

Configuring Modular QoS Congestion Management

This chapter covers the following topics:

- Congestion Management Overview, on page 1
- Class-based Weighted Fair Queueing, on page 2
- Low-Latency Queuing with Strict Priority Queuing, on page 4
- Overhead Accounting, on page 9
- Traffic Shaping, on page 11
- Burst Size for Port-Level Shaper, on page 14
- Traffic Policing, on page 20
- Shared Policer, on page 31
- Prioritize Traffic during Oversubscription, on page 35
- References for Modular QoS Congestion Management, on page 38

Congestion Management Overview

Congestion management features allow you to control congestion by determining the order in which a traffic flow (or packets) is sent out an interface based on priorities assigned to packets. Congestion management entails the creation of queues, assignment of packets to those queues based on the classification of the packet, and scheduling of the packets in a queue for transmission.

The types of traffic regulation mechanisms supported are:

- Class-based Weighted Fair Queueing, on page 2
- Low-Latency Queuing with Strict Priority Queuing, on page 4
- Traffic Shaping, on page 11
- Traffic Policing, on page 20

Class-based Weighted Fair Queueing

Class-based Weighted Fair Queueing (CBWFQ) allows definition of traffic classes based on customer match criteria. With CBWFQ you can define traffic classes and assign guaranteed amount of minimum bandwidth to them. CBWFQ also allows for a strict priority queue for delay-sensitive traffic.

Bandwidth Remaining

The CBWFQ algorithm derives the weight for each class from the bandwidth remaining value allocated to the class. The **bandwidth remaining** option specifies a weight for the class to the CBWFQ. After the priority-queue is serviced, the leftover bandwidth is distributed as per bandwidth remaining ratio (BWRR) or percentage. If you do not configure this command for any class, the default value of the BWRR is considered as 1 (one). In the case of **bandwidth remaining percent**, the remaining bandwidth is equally distributed among other classes, to make it 100 percentage (100%).

Restrictions

• The **bandwidth remaining** command is supported only for egress policies.

Configuring Bandwidth Remaining

Supported Platforms: Cisco NCS 540 Series Routers.

This procedure configures the minimum bandwidth and bandwidth remaining on the router

Note

The **bandwidth**, **bandwidth remaining**, **shaping**, **queue-limit** and wred commands may be configured together in the same class. But, **priority** cannot be configured along with **bandwidth**, **bandwidth remaining** and wred commands.

You can configure shape average command along with priority command.

Configuration Example

You have to accomplish the following to complete the bandwidth remaining configuration:

- 1. Creating or modifying a policy-map that can be attached to one or more interfaces
- 2. Specifying the traffic class whose policy has to be created or changed
- **3.** Allocating the leftover bandwidth for the class
- **4.** Attaching the policy-map to an output interface

```
Router# configure
Router(config)#class-map qos-6
Router(config-cmap)#match traffic-class 4
Router(config-cmap)#exit
Router(config-cmap)#commit
```

```
Router(config) #class-map qos-5
Router(config-cmap) #match traffic-class 5
Router(config-cmap) #commit

Router(config) # policy-map test-bw-bw-rem
Router(config-pmap) # class qos-6
Router(config-pmap-c) # bandwidth percent 60
Router(config-pmap-c) # bandwidth remaining percent 60
Router(config-pmap) #class qos-5
Router(config-pmap-c) #bandwidth percent 20
Router(config-pmap-c) #bandwidth remaining percent 40
Router(config-pmap-c) #bandwidth remaining percent 40
Router(config-pmap-c) #bandwidth remaining percent 40
Router(config-pmap) # exit
Router(config-pmap) # exit
Router(config-if) # service-policy output test-bw-bw-rem
Router(config-if) # commit
```

Running Configuration

```
policy-map test-bw-bw-rem
  class qos-6
  bandwidth percent 60
  bandwidth remaining percent 60
!
  class qos-5
  bandwidth percent 20
  bandwidth remaining percent 40
!
  class class-default
!
  end-policy-map
!
interface HundredGigE0/6/0/18
  service-policy output test-bw-bw-rem
!
```

Verification

Router# show qos interface HundredGigE 0/6/0/18 output

```
NOTE: - Configured values are displayed within parentheses
Interface HundredGigE0/6/0/18 ifh 0x3000220 -- output policy
NPU Id:
Total number of classes:
                         3
                         100000000 kbps
Interface Bandwidth:
VOQ Base:
                          11176
VOQ Stats Handle:
                          0x88550ea0
                         Layer1 (Include Layer 1 encapsulation and above)
Accounting Type:
______
Level1 Class
                                      qos-6
Egressq Queue ID
                                  =
                                      11182 (LP queue)
Queue Max. BW.
                                      100824615 kbps (default)
                                  = 60494769 kbps (60 %)
Queue Min. BW.
Inverse Weight / Weight
                                     2 (60%)
Guaranteed service rate
                                     71881188 kbps
TailDrop Threshold
                                  = 90177536 bytes / 10 ms (default)
WRED not configured for this class
```

```
Level1 Class
                                             qos-5
                                            11181 (LP queue)
Egressq Queue ID
Queue Max. BW.
                                         = 100824615 kbps (default)
Queue Min. BW.
                                         = 20164923 kbps (20 %)
Inverse Weight / Weight
                                             3 (40%)
Guaranteed service rate
                                             27920792 kbps
                                            35127296 bytes / 10 ms (default)
TailDrop Threshold
WRED not configured for this class
Levell Class
                                             class-default
Egressg Queue ID
                                             11176 (Default LP queue)
                                            101803495 kbps (default)
Queue Max. BW.
                                       = 0 kbps (default)
Oueue Min. BW.
                                      = 0 kbps (default)
= 120 (BWR not configured)
Inverse Weight / Weight
Guaranteed service rate
                                            198019 kbps
                                         = 247808 bytes / 10 ms (default)
TailDrop Threshold
WRED not configured for this class
```

Related Topics

• Bandwidth Remaining, on page 2

Associated Commands

· bandwidth remaining

Low-Latency Queuing with Strict Priority Queuing

The Low-Latency Queuing (LLQ) feature brings strict priority queuing (PQ) to the CBWFQ scheduling mechanism. Priority queuing (PQ) in strict priority mode ensures that one type of traffic is sent, possibly at the expense of all others. For PQ, a low-priority queue can be detrimentally affected, and, in the worst case, never allowed to send its packets if a limited amount of bandwidth is available or the transmission rate of critical traffic is high.

Configuring Low Latency Queuing with Strict Priority queuing

Configuring low latency queuing (LLQ) with strict PQ allows delay-sensitive data such as voice to be de-queued and sent before the packets in other queues are de-queued.

Support information

Supported priority levels

- Priority levels 1 to 7 are supported, with 1 being the highest and 7 the lowest.
- The default Class of Service Queue (CoSQ) 0 has the lowest priority among all levels.

Profile-based priority support

- For non-H-QoS profiles, priority levels 1 to 7 are supported.
- For H-QoS profiles, only priority levels 1 to 4 are supported.
- Regardless of the profile type, class-default always maps to CoSQ 0, which has the lowest priority.

Queue assignment for priority Level 1

• Any one of the eight egress class-maps (queues) can have priority level 1 configured.

Guidelines

Queue configuration commands

- You can configure these commands along with the **priority** command:
 - shape average
 - · queue-limit
 - · random-detect

Priority queue oversubscription

- A PQ can oversubscribe bandwidth when other queues do not fully utilize the port bandwidth.
- Oversubscription is supported only for a single priority level.

Limitations

Egress policing

• Egress policing is not supported. Hence, in strict priority queuing scenarios, lower-priority queues may not be serviced if the priority queue consumes the available bandwidth.

Multiple priority level oversubscription

- Bandwidth over-subscription with multiple priority levels is not a supported configuration.
- Starting with Cisco IOS XR Release 7.0.1, if multiple priority levels are configured for oversubscription:
 - the configuration is accepted, and a warning message is displayed
 - fair queuing is applied across all configured priority levels and,
 - higher-priority traffic is not guaranteed precedence over lower-priority traffic.

Traffic Disruption Risk

• There can be minimal traffic disruption when priority level 1 configuration is applied to any of the 8 queues.

Configuration Example

You have to accomplish the following to complete the LLQ with strict priority queuing:

- 1. Creating or modifying a policy-map that can be attached to one or more interfaces
- 2. Specifying the traffic class whose policy has to be created or changed.
- **3.** Specifying priority to the traffic class
- 4. (Optional) Shaping the traffic to a specific bit rate

5. Attaching the policy-map to an output interface

```
Router# configure
Router(config) #class-map qos-1
Router(config-cmap) #match traffic-class 1
Router(config-cmap)#commit
Router(config) #class-map qos-2
Router(config-cmap) #match traffic-class 2
Router(config-cmap) #commit
Router(config)# policy-map test-priority-1
Router(config-pmap) # class qos1
Router(config-pmap-c)# priority level 7
Router(config-pmap-c)# shape average percent 2
Router(config-pmap-c)# class qos-2
Router(config-pmap-c)# priority level 6
Router(config-pmap-c)# shape average percent 1
Router(config-pmap-c) # commit
Router(config-pmap-c# exit
Router(config-pmap)# exit
Router(config) # interface HundredGigE 0/0/0/20
Router(config-if)# service-policy output test-priority-1
Router(config-if) # commit
```

Running Configuration

```
policy-map test-priority-1
  class qos-1
  priority level 7
  shape average percent 2
!
  class qos-2
  priority level 6
  shape average percent 1
!
  class class-default
!
  end-policy-map
!
interface HundredGigE0/0/0/20
  service-policy output test-priority-1
!
```

Verification

```
Router# show qos int hundredGigE 0/0/0/20 output

NOTE:- Configured values are displayed within parentheses
Interface HundredGigE0/0/0/20 ifh 0x38 -- output policy
NPU Id: 0
Total number of classes: 3
Interface Bandwidth: 100000000 kbps
Policy Name: test-priority-1
VOQ Base: 1184
```

```
Accounting Type:
                 Layer1 (Include Layer 1 encapsulation and above)
______
Level1 Class (HP7)
                                   = qos-1
Egressq Queue ID
                                    = 2000000 kbps (2 %)
= 2000000 :
                                   = 1185 (HP7 queue)
Oueue Max. BW.
Guaranteed service rate
                                   = 36864 bytes (default)
Peak burst
                                   = 2499840 bytes / 10 ms (default)
TailDrop Threshold
WRED not configured for this class
Level1 Class (HP6)
                                     = qos-2
                                    = 1186 (HP6 queue)
Egressq Queue ID
                                = 1000000 kbps (1 %)
= 1000000 kbps
= 36864 bytes (default)
Oueue Max. BW.
Guaranteed service rate
Peak burst
                                    = 1249792 bytes / 10 ms (default)
TailDrop Threshold
WRED not configured for this class
Level1 Class
                                    = class-default.
Egressq Queue ID
                                    = 1184 (Default LP queue)
Queue Max. BW.
                                    = no max (default)
Queue Min. BW.
                                        0 kbps (default)
Inverse Weight / Weight
Guaranteed service rate
Peak burst
                                   = 1 / (BWR not configured)
                                  = 97000000 kbps
                                   = 36864 bytes (default)
TailDrop Threshold
                                   = 121249792 bytes / 10 ms (default)
WRED not configured for this class
```

Associated Commands

priority

Configuring Low Latency Queuing for Specific QoS Flows

Table 1: Feature History Table

Feature Name	Release Information	Feature Description
Low Latency Queuing for Specific QoS Flows	Release 7.3.2	This feature allows you to configure low latency or priority for specific QoS flows at the class-level within a policy map. It enables delay-sensitive data to be prioritized and transmitted before other packets in other queues.

This feature allows you to configure low latency or priority for specific QoS flows at the class-level within a policy map. It enables delay-sensitive data to be prioritized and transmitted before other packets in other queues.

Low Latency Queuing (LLQ) is achieved by enabling low delay IPS profile for the designated Virtual Output Queuing (VOQ).

Configuring Low Latency Queuing for Specific QoS Flows

Ingress Class Map Configurations

```
class-map match-any inDSCP_CS6
match dscp cs6
end-class-map
!
class-map match-any inDSCP_CS7
match dscp cs7
end-class-map
!
```

Egress Class Map Configuration

```
class-map match-any outCM6
match traffic-class 6
end-class-map
!
class-map match-any outCM7
match traffic-class 7
end-class-map
!
```

Ingress Policy Map Configurations

```
policy-map Ingress
class inDSCP_CS6
set traffic-class 6
!
class inDSCP_CS7
set traffic-class 7
!
class class-default
!
end-policy-map
.
```

Egress Policy Map Configuration

```
policy-map Egress
class outCM6
priority level 2
low-latency-profile
!
class outCM7
priority level 1
low-latency-profile
```

Verification

Router# show controllers npu voq-usage interface all instance all location all Sat Jul $24\ 23:33:07.038\ \text{UTC}$

```
Node ID: 0/RP0/CPU0
R/S/I: 0/0/0
Core 0:
Basic info
        Q type: voq
        num cos: 8, cosq class: 6
        Base queue id: 1040, base queue gport: 0x24000410
Credit request type: BCM_COSQ_DELAY_TOLERANCE_100G_LOW_DELAY_Adjusted for low delay 100Gb
ports
Watchdog enable in common status message mode
        Is queue in credit watchdog queue range: True
        Credit watchdog message time: 0
        Delete queue time: 512
        Backoff enter queue credit balance threshold: 98304
        Backoff exit queue credit balance threshold: 98304
        Backlog enter queue credit balance threshold: 7168
        Backlog exit queue credit balance threshold: 7168
        Empty queue satisfied credit balance threshold: 6720
        Max empty queue credit balance threshold: 11200
        Exceed max empty queue credit balance threshold: 1
        Off-To-Slow credit balance threshold: -11264
        Off-To-Normal credit balance threshold: -11264
        Slow-To-Normal credit balance threshold: -11264
        Normal-To-Slow credit balance threshold: -11264
        Delay Tolerance is OCB only
```

Limitations

- No support on logical interfaces and sub-interfaces.
- Device on which low latency is enabled, throughput may be degraded.
- We recommend that you enable only one high priority traffic class (TC) per port for low latency. Enabling multiple TC with low latency may result in burst.

Note

Configurations are restricted on any TCs, but it is recommended that you enable LLQ on only one TC.

Overhead Accounting

Traffic shapers and policers use packet traffic descriptors to ensure adherence to the service level agreement in QoS. However, when traffic flows from one hop to another in a network, headers added or removed at interim hops affect the packet bytes being accounted for by QoS at each hop. When your end-user network measures the packet bytes to ensure they receive the payload as agreed, these additional header bytes cause a discrepancy.

QoS overhead accounting provides the flexibility to operators to decide which header bytes can be excluded by the traffic shaper and policer and which can be included, depending on the end user's requirements and device capabilities, to meet the committed payload in units of bytes.

For example, if the QoS commitment includes the additional header bytes, the overhead accounting feature allows your router to account for this overhead and reduces the traffic policing and shaping rates accordingly. This is also called a **positive accounting overhead**.

If however, the committed rate doesn't include the additional bytes, overhead accounting allows your router to adjust the core stream traffic such that the traffic policing and shaping rates are increased. This is also called a **negative accounting overhead**.

To summarize, QoS overhead accounting enables the router to account for packet overhead when shaping and policing traffic to a specific rate. This accounting ensures that the router runs QoS features on the actual bandwidth that the subscriber traffic consumes.

Any interface that supports QoS policies supports overhead accounting.

Note

You can enable user overhead accounting using the optional configuration of **accounting user-defined** *<overhead size in bytes>* while attaching the service policy on the egress interface.

Guidelines and Restrictions

- · Overhead accounting for ingress shaping is not supported.
- You can't program more than one compensation value per NPU or router, even if they're on different egress ports.
- You can configure the same egress compensation for different egress ports.

Configuring for Overhead Accounting

To configure overhead accounting, you must:

- 1. Create a policy map and configure QoS actions for that map.
- 2. Configure overhead accounting and attach the map to an egress interface.

```
/* create QoS policy */
Router#configure terminal
Router(config) #policy-map policer
Router(config-pmap) #class class-default
Router(config-pmap-c) #police rate percent 10
Router(config-pmap-c-police) #commit

/* configure account overhead value while attaching the QoS policy to an egress interface
*/
Router(config) #int hundredGigE 0/0/0/2
Router(config-if) #service-policy output policer account user-defined 12
Router(config-if) #commit
Router(config-if) #root
Router(config) #end
```

Running Configuration

```
Router#sh run int hundredGigE 0/0/0/2 interface HundredGigE0/0/0/2 service-policy output policer account user-defined 12
```

The following example shows how to configure a negative overhead accounting value:

```
Router#conf
Router(config) #int hundredGigE 0/0/0/2
Router(config-if) #service-policy output policer account user-defined -12
Router(config-if) #commit
```

To modify an overhead accounting value, you must:

- 1. Remove the existing QoS policy and re-add it.
- 2. Configure the new overhead accounting value.

Router#conf Router(config) #int hundredGigE 0/0/0/2 Router(config-if) #no service-policy input policer Router(config-if) #service-policy output policer account user-defined -20 Router(config-if) #commit Router#sh run int hundredGigE 0/0/0/2 interface HundredGigE0/0/0/2 service-policy output policer account user-defined -20

Positive Accounting Use Case

If QoS commitment includes Preamble, Frame Delimiter & Interframe Gap and has the following configuration:

```
service-policy output <foo> account user-defined +20
```

For QoS purposes, your router treats this packet as a packet of size = Actual Packet size + 20. Hence, the effective policing and shaping is *reduced* to match the downstream interface.

Negative Accounting Use Case

If QoS commitment to your router does not include VLAN header information, and has the following configuration:

```
service-policy output <foo> account user-defined -4
```

For QoS purposes, your router treats this packet as a packet of size = Actual Packet size -4. Hence, the effective policing and shaping is *increased* to match the downstream interface.

Associated Commands

service-policy (overhead accounting)

Traffic Shaping

Traffic shaping allows you to control the traffic flow exiting an interface to match its transmission to the speed of the remote target interface and ensure that the traffic conforms to policies contracted for it. Traffic adhering to a particular profile can be shaped to meet downstream requirements, hence eliminating bottlenecks in topologies with data-rate mismatches.

Configure VOQ-Level Traffic Shaping

The traffic shaping performed on outgoing interfaces is done at the Layer 1 level and includes the Layer 1 header in the rate calculation.

Guidelines

- You can configure **shape average** command along with **priority** command.
- When testing under 100% line-rate traffic, you may encounter packet loss due to clock drift. This occurs when the Ethernet generator clock runs faster than the device clock on the router. To mitigate this, either

reduce the test traffic load from 100% to around 99% or, if the traffic generator permits, adjust the PPM (Parts Per Million) setting to better synchronize with the device clock. These adjustments help minimize packet loss and improve test reliability.

Configuration Example

You have to accomplish the following to complete the traffic shaping configuration:

- 1. Creating or modifying a policy-map that can be attached to one or more interfaces
- 2. Specifying the traffic class whose policy has to be created or changed
- 3. Shaping the traffic to a specific bit rate and set peak burst size
- 4. Attaching the policy-map to an output interface

```
Router# configure
Router(config) #class-map c5
Router(config-cmap) #match traffic-class 5
Router(config-cmap) #commit

Router(config) # policy-map egress_policy1
Router(config-pmap) # class c5
Router(config-pmap-c) # shape average 40 percentpercent 50 1000
Router(config-pmap-c# exit
Router(config-pmap) # exit
Router(config) # interface HundredGigE 0/1/0/0
Router(config-if) # service-policy output egress_policy1
Router(config-if) # commit
```

Running Configuration

```
class-map c5
match traffic-class 5
commit
policy-map egress policy1
 class c5
 shape average percent 40
class class-default
 end-policy-map
interface HundredGigE0/6/0/18
service-policy output egress policy1
class-map c5
match traffic-class 5
commit
policy-map egress policy1
class c5
  shape average percent 50 1000
```

```
class class-default
!
end-policy-map
!
interface HundredGigE0/6/0/18
service-policy output egress_policy1
```

Verification

```
Router# show qos interface hundredGigE 0/6/0/18 output
```

```
NOTE: - Configured values are displayed within parentheses
Interface HundredGigE0/6/0/18 ifh 0x3000220 -- output policy
NPU Td:
                           3
Total number of classes:
                           100000000 kbps
Interface Bandwidth:
VOQ Base:
                            11176
VOQ Stats Handle:
                            0x88550ea0
                           Layer1 (Include Layer 1 encapsulation and above)
Accounting Type:
Level1 Class
                                     = c5
                                      = 11177 (LP queue)
Egressq Queue ID
Queue Max. BW.
                                         40329846 kbps (40 %)
                                      = 0 kbps (default)
Queue Min. BW.
Inverse Weight / Weight
                                    = 1 (BWR not configured)
                                     = 40000000 kbps
Guaranteed service rate
                                      = 50069504 bytes / 10 ms (default)
TailDrop Threshold
WRED not configured for this class
Level1 Class
                                      = class-default
Egressg Queue ID
                                      = 11176 (Default LP queue)
Queue Max. BW.
                                      = 101803495 kbps (default)
Oueue Min. BW.
                                         0 kbps (default)
Inverse Weight / Weight
                                      =
                                          1 (BWR not configured)
                                      = 50000000 kbps
Guaranteed service rate
TailDrop Threshold
                                     = 62652416 bytes / 10 ms (default)
WRED not configured for this class
```

Router# show qos interface tenGigE 0/0/0/0 output

```
Wed Jul 10 14:18:37.783 UTC
NOTE: - Configured values are displayed within parentheses
Interface TenGigE0/0/0/0 ifh 0x120 -- output policy
NPU Id:
Total number of classes:
                            1
Interface Bandwidth:
                           10000000 kbps
Policy Name:
                           test
VOQ Base:
                            1024
Accounting Type:
                           Layer1 (Include Layer 1 encapsulation and above)
Levell Class
                                     = class-default
Egressg Queue ID
                                     = 1024 (Default LP queue)
Queue Max. BW.
                                     = 5031499 kbps (50 %)
Queue Min. BW.
                                     = 0 kbps (default)
Inverse Weight / Weight
                                         1 / (BWR not configured)
                                     = 5000000 kbps
Guaranteed service rate
                                     = 2240 bytes (1000 bytes)
Peak burst
```

TailDrop Threshold

= 6258688 bytes / 10 ms (default)

Related Topics

Congestion Management Overview, on page 1

Associated Commands

• shape average

Burst Size for Port-Level Shaper

Table 2: Feature History Table

Feature Name	Release Information	Feature Description
Burst Size for Port-Level Shaper	Release 7.11.1	You can now achieve a predictable and accurate burst size at the link level by configuring port-level shaper burst size, thus ensuring better adherence to traffic SLAs. Also, with the port-level shaper burst size configured in the egress policy maps, the predictability in peak burst ensures that you can configure any next-hop low-capacity device to handle these bursts.
		Previously, you could configure burst sizes, which impacted traffic flow only at the Virtual Output Queue (VOQ) level but didn't control packet transmission at the link level.

In relation to a port-level shaper, the burst size refers to the maximum amount of data that can be sent through the port within a short period, exceeding the configured shaping rate. When traffic is shaped at the port level, the shaping algorithm smooths the traffic flow by limiting the average rate at which data is transmitted or received. However, there are scenarios where bursts of traffic may occur, such as during periods of high network activity or when multiple packets arrive simultaneously. In such scenarios, the burst size parameter represents the maximum burst of traffic that the port-level shaper allows before it starts to drop or delay packets.

This value influences the packet transmission and peak burst to the wire, irrespective of the shaper bursts configured on different VOQs. Thus, by providing tighter control of packet flow to the wire and next-hop devices, this functionality helps you achieve accurate and predictable peak bursts.

For example, if you configure the burst size to 100 KB, the shaper allows a burst of up to 100 KB of data to be transmitted within a short period, even if it exceeds the configured shaping rate. If the burst size exceeds 100 KB, the shaper takes action to enforce the shaping rate, such as dropping or delaying packets until the traffic falls within the specified limits. As a corollary, the expected port shaping rate may not be achieved if you configure a very low burst value.

The burst size is programmed on the egress port with:

• a default value of 32 KB for all routers

Burst Size for Port-Level Shaper: Why

Because...

Previously, you could configure burst size only for VOQ-level shaping, where the shaper bandwidth and burst sizes are programmed on the Fair Queue Elements (FQEs) in your router hardware. (FQE is a mechanism that allocates bandwidth fairly among different traffic flows or queues, and the FQEs are specific to ingress queues where egress policy maps are applied.)

and..

The VOQ-level shaper burst impacts credit flow for a particular VOQ. Configuring VOQ-level burst is a best-effort technique but may not translate to the intended peak burst at the link level.

Hence...

The burst size for the port level is port or egress queue-specific, and when you configure it, you have control over packet transmission at the link level, which means you achieve an accurate peak burst in the wire. This predictability in the burst ensures that low-end devices can absorb the burst according to their capability, and there's no unexpected drop in traffic.

Burst Size for Port-Level Shaper: Guidelines and Limitations

- You must configure the port burst along with the port shaper to activate this functionality.
- The burst size is configured on the port and egress queue level.
- The default burst values are:
 - 32 KB for all routers.
- For Hierarchical QoS (H-QoS) and egress traffic management (ETM) models:
 - Port shaper and burst on a particular physical interface are programmed when an egress policy map with only a **class-default** configuration and a configured shaper value is applied on that interface.
 - The shaper rate on the default class is calculated as the port shaper and the burst as the port burst.
 - For NCS 5700 line cards [Mode: Compatibility; Native] and NCS 5700 fixed port routers:
 - the port shaper is not supported if no port burst is configured. This limitation does not apply to other platforms.
 - Three-level H-QoS isn't supported. This means that you can't apply two-level egress H-QoS policies on the sub-interfaces and a port shaper policy on the main interface to achieve an

aggregated port level SLA in a 1+2 H-QoS or three-level H-QoS model. See Overview of Hierarchical Modular QoS for details about H-QoS.

For non-H-QoS and non-ETM models:

- Port level burst on a particular interface is programmed when you configure it along with port shaper.
- You must attach a two-level egress QoS policy map to the main interface. Here, the parent shaper is taken as the port shaper.
- The shaper rate on the parent policy configured for the default class is considered as port shaper and the burst as port burst.
- For NCS 5700 line cards [Mode: Compatibility; Native] and NCS 5700 fixed port routers, the minimum port shaper is 3 Gbps by default if no port burst is configured. For other platforms, the default minimum port shaper value is 1 Gbps. If the port burst is configured, there is no limitation on the minimum port shaper value.
- The port burst value configured on the egress interface doesn't restrict the burst sizes on the VOQs or child classes.
- The parent shaper burst size doesn't restrict the child shaper burst size. Unlike the child shaper bandwidth, a child shaper burst can be greater than the parent shaper burst.
- The actual burst size programmed on the ASIC could vary from the configured value due to a hardware approximation.

Configure Burst Size for Port-Level Shaper

Scenario 1: For Cisco NCS 5700 Series Routers, NCS 5700 line cards, and NCS 5500 Series Routers, in non-H-QoS and non-ETM mode: Assign Port Burst Value

In this scenario, you specifically assign a burst value (say, 2000 bytes) along with the shaper rate (say, 2 Gbps) on a parent policy configured to the default class. These parent shaper and burst values are taken as the port shaper and burst.

- 1. Create a two-level egress QoS policy map by configuring the parent policy with name, for example, port-shaper-non-hqos.
- **2.** Configure the **port-shaper-non-hqos** policy for the default class. There should be no other class other than the default class in the policy map.
- To the parent policy, apply a child policy named, for example, egress-child, using the service-policy command.
- **4.** Configure a burst value of 2000 bytes and shaper rate of 2 Gbps for the parent (**port-shaper-non-hqos**) policy.
- 5. Using the class command, specify a traffic class (say traffic-class-1) for the child policy (egress-child).
- **6.** Using the **shape average** command, configure the shape average for **traffic-class-1** to say, 25%.
- 7. Attach the parent policy map to the output interface to be used as the service policy for that interface.

This configuration applies the parent shaper and burst values that are taken as the port-level shaper and burst values.

```
Router(config)# policy-map port-shaper-non-hqos
Router(config-pmap)# class class-default
Router(config-pmap-c)# service-policy egress-child
Router(config-pmap-c)# shape average 2 gbps 2000 bytes
Router(config-pmap-c)# exit
Router(config)#policy-map egress-child
Router(config-pmap)# class traffic-class-1
Router(config-pmap-c)# shape average percent 25
Router(config-pmap-c)# exit
Router(config)# interface tenGigE 0/0/0/0
Router(config-if)# service-policy output port-shaper-non-hqos
Router(config-if)# commit
```

Running Configuration

```
policy-map port-shaper-non-hqos
  class class-default
  service-policy egress-child
  shape average 2 gbps 2000 bytes
!
!
policy-map egress-child
  class traffic-class-1
  shape average percent 25
!
!
interface tenGigE 0/0/0/0
  service-policy output port-shaper-non-hqos
```

Verification

Run the **show qos interface** command to confirm the Peak burst value (2000 bytes) you configured for the default class.

```
Router#show gos interface tenGigE 0/0/0/0 output
NOTE: - Configured values are displayed within parentheses
Interface TenGigE0/0/0/0 ifh 0x120 -- output policy
Total number of classes:
                              3
                             10000000 kbps
Interface Bandwidth:
Policy Name:
                             port-shaper-non-hqos
SPI Id:
                              0 \sim 0
                             1024
VOO Base:
PFC enabled:
Accounting Type:
                             Layer1 (Include Layer 1 encapsulation and above)
Levell Class
                                       = class-default
                                          2020026 kbps (2 gbits/sec)
Oueue Max. BW.
Queue Min. BW.
                                       = 2020026 kbps (default)
Inverse Weight / Weight
                                       = 1 / (BWR not configured)
                                     = 2000 bytes (2000 bytes)
Peak burst
  Level2 Class
                                               traffic-class-1
                                              1025 (LP queue)
  Egressq Queue ID
  Queue Max. BW.
                                               505417 kbps (25 %)
  Queue Min. BW.
                                          =
                                             0 kbps (default)
  Inverse Weight / Weight
                                              1 / (BWR not configured)
                                          =
   Guaranteed service rate
                                              500000 kbps
  Peak burst
                                               33600 bytes (default)
```

```
TailDrop Threshold
                                            626688 bytes / 10 ms (default)
WRED not configured for this class
Level2 Class
                                           class-default
                                            1024 (Default LP queue)
Egressq Queue ID
Queue Max. BW.
                                            no max (default)
Queue Min. BW.
                                           0 kbps (default)
Inverse Weight / Weight
                                       = 1 / (BWR not configured)
                                       = 1000000 kbps
Guaranteed service rate
                                          33600 bytes (default)
Peak burst
TailDrop Threshold
                                           1253376 bytes / 10 ms (default)
WRED not configured for this class
```

Scenario 2: For Cisco NCS 5700 Series Routers, NCS 5700 line cards, and NCS 5500 Series Routers, in non-H-QoS mode: Don't Assign Port Burst Value

In this scenario, you assign only the port shaper value (say, 2 Gbps) to the default class. In such cases, the burst size for port level shaper isn't activated, and the parent class has no port burst value.

- 1. Create a parent policy map named, for example, **port-shaper-non-hqos**.
- **2.** Configure the **port-shaper-non-hqos** policy for the default class.
- 3. Apply a child policy-map named, for example, egress-child to the default class.
- **4.** Shape the traffic in the default class to an average rate of 2 Gbps, limiting the egress traffic to a specific bandwidth.
- 5. Attach the parent policy map to the output interface to be used as the service policy for that interface.

```
Router(config) #policy-map port-shaper-non-hqos
Router(config-pmap) #class class-default
Router(config-pmap-c) #service-policy egress-child
Router(config-pmap-c) #shape average 2 gbps
Router(config-pmap-c) #exit
Router(config-pmap) #exit
Router(config) # interface tenGigE 0/0/0/0
Router(config-if) # service-policy output port-shaper-non-hqos
Router(config-if) #commit
```

Running Configuration

```
policy-map port-shaper-non-hqos
  class class-default
   service-policy egress-child
   shape average 2 gbps
!
!
interface tenGigE 0/0/0/0
   service-policy output port-shaper-non-hqos
!
```

Verification

When you run the show qos interface command, you see no port burst value assigned to the parent class.

```
Router#show qos interface tenGigE 0/0/0/0 output
Sun Sep 10 20:17:16.053 UTC
NOTE:- Configured values are displayed within parentheses
Interface TenGigE0/0/0/0 ifh 0xa0 -- output policy
NPU Id: 0
```

```
Total number of classes: 3 10000000 kbps
Interface Bandwidth:
Policy Name:
                           port-shaper-non-hqos
                           0x0
SPI Id:
                            1024
VOO Base:
PFC enabled:
Accounting Type:
                           Layer1 (Include Layer 1 encapsulation and above)
Level1 Class
                                     = class-default
Queue Max. BW.
                                    = 2100096 kbps (2 gbits/sec)
Oueue Min. BW.
                                     = 2100096 kbps (default)
Inverse Weight / Weight
                                     = 1 / (BWR not configured)
  Level2 Class
                                        = traffic-class-1
  Egressq Queue ID
                                        = 1025 (LP queue)
                                           505861 kbps (25 %)
  Queue Max. BW.
                                        =
  Queue Min. BW.
                                            0 kbps (default)
                                           1 / (BWR not configured)
  Inverse Weight / Weight
                                        = 500000 kbps
  Guaranteed service rate
                                       = 33600 bytes (default)
  Peak burst
  TailDrop Threshold
                                        = 626688 bytes / 10 ms (default)
  WRED not configured for this class
  Level2 Class
                                        = class-default
  Egressq Queue ID
                                        = 1024 (Default LP queue)
  Queue Max. BW.
                                       = 1011732 kbps (50 %)
                                           0 kbps (default)
  Oueue Min. BW.
  Queue Min. Dw.
Inverse Weight / Weight
                                            1 / (BWR not configured)
                                        = 1000000 kbps
  Guaranteed service rate
                                       = 33600 bytes (default)
  Peak burst
                                       = 1253376 bytes / 10 ms (default)
  TailDrop Threshold
  WRED not configured for this class
```

Scenario 3: For NCS 5700 Series Routers and NCS 5700 line cards, in H-QoS and ETM-enabled mode: Assign Port Burst Value

In this scenario, you specifically assign a burst value (say, 2000 bytes) along with the shaper rate (say, 2 Gbps) on the default class.) See Burst Size for Port-Level Shaper: Guidelines and Limitations, on page 15 for limitations that apply to this scenario.

- 1. Create a policy map named, for example, port-shaper-hqos.
- Configure the port-shaper-hqos policy for the default class. The class-default class matches all traffic that does not match any other specific class. There should be no other class other than the default class in the policy map.
- 3. Configure the traffic shaping rate and the burst value for the **class-default** class.
- **4.** Apply the policy-map named **port-shaper-hqos** as the output service policy for the interface.

```
Router (config) # policy-map port-shaper-hqos
Router (config-pmap) # class class-default
Router (config-pmap-c) # shape average 2 gbps 2000 bytes
Router (config-pmap-c) #exit
Router (config-pmap) #exit
Router(config) # interface tenGigE 0/0/0/0
Router(config-if) # service-policy output port-shaper-hqos
Router(config-if) #commit
```

Running Configuration

```
policy-map port-shaper-hqos
  class class-default
   shape average 2 gbps 2000 bytes
!
!
interface tenGigE 0/0/0/0
service-policy output port-shaper-hqos
```

Verification

Run the **show qos interface** to confirm the peak burst value (2000 bytes) you configured for the default class. Because there's no three-level H-QoS shaping support on NCS 5700 line cards [Mode: Compatibility; Native] and NCS 5700 fixed port routers, the output displays only the default class details (and not other child levels) for which you configured the shaper and burst values.

```
Router#show qos interface tenGigE 0/0/0/0 output
NOTE: - Configured values are displayed within parentheses
Interface TenGigE0/0/0/0 ifh 0xa0 -- output policy
NPU Td:
                              Ω
Total number of classes:
Interface Bandwidth:
                            10000000 kbps
Policy Name:
                             port-shaper-hqos
SPT Id:
                              0 \times 0
VOQ Base:
                              1024
PFC enabled:
Accounting Type:
                              Layer1 (Include Layer 1 encapsulation and above)
Level1 Class
                                           class-default
Egressq Queue ID
                                            1024 (Default LP queue)
                                       = 2024355 kbps (2 gbits/sec)
Oueue Max. BW.
Queue Min. BW.
                                       = 0 kbps (default)
Inverse Weight / Weight
                                       = 60 / (BWR not configured)
Guaranteed service rate
                                           2000000 kbps
                                           2000 bytes (2000 bytes)
Peak burst
                                            2506752 bytes / 10 ms (default)
TailDrop Threshold
WRED not configured for this class
```

Traffic Policing

Traffic policing allows you to control the maximum rate of traffic sent or received on an interface and to partition a network into multiple priority levels or class of service (CoS). Traffic policing manages the maximum rate of traffic through a token bucket algorithm. The token bucket algorithm uses user-configured values to determine the maximum rate of traffic allowed on an interface at a given moment in time. The token bucket algorithm is affected by all traffic entering or leaving the interface (depending on where the traffic policy with traffic policing is configured) and is useful in managing network bandwidth in cases where several large packets are sent in the same traffic stream. By default, the configured bandwidth value takes into account the Layer 2 encapsulation that is applied to traffic leaving the interface.

Traffic policing also provides a certain amount of bandwidth management by allowing you to set the burst size (Bc) for the committed information rate (CIR). See, Committed Bursts and Excess Bursts, on page 21.

The router supports the following traffic policing mode(s):

- Single-Rate Two-Color (SR2C) in color-blind mode. See Single-Rate Policer, on page 21.
- Single-Rate Three-Color (SR3C) in color-blind mode.
- Two-Rate Three-Color (2R3C) in color-blind mode. See Two-Rate Policer, on page 25.

Restrictions

- Traffic policing is supported only in ingress direction, and only color-blind mode is supported.
- The policing rate accuracy may vary up to +/-2% from the configured policer value.
- Ensure that you don't configure a policer and match criteria for **discard-class** in the same class. Even though the configuration is allowed, the policer doesn't work and allows all traffic without dropping packets.
- Policer marking is not supported.
- Policers are configured in the interface at the core level and "show qos int "value is displayed at the NPU level.

For policers configured in a bundle interface where bundle members are from the same NPU but different cores (NPU cores), each member sends the traffic up to the core level policer configuration, but "show qos int <>" displays the NPU level policer output.

Example:

For bundle interface with two 10GE members (same NPU, but one interface from core0, one interface from core1) 2R3C policer applied on bundle interface (1G confirm rate, 1G exceed rate – total 2G policer rate) will be shown on the "show qos int <>" output):

Interface in core0 – 500 Mbps confirm rate, 500 Mbps exceed rate

Interface in core 1 – 500 Mbps confirm rate, 500 Mbps exceed rate

For traffic in one out of two interfaces, the policed rate will be 1Gbps. For traffic on two interfaces, policed rate will be 2Gbps.

Committed Bursts and Excess Bursts

Unlike a traffic shaper, a traffic policer does not buffer excess packets and transmit them later. Instead, the policer executes a "send or do not send" policy without buffering. Policing uses normal or committed burst (bc) values and excess burst values (be) to ensure that the router reaches the configured committed information rate (CIR). Policing decides if a packet conforms or exceeds the CIR based on the burst values you configure. Burst parameters are based on a generic buffering rule for routers, which recommends that you configure buffering to be equal to the round-trip time bit-rate to accommodate the outstanding TCP windows of all connections in times of congestion. During periods of congestion, proper configuration of the excess burst parameter enables the policer to drop packets less aggressively.

For more details, see Committed Bursts, on page 38 and Excess Bursts, on page 38.

Single-Rate Policer

Single-Rate Two-Color Policer

A single-rate two-color (SR2C) policer provides one token bucket with two actions for each packet: a conform action and an exceed action.

Packet of size B

No
B>Tc
Packet of size B

Exceed

Action

Action

Action

Figure 1: Workflow of Single-Rate Two-Color Policer

Based on the committed information rate (CIR) value, the token bucket is updated at every refresh time interval. The Tc token bucket can contain up to the Bc value, which can be a certain number of bytes or a period of time. If a packet of size B is greater than the Tc token bucket, then the packet exceeds the CIR value and a default action is performed. If a packet of size B is less than the Tc token bucket, then the packet conforms and a different default action is performed.

Single-Rate Three-Color Policer

A single-rate three-color (SR3C) policer provides one token bucket with three actions for each packet: a conform action, an exceed action and a violate action. The packet is marked based on the CIR value and the two associated burst size - committed burst size (CBS) and excess burst size (EBS). If a packet does not exceed the CBS, it is marked as conformed packet. The packet is marked as exceeded if it exceeds CBS, but not the EBS. If it exceeds the EBS as well, it is marked as violate packet.

Configure Traffic Policing (Single-Rate Two-Color)

Traffic policing is often configured on interfaces at the edge of a network to limit the rate of traffic entering or leaving the network. The default conform action for single-rate two color policer is to transmit the packet and the default exceed action is to drop the packet. Users cannot modify these default actions.

Configuration Example

You have to accomplish the following to complete the traffic policing configuration:

- 1. Creating or modifying a policy-map that can be attached to one or more interfaces
- 2. Specifying the traffic class whose policy has to be created or changed
- **3.** (Optional) Specifying the marking action
- **4.** Specifying the policy rate for the traffic

5. Attaching the policy-map to an input interface

```
Router# configure
Router(config)# policy-map test-police-1
Router(config-pmap)# class ipv6-6
Router(config-pmap-c)# set dscp cs2 (optional)
Router(config-pmap-c)# set qos-group 7 (optional)
Router(config-pmap-c)# police rate percent 20 burst 10000 bytes
Router(config-pmap-c-police)# exit
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface HundredGigE 0/6/0/18
Router(config-if)# service-policy input test-police-1
Router(config-if)# commit
```

Running Configuration

```
class-map match-any ipv6-6
  match precedence 3
  end-class-map
!

policy-map test-police-1
  class ipv6-6
  set dscp cs2
  set qos-group 7
  police rate percent 20 burst 10000 bytes
  !
  !
  class class-default
  !
  end-policy-map
!

interface HundredGigE0/6/0/18
  service-policy input test-police-1
  service-policy output test-priority-1
!
```

Verification

Router# show qos interface hundredGigE 0/6/0/18 input

```
NOTE:- Configured values are displayed within parentheses
Interface HundredGigE0/6/0/18 ifh 0x3000220 -- input policy
NPU Id:
Total number of classes:
                        100000000 kbps
Interface Bandwidth:
Accounting Type:
                        Layer1 (Include Layer 1 encapsulation and above)
______
Levell Class
                                 =
                                    ipv6-6
New dscp
                                     16
                                     7
New qos group
Policer Bucket ID
                                 = 0x102a0
Policer Stats Handle
                                 = 0x8a8090c0
Policer committed rate
                                    19980000 kbps (20 %)
```

```
Policer conform burst = 9856 bytes (10000 bytes)

Level1 Class = class-default

Default Policer Bucket ID = 0x102a1

Default Policer Stats Handle = 0x8a808e78

Policer not configured for this class
```

Related Topics

• Traffic Policing, on page 20

Associated Commands

• police rate

Configure Traffic Policing (Single-Rate Three-Color)

The default conform action and exceed actions for single-rate three-color policer are to transmit the packet and the default violate action is to drop the packet. User cannot modify these default actions.

Configuration Example

You have to accomplish the following to complete the traffic policing configuration:

- 1. Creating or modifying a policy-map that can be attached to one or more interfaces
- 2. Specifying the traffic class whose policy has to be created or changed
- 3. (Optional) Specifying the marking action
- 4. Configuring the policy rate for the traffic along with the peak-burst values
- 5. Attaching the policy-map to an input interface

```
Router# configure
Router(config)# policy-map test-police-1R3C
Router(config-pmap)# class ipv4-5
Router(config-pmap-c)# set qos-group 2 (optional)
Router(config-pmap-c)# police rate percent 20 burst 100000 bytes peak-burst 190000 bytes
Router(config-pmap-c-police)# exit
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface HundredGigE 0/6/0/18
Router(config-if)# service-policy input test-police-1R3C
Router(config-if)# commit
```

Running Configuration

```
class-map match-any ipv4-5
  match precedence 3
  end-class-map
!
policy-map test-police-1R3C
```

```
class ipv4-5
  set qos-group 7
  police rate percent 20 burst 100000 bytes peak-burst 190000 bytes
  !
  !
  class class-default
  !
  end-policy-map
  !

interface HundredGigE0/6/0/18
  service-policy input test-police-1R3C
  service-policy output test-priority-1
  !
```

Verification

Router# show qos interface hundredGigE 0/6/0/18 input

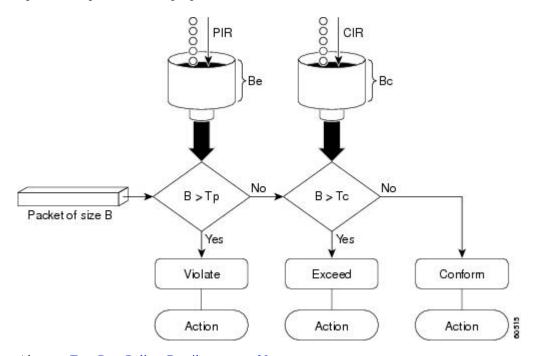
```
NOTE: - Configured values are displayed within parentheses
Interface HundredGigE0/6/0/18 ifh 0x3000220 -- input policy
NPU Id:
Total number of classes:
                         100000000 kbps
Interface Bandwidth:
                          Layer1 (Include Layer 1 encapsulation and above)
Accounting Type:
______
Levell Class
                                   = ipv4-5
New gos group
Policer Bucket ID
                                       0x102a1
Policer Stats Handle
                                       0x8a8090c0
                                   = 19980000 kbps (20 %)
Policer committed rate
Policer conform burst
                                  = 99584 bytes (100000 bytes)
Policer exceed burst
                                   = 188672 bytes (190000 bytes)
Level1 Class
                                       class-default
Default Policer Bucket ID
Default Policer Stats Handle
                                   = 0x102a1
                                   = 0x8a808e78
Policer not configured for this class
```

Related Topics

• Traffic Policing, on page 20

Associated Commands

• police rate


Two-Rate Policer

The two-rate policer manages the maximum rate of traffic by using two token buckets: the committed token bucket and the peak token bucket. The dual-token bucket algorithm uses user-configured values to determine the maximum rate of traffic allowed on a queue at a given moment. In this way, the two-rate policer can meter traffic at two independent rates: the committed information rate (CIR) and the peak information rate (PIR).

The dual-token bucket algorithm provides users with three actions for each packet—a conform action, an exceed action, and an optional violate action. Traffic entering a queue with the two-rate policer configured is placed into one of these categories. The actions are pre-determined for each category. The default conform and exceed actions are to transmit the packet, and the default violate action is to drop the packet.

This figure shows how the two-rate policer marks a packet and assigns a corresponding action to the packet.

Figure 2: Marking Packets and Assigning Actions—Two-Rate Policer

Also, see Two-Rate Policer Details, on page 39.

The router supports Two-Rate Three-Color (2R3C) policer.

Configure Traffic Policing (Two-Rate Three-Color)

The default conform and exceed actions for two-rate three-color (2R3C) policer are to transmit the packet and the default violate action is to drop the packet. Users cannot modify these default actions.

Configuration Example

You have to accomplish the following to complete the two-rate three-color traffic policing configuration:

- 1. Creating or modifying a policy-map that can be attached to one or more interfaces
- 2. Specifying the traffic class whose policy has to be created or changed
- 3. Specifying the packet marking
- 4. Configuring two rate traffic policing
- 5. Attaching the policy-map to an input interface

```
Router# configure
Router(config)# policy-map policy1
```

```
Router(config-pmap)# class ipv4-7
Router(config-pmap-c)# set qos-group 4
Router(config-pmap-c)# police rate percent 20 burst 100000 bytes peak-rate percent 50
peak-burst 200000 bytes
Router(config-pmap-c-police)# exit
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface HundredGigE 0/6/0/18
Router(config-if)# service-policy input policy1
Router(config-if)# commit
```

Running Configuration

```
policy-map policy1
class ipv4-7
  set qos-group 4
  police rate percent 20 burst 100000 bytes peak-rate percent 50 peak-burst 200000 bytes !
!
interface HundredGigE 0/6/0/18
  service-policy input policy1
!
```

Verification

```
Router# show policy-map interface HundredGigE 0/6/0/18
```

```
NOTE: - Configured values are displayed within parentheses
Interface HundredGigE0/6/0/18 ifh 0x3000220 -- input policy
NPU Id:
Total number of classes:
                            100000000 kbps
Interface Bandwidth:
Accounting Type:
                            Layer1 (Include Layer 1 encapsulation and above)
Levell Class
                                       = ipv4-4
Level1 Class
                                           ipv4-7
New qos group
                                           4
Policer Bucket ID
                                          0x102a3
Policer Stats Handle
                                          0x8a8089e8
Policer committed rate
                                       = 19980000 kbps (20 %)
                                       = 49860000 kbps (50 %)
Policer peak rate
Policer conform burst
                                       = 99584 bytes (100000 bytes)
Policer exceed burst
                                           199168 bytes (200000 bytes)
Level1 Class
                                           class-default
Policer Bucket ID
                                          0x102a7
                                           0x8a7c8510
Policer Stats Handle
Policer committed rate
                                           29880000 kbps (30 %)
                                       = 4194304 bytes (default)
Policer conform burst
```

Important Notes

- From Cisco IOS XR Release 6.6.25 onwards:
 - a committed information rate of 0 kbps is supported, which is the only exception to the minimum rate of 22 kbps for both commit and excess rates.
 - a policer on a bundle interface also allows absolute rates apart from the already supported units of percent, per-thousand and per-million.
- A policer is programmed per NPU core on a bundle interface. So, all members on a bundle interface from the same core share the policer.

Related Topics

• Two-Rate Policer, on page 25

Associated Commands

• police rate

Packets-Per-Second-Based Policer

Table 3: Feature History Table

Feature Name	Release Information	Feature Description
Packets-Per-Second-Based Policer	Release 7.4.1	Prior to this functionality, when configuring policers, the only available option for policer rates was bit-rate measured in units of bits per second (bps). With this release, you can configure policer rates in units of packets per second (pps) as well. pps-based policer is critical in fending off malicious attacks—when attackers target your specific resources with a vast amount of traffic that contain higher number of packets, but move at a slower packet rate. Protection from such attacks is possible because pps-based policers ensure that regardless of the packet size and rate, the policer only accepts a fixed number of packets per second. This functionality modifies the police rate command.

- Policer rates so far—You used the police rate command to configure policers based on two parameters:
 - bit-rates (default unit: bits per second or bps)

- Burst size (default unit: bytes)
- packets-per-second (pps)-based policer—With this additional functionality, you can use the police rate command to configure policers in units of packets per second (pps). The pps configuration option is available as police rate <pps-value> pps. When you configure the pps option, ensure that you configure burst size in packets. (See Restrictions and guidelines.) Thus, the parameters for pps-based policer are:
 - packets per second (pps)
 - burst size (packets)
- Why pps-based-policer—Networks face newer types of attacks, and these days malicious operators don't necessarily employ aggressive tactics that involve overwhelming your bandwidth with large amount of traffic to cause distributed denial of service (DDoS). Now, some attackers go the 'softer' route, where they send smaller packet sizes at slower traffic rates. During such malicious network activity, a bandwidth-based policer can still aggregate up to many packets to be processed if the packet size is small. Attackers tend to use this behavior to bypass bandwidth-based policers to exploit vulnerabilities or try to hit performance limitations by increasing the packet rates.

Packets-per-second-based policers ensure that regardless of the packet size and traffic rate, the policer only accepts a fixed number of packets per second.

pps-based-policer support cheat-sheet—Here's a quick look at some key support areas and their details for pps-based policer.

Support	Details
Classification and marking support	Same as that for bps-based-policer
Units	Equivalent kbps values display for QoS programming and statistics.
H-QoS	Support for parent and child policers
Bursts	Support for confirm burst (bc) and exceed burst (be) values in units of packets. The default value is in multiple of 128 bytes equivalent to 10 milliseconds.
Minimum pps value	For better granularity, recommended minimum value is 100 pps.

Restriction and guidelines

- This functionality is applicable only for ingress.
- When using a pps-based policer, **ensure that you configure the burst-size value in number of packets as well.** This is because a policer burst rate determines whether a specific number of packets out of contract would be subject to the next action (that is, exceed or violate).
- Within a QoS policy, configure the parent and child policies policers to either bps or pps. Else, the configuration displays an error when you try attaching the policy to an interface.
- For single-level policy maps: under the same policy map, you can configure one class map with bps-based policer and the other class map with a pps-based policer.

• For two-level hierarchical policy maps:

- The parent and child-level policy maps must use the same unit-based policer. That is, both must have either pps-based or bps-based policers.
- If you configure the child-level policy map with pps-based policer, ensure that the parent policy-map class default has a pps-based policer.
- Configure pps-based policer—To configure pps-based policer, you must:
- 1. Configure a class map.
- **2.** Create a service policy for the map and configure the pps values.
- 3. Attach the service policy to an interface.

```
/*Configure a class map*/
Router(config) #class-map prec1
Router(config-cmap) #match precedence 1
Router(config-cmap)# exit
Router(config) # commit
/*Create a service policy map*/
Router(config) # policy-map policy1
Router(config-pmap)# class prec1
Router(config-pmap-c) #police rate 1000 pps burst 300 packets
Router(config-pmap-c-police) #exit
Router(config-pmap-c)#exit
Router(config-pmap) #exit
Router(config)# commit
/*Attach the service policy to an interface*/
Router#int hundredGigE 0/7/0/2
Router(config-if)service-policy input policy1
Router(config-if) #exit
Router (config) #commit
Running Configuration
```

```
class-map match-any prec1
match precedence 1
  end-class-map
!
policy-map policy1
class prec1
  police rate 1000 pps burst 300 packets
  !
!
class class-default
!
end-policy-map
!
```

Verification

```
Router#show qos int hundredGigE 0/7/0/2 input
NOTE:- Configured values are displayed within parentheses
Interface HundredGigE0/7/0/2 ifh 0xe000088 -- input policy
```

```
NPU Id:
Total number of classes:
Interface Bandwidth:
                              100000000 kbps
Policy Name:
                              policy1
SPI Id:
                              Layer2 (Include Layer 2 encapsulation and above)
Accounting Type:
Level1 Class
                                        = prec1
Policer Bucket ID
                                             0 \times 9
Policer Stats Handle
Policer committed rate
                                             998 kbps (1000 packets/sec)
Policer conform burst
                                             37632 bytes (300 packets)
Level1 Class
                                             class-default
Default Policer Bucket ID
Default Policer Stats Handle
                                             0x0
Policer not configured for this class
```

Associated Commands

police rate

Shared Policer

The classification of the incoming packet occurs only once. However, based on the different classification criteria, the shared policer feature allows sharing of the policer bucket amongst two or more classes in a QoS policy map . That is, the same token bucket is used for a traffic flow matching against any of the classes sharing the policer.

For example, let us say a policer of 10 Mbps is shared among two classes C1 and C2. This feature ensures that both C1 and C2 get traffic flow assigned on First Come First Serve (FCFS) basis. Also that, if C2 does not have any traffic, C1 uses all of the 10 Mbps for transmission.

This feature includes two components:

- · Policer Bucket Shared
- Policer Bucket Referred

Policer Bucket Shared

The policer bucket shared feature defines and shares a policer bucket instance among multiple classes.

Here is a sample configuration that defines and shares policer bucket instance sp1:

In this configuration, a policy-map for class long-distance traffic type is created to police at 1Mbps rate and the policer bucket is shared.

Policer Bucket Referred

The policer bucket referred feature refers a defined policer bucket instance. Shared policer is not supported across policy levels. This means for example, that parent and child policy cannot share a common bucket.

Here is a sample configuration that refers shared policer bucket instance sp1:

In this configuration, a policy-map for class long-distance-voip traffic type is created and the shared policer bucket sp1 is referred.

Shared Policer Statistics

Currently, individual class statistics are not available as a default option for shared policer. You can access statistics in the following modes.

Aggregate Mode

In this mode the policer bucket is shared among two or more classes. However, statistics are not available for every individual class. You can view the aggregate statistics that combine the numbers for all the classes sharing the policer bucket.

Per-Class Mode

In this mode the policer bucket is shared among two or more classes, and you can also view individual class statistics. However, when this mode is active, the Policy-Based Tunnel Selection (PBTS) mechanism is disabled. To enable the per-class mode, you must configure the **hw-module profile qos shared-policer-per-class-stats** command.

Restrictions and Guidelines

The following restrictions and guidelines apply while configuring the shared policer feature.

- When shared policer is enabled in per-class mode, Policy-Based Tunnel Selection (PBTS) mechanism is disabled. In other words, shared policer-per-class-mode and PBTS are mutually exclusive features.
- Shared policier is not supported across policy levels. This means, for example, that parent and child policies cannot share a common policier bucket.
- Shared policer is not supported in ingress peering mode.
- Shared policer is supported within classes of the same policy. However, cross-policy bucket sharing is not supported.
- There are no limitations on the number of classes that can share policer.
- There are no changes in policer scale numbers in the aggregate and per-class modes.
- All the existing policer types (1R2C, 1R3C and 2R3C) are supported.
- You must reload the affected line card to enable the per-class-stats mode.

Configuring Shared Policer

To configure shared policer, you must:

- 1. Create a class map to be used for matching packets to the specified class.
- 2. Create a policy map to be used for matching packets to the specified class.
- 3. Specify a class name.
- 4. Define and share a policer bucket.
- 5. Specify a class name.
- **6.** Refer a shared policer bucket.

```
RP/0/RSP0/CPU0:ios(config)#class-map match-any c1
RP/0/RSP0/CPU0:ios(config-cmap) #match precedence 1
RP/0/RSP0/CPU0:ios(config-cmap)#end-class-map
RP/0/RSP0/CPU0:ios(config)#class-map match-any c2
RP/0/RSP0/CPU0:ios(config-cmap) #match precedence 2
RP/0/RSP0/CPU0:ios(config-cmap)#end-class-map
RP/0/RSP0/CPU0:ios(config)#policy-map s-pol
RP/0/RSP0/CPU0:ios(config-pmap)#class c1
RP/0/RSP0/CPU0:ios(config-pmap-c)#police bucket shared 1 rate 10 mbps
RP/0/RSP0/CPU0:ios(config-pmap-c-police)#exit
RP/0/RSP0/CPU0:ios(config-pmap-c)#exit
RP/0/RSP0/CPU0:ios(config-pmap)#class c2
RP/0/RSP0/CPU0:ios(config-pmap-c) #police bucket referred 1
RP/0/RSP0/CPU0:ios(config-pmap-c-police)#class class-default
RP/0/RSP0/CPU0:ios(config-pmap-c)#exit
RP/0/RSP0/CPU0:ios(config-pmap)#exit
RP/0/RSP0/CPU0:ios(config)#interface HundredGigE 0/6/0/18
RP/0/RSP0/CPU0:ios(config-if)#service-policy input s-pol
RP/0/RSP0/CPU0:ios(config-if)#commit
```

Running Configuration

```
class-map match-any c1
match precedence 1
end-class-map

class-map match-any c2
match precedence 2
end-class-map

policy-map s-pol
class c1
  police bucket shared 1 rate 10 mbps
!
!
class c2
  police bucket referred 1
!
!
class class-default
!
end-policy-map
!

interface HundredGigEO/6/0/18
service-policy input s-pol
!
```

Verification

In Aggregate Mode

RP/0/RP0/CPU0:ios#sh policy-map interface tenGigE 0/0/0/0 input Fri Nov 15 12:55:56.817 UTC

TenGigE0/0/0/0 input: s-pol

Class cl					
Classification statis	tics	(packets/bytes)		-	-
Matched	:	1784530245/2284198713	360		8640780
Transmitted	:	2067504/264640512			10011
Total Dropped	:	1782462741/2281552308	848		8630769
Policing statistics		(packets/bytes)	(rate	-	kbps)
Policed(conform)	:	2067504/264640512			10011
Policed(exceed)	:	1782462741/2281552308	848		8630769
Policed(violate)	:	0/0			0
Policed and dropped	l :	1782462741/2281552308	848		
Class c2					
Classification statis	tics	(packets/bytes)	(rate	-	kbps)
Matched	:	0/0			0
Transmitted	:	0/0			0
Total Dropped	:	0/0			0
Policing statistics		(packets/bytes)	(rate	-	kbps)
Policed(conform) :		0/0		0	
· ·	_	0/0		U	0
Policed (exceed)	:	0/0			0
Policed (violate)					U
Policed and dropped	1 :	0/0			
Class class-default			, ,		11)
Classification statis	tics	(packets/bytes)	(rate	_	kbps)
Matched	:	0/0			0
Transmitted	:	0/0			0
Total Dropped	:	0/0			0
Policy Bag Stats time:	157382253198	86 [Local Time: 11/15	5/19 12	:55	5:31.986]

In Per-Class Mode

Matched

RP/0/RP0/CPU0:ios#sh policy-map interface tenGigE 0/0/0/0 input Fri Nov 15 15:18:18.319 UTC

TenGigE0/0/0/0 input: s-pol

: d :

Class c1 Classification statistics

Transmitted	:	1163300/148902400		5013
Total Dropped	:	1004205976/12853836493	28	4315324
Policing statistics		(packets/bytes)	(rate -	kbps)
Policed(conform)	:	1163300/148902400		5013
Policed(exceed)	:	1004205976/12853836493	28	4315324
Policed(violate)	:	0/0		0
Policed and dropped	:	1004205976/12853836492	28	
Class c2				
Classification statist	tics	(packets/bytes)	(rate -	kbps)
Matched	:	1005341342/1286836917	76	4320335
Transmitted	:	1166269/149282432		4997
Total Dropped	:	1004175073/1285344093	44	4315338
Policing statistics		(packets/bytes)	(rate -	kbps)
Policed(conform)	:	1166269/149282432		4997
Policed(exceed)	:	1004175073/1285344093	44	4315338
Policed(violate)	:	0/0		0
Policed and dropped	:	1004175073/1285344093	44	

(packets/bytes) (rate - kbps)

4320337

1005369276/128687267328

Related Commands

hw-module profile qos shared-policer-per-class-stats

Prioritize Traffic during Oversubscription

Table 4: Feature History Table

Feature Name	Release Information	Feature Description
Prioritize Traffic during Oversubscription	Release 7.7.1	If the ASIC packet processing capacity is overloaded with continuous flow of packets, it's called oversubscription and it results in packet drops at the interface level. By enabling prioritization of packets during oversubscription, you can protect the high priority traffic. This feature introduces the hw-module oversubscription command.

An application-specific integrated circuit (ASIC) processes the traffic in the router. When the ingress packet enters the network interface in the ASIC, there's a small buffer to converge and process the packets. Independent of the traffic size, there's only one processing point in the ASIC to process the packets called Packet Processing Unit (PPU).

This PPU capacity is about the number of packets being processed per second by the ASIC, based on its packet processing power. The packet processing capacity is independent of the packet size, either it's 100 bytes or 5000 bytes, it processes only the header part, which is a fixed size, independent of the packet size.

Oversubscription occurs when the packet processing capacity is affected, and unable to process packets due to overloading of packets at PPU. But there's still some buffer available, which accommodates the logic of allowing traffic, based on their priority.

The network interface or ports in ASIC are grouped as port groups or quads. Depending upon the ASIC, supported port types include 1G, 10G, 25G, 40G, 50G, 100G, 200G, and 400G. The priority of packets are based on Class of Service (CoS) values.

The CoS value range is 0–7, where 6 and 7 are high priority by default. You can configure priority between 0–5. For example, consider interface X, with priority of 5, and if interface X belongs to a particular quad, then all the other interfaces belonging to that quad is also defined with the same priority of 5. So, if the CoS value is defined on an interface with high priority, then all the interface belonging to that quad becomes prioritized.

For untagged packets (without any VLAN tags) the interface priority is based on the interface name and it is considered with default CoS values as 6 and 7. Control plane packets always go through the highest priority.

Configuring Traffic Priorities on Tagged Interface

Perform this task to configure the traffic priorities using CoS values on tagged interface.

- 1. Creating egress policy-map that can be attached to one or more interfaces
- 2. Specifying the traffic class whose policy has to be created
- 3. Specifying priority to the traffic class
- 4. Creating H-QoS profile with ingress Layer 2 Access Control List (L2 ACL)
- 5. Specifying priority to the interface using oversubscription

Configuration Example

```
Router#configure
Router(config) #policy-map egress
Router(config-pmap)#class qos1
Router (config-pmap-c) #priority level 1
Router (config-pmap-c) #low-latency-profile
Router(config-pmap-c) #class class-default
Router (config-pmap-c) #end-policy-map
Router (config) #commit
Router (config) #end
Router#configure
Router (config) #hw-module profile qos hqos-enable
Router (config) #hw-module oversubscription
Router(config-oversubscription) #prioritize cos 1 interface tenGigE 0/0/0/0
Router (config-oversubscription) #commit
Wed Jul 6 11:07:45.608 UTC
NOTE: This CLI Config affects all interfaces in Quad
Check 'show oversubscription'for quad details
```

Running Configuration

```
policy-map egress
  class qos-1
  priority level 1
  low-latency-profile
!
  class class-default
!
  end-policy-map
!

hw-module profile qos hqos-enable
hw-module oversubscription
  prioritize cos 1 interface tenGigE 0/0/0/0
Wed Jul 6 11:07:45.608 UTC
```

```
NOTE: This CLI Config affects all interfaces in Quad Check 'show oversubscription'for quad details
```

Verification

Verify the traffic priority configuration for both tagged interfaces, using the **show oversubscription** command.

Router#show oversubscription Wed Jul 6 11:09:03.255 UTC Interface Quad Prioritization TenGigE0/0/0/0 4 cos [1 6 7] TenGigE0/0/0/2 4 cos [1 6 7] TenGigE0/0/0/2 4 cos [1 6 7] TenGigE0/0/0/1 4 cos [1 6 7]

Configuring Traffic Priorities on Untagged Interface

Perform this task to configure the traffic priorities using CoS values on tagged interface.

- 1. Creating H-QoS profile with ingress Layer 2 Access Control List (L2 ACL)
- 2. Specifying priority to the interface using oversubscription

Configuration Example

```
Router#configure
Router(config) #hw-module profile qos hqos-enable
Router(config) #hw-module oversubscription
Router(config-oversubscription) #prioritize untagged interface tenGigE 0/0/0/10
Router(config-oversubscription) #commit
Wed Jul 6 11:07:45.608 UTC

NOTE: This CLI Config affects all interfaces in Quad
Check 'show oversubscription' for quad details
```

Running Configuration

```
hw-module oversubscription
hw-module profile qos hqos-enable
   prioritize untagged interface tenGigE 0/0/0/10

Wed Jul 6 11:07:45.608 UTC

NOTE: This CLI Config affects all interfaces in Quad Check 'show oversubscription'for quad details
```

Verification

Verify the traffic priority configuration for untagged interfaces, using the show oversubscription command.

Router#show oversubscription Wed Jul 6 11:09:03.255 UTC Interface Quad Prioritization TenGigE0/0/0/10 6 cos [untagged 6 7] TenGigE0/0/0/11 6 cos [untagged 6 7] TenGigE0/0/0/9 6 cos [untagged 6 7] TenGigE0/0/0/8 6 cos [untagged 6 7]

Limitations

- Only up to 20% of the high priority traffic is allowed per quad.
- Oversubscription configuration is supported only on ports with bandwidth greater than 10G.
- Oversubscription is supported only for packets with VLAN header and control frames.
- You can enable oversubscription only at quad levels, based on the port speed in each quad.

References for Modular QoS Congestion Management

Committed Bursts

The committed burst (bc) parameter of the police command implements the first, conforming (green) token bucket that the router uses to meter traffic. The bc parameter sets the size of this token bucket. Initially, the token bucket is full and the token count is equal to the committed burst size (CBS). Thereafter, the meter updates the token counts the number of times per second indicated by the committed information rate (CIR).

The following describes how the meter uses the conforming token bucket to send packets:

- If sufficient tokens are in the conforming token bucket when a packet arrives, the meter marks the packet green and decrements the conforming token count by the number of bytes of the packet.
- If there are insufficient tokens available in the conforming token bucket, the meter allows the traffic flow to borrow the tokens needed to send the packet. The meter checks the exceeding token bucket for the number of bytes of the packet. If the exceeding token bucket has a sufficient number of tokens available, the meter marks the packet.

Green and decrements the conforming token count down to the minimum value of 0.

Yellow, borrows the remaining tokens needed from the exceeding token bucket, and decrements the exceeding token count by the number of tokens borrowed down to the minimum value of 0.

• If an insufficient number of tokens is available, the meter marks the packet red and does not decrement either of the conforming or exceeding token counts.

Note

When the meter marks a packet with a specific color, there must be a sufficient number of tokens of that color to accommodate the entire packet. Therefore, the volume of green packets is never smaller than the committed information rate (CIR) and committed burst size (CBS). Tokens of a given color are always used on packets of that color.

Excess Bursts

The excess burst (be) parameter of the police command implements the second, exceeding (yellow) token bucket that the router uses to meter traffic. The exceeding token bucket is initially full and the token count is

equal to the excess burst size (EBS). Thereafter, the meter updates the token counts the number of times per second indicated by the committed information rate (CIR).

The following describes how the meter uses the exceeding token bucket to send packets:

- When the first token bucket (the conforming bucket) meets the committed burst size (CBS), the meter allows the traffic flow to borrow the tokens needed from the exceeding token bucket. The meter marks the packet yellow and then decrements the exceeding token bucket by the number of bytes of the packet.
- If the exceeding token bucket does not have the required tokens to borrow, the meter marks the packet red and does not decrement the conforming or the exceeding token bucket. Instead, the meter performs the exceed-action configured in the police command (for example, the policer drops the packets).

Two-Rate Policer Details

The committed token bucket can hold bytes up to the size of the committed burst (bc) before overflowing. This token bucket holds the tokens that determine whether a packet conforms to or exceeds the CIR as the following describes:

- A traffic stream is conforming when the average number of bytes over time does not cause the committed token bucket to overflow. When this occurs, the token bucket algorithm marks the traffic stream green.
- A traffic stream is exceeding when it causes the committed token bucket to overflow into the peak token bucket. When this occurs, the token bucket algorithm marks the traffic stream yellow. The peak token bucket is filled as long as the traffic exceeds the police rate.

The peak token bucket can hold bytes up to the size of the peak burst (be) before overflowing. This token bucket holds the tokens that determine whether a packet violates the PIR. A traffic stream is violating when it causes the peak token bucket to overflow. When this occurs, the token bucket algorithm marks the traffic stream red.

For example, if a data stream with a rate of 250 kbps arrives at the two-rate policer, and the CIR is 100 kbps and the PIR is 200 kbps, the policer marks the packet in the following way:

- 100 kbps conforms to the rate
- 100 kbps exceeds the rate
- 50 kbps violates the rate

The router updates the tokens for both the committed and peak token buckets in the following way:

- The router updates the committed token bucket at the CIR value each time a packet arrives at the interface. The committed token bucket can contain up to the committed burst (bc) value.
- The router updates the peak token bucket at the PIR value each time a packet arrives at the interface. The peak token bucket can contain up to the peak burst (be) value.
- When an arriving packet conforms to the CIR, the router takes the conform action on the packet and decrements both the committed and peak token buckets by the number of bytes of the packet.
- When an arriving packet exceeds the CIR, the router takes the exceed action on the packet, decrements the committed token bucket by the number of bytes of the packet, and decrements the peak token bucket by the number of overflow bytes of the packet.

• When an arriving packet exceeds the PIR, the router takes the violate action on the packet, but does not decrement the peak token bucket.

See Two-Rate Policer, on page 25.