP0/CPU0:router(config-rpl)#

Creates a route policy and enters route policy configuration mode.

Step 3 set label-mode per-ce

Example:

RP/0/RP0/CPU0:router(config-rpl)# set label-mode per-ce
RP/0/RP0/CPU0:router(config-rpl)#

Configures resilient per-ce label allocation mode.

Implementing BGP
109

Implementing BGP
Configure Resilient Per-CE Label Allocation Mode Using Route-Policy

Step 4 Do one of the following:

• end
• commit

Example:

RP/0/RP0/CPU0:router(config-rpl)# end

or

RP/0/RP0/CPU0:router(config-rpl)# commit

Saves configuration changes.

• When you issue the end command, the system prompts you to commit changes:

Uncommitted changes found, commit them before exiting(yes/no/cancel)?[cancel]:

• Entering yes saves configuration changes to the running configuration file, exits the configuration
session, and returns the router to EXEC mode.

• Entering no exits the configuration session and returns the router to EXECmode without committing
the configuration changes.

• Entering cancel leaves the router in the current configuration session without exiting or committing
the configuration changes.

• Use the commit command to save the configuration changes to the running configuration file and remain
within the configuration session.

This example shows how to configure resilient per-ce label allocation mode using a route-policy:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# route-policy route1
RP/0/RP0/CPU0:router(config-rpl)# set label-mode per-ce
RP/0/RP0/CPU0:router(config-rpl)# end

This example shows how to configure route-policy to vrf :
RP/0/RP0/CPU0:(config)# router bgp 666
RP/0/RP0/CPU0:(config-bgp)# vrf vrf-pe
RP/0/RP0/CPU0:(config-bgp-vrf)# address-family ipv4 unicast
RP/0/RP0/CPU0:(config-bgp-vrf-af)# label mode route-policy route1

BGP VRF Dynamic Route Leaking
The Border Gateway Protocol (BGP) dynamic route leaking feature provides the ability to import routes
between the default-vrf (Global VRF) and any other non-default VRF, to provide connectivity between a
global and a VPN host. The import process installs the Internet route in a VRF table or a VRF route in the
Internet table, providing connectivity.

The dynamic route leaking is enabled by:

Implementing BGP
110

Implementing BGP
BGP VRF Dynamic Route Leaking

• Importing from default-VRF to non-default-VRF, using the import from default-vrf route-policy
route-policy-name [advertise-as-vpn] command in VRF address-family configuration mode.

If the advertise-as-vpn option is configured, the paths imported from the default-VRF to the
non-default-VRF are advertised to the PEs as well as to the CEs. If the advertise-as-vpn option is not
configured, the paths imported from the default-VRF to the non-default-VRF are not advertised to the
PE. However, the paths are still advertised to the CEs.

• Importing from non-default-VRF to default VRF, using the export to default-vrf route-policy
route-policy-name command in VRF address-family configuration mode.

A route-policy is mandatory to filter the imported routes. This reduces the risk of unintended import of routes
between the Internet table and the VRF tables and the corresponding security issues. There is no hard limit
on the number of prefixes that can be imported. The import creates a new prefix in the destination VRF, which
increases the total number of prefixes and paths. However, each VRF importing global routes adds workload
equivalent to a neighbor receiving the global table. This is true even if the user filters out all but a few prefixes.
Hence, importing five to ten VRFs is ideal.

Configure VRF Dynamic Route Leaking
Perform these steps to import routes from default-VRF to non-default VRF or to import routes from non-default
VRF to default VRF.

Before you begin

A route-policy is mandatory for configuring dynamic route leaking. Use the route-policy route-policy-name
command in global configuration mode to configure a route-policy.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 vrf vrf_name

Example:
RP/0/RSP0/CPU0:PE51_ASR-9010(config)#vrf vrf_1

Enters VRF configuration mode.

Step 3 address-family {ipv4 | ipv6} unicast

Example:
RP/0/RP0/CPU0:router(config-vrf)#address-family ipv6 unicast

Enters VRF address-family configuration mode.

Step 4 Use one of these options:

• import from default-vrf route-policy route-policy-name [advertise-as-vpn]

Implementing BGP
111

Implementing BGP
Configure VRF Dynamic Route Leaking

• export to default-vrf route-policy route-policy-name

Example:
RP/0/RP0/CPU0:router(config-vrf-af)#import from default-vrf route-policy
rpl_dynamic_route_import

or
RP/0/RP0/CPU0:router(config-vrf-af)#export to default-vrf route-policy
rpl_dynamic_route_export

Imports routes from default-VRF to non-default VRF or from non-default VRF to default-VRF.

• import from default-vrf—configures import from default-VRF to non-default-VRF.

If the advertise-as-vpn option is configured, the paths imported from the default-VRF to the
non-default-VRF are advertised to the PEs as well as to the CEs. If the advertise-as-vpn option is not
configured, the paths imported from the default-VRF to the non-default-VRF are not advertised to the
PE. However, the paths are still advertised to the CEs.

• export to default-vrf—configures import from non-default-VRF to default VRF. The paths imported
from the default-VRF are advertised to other PEs.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

VRF Dynamic Route Leaking Configuration: Example

Import Routes from default-VRF to non-default-VRF:

vrf vrf_1
address-family ipv6 unicast
import from default-vrf route-policy rpl_dynamic_route_import
!
end

Import Routes from non-default-VRF to default-VRF

vrf vrf_1
address-family ipv6 unicast

export to default-vrf route-policy rpl_dynamic_route_export
!
end

What to do next

These show bgp command output displays information from the dynamic route leaking configuration:

Implementing BGP
112

Implementing BGP
Configure VRF Dynamic Route Leaking

• Use the show bgp prefix command to display the source-RD and the source-VRF for imported paths,
including the cases when IPv4 or IPv6 unicast prefixes have imported paths.

• Use the show bgp imported-routes command to display IPv4 unicast and IPv6 unicast address-families
under the default-VRF.

Configuring a VPN Routing and Forwarding Instance in BGP
Layer 3 (virtual private network) VPN can be configured only if there is an available Layer 3 VPN license
for the line card slot on which the feature is being configured. If advanced IP license is enabled, 4096 Layer
3 VPN routing and forwarding instances (VRFs) can be configured on an interface. If the infrastructure VRF
license is enabled, eight Layer 3 VRFs can be configured on the line card.

The following error message appears if the appropriate licence is not enabled:
RP/0/RP0/CPU0:router#LC/0/0/CPU0:Dec 15 17:57:53.653 : rsi_agent[247]:
%LICENSE-ASR9K_LICENSE-2-INFRA_VRF_NEEDED : 5 VRF(s) are configured without license
A9K-iVRF-LIC in violation of the Software Right To Use Agreement.
This feature may be disabled by the system without the appropriate license.
Contact Cisco to purchase the license immediately to avoid potential service interruption.

An AIP license is not required for configuring L2VPN services.Note

The following tasks are used to configure a VPN routing and forwarding (VRF) instance in BGP:

Define Virtual Routing and Forwarding Tables in Provider Edge Routers
Perform this task to define the VPN routing and forwarding (VRF) tables in the provider edge (PE) routers.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 vrf vrf-name

Example:

RP/0/RP0/CPU0:router(config)# vrf vrf_pe

Configures a VRF instance.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-vrf)# address-family ipv4 unicast

Implementing BGP
113

Implementing BGP
Configuring a VPN Routing and Forwarding Instance in BGP

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 maximum prefix maximum [threshold]

Example:

RP/0/RP0/CPU0:router(config-vrf-af)# maximum prefix 2300

Configures a limit to the number of prefixes allowed in a VRF table.

A maximum number of routes is applicable to dynamic routing protocols as well as static or connected routes.

You can specify a threshold percentage of the prefix limit using the mid-threshold argument.

Step 5 import route-policy policy-name

Example:

RP/0/RP0/CPU0:router(config-vrf-af)# import route-policy policy_a

(Optional) Provides finer control over what gets imported into a VRF. This import filter discards prefixes that
do not match the specified policy-name argument.

Step 6 import route-target [as-number : nn | ip-address : nn]

Example:

RP/0/RP0/CPU0:router(config-vrf-af)# import route-target 234:222

Specifies a list of route target (RT) extended communities. Only prefixes that are associated with the specified
import route target extended communities are imported into the VRF.

Step 7 export route-policy policy-name

Example:

RP/0/RP0/CPU0:router(config-vrf-af)# export route-policy policy_b

(Optional) Provides finer control over what gets exported into a VRF. This export filter discards prefixes that
do not match the specified policy-name argument.

Step 8 export route-target [as-number : nn | ip-address : nn]

Example:

RP/0/RP0/CPU0:routerr(config-vrf-af)# export route-target 123:234

Specifies a list of route target extended communities. Export route target communities are associated with
prefixes when they are advertised to remote PEs. The remote PEs import them into VRFs which have import
RTs that match these exported route target communities.

Step 9 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

Implementing BGP
114

Implementing BGP
Define Virtual Routing and Forwarding Tables in Provider Edge Routers

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure Route Distinguisher
The route distinguisher (RD) makes prefixes unique across multiple VPN routing and forwarding (VRF)
instances.

In the L3VPN multipath same route distinguisher (RD)environment, the determination of whether to install
a prefix in RIB or not is based on the prefix's bestpath. In a rare misconfiguration situation, where the best
pah is not a valid path to be installed in RIB, BGP drops the prefix and does not consider the other paths. The
behavior is different for different RD setup, where the non-best multipath will be installed if the best multipath
is invalid to be installed in RIB.

Perform this task to configure the RD.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Enters BGP configuration mode allowing you to configure the BGP routing process.

Step 3 bgp router-id ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp router-id 10.0.0.0

Configures a fixed router ID for the BGP-speaking router.

Step 4 vrf vrf-name

Example:

RP/0/RP0/CPU0:router(config-bgp)# vrf vrf_pe

Configures a VRF instance.

Step 5 rd { as-number : nn | ip-address : nn | auto }

Example:

Implementing BGP
115

Implementing BGP
Configure Route Distinguisher

RP/0/RP0/CPU0:router(config-bgp-vrf)# rd 345:567

Configures the route distinguisher.

Use the auto keyword if you want the router to automatically assign a unique RD to the VRF.

Automatic assignment of RDs is possible only if a router ID is configured using the bgp router-id command
in router configuration mode. This allows you to configure a globally unique router ID that can be used for
automatic RD generation. The router ID for the VRF does not need to be globally unique, and using the VRF
router IDwould be incorrect for automatic RD generation. Having a single router ID also helps in checkpointing
RD information for BGP graceful restart, because it is expected to be stable across reboots.

Step 6 Do one of the following:

• end
• commit

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf)# end

or

RP/0/RP0/CPU0:router(config-bgp-vrf)# commit

Saves configuration changes.

• When you issue the end command, the system prompts you to commit changes:

Uncommitted changes found, commit them before exiting(yes/no/cancel)?[cancel]:

• Entering yes saves configuration changes to the running configuration file, exits the configuration
session, and returns the router to XR EXEC mode.

• Entering no exits the configuration session and returns the router to XR EXEC mode without
committing the configuration changes.

• Entering cancel leaves the router in the current configuration session without exiting or committing
the configuration changes.

• Use the commit command to save the configuration changes to the running configuration file and remain
within the configuration session.

Configure PE-PE or PE-RR Interior BGP Sessions
To enable BGP to carry VPN reachability information between provider edge (PE) routers you must configure
the PE-PE interior BGP (iBGP) sessions. A PE uses VPN information carried from the remote PE router to
determine VPN connectivity and the label value to be used so the remote (egress) router can demultiplex the
packet to the correct VPN during packet forwarding.

The PE-PE, PE-route reflector (RR) iBGP sessions are defined to all PE and RR routers that participate in the
VPNs configured in the PE router.

Perform this task to configure PE-PE iBGP sessions and to configure global VPN options on a PE.

Implementing BGP
116

Implementing BGP
Configure PE-PE or PE-RR Interior BGP Sessions

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure
the BGP routing process.

Step 3 address-family vpnv4 unicast

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family vpvn4 unicast

Enters VPN address family configuration mode.

Step 4 exit

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Exits the current configuration mode.

Step 5 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 172.16.1.1

Configures a PE iBGP neighbor.

Step 6 remote-as as-number

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 1

Assigns the neighbor a remote autonomous system number.

Step 7 description text

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# description neighbor 172.16.1.1

(Optional) Provides a description of the neighbor. The description is used to save comments and does not
affect software function.

Implementing BGP
117

Implementing BGP
Configure PE-PE or PE-RR Interior BGP Sessions

Step 8 password { clear | encrypted } password

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# password encrypted 123abc

Enables Message Digest 5 (MD5) authentication on the TCP connection between the two BGP neighbors.

Step 9 shutdown

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# shutdown

Terminates any active sessions for the specified neighbor and removes all associated routing information.

Step 10 timers keepalive hold-time

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# timers 12000 200

Set the timers for the BGP neighbor.

Step 11 update-source type interface-id

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# update-source gigabitEthernet 0/1/5/0

Allows iBGP sessions to use the primary IP address from a specific interface as the local address when forming
an iBGP session with a neighbor.

Step 12 address-family vpnv4 unicast

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family vpvn4 unicast

Enters VPN neighbor address family configuration mode.

Step 13 route-policy route-policy-name in

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy pe-pe-vpn-in in

Specifies a routing policy for an inbound route. The policy can be used to filter routes or modify route attributes.

Step 14 route-policy route-policy-name out

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy pe-pe-vpn-out out

Specifies a routing policy for an outbound route. The policy can be used to filter routes or modify route
attributes.

Step 15 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

Implementing BGP
118

Implementing BGP
Configure PE-PE or PE-RR Interior BGP Sessions

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure BGP as PE-CE Protocol
Perform this task to configure BGP on the PE and establish PE-CE communication using BGP.

Procedure

PurposeCommand or Action

Enters mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and
enters the BGP configuration mode, allowing
you to configure the BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router
bgp 120

Step 2

Enables BGP routing for a particular VRF on
the PE router.

vrf vrf-name

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# vrf
vrf_pe_2

Configures a fixed router ID for a
BGP-speaking router.

bgp router-id ip-address

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-vrf)#
bgp router-id 172.16.9.9

label-allocation-mode per-ceStep 5 • Configures The per-ce keyword
configures the per-CE label allocation

Example: mode to avoid an extra lookup on the PE

RP/0/RP0/CPU0:router(config-bgp-vrf)#
label-allocation-mode per-ce

router and conserve label space
(per-prefix is the default label allocation
mode). In this mode, the PE router
allocates one label for every immediate
next-hop (in most cases, this would be a
CE router). This label is directly mapped
to the next hop, so there is no VRF route
lookup performed during data forwarding.

Implementing BGP
119

Implementing BGP
Configure BGP as PE-CE Protocol

PurposeCommand or Action

However, the number of labels allocated
would be one for each CE rather than one
for each VRF. Because BGP knows all
the next hops, it assigns a label for each
next hop (not for each PE-CE interface).
When the outgoing interface is a
multiaccess interface and the media
access control (MAC) address of the
neighbor is not known, Address
Resolution Protocol (ARP) is triggered
during packet forwarding.

• The per-vrf keyword configures the
same label to be used for all the routes
advertised from a unique VRF.

Specifies either an IPv4 or IPv6 address family
unicast and enters address family configuration
submode.

address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-vrf)#
address-family ipv4 unicast

Step 6

To see a list of all the possible keywords and
arguments for this command, use the CLI help
(?).

Originates a network prefix in the address
family table in the VRF context.

network { ip-address / prefix-length |
ip-address mask }

Example:

Step 7

RP/0/RP0/CPU0:router(config-bgp-vrf-af)#
network 172.16.5.5

Configures aggregation in the VRF address
family context to summarize routing

aggregate-address address / mask-length

Example:

Step 8

information to reduce the state maintained in

RP/0/RP0/CPU0:router(config-bgp-vrf-af)#
aggregate-address 10.0.0.0/24

the core. This summarization introduces some
inefficiency in the PE edge, because an
additional lookup is required to determine the
ultimate next hop for a packet. When
configured, a summary prefix is advertised
instead of a set of component prefixes, which
are more specifics of the aggregate. The PE
advertises only one label for the aggregate.
Because component prefixes could have
different next hops to CEs, an additional
lookup has to be performed during data
forwarding.

Exits the current configuration mode.exit

Example:

Step 9

Implementing BGP
120

Implementing BGP
Configure BGP as PE-CE Protocol

PurposeCommand or Action

RP/0/RP0/CPU0:router(config-bgp-vrf-af)#
exit

Configures a CE neighbor. The ip-address
argument must be a private address.

neighbor ip-address

Example:

Step 10

RP/0/RP0/CPU0:router(config-bgp-vrf)#
neighbor 10.0.0.0

Configures the remote AS for the CE neighbor.remote-as as-number

Example:

Step 11

RP/0/RP0/CPU0:router(config-bgp-vrf-nbr)#
remote-as 2

EnableMessageDigest 5 (MD5) authentication
on a TCP connection between two BGP
neighbors.

password { clear | encrypted } password

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-nbr)#
password encrypted 234xyz

Step 12

Configures the CE neighbor to accept and
attempt BGP connections to external peers

ebgp-multihop [ttl-value]

Example:

Step 13

residing on networks that are not directly
connected.

RP/0/RP0/CPU0:router(config-bgp-vrf-nbr)#
ebgp-multihop 55

Specifies either an IPv4 or IPv6 address family
unicast and enters address family configuration
submode.

Do one of the following:Step 14

• address-family { ipv4 | ipv6 } unicast
• address-family {ipv4 {unicast |

labeled-unicast} | ipv6 unicast} To see a list of all the possible keywords and
arguments for this command, use the CLI help
(?).Example:

RP/0/RP0/CPU0:router(config-vrf)#
address-family ipv4 unicast

Configures the site-of-origin (SoO) extended
community. Routes that are learned from this

site-of-origin [as-number : nn | ip-address
: nn]

Step 15

CE neighbor are tagged with the SoO extended
Example: community before being advertised to the rest

RP/0/RP0/CPU0:router(config-bgp-vrf-nbr-af)#
site-of-origin 234:111

of the PEs. SoO is frequently used to detect
loops when as-override is configured on the
PE router. If the prefix is looped back to the
same site, the PE detects this and does not send
the update to the CE.

Implementing BGP
121

Implementing BGP
Configure BGP as PE-CE Protocol

PurposeCommand or Action

Configures AS override on the PE router. This
causes the PE router to replace the CE’s ASN
with its own (PE) ASN.

as-override

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-nbr-af)#
as-override

Step 16

This loss of information could
lead to routing loops; to avoid
loops caused by as-override, use
it in conjunction with
site-of-origin.

Note

Allows an AS path with the PE autonomous
system number (ASN) a specified number of
times.

allowas-in [as-occurrence-number]

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-nbr-af)#
allowas-in 5

Step 17

Hub and spokeVPNnetworks need the looping
back of routing information to the HUB PE
through the HUB CE.When this happens, due
to the presence of the PE ASN, the
looped-back information is dropped by the
HUB PE. To avoid this, use the allowas-in
command to allow prefixes even if they have
the PEs ASN up to the specified number of
times.

Specifies a routing policy for an inbound route.
The policy can be used to filter routes or
modify route attributes.

route-policy route-policy-name in

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-nbr-af)#
route-policy pe_ce_in_policy in

Step 18

Specifies a routing policy for an outbound
route. The policy can be used to filter routes
or modify route attributes.

route-policy route-policy-name out

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-nbr-af)#
route-policy pe_ce_out_policy out

Step 19

commit —Saves the configuration changes
and remains within the configuration session.

Use the commit or end command.Step 20

end —Prompts user to take one of these
actions:

• Yes — Saves configuration changes and
exits the configuration session.

• No —Exits the configuration session
without committing the configuration
changes.

• Cancel —Remains in the configuration
session, without committing the
configuration changes.

Implementing BGP
122

Implementing BGP
Configure BGP as PE-CE Protocol

Resetting an eBGP Session Immediately Upon Link Failure
By default, if a link goes down, all BGP sessions of any directly adjacent external peers are immediately reset.
Use the bgp fast-external-fallover disable command to disable automatic resetting. Turn the automatic reset
back on using the no bgp fast-external-fallover disable command.

eBGP sessions flap when the node reaches 3500 eBGP sessions with BGP timer values set as 10 and 30. To
support more than 3500 eBGP sessions, increase the packet rate by using the lpts pifib hardware police
location location-id command. Following is a sample configuration to increase the eBGP sessions:
RP/0/RP0/CPU0:router#configure
RP/0/RP0/CPU0:router(config)#lpts pifib hardware police location 0/2/CPU0
RP/0/RP0/CPU0:router(config-pifib-policer-per-node)#flow bgp configured rate 4000
RP/0/RP0/CPU0:router(config-pifib-policer-per-node)#flow bgp known rate 4000
RP/0/RP0/CPU0:router(config-pifib-policer-per-node)#flow bgp default rate 4000
RP/0/RP0/CPU0:router(config-pifib-policer-per-node)#commit

Information about Implementing BGP
To implement BGP, you need to understand the following concepts:

BGP Router Identifier
For BGP sessions between neighbors to be established, BGP must be assigned a router ID. The router ID is
sent to BGP peers in the OPEN message when a BGP session is established.

BGP attempts to obtain a router ID in the following ways (in order of preference):

• By means of the address configured using the bgp router-id command in router configuration mode.

• By using the highest IPv4 address on a loopback interface in the system if the router is booted with saved
loopback address configuration.

• By using the primary IPv4 address of the first loopback address that gets configured if there are not any
in the saved configuration.

If none of these methods for obtaining a router ID succeeds, BGP does not have a router ID and cannot establish
any peering sessions with BGP neighbors. In such an instance, an error message is entered in the system log,
and the show bgp summary command displays a router ID of 0.0.0.0. After BGP has obtained a router ID,
it continues to use it even if a better router ID becomes available. This usage avoids unnecessary flapping for
all BGP sessions. However, if the router ID currently in use becomes invalid (because the interface goes down
or its configuration is changed), BGP selects a new router ID (using the rules described) and all established
peering sessions are reset.

We strongly recommend that the bgp router-id command is configured to prevent unnecessary changes to
the router ID (and consequent flapping of BGP sessions).

Note

Implementing BGP
123

Implementing BGP
Resetting an eBGP Session Immediately Upon Link Failure

BGP Attributes and Operators
This table summarizes the BGP attributes and operators per attach points.

Table 4: BGP Attributes and Operators

SetMatchAttributeAttach Point

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathaggregation

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

set

set additive

delete in

delete not in

delete all

is-empty

matches-any

matches-every

community

—indestination

set

set additive

—extcommunity cost

setis, ge, le, eqlocal-preference

setset +set -is, eg, ge, lemed

setinnext-hop

setisorigin

—insource

suppress-route—suppress-route

set—weight

Implementing BGP
124

Implementing BGP
BGP Attributes and Operators

SetMatchAttributeAttach Point

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathallocate-label

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

—is-empty

matches-any

matches-every

community

—indestination

set—label

—is, ge, le, eqlocal-preference

—is, eg, ge, lemed

—innext-hop

—isorigin

—insource

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathclear-policy

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

Implementing BGP
125

Implementing BGP
BGP Attributes and Operators

SetMatchAttributeAttach Point

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathdampening

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

—is-empty

matches-any

matches-every

community

set dampening—/dampening

—indestination

—is, ge, le, eqlocal-preference

—is, eg, ge, lemed

—innext-hop

—isorigin

—insource

—indestinationdebug

set

set +

set -

—meddefault
originate

—inrib-has-route

Implementing BGP
126

Implementing BGP
BGP Attributes and Operators

SetMatchAttributeAttach Point

prepend

prepend most-recent

remove as-path private-as

replace

in

is-local

length

NA

neighbor-is

originates-from

passes-through

unique-length

as-pathneighbor-in

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

set

set additive

delete-in

delete-not-in

delete-all

is-empty

matches-any

matches-every

communitycommunitywith ‘peeras’

—indestination

set

set additive

—extcommunity cost

set

additive

delete-in

delete-not-in

delete-all

is-empty

matches-any

matches-every

matches-within

extcommunity rt

—is-empty

matches-any

matches-every

matches-within

extcommunity soo

setis, ge, le, eqlocal-preference

set

set +

set -

is, eg, ge, lemed

Implementing BGP
127

Implementing BGP
BGP Attributes and Operators

SetMatchAttributeAttach Point

next-hop set

set peer address

in

setisorigin

NAroute-aggregatedroute-aggregated

—insource

set—weight

Implementing BGP
128

Implementing BGP
BGP Attributes and Operators

SetMatchAttributeAttach Point

prepend

prepend most-recent

remove as-path private-as

replace

in

is-local

length

—

neighbor-is

originates-from

passes-through

unique-length

as-pathneighbor-out

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

set

set additive

delete-in

delete-not-in

delete-all

is-empty

matches-any

matches-every

communitycommunitywith ‘peeras’

—indestination

set

set additive

—extcommunity cost

set

additive

delete-in

delete-not-in

delete-all

is-empty

matches-any

matches-every

matches-within

extcommunity rt

—is-empty

matches-any

matches-every

matches-within

extcommunity soo

setis, ge, le, eqlocal-preference

is, eg, ge, lemed

Implementing BGP
129

Implementing BGP
BGP Attributes and Operators

SetMatchAttributeAttach Point

set

set +

set -

set max-unreachable

set igp-cost

set

set self

innext-hop

setisorigin

—ispath-type

—inrd

—route-aggregatedroute-aggregated

—insource

unsuppress-route—unsuppress-route

set—vpn-distinguisher

n/ainorf-prefixneighbor-orf

Implementing BGP
130

Implementing BGP
BGP Attributes and Operators

SetMatchAttributeAttach Point

prepend—as-pathnetwork

set

set additive

delete-in

delete-not-in

delete-all

—community

—indestination

set

set additive

—extcommunity cost

—route-has-labelmpls-label

set—local-preference

set

set+

set-

—med

setinnext-hop

set—origin

—isroute-type

—is, ge, le, eqtag

set—weight

—indestinationnext-hop

—is,inprotocol

—insource

Implementing BGP
131

Implementing BGP
BGP Attributes and Operators

SetMatchAttributeAttach Point

prepend—as-pathredistribute

set

set additive

delete in

delete not in

delete all

—community

—indestination

setset additive—extcommunity cost

set—local-preference

set

set+

set-

—med

setinnext-hop

set—origin

—route-has-labelmpls-label

—isroute-type

—is, eq, ge, letag

set—weight

—is-empty

matches-any

matches-every

matches-within

extcommunity rtretain-rt

Implementing BGP
132

Implementing BGP
BGP Attributes and Operators

SetMatchAttributeAttach Point

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathshow

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

—is-empty

matches-any

matches-every

community

—indestination

—is-empty

matches-any

matches-every

matches-within

extcommunity rt

—is-empty

matches-any

matches-every

matches-within

extcommunity soo

—is, eg, ge, lemed

—innext-hop

—isorigin

—insource

Some BGP route attributes are inaccessible from some BGP attach points for various reasons. For example,
the set med igp-cost only command makes sense when there is a configured igp-cost to provide a source
value.

Implementing BGP
133

Implementing BGP
BGP Attributes and Operators

This table summarizes which operations are valid and where they are valid.

Table 5: Restricted BGP Operations by Attach Point

redistributionaggregationexportimportCommand

n/an/aeBGP
only

eBGP
only

prepend as-pathmost-recent

n/an/aeBGP
only

eBGP
only

replace as-path

forbiddenforbiddeneBGP
only

forbiddenset med igp-cost

n/an/aforbiddenn/aset weight

forbiddenn/aforbiddenforbiddensuppress

BGP Best Path Algorithm
BGP routers typically receivemultiple paths to the same destination. The BGP best-path algorithm determines
the best path to install in the IP routing table and to use for forwarding traffic. This section describes the Cisco
IOS XR software implementation of BGP best-path algorithm, as specified in Section 9.1 of the Internet
Engineering Task Force (IETF) Network Working Group draft-ietf-idr-bgp4-24.txt document.

The BGP best-path algorithm implementation is in three parts:

• Part 1—Compares two paths to determine which is better.

• Part 2—Iterates over all paths and determines which order to compare the paths to select the overall best
path.

• Part 3—Determines whether the old and new best paths differ enough so that the new best path should
be used.

The order of comparison determined by Part 2 is important because the comparison operation is not transitive;
that is, if three paths, A, B, and C exist, such that when A and B are compared, A is better, and when B and
C are compared, B is better, it is not necessarily the case that when A and C are compared, A is better. This
nontransitivity arises because the multi exit discriminator (MED) is compared only among paths from the
same neighboring autonomous system (AS) and not among all paths.

Note

Comparing Pairs of Paths

Perform the following steps to compare two paths and determine the better path:

1. If either path is invalid (for example, a path has the maximum possible MED value or it has an
unreachable next hop), then the other path is chosen (provided that the path is valid).

2. If the paths have unequal pre-bestpath cost communities, the path with the lower pre-bestpath cost
community is selected as the best path.

3. If the paths have unequal weights, the path with the highest weight is chosen.

Implementing BGP
134

Implementing BGP
BGP Best Path Algorithm

The weight is entirely local to the router, and can be set with the weight command or using a routing policy.Note

4. If the paths have unequal local preferences, the path with the higher local preference is chosen.

If a local preference attribute was received with the path or was set by a routing policy, then that value is used
in this comparison. Otherwise, the default local preference value of 100 is used. The default value can be
changed using the bgp default local-preference command.

Note

5. If one of the paths is a redistributed path, which results from a redistribute or network command, then
it is chosen. Otherwise, if one of the paths is a locally generated aggregate, which results from an
aggregate-address command, it is chosen.

Step 1 through Step 4 implement the “Path Selection with BGP”of RFC 1268.Note

6. If the paths have unequal AS path lengths, the path with the shorter AS path is chosen. This step is
skipped if bgp bestpath as-path ignore command is configured.

When calculating the length of the AS path, confederation segments are ignored, and AS sets count as 1.Note

eiBGP specifies internal and external BGP multipath peers. eiBGP allows simultaneous use of internal and
external paths.

Note

7. If the paths have different origins, the path with the lower origin is selected. Interior Gateway Protocol
(IGP) is considered lower than EGP, which is considered lower than INCOMPLETE.

8. If appropriate, the MED of the paths is compared. If they are unequal, the path with the lower MED is
chosen.

A number of configuration options exist that affect whether or not this step is performed. In general,
the MED is compared if both paths were received from neighbors in the same AS; otherwise the MED
comparison is skipped. However, this behavior is modified by certain configuration options, and there
are also some corner cases to consider.

If the bgp bestpath med always command is configured, then theMED comparison is always performed,
regardless of neighbor AS in the paths. Otherwise, MED comparison depends on the AS paths of the
two paths being compared, as follows:

• If a path has no AS path or the AS path starts with an AS_SET, then the path is considered to be
internal, and the MED is compared with other internal paths.

• If the AS path starts with an AS_SEQUENCE, then the neighbor AS is the first AS number in the
sequence, and the MED is compared with other paths that have the same neighbor AS.

Implementing BGP
135

Implementing BGP
Comparing Pairs of Paths

• If the AS path contains only confederation segments or starts with confederation segments followed
by an AS_SET, then the MED is not compared with any other path unless the bgp bestpath med
confed command is configured. In that case, the path is considered internal and the MED is
compared with other internal paths.

• If the AS path starts with confederation segments followed by an AS_SEQUENCE, then the
neighbor AS is the first AS number in the AS_SEQUENCE, and the MED is compared with other
paths that have the same neighbor AS.

If no MED attribute was received with the path, then the MED is considered to be 0 unless the bgp bestpath
med missing-as-worst command is configured. In that case, if no MED attribute was received, the MED is
considered to be the highest possible value.

Note

9. If one path is received from an external peer and the other is received from an internal (or confederation)
peer, the path from the external peer is chosen.

10. If the paths have different IGP metrics to their next hops, the path with the lower IGP metric is chosen.

11. If the paths have unequal IP cost communities, the path with the lower IP cost community is selected
as the best path.

12. If all path parameters in Step 1 through Step 10 are the same, then the router IDs are compared. If the
path was received with an originator attribute, then that is used as the router ID to compare; otherwise,
the router ID of the neighbor from which the path was received is used. If the paths have different router
IDs, the path with the lower router ID is chosen.

Where the originator is used as the router ID, it is possible to have two paths with the same router ID. It is
also possible to have two BGP sessions with the same peer router, and therefore receive two paths with the
same router ID.

Note

13. If the paths have different cluster lengths, the path with the shorter cluster length is selected. If a path
was not received with a cluster list attribute, it is considered to have a cluster length of 0.

14. Finally, the path received from the neighbor with the lower IP address is chosen. Locally generated
paths (for example, redistributed paths) are considered to have a neighbor IP address of 0.

Order of Comparisons

The second part of the BGP best-path algorithm implementation determines the order in which the paths
should be compared. The order of comparison is determined as follows:

1. The paths are partitioned into groups such that within each group the MED can be compared among all
paths. The same rules as in #unique_122 are used to determine whether MED can be compared between
any two paths. Normally, this comparison results in one group for each neighbor AS. If the bgp bestpath
med always command is configured, then there is just one group containing all the paths.

2. The best path in each group is determined. Determining the best path is achieved by iterating through all
paths in the group and keeping track of the best one seen so far. Each path is compared with the best-so-far,
and if it is better, it becomes the new best-so-far and is compared with the next path in the group.

Implementing BGP
136

Implementing BGP
Order of Comparisons

3. A set of paths is formed containing the best path selected from each group in Step 2. The overall best path
is selected from this set of paths, by iterating through them as in Step 2.

Best Path Change Suppression

The third part of the implementation is to determine whether the best-path change can be suppressed or
not—whether the new best path should be used, or continue using the existing best path. The existing best
path can continue to be used if the new one is identical to the point at which the best-path selection algorithm
becomes arbitrary (if the router-id is the same). Continuing to use the existing best path can avoid churn in
the network.

This suppression behavior does not complywith the IETFNetworkingWorkingGroup draft-ietf-idr-bgp4-24.txt
document, but is specified in the IETF Networking Working Group draft-ietf-idr-avoid-transition-00.txt
document.

Note

The suppression behavior can be turned off by configuring the bgp bestpath compare-routerid command.
If this command is configured, the new best path is always preferred to the existing one.

Otherwise, the following steps are used to determine whether the best-path change can be suppressed:

1. If the existing best path is no longer valid, the change cannot be suppressed.

2. If either the existing or new best paths were received from internal (or confederation) peers or were locally
generated (for example, by redistribution), then the change cannot be suppressed. That is, suppression is
possible only if both paths were received from external peers.

3. If the paths were received from the same peer (the paths would have the same router-id), the change cannot
be suppressed. The router ID is calculated using rules in #unique_122.

4. If the paths have different weights, local preferences, origins, or IGP metrics to their next hops, then the
change cannot be suppressed. Note that all these values are calculated using the rules in #unique_122.

5. If the paths have different-length AS paths and the bgp bestpath as-path ignore command is not
configured, then the change cannot be suppressed. Again, the AS path length is calculated using the rules
in #unique_122.

6. If theMED of the paths can be compared and theMEDs are different, then the change cannot be suppressed.
The decision as to whether the MEDs can be compared is exactly the same as the rules in #unique_122,
as is the calculation of the MED value.

7. If all path parameters in Step 1 through Step 6 do not apply, the change can be suppressed.

BGP Update Generation and Update Groups
The BGP Update Groups feature separates BGP update generation from neighbor configuration. The BGP
Update Groups feature introduces an algorithm that dynamically calculates BGP update group membership
based on outbound routing policies. This feature does not require any configuration by the network operator.
Update group-based message generation occurs automatically and independently.

BGP Update Group
When a change to the configuration occurs, the router automatically recalculates update group memberships
and applies the changes.

Implementing BGP
137

Implementing BGP
Best Path Change Suppression

For the best optimization of BGP update group generation, we recommend that the network operator keeps
outbound routing policy the same for neighbors that have similar outbound policies. This feature contains
commands for monitoring BGP update groups.

BGP Cost Community Reference
The cost community attribute is applied to internal routes by configuring the set extcommunity cost command
in a route policy. The cost community set clause is configured with a cost community ID number (0–255)
and cost community number (0–4294967295). The cost community number determines the preference for the
path. The path with the lowest cost community number is preferred. Paths that are not specifically configured
with the cost community number are assigned a default cost community number of 2147483647 (the midpoint
between 0 and 4294967295) and evaluated by the best-path selection process accordingly. When two paths
have been configured with the same cost community number, the path selection process prefers the path with
the lowest cost community ID. The cost-extended community attribute is propagated to iBGP peers when
extended community exchange is enabled.

The following commands include the route-policy keyword, which you can use to apply a route policy that
is configured with the cost community set clause:

• aggregate-address

• redistribute

• network

BGP Next Hop Reference
Event notifications from the RIB are classified as critical and noncritical. Notifications for critical and noncritical
events are sent in separate batches. BGP is notified when any of the following events occurs:

• Next hop becomes unreachable

• Next hop becomes reachable

• Fully recursed IGP metric to the next hop changes

• First hop IP address or first hop interface change

• Next hop becomes connected

• Next hop becomes unconnected

• Next hop becomes a local address

• Next hop becomes a nonlocal address

Reachability and recursed metric events trigger a best-path recalculation.Note

However, a noncritical event is sent along with the critical events if the noncritical event is pending and there
is a request to read the critical events.

• Critical events are related to the reachability (reachable and unreachable), connectivity (connected and
unconnected), and locality (local and nonlocal) of the next hops. Notifications for these events are not
delayed.

Implementing BGP
138

Implementing BGP
BGP Cost Community Reference

• Noncritical events include only the IGPmetric changes. These events are sent at an interval of 3 seconds.
A metric change event is batched and sent 3 seconds after the last one was sent.

BGP is notified when any of the following events occurs:

• Next hop becomes unreachable

• Next hop becomes reachable

• Fully recursed IGP metric to the next hop changes

• First hop IP address or first hop interface change

• Next hop becomes connected

• Next hop becomes unconnected

• Next hop becomes a local address

• Next hop becomes a nonlocal address

Reachability and recursed metric events trigger a best-path recalculation.Note

The next-hop trigger delay for critical and noncritical events can be configured to specify a minimum batching
interval for critical and noncritical events using the nexthop trigger-delay command. The trigger delay is
address family dependent.

The BGP next-hop tracking feature allows you to specify that BGP routes are resolved using only next hops
whose routes have the following characteristics:

• To avoid the aggregate routes, the prefix length must be greater than a specified value.

• The source protocol must be from a selected list, ensuring that BGP routes are not used to resolve next
hops that could lead to oscillation.

This route policy filtering is possible because RIB identifies the source protocol of route that resolved a next
hop as well as the mask length associated with the route. The nexthop route-policy command is used to
specify the route-policy.

Next Hop as the IPv6 Address of Peering Interface

BGP can carry IPv6 prefixes over an IPv4 session. The next hop for the IPv6 prefixes can be set through a
nexthop policy. In the event that the policy is not configured, the nexthops are set as the IPv6 address of the
peering interface (IPv6 neighbor interface or IPv6 update source interface, if any one of the interfaces is
configured).

If the nexthop policy is not configured and neither the IPv6 neighbor interface nor the IPv6 update source
interface is configured, the next hop is the IPv4 mapped IPv6 address.

Scoped IPv4/VPNv4 Table Walk

To determine which address family to process, a next-hop notification is received by first de-referencing the
gateway context associated with the next hop, then looking into the gateway context to determine which
address families are using the gateway context. The IPv4 unicast and VPNv4 unicast address families share
the same gateway context, because they are registered with the IPv4 unicast table in the RIB. As a result, both
the global IPv4 unicast table and the VPNv4 table are is processed when an IPv4 unicast next-hop notification

Implementing BGP
139

Implementing BGP
BGP Next Hop Reference

is received from the RIB. A mask is maintained in the next hop, indicating if whether the next hop belongs
to IPv4 unicast or VPNv4 unicast, or both. This scoped table walk localizes the processing in the appropriate
address family table.

Reordered Address Family Processing

The software walks address family tables based on the numeric value of the address family. When a next-hop
notification batch is received, the order of address family processing is reordered to the following order:

• IPv4 tunnel

• VPNv4 unicast

• VPNv6 unicast

• IPv4 labeled unicast

• IPv4 unicast

• IPv4 MDT

• IPv6 unicast

• IPv6 labeled unicast

• IPv4 tunnel

• VPNv4 unicast

• IPv4 unicast

• IPv6 unicast

New Thread for Next-Hop Processing

The critical-event thread in the spkr process handles only next-hop, Bidirectional Forwarding Detection (BFD),
and fast-external-failover (FEF) notifications. This critical-event thread ensures that BGP convergence is not
adversely impacted by other events that may take a significant amount of time.

show, clear, and debug Commands

The show bgp nexthops command provides statistical information about next-hop notifications, the amount
of time spent in processing those notifications, and details about each next hop registered with the RIB. The
clear bgp nexthop performance-statistics command ensures that the cumulative statistics associated with
the processing part of the next-hop show command can be cleared to help in monitoring. The clear bgp
nexthop registration command performs an asynchronous registration of the next hop with the RIB.

The debug bgp nexthop command displays information on next-hop processing. The out keyword provides
debug information only about BGP registration of next hops with RIB. The in keyword displays debug
information about next-hop notifications received from RIB. The out keyword displays debug information
about next-hop notifications sent to the RIB.

BGP Nonstop Routing Reference
BGP NSR provides nonstop routing during the following events:

• Route processor switchover

• Process crash or process failure of BGP or TCP

Implementing BGP
140

Implementing BGP
BGP Nonstop Routing Reference

BGP NSR is enabled by default. Use the nsr disable command to turn off BGP
NSR. The no nsr disable command can also be used to turn BGP NSR back on
if it has been disabled.

In case of process crash or process failure, NSR will be maintained only if nsr
process-failures switchover command is configured. In the event of process
failures of active instances, the nsr process-failures switchover configures
failover as a recovery action and switches over to a standby route processor (RP)
or a standby distributed route processor (DRP) thereby maintaining NSR. An
example of the configuration command is RP/0/RSP0/CPU0:router(config) # nsr
process-failures switchover

The nsr process-failures switchover command maintains both the NSR and
BGP sessions in the event of a BGP or TCP process crash. Without this
configuration, BGP neighbor sessions flap in case of a BGP or TCP process crash.
This configuration does not help if the BGP or TCP process is restarted in which
case the BGP neighbors are expected to flap.

When the l2vpn_mgr process is restarted, the NSR client (te-control) flaps between
the Ready and Not Ready state. This is the expected behavior and there is no
traffic loss.

Note

During route processor switchover and In-Service System Upgrade (ISSU), NSR is achieved by stateful
switchover (SSO) of both TCP and BGP.

NSR does not force any software upgrades on other routers in the network, and peer routers are not required
to support NSR.

When a route processor switchover occurs due to a fault, the TCP connections and the BGP sessions are
migrated transparently to the standby route processor, and the standby route processor becomes active. The
existing protocol state is maintained on the standby route processor when it becomes active, and the protocol
state does not need to be refreshed by peers.

Events such as soft reconfiguration and policy modifications can trigger the BGP internal state to change. To
ensure state consistency between active and standby BGP processes during such events, the concept of post-it
is introduced that act as synchronization points.

BGP NSR provides the following features:

• NSR-related alarms and notifications

• Configured and operational NSR states are tracked separately

• NSR statistics collection

• NSR statistics display using show commands

• XML schema support

• Auditing mechanisms to verify state synchronization between active and standby instances

• CLI commands to enable and disable NSR

Implementing BGP
141

Implementing BGP
BGP Nonstop Routing Reference

BGP Route Reflectors Reference
#unique_50 unique_50_Connect_42_fig_ED746D3CC16E445F85EB3B1CE06B3767 illustrates a simple
iBGP configuration with three iBGP speakers (routers A, B, and C). Without route reflectors, when Router
A receives a route from an external neighbor, it must advertise it to both routers B and C. Routers B and C
do not readvertise the iBGP learned route to other iBGP speakers because the routers do not pass on routes
learned from internal neighbors to other internal neighbors, thus preventing a routing information loop.

With route reflectors, all iBGP speakers need not be fully meshed because there is a method to pass learned
routes to neighbors. In this model, an iBGP peer is configured to be a route reflector responsible for passing
iBGP learned routes to a set of iBGP neighbors. In #unique_50 unique_50_Connect_42_fig_
3980C23832D84D43BB58222F040E5A96 , Router B is configured as a route reflector. When the route
reflector receives routes advertised fromRouter A, it advertises them to Router C, and vice versa. This scheme
eliminates the need for the iBGP session between routers A and C.

The internal peers of the route reflector are divided into two groups: client peers and all other routers in the
autonomous system (nonclient peers). A route reflector reflects routes between these two groups. The route
reflector and its client peers form a cluster. The nonclient peers must be fully meshed with each other, but the
client peers need not be fully meshed. The clients in the cluster do not communicate with iBGP speakers
outside their cluster.

#unique_50 unique_50_Connect_42_fig_9026266F2853489B94D037A781853752 illustrates amore complex
route reflector scheme. Router A is the route reflector in a cluster with routers B, C, and D. Routers E, F, and
G are fully meshed, nonclient routers.

When the route reflector receives an advertised route, depending on the neighbor, it takes the following actions:

• A route from an external BGP speaker is advertised to all clients and nonclient peers.

• A route from a nonclient peer is advertised to all clients.

• A route from a client is advertised to all clients and nonclient peers. Hence, the clients need not be fully
meshed.

Along with route reflector-aware BGP speakers, it is possible to have BGP speakers that do not understand
the concept of route reflectors. They can be members of either client or nonclient groups, allowing an easy
and gradual migration from the old BGPmodel to the route reflector model. Initially, you could create a single
cluster with a route reflector and a few clients. All other iBGP speakers could be nonclient peers to the route
reflector and then more clusters could be created gradually.

An autonomous system can have multiple route reflectors. A route reflector treats other route reflectors just
like other iBGP speakers. A route reflector can be configured to have other route reflectors in a client group
or nonclient group. In a simple configuration, the backbone could be divided into many clusters. Each route
reflector would be configured with other route reflectors as nonclient peers (thus, all route reflectors are fully
meshed). The clients are configured to maintain iBGP sessions with only the route reflector in their cluster.

Usually, a cluster of clients has a single route reflector. In that case, the cluster is identified by the router ID
of the route reflector. To increase redundancy and avoid a single point of failure, a cluster might have more
than one route reflector. In this case, all route reflectors in the cluster must be configured with the cluster ID
so that a route reflector can recognize updates from route reflectors in the same cluster. All route reflectors
serving a cluster should be fully meshed and all of them should have identical sets of client and nonclient
peers.

By default, the clients of a route reflector are not required to be fully meshed and the routes from a client are
reflected to other clients. However, if the clients are fully meshed, the route reflector need not reflect routes
to clients.

Implementing BGP
142

Implementing BGP
BGP Route Reflectors Reference

As the iBGP learned routes are reflected, routing information may loop. The route reflector model has the
following mechanisms to avoid routing loops:

• Originator ID is an optional, nontransitive BGP attribute. It is a 4-byte attributed created by a route
reflector. The attribute carries the router ID of the originator of the route in the local autonomous system.
Therefore, if a misconfiguration causes routing information to come back to the originator, the information
is ignored.

• Cluster-list is an optional, nontransitive BGP attribute. It is a sequence of cluster IDs that the route has
passed.When a route reflector reflects a route from its clients to nonclient peers, and vice versa, it appends
the local cluster ID to the cluster-list. If the cluster-list is empty, a new cluster-list is created. Using this
attribute, a route reflector can identify if routing information is looped back to the same cluster due to
misconfiguration. If the local cluster ID is found in the cluster-list, the advertisement is ignored.

iBGP Multipath Load Sharing Reference
When there are multiple border BGP routers having reachability information heard over eBGP, if no local
policy is applied, the border routers will choose their eBGP paths as best. They advertise that bestpath inside
the ISP network. For a core router, there can be multiple paths to the same destination, but it will select only
one path as best and use that path for forwarding. iBGP multipath load sharing adds the ability to enable load
sharing among multiple equi-distant paths. Configuring multiple iBGP best paths enables a router to evenly
share the traffic destined for a particular site. The iBGP Multipath Load Sharing feature functions similarly
in aMultiprotocol Label Switching (MPLS) Virtual Private Network (VPN) with a service provider backbone.

For multiple paths to the same destination to be considered as multipaths, the following criteria must be met:

• All attributes must be the same. The attributes include weight, local preference, autonomous system path
(entire attribute and not just length), origin code, Multi Exit Discriminator (MED), and Interior Gateway
Protocol (iGP) distance.

• The next hop router for each multipath must be different.

Even if the criteria are met and multiple paths are considered multipaths, the BGP speaking router designates
one of the multipaths as the best path and advertises this best path to its neighbors.

• Overwriting of next-hop calculation for multipath prefixes is not allowed. The next-hop-unchanged
multipath command disables overwriting of next-hop calculation for multipath prefixes.

• The ability to ignore as-path onwards while computing multipath is added. The bgp multipath as-path
ignore onwards command ignores as-path onwards while computing multipath.

Note

L3VPN iBGP PE-CE Reference
When BGP is used as the provider edge (PE) or the customer edge (CE) routing protocol, the peering sessions
are configured as external peering between the VPN provider autonomous system (AS) and the customer
network autonomous system. The L3VPN iBGP PE-CE feature enables the PE and CE devices to exchange
Border Gateway Protocol (BGP) routing information by peering as internal Border Gateway Protocol (iBGP)
instead of the widely-used external BGP peering between the PE and the CE. This mechanism applies at each
PE device where a VRF-based CE is configured as iBGP. This eliminates the need for service providers (SPs)
to configure autonomous system override for the CE. With this feature enabled, there is no need to configure
the virtual private network (VPN) sites using different autonomous systems.

Implementing BGP
143

Implementing BGP
iBGP Multipath Load Sharing Reference

The neighbor internal-vpn-client command enables PE devices to make an entire VPN cloud act as an
internal VPN client to the CE devices. These CE devices are connected internally to the VPN cloud through
the iBGP PE-CE connection inside the VRF. After this connection is established, the PE device encapsulates
the CE-learned path into an attribute called ATTR_SET and carries it in the iBGP-sourced path throughout
the VPN core to the remote PE device. At the remote PE device, this attribute is assigned with individual
attributes and the source CE path is extracted and sent to the remote CE devices.

ATTR_SET is an optional transitive attribute that carries the CE path attributes received. The ATTR_SET
attribute is encoded inside the BGP update message as follows:

+------------------------------+
| Attr Flags (O|T) Code = 128 |
+------------------------------+
| Attr. Length (1 or 2 octets) |
+------------------------------+
| Origin AS (4 octets) |
+------------------------------+
| Path attributes (variable) |
+------------------------------+

Origin AS is the AS of the VPN customer for which the ATTR_SET is generated. The minimum length of
ATTR_SET is four bytes and the maximum is the maximum supported for a path attribute after taking into
consideration the mandatory fields and attributes in the BGP update message. It is recommended that the
maximum length is limited to 3500 bytes. ATTR_SETmust not contain the following attributes:MP_REACH,
MP_UNREACH, NEW_AS_PATH, NEW_AGGR, NEXT_HOP and ATTR_SET itself (ATTR_SET inside
ATTR_SET). If these attributes are found inside the ATTR_SET, the ATTR_SET is considered invalid and
the corresponding error handling mechanism is invoked.

Per VRF and Per CE Label for IPv6 Provider Edge
The per VRF and per CE label for IPv6 feature makes it possible to save label space by allocating labels per
default VRF or per CE nexthop.

All IPv6 Provider Edge (6PE) labels are allocated per prefix by default. Each prefix that belongs to a VRF
instance is advertised with a single label, causing an additional lookup to be performed in the VRF forwarding
table to determine the customer edge (CE) next hop for the packet.

However, use the label-allocation-mode command with the per-ce keyword or the per-vrf keyword to avoid
the additional lookup on the PE router and conserve label space.

Use per-ce keyword to specify that the same label be used for all the routes advertised from a unique customer
edge (CE) peer router. Use the per-vrf keyword to specify that the same label be used for all the routes
advertised from a unique VRF.

IPv6 Unicast Routing
Cisco provides complete Internet Protocol Version 6 (IPv6) unicast capability.

An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast
address is delivered to the interface identified by that address. Cisco IOS XR software supports the following
IPv6 unicast address types:

• Global aggregatable address

• Site-local address

• Link-local address

Implementing BGP
144

Implementing BGP
Per VRF and Per CE Label for IPv6 Provider Edge

• IPv4-compatible IPv6 address

For more information on IPv6 unicast addressing, refer the IP Addresses and Services Configuration Guide.

Remove and Replace Private AS Numbers from AS Path in BGP
Private autonomous system numbers (ASNs) are used by Internet Service Providers (ISPs) and customer
networks to conserve globally unique AS numbers. Private AS numbers cannot be used to access the global
Internet because they are not unique. AS numbers appear in eBGP AS paths in routing updates. Removing
private ASNs from the AS path is necessary if you have been using private ASNs and you want to access the
global Internet.

Public AS numbers are assigned by InterNIC and are globally unique. They range from 1 to 64511. Private
AS numbers are used to conserve globally unique AS numbers, and they range from 64512 to 65535. Private
AS numbers cannot be leaked to a global BGP routing table because they are not unique, and BGP best path
calculations require unique AS numbers. Therefore, it might be necessary to remove private AS numbers from
an AS path before the routes are propagated to a BGP peer.

External BGP (eBGP) requires that globally unique AS numbers be used when routing to the global Internet.
Using private AS numbers (which are not unique) would prevent access to the global Internet. The remove
and replace private AS Numbers from AS Path in BGP feature allows routers that belong to a private AS to
access the global Internet. A network administrator configures the routers to remove private AS numbers from
the AS path contained in outgoing update messages and optionally, to replace those numbers with the ASN
of the local router, so that the AS Path length remains unchanged.

The ability to remove and replace private AS numbers from the AS Path is implemented in the following
ways:

• The remove-private-as command removes private AS numbers from the AS path even if the path contains
both public and private ASNs.

• The remove-private-as command removes private AS numbers even if the AS path contains only private
AS numbers. There is no likelihood of a 0-length AS path because this command can be applied to eBGP
peers only, in which case the AS number of the local router is appended to the AS path.

• The remove-private-as command removes private AS numbers even if the private ASNs appear before
the confederation segments in the AS path.

• The replace-as command replaces the private AS numbers being removed from the path with the local
AS number, thereby retaining the same AS path length.

The feature can be applied to neighbors per address family (address family configuration mode). Therefore,
you can apply the feature for a neighbor in one address family and not on another, affecting update messages
on the outbound side for only the address family for which the feature is configured.

Use show bgp neighbors and show bgp update-group commands to verify that the that private AS numbers
were removed or replaced.

BGP Update Message Error Handling
The BGP UPDATE message error handling changes BGP behavior in handling error UPDATE messages to
avoid session reset. Based on the approach described in IETF IDR I-D:draft-ietf-idr-error-handling, the Cisco
IOS XR BGP UPDATE Message Error handling implementation classifies BGP update errors into various
categories based on factors such as, severity, likelihood of occurrence of UPDATE errors, or type of attributes.
Errors encountered in each category are handled according to the draft. Session reset will be avoided as much

Implementing BGP
145

Implementing BGP
Remove and Replace Private AS Numbers from AS Path in BGP

as possible during the error handling process. Error handling for some of the categories are controlled by
configuration commands to enable or disable the default behavior.

According to the base BGP specification, a BGP speaker that receives an UPDATE message containing a
malformed attribute is required to reset the session over which the offending attribute was received. This
behavior is undesirable as a session reset would impact not only routes with the offending attribute, but also
other valid routes exchanged over the session.

BGP Error Handling and Attribute Filtering Syslog Messages
When a router receives a malformed update packet, an ios_msg of type
ROUTING-BGP-3-MALFORM_UPDATE is printed on the console. This is rate limited to 1 message per
minute across all neighbors. For malformed packets that result in actions "Discard Attribute" (A5) or "Local
Repair" (A6), the ios_msg is printed only once per neighbor per action. This is irrespective of the number of
malformed updates received since the neighbor last reached an "Established" state.

This is a sample BGP error handling syslog message:

%ROUTING-BGP-3-MALFORM_UPDATE : Malformed UPDATE message received from neighbor 13.0.3.50
- message length 90 bytes,
error flags 0x00000840, action taken "TreatAsWithdraw".
Error details: "Error 0x00000800, Field "Attr-missing", Attribute 1 (Flags 0x00, Length 0),
Data []"

This is a sample BGP attribute filtering syslog message for the "discard attribute" action:

[4843.46]RP/0/RP0/CPU0:Aug 21 17:06:17.919 : bgp[1037]: %ROUTING-BGP-5-UPDATE_FILTERED :
One or more attributes were filtered from UPDATE message received from neighbor 40.0.101.1
- message length 173 bytes,
action taken "DiscardAttr".
Filtering details: "Attribute 16 (Flags 0xc0): Action "DiscardAttr"". NLRIs: [IPv4 Unicast]
88.2.0.0/17

This is a sample BGP attribute filtering syslog message for the "treat-as-withdraw" action:

[391.01]RP/0/RP0/CPU0:Aug 20 19:41:29.243 : bgp[1037]: %ROUTING-BGP-5-UPDATE_FILTERED :
One or more attributes were filtered from UPDATE message received from neighbor 40.0.101.1
- message length 166 bytes,
action taken "TreatAsWdr".
Filtering details: "Attribute 4 (Flags 0xc0): Action "TreatAsWdr"". NLRIs: [IPv4 Unicast]
88.2.0.0/17

BGP-RIB Feedback Mechanism for Update Generation
TheBorder Gateway Protocol-Routing InformationBase (BGP-RIB) feedbackmechanism for update generation
feature avoids premature route advertisements and subsequent packet loss in a network. This mechanism
ensures that routes are installed locally, before they are advertised to a neighbor.

BGPwaits for feedback fromRIB indicating that the routes that BGP installed in RIB are installed in forwarding
information base (FIB) before BGP sends out updates to the neighbors. RIB uses the the BCDL feedback
mechanism to determine which version of the routes have been consumed by FIB, and updates the BGP with
that version. BGP will send out updates of only those routes that have versions up to the version that FIB has
installed. This selective update ensures that BGP does not send out premature updates resulting in attracting

Implementing BGP
146

Implementing BGP
BGP Error Handling and Attribute Filtering Syslog Messages

traffic even before the data plane is programmed after router reload, LC OIR, or flap of a link where an
alternate path is made available.

To configure BGP to wait for feedback from RIB indicating that the routes that BGP installed in RIB are
installed in FIB, before BGP sends out updates to neighbors, use the update wait-install command in router
address-family IPv4 or router address-family VPNv4 configurationmode. The show bgp, show bgp neighbors,
and show bgp process performance-statistics commands display the information from update wait-install
configuration.

Use-defined Martian Check
The solution allows disabling the Martian check for these IP address prefixes:

• IPv4 address prefixes

• 0.0.0.0/8

• 127.0.0.0/8

• 224.0.0.0/4

• IPv6 address prefixes

• ::

• ::0002 - ::ffff

• ::ffff:a.b.c.d

• fe80:xxxx

• ffxx:xxxx

Reduce Recursions for eBGP Peering on Loopback Address on
Bridge-Group Virtual Interface

Table 6: Feature History Table

DescriptionRelease NameFeature Name

You can now achieve eBGP
peering on Loopback interfaces on
Bridge-Group Virtual Interface
(BVI) and reduce the recursion
level from three to two. This
reduction in the recursion level,
achieved by removing the need to
use the BVI name in the
configuration of static routes,
allows faster packet forwarding and
better utilization of network
resources.

Release 7.10.1Reduce Recursions for eBGP
Peering on Loopback Address on
Bridge-Group Virtual Interface

Implementing BGP
147

Implementing BGP
Use-defined Martian Check

Overview

In a scenario where a native eBGP session establishes an eBGP session between two BGP peers and a customer
edge router. The eBGP peer learns the loopback IP address of the BGP neighbor through a static route, which
is configured on the Bridge-Group Virtual Interface (BVI) of the customer edge router. Configuring the static
route specifying the next hop IP address as the loopback address, nexthop destination address, and the name
of the BVI interface results in three levels of recursion. This feature enables you to successfully achieve eBGP
peering on a loopback address using a BVI interface. This is done by configuring the static route and specifying
the next hop IP address as the loopback address and nexthop destination address without specifying the name
of the BVI interface, thus confining to two levels of recursion.

Configure the Reduction of Recursions for eBGP Peering on Loopback Address
on Bridge-Group Virtual Interface

Configure the eBGP peering on a loopback address on BVI interface for the reduction of recursions by
following these steps:

• Configure a static route.

• Configure a VRF.

• Configure an address family.

• Configure the static route on a loopback interface.

• Configure the router to route packets from a network loopback IP address to a next hop destination IP
address without specifying the BVI interface name.

The following example shows how to configure a static route specifying the nexthop IP address as the loopback
address and the nexthop destination address without specifying the name of the BVI interface.
Router(config)# router static
Router(config-static)# vrf vrf1
Router(config-static-vrf)# address-family ipv4 unicast
Router(config-static-vrf-af)# 192.0.2.1/32 198.51.100.1 --> Loopback static route

Running Configuration

router static
vrf vrf1
address-family ipv4 unicast
192.0.2.1/32 198.51.100.1

Verification

The following output displays the BVI interface from which the traffic for the specified destination IP address
is being forwarded to the hardware.
Router# show cef 209.165.200.254 hardware egress location 0/0/CPU0
Mon Apr 25 13:01:53.642 UTC
209.165.200.254 /32, version 24, internal 0x5000001 0x40 (ptr 0x8b7153d8) [1], 0x0 (0x0),
0x0 (0x0)
Updated Apr 25 13:01:06.124
Prefix Len 32, traffic index 0, precedence n/a, priority 4

Implementing BGP
148

Implementing BGP
Configure the Reduction of Recursions for eBGP Peering on Loopback Address on Bridge-Group Virtual Interface

via 201.201.201.3/32, 2 dependencies, recursive [flags 0x6000]
path-idx 0 NHID 0x0 [0x8b714a48 0x8b3890f8]
next hop 201.201.201.3/32 via 201.201.201.3/32

LEAF - HAL pd context :
sub-type : IPV4, ecd_marked:0, has_collapsed_ldi:0
collapse_bwalk_required:0, ecdv2_marked:0,
HW Walk:
LEAF:

PI:0x308b7153d8 PD:0x308b715480 rev:384 type: IPV4 (0) TBL: 0xe0000000
LEAF location: LEM
FEC key: 0x2d400010660

REC-SHLDI HAL PD context :
ecd_marked:0, collapse_bwalk_required:0, load_shared_lb:0

RSHLDI:
PI:0x308b609c88 PD:0x308b609da0 rev:382 dpa-rev:149838 flag:0x1
FEC key: 0x2d400010660 fec index: 0x2001ffcb(131019) num paths: 1
p-rev:348
Path:0 fec index: 0x2001ffcb(131019) DSP fec index: 0x2001ffd9(131033),

LEAF - HAL pd context :
sub-type : IPV4, ecd_marked:0, has_collapsed_ldi:0
collapse_bwalk_required:0, ecdv2_marked:0,
HW Walk:
LEAF:
PI:0x308b7151b8 PD:0x308b715260 rev:349 type: IPV4 (0) TBL: 0xe0000000
LEAF location: LEM
FEC key: 0x26400010660

LWLDI:
BVI LDI:
PI:0x308b6e16b8 PD:0x308b6e1700 rev:348 dpa-rev:141896 p-rev:347
FEC key: 0x26400010660 fec index: 0x2001ffcc(131020) num paths:1
Path:0 fec index: 0x2001ffcc(131020) BPORT-IFH: 0xf8 DSP:0x0

SHLDI: (SHARED)
PI:0x308b60d3a8 PD:0x308b60d4c0 rev:344 dpa-rev:141893 cbf_enabled:0 pbts_enabled:0

flag:0x0
FEC key: 0x2540001065 fec index: 0x2001ffcd(131021) num paths: 1 bkup paths: 0
p-rev:343
Path:0 fec index: 0x2001ffcd(131021) DSP:0x160030b2 Dest fec index: 0x0(0)

TX-NHINFO: BVI INTERNAL(UNUSED)
PI: 0x308d2734a0 PD: 0x308d273528 rev:343 dpa-rev:0
Trap Port: 0x160030b2 npu_mask: 1
BVI: Bport ifh: 0 l2frr_enabled: 0 fec: 0 port: 0 encap: 0

TX-NHINFO:
PI: 0x308d2732a8 PD: 0x308d273330 rev:347 dpa-rev:141891 Encap hdl: (nil)
Encap id: 0x40013814 Remote: 0 L3 int: 13 flags: 0x3
npu_mask: 0x1 DMAC: 10:00:11:11:11:22
BVI: Bport ifh: 0xf8 l2frr_enabled: 0 fec: 0x2001ffd9 port: 0x1f encap: 0x13811 /*

This is
the interface from which the traffic for the specified destination IP address
is being forwarded to the hardware. */

Implementing BGP
149

Implementing BGP
Configure the Reduction of Recursions for eBGP Peering on Loopback Address on Bridge-Group Virtual Interface

Peering Between BGP Routers Within a Confederation
Table 7: Feature History Table

DescriptionRelease NameFeature Name

You can now enable BGP peering
between routers in the
sub-autonomous system (AS)
within a confederation to advertise
specific router updates using iBGP.
This capability ensures that the
mesh of routers between sub-ASes
in a confederation maintains
consistent routing tables, ensuring
proper network reachability.
Enabling this feature helps improve
preventing performance reduction
and traffic management challenges.

The feature introduces these
changes:

CLI:

• allowconfedas-in

YANG Data Model

• New XPaths for

Cisco-IOS-XR-ipv4-bgp-cfg.yang

• Cisco-IOS-XR-um-router-bgp-cfg

(see GitHub, YANG Data Models
Navigator

Release 7.11.1Peering Between BGP Routers
Within the Same Confederation

Overview

Autonomous Systems:

Border Gateway Protocol (BGP) functions as an Exterior Gateway Protocol (EGP). BGP enables the
establishment of loop-free interdomain routing. This routing occurs between autonomous systems. An
autonomous system constitutes a set of routers. These routers operate under a single technical administration.
The system utilizes various Interior Gateway Protocols (IGPs) internally. IGPs are used for routing information
exchange within the system. Simultaneously, it employs an EGP to route packets beyond the autonomous
system's boundaries.

Confederation:

One way to minimize the iBGP mesh is by segmenting an autonomous system. The segmentation involves
creating multiple sub-autonomous systems. These sub-autonomous systems are then organized into a
confederation. From an external perspective, this confederation appears as a singular autonomous system.

Implementing BGP
150

Implementing BGP
Peering Between BGP Routers Within a Confederation

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/bgp/b-ncs5500-bgp-cli-reference/b-ncs5500-bgp-cli-reference_chapter_01.html#wp4000577776
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer
https://cfnng.cisco.com/ios-xr/yang-explorer

Each autonomous system is internally fully meshed. Additionally, it maintains a limited number of connections
to other autonomous systems within the same confederation.

Peers in different autonomous systems have eBGP sessions. During these sessions, they exchange routing
information as if they were iBGP peers. Notably, crucial parameters such as next hop, multi-exit discriminator
(MED), and local preference information are conserved.

Breaking Split Horizon Rule and Peering Between BGP Routers Within the Same Autonomous System
and Confederation

Split horizon, a routing rule in network protocols, prevents routers from sharing routes within the same
autonomous system (AS) and confederation, enhancing stability and efficiency. When a router is part of a
specific AS and confederation, it avoids advertising or learning routes from peers in the same AS and
confederation on the interface of route receipt. Hence, routing information for a specific destination is not
shared back to the originating AS or confederation, preventing potential loops. The implementation of split
horizon ensures accurate network topology views, enabling efficient and reliable data forwarding, mitigating
routing problems like loops.

In specific scenarios necessitating routing customization and optimization, breaking the split horizon rule is
necessary. This rule restricts routers from sharing routes within the same autonomous system (AS) and
confederation. This feature allows you to achieve that. You can configure the allowconfedas-in command to
permit peers to learn routes from the same AS and same confederation.

In this topology given below, PE-1 and PE-2 routers are in the same autonomous system and same confederation
is connected through internet service provider (ISP), hence the PE-2 router does not learn the routes of PE-1
router. By configuring the allowconfedas-in command, you can enable the PE-2 router to learn 10.10.10.0/24
network from the PE-1 router.

Figure 1: Topology

Implementing BGP
151

Implementing BGP
Peering Between BGP Routers Within a Confederation

Restrictions for Peering Between BGP Routers Within the Same Confederation
Peer routers within the same confederation are restricted in the frequency at which they can exchange
information with each other on configuring the allowconfedas-in command. The number of times they can
share information ranges from 1 to 10. The default is 3.

Peering Between BGP Routers Within the Same Confederation: Terminology

Autonomous System

BGP, operating as an Exterior Gateway Protocol (EGP), establishes loop-free interdomain routing between
autonomous systems (AS). An AS comprises routers under single administration, utilizing IGPs for internal
routing. Additionally, it employs EGP to route packets beyond its boundaries.

Sub-Autonomous System

A sub-autonomous system is a distinct subset within a larger autonomous system, possessing individual
administrative control. It operates with specific routing policies, contributing to the hierarchical organization
and efficient management of network configurations.

Confederation

To reduce the iBGP mesh, an autonomous system can be segmented into sub-autonomous systems organized
into a confederation. Externally, this confederation appears as a single autonomous system. Internally, each
autonomous system is fully meshed but maintains limited connections to others in the same confederation.
Peers in different autonomous systems engage in eBGP sessions, exchanging routing information resembling
iBGP peers, preserving vital parameters like next hop, MED, and local preference.

Autonomous System Number

TheAutonomous SystemNumber (ASN) is crucial in networking, serving as a unique identifier for autonomous
systems, including sub-autonomous systems within a confederation.

Split Horizon

Split horizon, a network protocol routing rule, boosts stability by prohibiting routers in the same confederation
from sharing routes. It prevents a router from advertising routes back to the network from which it learned
them. This prevents potential loops, ensuring accurate network topology views and enabling efficient data
forwarding, thereby addressing routing issues.

Configure Peering Between BGP Routers Within the Same Confederation

Configuration Example

To enable peering between routers that exist in the same confederation, perform the following steps:

• Enter router configuration mode.

• Assign BGP autonomous systems belonging to a confederation.

• Assign an identifier to the confederation.

Implementing BGP
152

Implementing BGP
Restrictions for Peering Between BGP Routers Within the Same Confederation

• Place the router in neighbor configuration mode for routing and configure the neighbor IP address as a
BGP peer.

• Specify either the IPv4 or IPv6 address family and enter address family configuration submode.

• Enable peer routers in the same confederation to learn from each other for a specified number of times.

Router# router bgp 65001
Router(config-bgp)# bgp confederation peers 65002
Router(config-bgp)# bgp confederation identifier 100
Router(config-bgp)# neighbor 198.51.100.3
Router(config-bgp-nbr)# address-family ipv4 unicast
Router(config-bgp-nbr-af)# allowconfedas-in 1

Running Configuration

router bgp 65001
bgp confederation peers 65002
bgp confederation identifier 100
neighbor 198.51.100.3
address-family ipv4 unicast
allowconfedas-in 1

Verification

Verify the learning of routes among BGP peers. This output shows that the peers within the same confederation
have learned from each others' routes, and the learning among peers has occurred thrice.
show bgp neighbor 198.51.100.3 | in allow
Fri Mar 7 15:38:13.092 +0530
Inbound soft reconfiguration allowed (override route-refresh)
My confederation AS number is allowed 3 times in received updates.

Implementing BGP
153

Implementing BGP
Configure Peering Between BGP Routers Within the Same Confederation

Virtual Routing Forwarding Next Hop Routing Policy
Table 8: Feature History Table

DescriptionRelease NameFeature Name

You can now enable a route policy
at the BGP next-hop attach point to
limit notifications delivered to BGP
for specific prefixes, which equips
you with better control over routing
decisions, and allows for precise
traffic engineering and security
compliance for each VRF instance,
and helps establish redundant paths
specific to each VRF.

The feature introduces these
changes:

CLI:

Modified Command:

• The nexthop
route-policy command
is extended to VRF
address-family configuration
mode.

YANG Data Model

• New XPaths for

Cisco-IOS-XR-ipv4-bgp-cfg.yang

• Cisco-IOS-XR-um-router-bgp-cfg

(see GitHub, YANG Data Models
Navigator)

Release 7.11.1Virtual Routing Forwarding Next
Hop Routing Policy

Overview

This functionality enables the extension of BGP capabilities by permitting the configuration of next-hop route
policies on specific VRFs. A technique within BGP route policies allows limiting notifications for specific
prefixes, optimizing BGP routing within a VRF. When dealing with scenarios requiring VRF-specific route
policies for BGP, configuring a route policy at the BGP next-hop attach point becomes crucial.

The following are some of the benefits of applying next-hop route policies on individual VRFs:

• Enabling next-hop route policies at the Virtual Routing and Forwarding (VRF) instances level provides
network administrators with better control over routing decisions within each VRF instance.

Implementing BGP
154

Implementing BGP
Virtual Routing Forwarding Next Hop Routing Policy

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/bgp/b-ncs5500-bgp-cli-reference/b-ncs5500-bgp-cli-reference_chapter_01.html#wp3194638739
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/bgp/b-ncs5500-bgp-cli-reference/b-ncs5500-bgp-cli-reference_chapter_01.html#wp3194638739
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer
https://cfnng.cisco.com/ios-xr/yang-explorer

• Implementing next-hop route policies within VRF instances allows for precise traffic engineering and
optimization management. VRFs might have specific traffic routing requirements, taking into account
criteria like latency, bandwidth, or preferred routes.

• Implementing policies on individual VRF instances assures precise security compliance, addressing
unique VRF needs. Traffic adheres strictly, following defined rules and access controls.

• Configuring next-hop route policies at the VRF level is critical for establishing failover mechanisms or
redundant paths specific to each VRF. This ensures high availability and reliability within the VRF
boundaries.

Configure VRF Next Hop Policy
To enable next hop route policy on a VRF table, perform the following steps:

• Configure a route policy and enter route-policy configuration mode.

• Define the route policy to help limit notifications delivered to BGP for specific prefixes.

• Drop the prefix of the routes that matches the conditions set in the route policy.

• Enable BGP routing and enter the router configuration mode.

• Configure a VRF.

• Configure an IPv4 or IPv6 address family.

• Configure route policy filtering using next hops.

Router(config)# route-policy nh-route-policy
Router(config-rpl)# if destination in (10.1.1.0/24) and protocol in (connected, static)
then
Router(config-rpl-if)# drop
Router(config-rpl-if)# endif
Router(config-rpl)# end-policy
Router(config-rpl)# exit
Router(config)# router bgp 500
Router(config-bgp)# vrf vrf10
Router(config-bgp-vrf)# address-family ipv4 unicast
Router(config-bgp-vrf-af)# nexthop route-policy nh-route-policy

Running Configuration

route-policy nh-route-policy
if destination in (10.1.1.0/24) and protocol in (connected, static) then
drop
endif

end-policy
!

router bgp 500
vrf vrf10
address-family ipv4 unicast
nexthop route-policy nh-route-policy

Implementing BGP
155

Implementing BGP
Configure VRF Next Hop Policy

Verification

Verify that the configurred next route hop policy is enabled in a VRF table. The "BGP table nexthop route
policy" field indicates the route policy used to determine the next hop for BGP routes in the specified VRF
instance VRF1.
Router# show bgp vrf vrf1 ipv4 unicast
Fri Jul 7 15:51:16.309 +0530
BGP VRF vrf1, state: Active
BGP Route Distinguisher: 1:1
VRF ID: 0x6000000b
BGP router identifier 10.1.1.1, local AS number 65001
Non-stop routing is enabled
BGP table state: Active
Table ID: 0xe000000b RD version: 1356
BGP table nexthop route policy: nh-route-policy --> This is the same route policy that was
configured.
BGP main routing table version 1362
BGP NSR Initial initsync version 1355 (Reached)
BGP NSR/ISSU Sync-Group versions 1362/0

Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard

Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 1:1 (default for vrf vrf1)
Route Distinguisher Version: 1356
*> 10.1.1.0/24 0.0.0.0 0 32768 ?
*> 192.0.2.0/24 10.1.1.1 0 32768 ?
*> 198.50.100.0/24 10.1.1.1 0 101 i

Implementing BGP
156

Implementing BGP
Configure VRF Next Hop Policy

	Implementing BGP
	BGP Functional Overview
	Enable BGP Routing
	Adjust BGP Timers
	Change BGP Default Local Preference Value
	Configure MED Metric for BGP
	Configure BGP Weights
	Tune BGP Best-Path Calculation
	Set BGP Administrative Distance
	Indicate BGP Back-door Routes
	Configure Aggregate Addresses
	Understanding BGP MD5 Authentication
	Configuring BGP MD5 Authentication

	Hiding the Local AS Number for BGP Networks
	Configuring BGP to Hide the Local AS Number

	Autonomous System Number Formats in BGP
	2-byte Autonomous System Number Format
	4-byte Autonomous System Number Format
	as-format Command
	BGP Multi-Instance and Multi-AS
	Configure Multiple BGP Instances for a Specific Autonomous System

	BGP Routing Domain Confederation
	Configure Routing Domain Confederation for BGP

	BGP Additional Paths
	Configure BGP Additional Paths

	BGP Maximum Prefix
	Configure Discard Extra Paths

	BGP Best-External Path
	Configure Best-External Path Advertisement

	BGP Local Label Retention
	Retain Allocated Local Label for Primary Path

	iBGP Multipath Load Sharing
	Configure iBGP Multipath Load Sharing

	Persistent Loadbalancing
	Route Dampening
	Configuring BGP Route Dampening

	Routing Policy Enforcement
	Apply Policy When Updating Routing Table

	Configure BGP Neighbor Group and Neighbors
	Disable BGP Neighbor
	Resetting Neighbors Using BGP Inbound Soft Reset
	Resetting Neighbors Using BGP Outbound Soft Reset
	Reset Neighbors Using BGP Hard Reset
	Configure Software to Store Updates from Neighbor
	Log Neighbor Changes

	BGP Route Reflectors
	Configure Route Reflector for BGP

	Configure BGP Route Filtering by Route Policy
	Configure BGP Attribute Filtering
	BGP Next Hop Tracking
	Configure BGP Next-Hop Trigger Delay
	Disable Next-Hop Processing on BGP Updates

	BGP Cost Community
	Configure BGP Cost Community
	Configure BGP Community and Extended-Community Advertisements
	Configuring BGP Large Communities

	Redistribute iBGP Routes into IGP
	Redistribute IGPs to BGP
	Update Groups
	Monitor BGP Update Groups

	L3VPN iBGP PE-CE
	Restrictions for L3VPN iBGP PE-CE
	Configuring L3VPN iBGP PE-CE

	Flow-tag propagation
	Restrictions for Flow-Tag Propagation
	Source and destination-based flow tag
	Configure Source and Destination-based Flow Tag

	BGP Keychains
	Configure Keychains for BGP

	Master Key Tuple Configuration
	Keychain Configurations
	Configuration Guidelines
	Configuration Guidelines for TCP AO BGP Neighbor
	Keychain Configuration
	TCP Configuration
	BGP Configurations
	XML Configurations

	BGP Nonstop Routing
	Configure BGP Nonstop Routing
	Disable BGP Nonstop Routing
	Re-enable BGP Nonstop Routing

	Accumulated Interior Gateway Protocol Attribute
	Originate Prefixes with AiGP

	Configure BGP Accept Own
	BGP Link-State
	Configure BGP Link-state
	Configure Domain Distinguisher

	BGP Permanent Network
	Configure BGP Permanent Network
	Advertise Permanent Network

	Enable BGP Unequal Cost Recursive Load Balancing
	DMZ Link Bandwidth for Unequal Cost Recursive Load Balancing
	Enable BGP Unequal Cost Recursive Load Balancing

	DMZ Link Bandwidth Over EBGP Peer
	Sending and Receiving DMZ Link Bandwidth Extended Community over eBGP Peer

	BGP Prefix Origin Validation using RPKI
	Configure RPKI Cache-server
	Configure BGP Prefix Validation
	Configure RPKI Bestpath Computation

	Resilient Per-CE Label Allocation Mode
	Configure Resilient Per-CE Label Allocation Mode Under VRF Address Family
	Configure Resilient Per-CE Label Allocation Mode Using Route-Policy

	BGP VRF Dynamic Route Leaking
	Configure VRF Dynamic Route Leaking

	Configuring a VPN Routing and Forwarding Instance in BGP
	Define Virtual Routing and Forwarding Tables in Provider Edge Routers
	Configure Route Distinguisher
	Configure PE-PE or PE-RR Interior BGP Sessions
	Configure BGP as PE-CE Protocol

	Resetting an eBGP Session Immediately Upon Link Failure
	Information about Implementing BGP
	BGP Router Identifier
	BGP Attributes and Operators
	BGP Best Path Algorithm
	Comparing Pairs of Paths
	Order of Comparisons
	Best Path Change Suppression

	BGP Update Generation and Update Groups
	BGP Update Group
	BGP Cost Community Reference
	BGP Next Hop Reference
	BGP Nonstop Routing Reference
	BGP Route Reflectors Reference
	iBGP Multipath Load Sharing Reference
	L3VPN iBGP PE-CE Reference
	Per VRF and Per CE Label for IPv6 Provider Edge
	IPv6 Unicast Routing
	Remove and Replace Private AS Numbers from AS Path in BGP
	BGP Update Message Error Handling
	BGP Error Handling and Attribute Filtering Syslog Messages
	BGP-RIB Feedback Mechanism for Update Generation
	Use-defined Martian Check

	Reduce Recursions for eBGP Peering on Loopback Address on Bridge-Group Virtual Interface
	Configure the Reduction of Recursions for eBGP Peering on Loopback Address on Bridge-Group Virtual Interface

	Peering Between BGP Routers Within a Confederation
	Restrictions for Peering Between BGP Routers Within the Same Confederation
	Peering Between BGP Routers Within the Same Confederation: Terminology
	Configure Peering Between BGP Routers Within the Same Confederation

	Virtual Routing Forwarding Next Hop Routing Policy
	Configure VRF Next Hop Policy

