Understanding PTP The Precision Time Protocol (PTP), as defined in the IEEE 1588 standard, synchronizes withnanosecond accuracy the real-time clocks of the devices in a network. The clocks in are organized into a server-client hierarchy. PTP identifies the port that is connected to a device with the most precise clock. This clock is referred to as the server clock. All the other devices on the network synchronize their clocks with the server clock and are referred to as members. Constantly-exchanged timing messages ensure continued synchronization. Precision Time Protocol (PTP) is defined in IEEE 1588 as Precision Clock Synchronization for Networked Measurements and Control Systems, and was developed to synchronize the clocks in packet-based networks that include distributed device clocks of varying precision and stability. PTP is designed specifically for industrial, networked measurement and control systems, and is optimal for use in distributed systems because it requires minimal bandwidth and little processing overhead. Table 1: Nodes within a PTP Network | Network Element | Description | | |---------------------|---|--| | Grandmaster (GM) | A network device physically attached to the primary time source. All clocks are synchronized to the grandmaster clock. | | | Ordinary Clock (OC) | An ordinary clock is a 1588 clock with a single PTP port that can operate in one of the following modes: • Server mode—Distributes timing information over the network to one or more client clocks, thus allowing the client to synchronize its clock to the server clock. • Client mode—Synchronizes its clock to a server clock. You can enable the client mode on up to two interfaces simultaneously in order to connect to two different server clocks. | | | Network Element | Description | | |------------------------|---|--| | Boundary Clock (BC) | The device participates in selecting the best server clock and can act as the server clock if no better clocks are detected. | | | | Boundary clock starts its own PTP session with a number of downstream clients. The boundary clock mitigates the number of network hops and results in packet delay variations in the packet network between the Grandmaster and client. | | | Transparent Clock (TC) | A transparent clock is a device or a switch that calculates the time it requires to forward traffic and updates the PTP time correction field to account for the delay, making the device transparent in terms of time calculations. | | - Why PTP?, on page 2 - Routers and Delays, on page 3 - Message-Based Synchronization, on page 3 - PTP Event Message Sequences, on page 3 - PTP Clocks, on page 5 - Restrictions for PTP, on page 5 - PTP Phase Difference Threshold Between Passive and Secondary Ports, on page 6 - Isolate Foreign Masters Causing Packet Timing Signal Fail, on page 8 - PTP Profiles, on page 9 - Slow Tracking, on page 18 - PTP Holdover Traceability Suppression, on page 19 - IEEE Default Profile, on page 20 - PTP Hybrid Mode, on page 21 - Verifying the PTP Hybrid Mode Configurations, on page 23 - Configure PTP Delay Asymmetry, on page 24 - Performance Monitoring for PTP Networks, on page 26 # Why PTP? Smart grid power automation applications, such as peak-hour billing, virtual power generators, and outage monitoring and management, require extremely precise time accuracy and stability. Timing precision improves network monitoring accuracy and troubleshooting ability. In addition to providing time accuracy and synchronization, the PTP message-based protocol can be implemented on packet-based networks, such as Ethernet networks. The benefits of using PTP in an Ethernet network include: - Low cost and easy setup in existing Ethernet networks - Limited bandwidth requirement for PTP data packets ## **Routers and Delays** In an IP network, routers provide a full-duplex communication path between network devices. Routers send data packets to packet destinations using IP address information contained in the packets. When the router attempts to send multiple packets simultaneously, the router buffers some packets so that they are not lost before they are sent. When the buffer is full, the router delays sending packets. This delay can cause device clocks on the network to lose synchronization with one another. Additional delays can occur when packets entering a router are stored in its local memory while the router searches the address table to verify packet fields. This process causes variations in packet forwarding time latency, and these variations can result in asymmetrical packet delay times. Adding PTP to a network can compensate for these latency and delay problems by correctly adjusting device clocks so that they stay synchronized with one another. PTP enables network routers to function as PTP devices, including boundary clocks (BCs) and transparent clocks (TCs). For more information about PTP clock devices and their role in a PTP network, see the *PTP Clocks* section. # **Message-Based Synchronization** To ensure clock synchronization, PTP requires an accurate measurement of the communication path delay between the time source (server) and the receiver (client). PTP sends messages between the server and client device to determine the delay measurement. Then, PTP measures the exact message transmit and receive times and uses these times to calculate the communication path delay. PTP then adjusts current time information contained in network data for the calculated delay, resulting in more accurate time information. This delay measurement principle determines path delay between devices on the network. The local clocks are adjusted for this delay using a series of messages sent between servers and clients. The one-way delay time is calculated by averaging the path delay of the transmit and receive messages. This calculation assumes a symmetrical communication path; however, routed networks do not necessarily have symmetrical communication paths, due to the various asymmetries in the network. Using transparent clocks, PTP provides a method to measure and account for the delay in a time-interval field in network timing packets. This makes the routers temporarily transparent to the server and client nodes on the network. An end-to-end transparent clock forwards all messages on the network in the same way that a router does. To read a detailed description of synchronization messages, see the *PTP Event Message Sequences* section. To learn more about how transparent clocks calculate network delays, refer to Transparent Clock, on page 7. # **PTP Event Message Sequences** This section describes the PTP event message sequences that occur during synchronization. ### **Synchronizing with Boundary Clocks** The ordinary and boundary clocks configured for the delay request-response mechanism use the following event messages to generate and communicate timing information: - Sync - Delay_Req - Follow Up - Delay_Resp These messages are sent in the following sequence: - The server sends a Sync message to the client and notes the time (t1) at which it was sent. - The client receives the Sync message and notes the time of reception (t2). - The server conveys to the client the timestamp t1 by embedding the timestamp t1 in a Follow_Up message. - The client sends a Delay Req message to the server and notes the time (t3) at which it was sent. - The server receives the Delay_Req message and notes the time of reception (t4). - The server conveys to the client the timestamp t4 by embedding it in a Delay_Resp message. After this sequence, the client possesses all four timestamps. These timestamps can be used to compute the offset of the client clock relative to the server, and the mean propagation time of messages between the two clocks. The offset calculation is based on the assumption that the time for the message to propagate from server to client is the same as the time required from client to server. This assumption is not always valid on an Ethernet/IP network due to asymmetrical packet delay times. Figure 1: Detailed Steps—Boundary Clock Synchronization ### **Synchronizing the Local Clock** In an ideal PTP network, the server and client clock operate at the same frequency. However, drift can occur on the network. Drift is the frequency difference between the server and client clock. You can compensate for drift by using the time stamp information in the device hardware and follow-up messages (intercepted by the router) to adjust the frequency of the local clock to match the frequency of the server clock. ### **PTP Clocks** A PTP network is made up of PTP-enabled devices and devices that are not using PTP. The PTP-enabled devices typically consist of the following clock types. #### **Grandmaster Clock** Within a PTP domain, the grandmaster clock is the primary source of time for clock synchronization using PTP. The grandmaster clock usually has a very precise time source, such as a GPS or atomic clock. When the network does not require any external time reference and only needs to be synchronized internally, the grandmaster clock can free run. ### **Ordinary Clock** An ordinary clock is a PTP clock with a single PTP port. It functions as a node in a PTP network and can be selected by the BMCA as a server or client within a subdomain. Ordinary clocks
are the most common clock type on a PTP network because they are used as end nodes on a network that is connected to devices requiring synchronization. Ordinary clocks have various interfaces to external devices. ### **Boundary Clock** A boundary clock in a PTP network operates in place of a standard network router. Boundary clocks have more than one PTP port, and each port provides access to a separate PTP communication path. Boundary clocks provide an interface between PTP domains. They intercept and process all PTP messages, and pass all other network traffic. The boundary clock uses the BMCA to select the best clock seen by any port. The selected port is then set as a client. The server port synchronizes the clocks connected downstream, while the client port synchronizes with the upstream server clock. ### **Transparent Clock** The role of transparent clocks in a PTP network is to update the time-interval field that is part of the PTP event message. This update compensates for switch delay and has an accuracy of within one picosecond. ### **Restrictions for PTP** PTP over MPLS is not supported. # PTP Phase Difference Threshold Between Passive and Secondary Ports Table 2: Feature History Table | Feature Name | Release Information | Feature Description | |--|---------------------|--| | PTP Phase Difference Threshold Between Passive and Secondary Ports Release 24.2.1 | | Passive ports can now be included in the Delay Request-Response Mechanism (DRRM), which allows for the monitoring of PTP phase differences between a passive port and a secondary port. If these PTP phase differences surpass a predefined limit, system logs are triggered. This feature enables you to detect potential errors such as fiber asymmetry or a clock failure in the PTP network. | | | | This feature introduces these changes: | | | | CLI: | | | | • phase-difference-threshold-breach | | | | The show ptp foreign-masters command output is enhanced to include phase difference values and servo status. | | | | YANG Data Models: | | | | The following data models are enhanced: | | | | • Cisco-IOS-XR-ptp-cfg.yang | | | | • Cisco-IOS-XR-um-ptp-cfg.yang | The Precision Time Protocol (PTP), as defined in the IEEE 1588 standard, is designed for precise time synchronization across networked devices. It operates by having Foreign Masters (FMs) broadcast timing information to interfaces within the network. The selection of the Grandmaster (GM), the primary reference clock, is determined by the Best Master Clock Algorithm (BMCA). Devices synchronize their clocks to the GM through a process known as the Delay Request-Response Mechanism (DRRM), wherein ports that are directly synchronizing with the GM enter a secondary state. Historically, ports in a passive state—those that receive timing messages from FMs but aren't used for synchronization to the GM were not monitored by the router. Starting with Cisco IOS XR Software Release 24.2.1, these passive ports are enabled for the calculation of PTP phase differences between the FMs on passive ports and the GM. This calculated PTP phase difference provides a valuable insight into the timing characteristics of other foreign masters in the network by using the grandmaster as a reference point. It can be utilized on any boundary clock or slave clock that has connections to at least one other foreign master. You can access these measurements and the calculated PTP phase differences using show commands through the router's CLI. Also, the information can be retrieved programmatically through operational data models in YANG, providing flexibility in how you can access and utilize this synchronization data. #### Phase Difference Alarm PTP phase difference can also be used to monitor the timing properties of the network. You can configure a value at which a bistate alarm is triggered when the PTP phase difference of a FM exceeds the threshold. The PTP phase difference can have a negative or positive value, but the threshold can only be the absolute value. You can configure the PTP phase difference threshold using the **phase-difference-threshold-breach** command. ### **System Log for PTP Phase Difference** When the configured threshold is reached, system logs (syslogs) are displayed. The following syslog is triggered if the configured PTP phase difference threshold is passed through by any master. Phase difference for clock ACDE48FFFE234567, steps removed 1, receiving-port 1, received on interface GigabitEthernet0/2/0/3 is 40ns, configured threshold is 30ns. Raising phase difference alarm. # **Isolate Foreign Masters Causing Packet Timing Signal Fail** **Table 3: Feature History Table** | Feature Name | Release Information | Feature Description | |---|---------------------|---| | Isolate Foreign Masters Causing Packet Timing Signal Fail | Release 24.2.1 | This feature permits the flexible selection of timing sources by filtering out Foreign Master (FM) clocks that exhibit unstable timing. This filtering causes the secondary clocks to produce a signal deemed Packet Timing Signal Fail (PTSF)-unusable, from consideration within the Best Master Clock Algorithm (BMCA). The system continuously monitors these clocks for timing stabilization, and upon detecting enhanced stability, it may reevaluate and possibly reintegrate them as suitable time sources. | | | | This feature introduces these changes: | | | | CLI: | | | | • detect-ptsf-unusable | | | | • The show ptp
foreign-masters command
output is enhanced to include
phase difference values and
servo status. | | | | YANG Data Models: | | | | The following data models are enhanced: | | | | • Cisco-IOS-XR-ptp-cfg.yang | | | | • Cisco-IOS-XR-um-ptp-cfg.yang | Starting Cisco IOS XR Software Release 24.2.1, the servo mechanism now has the ability to detect unusable clocks due to packet timing signal fail by analyzing timestamps from foreign masters. This enhancement allows the system to identify foreign masters with unstable timing as unsuitable for use. A platform supports multiple masters, such a master can be excluded from the BMCA selection process while remaining under observation for potential recovery. Even after a master is deemed unusable, the DRRM continues to operate and timestamps from it are still provided to the servo. This ongoing monitoring enables PTP to detect and respond to any improvements in the primary's timing, allowing it to be reconsidered as usable. ### System Log for PTSF-unusable When the master becomes PTSF-unusable, and if its the current Grandmaster, the following system log (syslogs) is displayed: Foreign master with clock ID ACDE48FFFE234567, steps removed 1, receiving-port 1, received on interface GigabitEthernet0/2/0/4 is now PTSF-unusable and disqualified from selection. ### **PTP Profiles** ### **ITU-T Telecom Profiles for PTP** Cisco IOS XR software supports ITU-T Telecom Profiles for PTP as defined in the ITU-T recommendation. A profile consists of PTP configuration options applicable only to a specific application. Separate profiles can be defined to incorporate PTP in different scenarios based on the IEEE 1588-2008 standard. A telecom profile differs in several ways from the default behavior defined in the IEEE 1588-2008 standard and the key differences are mentioned in the subsequent sections. The following sections describe the ITU-T Telecom Profiles that are supported for PTP. ### G.8265.1 G.8265.1 profile fulfills specific frequency-distribution requirements in telecom networks. Features of G.8265.1 profile are: - Clock advertisement: G.8265.1 profile specifies changes to values used in Announce messages for advertising PTP clocks. The clock class value is used to advertise the quality level of the clock, while the other values are not used. - Clock Selection: G.8265.1 profile also defines an alternate BMCA to select port states and clocks is defined for the profile. This profile also requires to receive Sync messages (and optionally, Delay-Response messages) to qualify a clock for selection. - Port State Decision: The ports are statically configured to be Server or Client instead of using FSM to dynamically set port states. - Packet Rates: The packet rates higher than rates specified in the IEEE 1588-2008 standard are used. They are: - Sync/Follow-Up Packets: Rates from 128 packets-per-second to 16 seconds-per-packet. - Delay-Request/Delay-Response Packets: Rates from 128 packets-per-second to 16 seconds-per-packet. - Announce Packets: Rates from 8 packets-per-second to 64 packets-per-second. - Transport Mechanism: G.8265.1 profile only supports IPv4 PTP transport mechanism. - Mode: G.8265.1 profile supports transport of data packets only in unicast mode. - Clock Type: G.8265.1 profile only supports Ordinary Clock-type (a clock with only one PTP port). - Domain Numbers: The domain numbers that can be used in a G.8265.1 profile network ranges from 4 to 23. The default domain number is 4. Port Numbers: Multiple ports can
be configured; however, all ports must be of the same type, either Server or Client. Note The G.8265.1 profile is not supported in this release. ### G.8275.1 G.8275.1 profile fulfills the time-of-day and phase synchronization requirements in telecom networks with all network devices participating in the PTP protocol. G.8275.1 profile with SyncE provides better frequency stability for the time-of-day and phase synchronization. Features of G.8275.1 profile are: - Synchronization Model: G.8275.1 profile adopts hop-by-hop synchronization model. Each network device in the path from Server to Client clock synchronizes its local clock to upstream devices and provides synchronization to downstream devices. - Clock Selection: G.8275.1 profile also defines an alternate BMCA that selects a clock for synchronization and port state for the local ports of all devices in the network is defined for the profile. The parameters defined as a part of the BMCA are: - Clock Class - Clock Accuracy - Offset Scaled Log Variance - Priority 2 - Clock Identity - · Steps Removed - Port Identity - · notSlave flag - · Local Priority - Port State Decision: The port states are selected based on the alternate BMCA algorithm. A port is configured to a server-only port state to enforce the port to be a server for multicast transport mode. - Packet Rates: The nominal packet rate for Announce packets is 8 packets-per-second and 16 packets-per-second for Sync/Follow-Up and Delay-Request/Delay-Response packets. - Transport Mechanism: G.8275.1 profile only supports Ethernet PTP transport mechanism. - Mode: G.8275.1 profile supports transport of data packets only in multicast mode. The forwarding is done based on forwardable or non-forwardable multicast MAC address. - Clock Type: G.8275.1 profile supports the following clock types: - Telecom Grandmaster (T-GM) - Telecom Time subordinate/client Clock (T-TSC) - Telecom Boundary Clock (T-BC) - Domain Numbers: The domain numbers that can be used in a G.8275.1 profile network ranges from 24 to 43. The default domain number is 24. The G.8275.1 supports the following: - T-GM: The telecom grandmaster (T-GM) provides timing to all other devices on the network. It does not synchronize its local clock with any other network element other than the Primary Reference Time Clock (PRTC). - T-BC: The telecom boundary clock (T-BC) synchronizes its local clock to a T-GM or an upstream T-BC, and provides timing information to downstream T-BCs or T-TSCs. If at a given point in time there are no higher-quality clocks available, T-BC continues to provide its own timing information to its peers, although derived clock is not as accurate as the T-GM. - T-TSC: The telecom time subordinate/client clock (T-TSC) synchronizes its local clock to another PTP clock (in most cases, the T-BC), and does not provide synchronization through PTP to any other device. ### **Performance Requirements** The router is compliant with Class B performance requirements for T-TSC and T-BC as documented in G.8273.2. ### G.8275.2 The G.8275.2 is a PTP profile for use in telecom networks where phase or time-of-day synchronization is required. It differs from G.8275.1 in that it is not required that each device in the network participates in the PTP protocol. Also, G.8275.2 uses PTP over IPv4 in unicast mode. The G.8275.2 profile is based on the partial timing support from the network. Hence nodes using G.8275.2 are not required to be directly connected. The G.8275.2 profile is used in mobile cellular systems that require accurate synchronization of time and phase. For example, the fourth generation (4G) of mobile telecommunications technology. Features of G.8275.2 profile are: - Clock Selection: G.8275.2 profile also defines an alternate BMCA that selects a clock for synchronization and port state for the local ports of all devices in the network is defined for the profile. The parameters defined as a part of the BMCA are: - · Clock Class - Clock Accuracy - Offset Scaled Log Variance - Priority 2 - · Clock Identity - Steps Removed - · Port Identity - · notSlave flag - Local Priority #### Note See ITU-T G.8275.2 document to determine the valid values for Clock Class parameter. - Port State Decision: The port states are selected based on the alternate BMCA algorithm. A port can be configured as "server-only", "client-only", or "any" mode. - · Packet Rates: - Synchronization/Follow-Up—minimum is one packet-per-second and maximum of 128 packets-per-second. - Packet rate for Announce packets—minimum of one packet-per-second and maximum of eight packets-per-second. - Delay-Request/Delay-Response packets—minimum is one packet-per-second and maximum of 128 packets-per-second. - Transport Mechanism: G.8275.2 profile supports only IPv4 PTP transport mechanism. - Mode: G.8275.2 profile supports transport of data packets only in unicast mode. - Clock Type: G.8275.2 profile supports the following clock types: - Telecom Grandmaster (T-GM): Provides timing for other network devices and does not synchronize its local clock to other network devices. However, T-GM can be connected to a GPS or GNSS for deriving better clock information. - Telecom Time Subordinate/Client Clock (T-TSC) and Partial-Support Telecom Time Subordinate/Client Clocks (T-TSC-P): A client clock synchronizes its local clock to another PTP clock, but does not provide PTP synchronization to any other network devices. - Telecom Boundary Clock (T-BC) and Partial-Support Telecom Boundary Clocks (T-BC-P): Synchronizes its local clock to a T-GM or an upstream T-BC clock and provides timing information to downstream T-BC or T-TSC clocks. - Domain Numbers: The domain numbers that can be used in a G.8275.2 profile network ranges from 44 to 63. The default domain number is 44. ### **PTP Virtual Port** | Feature Name | Release Information | Feature Description | |---|---------------------|---| | PTP Virtual Port Support for Cisco
NCS 560 routers | Release 7.9.1 | You can now select the best available timing source for your routers by using the PTP Virtual Port feature. | | | | This feature allows you to compare, select, and advertise the best clock source between a PTP server and other local timing sources connected to the routers. | | | | Vitual Port is an external frequency, phase, and time input interface on a Telecom Boundary Clock (T-BC), and thus participates in the timing source selection. | G.8275.1 introduces the concept of a virtual port on the T-BC. A virtual port is an external frequency, phase, and time input interface on a T-BC, which can participate in the source selection. #### Limitations - Assisted Partial Timing Support (APTS) is supported only for the G8275.2 non hybrid mode. - Virtual port is supported for G8275.1 and G8275.2 in hybrid and non-hybrid modes. - Virtual port configuration is not allowed under Ordinary Clocks. - Virtual port cannot be configured if the time of day (ToD) priority is not set under the global PTP configuration mode. Use the **time-of-day priority** command to set the ToD. ### **Assisted Partial Timing Support** Table 4: Feature History Table | Feature Name | Release Information | Description | |---|---------------------|--| | Assisted Partial Timing Support on this routers | Release 7.9.1 | Assisted Partial Timing Support (APTS) enables you to select timing and synchronization for mobile backhaul networks. APTS allows for proper distribution of phase and time synchronization in the network. | In a network having GNSS or GPS reference, all nodes (or secondary clocks) at the edge of the network follow the GNSS primary clock that runs at the core. When GNSS or GPS reference fails at the core, the secondary clocks running at the edge no longer receive accurate time stamps from the primary clock. With the use of APTS, the nodes at the edge of the network identify GNSS or GPS as primary clock source, and PTP as the secondary source. So even if the GNSS reference is lost, the nodes fall back to the backup PTP session running between the primary clock at core and the nodes at the edge, and are thereby able to maintain an accurate time stamp. ### **Configuring the G.8275.1 Profile** Note The Sync 2 port and GNSS receiver configuration listed below are not supported simultaneously for network synchronization. Choose only one synchronization method at a time. ### Configuring the Global Settings: Example ``` ptp clock domain 24 profile g.8275.1 clock-type [T-BC | TGM | TTSC] ! profile profile1 transport ethernet sync frequency 16 announce frequency 8 delay-request frequency 16 ! profile profile2 transport ethernet sync frequency 16 announce frequency 8 delay-request frequency 16 ! pysical-layer-frequency ! ``` ### **Configuring Client Port: Example** ``` interface GigabitEthernet0/0/0/3 ptp profile profile1 multicast target-address ethernet 01-1B-19-00-00-00 transport ethernet port state slave-only local-priority 10 ! frequency synchronization selection input priority 1 wait-to-restore 0 ! ``` ### **Configuring Server Port: Example** ``` interface GigabitEthernet0/0/0/1 ptp profile profile2 multicast target-address ethernet 01-1B-19-00-00-00 port state master-only transport ethernet sync frequency 16 ``` ``` announce frequency 8 delay-request frequency 16 ! frequency synchronization ! ``` ### **Multiple PTP profile interoperability** Multiple PTP profile interoperability is a clock synchronization method that allows a Cisco router to run a profile while you configure an interface to synchronize with a peer clock running
a different profile. Table 5: Feature History Table | Feature Name | Release Information | Feature Description | |----------------------------|---------------------|---| | PTP profile interoperation | Release 25.2.1 | PTP profile interoperability is now extended to the A900-IMA8CS1Z-M NCS 560 router variant. | | PTP profile interoperation | Release 7.5.1 | PTP profile interoperation enables users to deploy newer profiles in a network containing older devices that do not support these profiles. This support allows for a gradual upgrade path. | | | | This feature is supported on these NCS 560 router variants: • N560-IMA1W • N560-IMA-8Q/4L | | | | For this release, interoperation is supported only between the G.8275.1 and G.8275.2 profiles. | ### Restrictions and guidelines for multiple PTP profile interoperability To effectively configure and manage PTP profile interoperability, it is essential to understand the specific restrictions and guidelines that govern the process. These elements ensure accurate clock synchronization and seamless operation across different profiles. ### Restrictions To ensure proper configuration and operation, these restrictions must be observed: - Peer clock profile specification: Specify the profile of the peer clock; if not specified, the local clock's profile is used. - Domain number specification: Use the domain number of the peer clock; if not specified, the local clock's domain number is used. Drop incoming PTP messages with a different domain number. - Priority values mapping: Apply the default mapping for Priority1 and Priority2 values if not specified. - Clock accuracy mapping: Apply the default mapping for ClockAccuracy value if not specified. - Offset scaled log variance mapping: Apply the default mapping for OffsetScaledLogVariance value if not specified. #### Guidelines To ensure that accurate attributes of a clock are applied to define its behavior, these guidelines must be followed: - Ingress-conversion behavior: Convert clock properties received in incoming Announce messages using Ingress-Conversion behavior. - Clock-class mappings: Override default mappings with any number of Clock-Class-Mappings whenever present. - Clock-class default value usage: Use Clock-Class-Default value for all clock class values without a more specific mapping. - Egress-conversion behavior: Convert clock properties sent in outgoing **Announce** messages using Egress-Conversion behavior, with options such as Ingress-Conversion. ### **How multiple PTP profile interoperation works** ### **Summary** The key components that are involved in the process are: - R1: Acts as the grandmaster clock. - R2: Acts as a boundary clock. - R3: Acts as the timeReceiver or ordinary clock. #### Workflow Figure 2: PTP profile interoperation These stages describe how multiple PTP profile interoperation works. - 1. R1 runs the G.8275.2 profile and sends synchronization information to R2. - **2.** R2 initially runs the G.8275.2 profile. The egress interface of R2 is configured with the **interop** command. The egress interface converts the profile from G.8275.2 to G.8275.1 before sending it to R3. - **3.** R3 receives the synchronization information from R2 and synchronizes its clock. #### Result This setup ensures that R2 can interoperate between different PTP profiles, converting the synchronization data from one profile to another as needed. ### Configure multiple PTP profile interoperability The purpose of this task is to configure multiple PTP profile interoperability. Use Figure: PTP profile interoperation to configure these steps. We have used interface TenGigE0/0/0/15 to configure the interoperability. Follow these steps to configure multiple PTP profile interoperability. #### **Procedure** **Step 1** Enter the **interop** command to configure the egress interface for multiple PTP profile interoperability. ``` R2 (config) #interface TenGigE0/0/0/15 R2 (config-if) #ptp R2 (config-if-ptp) #interop ``` **Step 2** Enter the **profile** *<profile number>* command to configure the PTP profile to be used on this interface. ``` R2(config-if-ptp-interop) #profile g.8275.1 ``` **Step 3** Enter the **domain** *<domain number>* command to configure the domain of the peer clock. ``` R2(config-if-ptp-interop)#domain 24 ``` Figure 3: **Step 4** Enter the **ptp multicast target-address ethernet** *<forwarding MAC address>* command to specify the Ethernet multicast group address to send multicast messages. ``` R2(config-if) #ptp multicast target-address ethernet 01-1B-19-00-00-00 ``` **Step 5** Enter the **transport ethernet** command to configure the transport type as Ethernet in the PTP profile. ``` R2(config-ptp-profile) #transport ethernet ``` **Step 6** Enter the **port state master-only** command to configure the PTP port to operate exclusively as a timeTransmitter. ``` R2(config-if-ptp) #port state master-only ``` The port will only send PTP timing information to downstream devices. **Step 7** Enter these commands to configure frequency synchronization. ``` R2(config-if-ptp) #sync frequency 64 R2(config-if-ptp) #clock operation one-step R2(config-if-ptp) #announce interval 1 R2(config-if-ptp) #delay-request frequency 32 R2(config-if-ptp) #frequency synchronization ``` **Step 8** Run the **show ptp interop** command to view the egress profile conversion. ``` R2#show ptp interop Sat Jul 3 17:28:53.477 UTC ``` ``` Interface TenGigE0/0/0/15 Egress Conversions: G.8275.2 -> G.8275.1 Profile: 44 -> 24 Domain: 128 -> 128 Priority1: Priority2: 128 -> 128 6 -> 6 ClockClass: 0x21 -> 0x21 ClockAccuracv: OffsetScaledLogVariance: 0x4e5d -> 0x4e5d Ingress Conversions: This port is not receiving Announce messages ``` ### **Configuring Virtual Port** Effective Cisco IOS XR Release 7.4.1, you can configure virtual port on the G8275.1 and G8275.2 profiles in hybrid and non-hybrid modes. For virtual port configuration to work, GNSS or Sync2 must be configured. ``` clock domain 44 profile g.8275.2 clock-type T-BC profile profile1 transport ipv4 sync frequency 64 clock operation one-step announce frequency 8 delay-request frequency 64 virtual-port offset-scaled-log-variance 20061 priority2 128 clock-class 6 clock-accuracy 33 local-priority 127 frequency priority 254 time-of-day priority 90 <--time-of-day priority is a required parameter if you want to configure virtual port-->> log ``` # **Slow Tracking** Under normal configured conditions, any change in offset triggers an immediate reaction in the servo. With the Slow Tracking feature enabled, the servo corrects the phase offset based on the configured value. If the phase offset exceeds the acceptable range, servo goes into Holdover state. In such a condition, the Slow Tracking feature becomes inactive and the servo corrects itself to the latest offset and goes into Phase locked state. Slow Tracking becomes active again. Note - The supported slow tracking rate range is from 8-894 nanoseconds per second and must be in multiples of 8 - This feature is active only when servo is in Phase locked mode. ``` Router:# config ptp clock domain 24 profile g.8275.1 clock-type T-BC ! profile profile1 multicast target-address ethernet 01-1B-19-00-00-00 transport ethernet sync frequency 16 clock operation one-step announce frequency 8 delay-request frequency 16 ! physical-layer-frequency servo-slow-tracking 16 ``` # **PTP Holdover Traceability Suppression** Table 6: Feature History Table | Feature Name | Release Information | Feature Description | |--|---------------------|--| | PTP Holdover Traceability
Suppression | Release 7.4.1 | When a device which is configured as a Boundary clock (T-BC) loses synchronization with a quality Primary clock, to ensure that the downstream nodes continue to receive the configured clock class for a specified duration, and it's traceable you can configure this feature. | When the device loses synchronization with a quality Primary clock, to ensure that the downstream nodes continue to receive the configured clock class, and it's traceable you can configure this feature. This feature enables the device which is configured as a boundary clock (T-BC) with PTP Profiles G.8275.1 or G.8275.2 to send out the configured clock-class as holdover clock-class and the time traceability flag to be set as TRUE for the specified duration. This is to ensure the down-stream nodes do not have an impact as this is a deviation from prescribed G.8275.1 ITU-T standards. Note - There are PTP flaps during switchovers or ISSU as the PTP holdover timer is running on the active RSP. - Once the configured holdover override duration has lapsed and the device is unable to receive a quality Primary clock within this duration, the device sends the prescribed default clock class of 165, and the traceability flag will be set as FALSE to advertise loss of clock to downstream nodes. ### **Configuring PTP Holdover traceability suppression** This section describes how to configure the PTP holdover traceability suppression feature: ``` Router# config Router(config)# ptp Router(config-ptp)# holdover-spec-duration 1000 Router(config-ptp)# holdover-spec-clock-class 135 Router(config-ptp)# uncalibrated-traceable-override Router(config-ptp)# holdover-spec-traceable-override ``` ### **IEEE Default Profile** The IEEE 1588 standard defines one profile, the default profile A telecom profile defines: - · Restrictions on network technology - Required PTP options - Allowed PTP options - Forbidden PTP options The IEEE 1588
Default Profile can be configured only over IP and MPLS networks. The Default Profile requires the following PTP options: - The standard BMCA, with both priority fields set to 128. - · All management messages implemented - Domain number zero Note Under the default profile, only hybrid boundary clock is supported in Cisco IOS XR Release 6.3.2. ### **Example: Hybrid Default Profile** Global PTP Configuration: ``` ptp clock domain 0 exit ``` # **PTP Hybrid Mode** Your router allows the ability to select separate sources for frequency and time-of-day (ToD). Frequency selection can be between any source of frequency available to the router, such as: GPS, SyncE or IEEE 1588 PTP. The ToD selection is between the source selected for frequency and PTP, if available (ToD selection is from GPS or PTP). This is known as hybrid mode, where a physical frequency source (SyncE) is used to provide frequency synchronization, while PTP is used to provide ToD synchronization. Frequency selection uses the algorithm described in ITU-T recommendation G.781, and is described in the Configuring Frequency Synchronization module in this document. The ToD selection is controlled using the time-of-day priority configuration. This configuration is found under the source interface frequency synchronization configuration mode and under the global PTP configuration mode. It controls the order for which sources are selected for ToD. Values in the range of 1 to 254 are allowed, with lower numbers. ### **Configuring PTP Hybrid Mode** Note You must configure the PTP hybrid mode when using the G.8275.1 PTP profile. Configure hybrid mode by selecting PTP for the time-of-day (ToD) and another source for the frequency. This task summaries the hybrid configuration. See the other PTP configuration modules for more detailed information regarding the PTP configurations. For more information on SyncE configurations, see the *Configuring Ethernet Interfaces* section in the *Interface and Hardware Component Configuration Guide for Cisco NCS 560 Series Routers*. To configure PTP Hybrid mode: 1. Configure Global Frequency Synchronization ``` RP/0/RP0/CPU0:router(config)# frequency synchronization RP/0/RP0/CPU0:router(config)# commit RP/0/RP0/CPU0:router(config)# quality itu-t option [1 | 2] ``` 2. Configure Frequency Synchronization in Interface. ``` RP/0/RP0/CPU0:router(config) # interface GigabitEthernet 0/0/0/0 RP/0/RP0/CPU0:router(config-if) # frequency synchronization RP/0/RP0/CPU0:router(config-if-freqsync) # selection input RP/0/RP0/CPU0:router(config-if-freqsync) # time-of-day-priority 100 RP/0/RP0/CPU0:router(config-if-freqsync) # commit ``` ### 3. Configure Global PTP ``` RP/0/RP0/CPU0:router(config) # ptp RP/0/RP0/CPU0:router(config-ptp) # time-of-day priority 1 RP/0/RP0/CPU0:router(config) # commit ``` #### **4.** Configure Client Port ``` RP/0/RP0/CPU0:router(config) # interface GigabitEthernet0/0/0/2 RP/0/RP0/CPU0:router(config-if) # ptp RP/0/RP0/CPU0:router(config-if) # profile slave RP/0/RP0/CPU0:router(config-if) # multicast target-address ethernet 01-1B-19-00-00-00 RP/0/RP0/CPU0:router(config-if) # transport ethernet sync frequency 16 RP/0/RP0/CPU0:router(config-if) # announce frequency 8 RP/0/RP0/CPU0:router(config-if) # delay-request frequency 16 RP/0/RP0/CPU0:router(config-if) # frequency synchronization RP/0/RP0/CPU0:router(config-if-freqsync) # selection input RP/0/RP0/CPU0:router(config-if-freqsync) # priority 1 RP/0/RP0/CPU0:router(config-if-freqsync) # wait-to-restore 0 ``` ### **5.** Configure Server Port ``` RP/0/RP0/CPU0:router(config) # interface GigabitEthernet0/0/0/3 RP/0/RP0/CPU0:router(config) # ptp RP/0/RP0/CPU0:router(config) # profile master RP/0/RP0/CPU0:router(config) # multicast target-address ethernet 01-1B-19-00-00-00 RP/0/RP0/CPU0:router(config) # port state master-only RP/0/RP0/CPU0:router(config) # transport ethernet RP/0/RP0/CPU0:router(config) # sync frequency 16 RP/0/RP0/CPU0:router(config) # announce frequency 8 RP/0/RP0/CPU0:router(config) # delay-request frequency 16 RP/0/RP0/CPU0:router(config) # frequency synchronization RP/0/RP0/CPU0:router(config) # frequency synchronization ``` ### **Configure PTP for SyncE and PTP Traceability** In the hybrid mode of operation, if the SyncE and PTP clocks are coming from separate nodes and are not traceable to each other, and if the offset between the clocks is high, then the PTP-receiver may fail to synchronize with the PTP-transmitter node. Starting with Cisco IOS XR Release 24.4.1, a new command, **synchronous-ethernet prefer-interface ptp-receiver**is introduced in the global frequency-synchronisation mode to ensure traceability between the PTP and SyncE clocks. If you configure this CLI, note these points: - A SyncE source among *equal sources* ¹ is selected on the same interface on which PTP is selected by the router. - If the SyncE source on the PTP receiver interface is inferior (in terms of QL and user configured priority) than any other available SyncE source, then the SyncE source is selected using the default criteria (based on the ITU-T G.781 requirements). - In the event that the selected PTP source goes down or if the PTP source's quality degrades, the system may switch to another PTP source. In such case, use the **synchronous-ethernet prefer-interface ptp-receiver** command so that the SyncE source selection would also switch to the new PTP receiver interface. Here, the preferred switching of SyncE source to the new PTP receiver interface shall happen only if the new interface uses the same SyncE QL and the user configured priority as the previously selected interface. ¹ sources equal in their advertised QL and user configured priority Note The router can monitor only limited number of interfaces for SyncE selection. The **synchronous-ethernet prefer-interface ptp-receiver** command selects a SyncE source from the PTP receiver interface only if the interface is part of the list displayed using the **show frequency synchronization selection** command. This example shows how to configure the **synchronous-ethernet prefer-interface ptp-receiver** command. ``` RP/0/RP0/CPU0:router(config) # frequency synchronization synchronous-ethernet prefer-interface ptp-receiver RP/0/RP0/CPU0:router(config) # commit ``` This example verifies the **synchronous-ethernet prefer-interface ptp-receiver** configuration. ``` RP/0/RP0/CPU0:router(config)# show running-config frequency synchronization Thu Aug 8 04:50:13.638 UTC frequency-synchronization synchronous-ethernet prefer-interface ptp-receiver ``` # **Verifying the PTP Hybrid Mode Configurations** Use the following show commands to verify the configurations: ### · show ptp platform servo ``` RP/0/RP0/CPU0:ios# show ptp platform servo Tue Mar 5 07:08:00.134 UTC Servo status: Running Servo stat index: 2 Device status: PHASE LOCKED Servo Mode: Hybrid Servo log level: 0 Phase Alignment Accuracy: 0 ns Sync timestamp updated: 8631 Sync timestamp discarded: 0 Delay timestamp updated: 8631 Delay timestamp discarded: 0 Previous Received Timestamp T1: 22521.011765183 T2: 22521.011766745 T3: 22521.018061685 T4: 22521.018063247 Last Received Timestamp T1: 22521.073747183 T2: 22521.073748745 T3: 22521.080054957 T4: 22521.080056515 Offset from master: 0 secs, 2 nsecs Mean path delay : 0 secs, 1560 nsecs setTime():1 stepTime():1 adjustFreq():0 Last setTime: 21984.000000000 flag: 0 Last stepTime: -276573300 Last adjustFreq: 0 RP/0/RP1/CPU0:ios# ``` #### show running-config ptp ``` RP/0/RP0/CPU0:router# show running-config ptp ptp clock domain 24 profile g.8275.1 clock-type T-BC ! profile slave transport ethernet sync frequency 16 announce frequency 8 delay-request frequency 16 ``` ``` ! profile master transport ethernet sync frequency 16 announce frequency 8 delay-request frequency 16 ! ! physical-layer frequency ``` ### show running-config frequency synchronization ``` RP/0/RP0/CPU0:router# show running-config frequency synchronization Tue Feb 6 06:36:26.472 UTC frequency synchronization quality itu-t option 1 clock-interface timing-mode system ``` ### · show frequency synchronization interface brief # **Configure PTP Delay Asymmetry** Configure PTP delay asymmetry to offset the static delays on a PTP path that occur due to different route selection for forward and reverse PTP traffic. Delays can also be due to any node having different delay for ingress or egress path. These delays can impact PTP accuracy due to the asymmetry in PTP. With this feature, you can enable a higher degree of accuracy in the PTP server performance leading to better synchronization between real-time clocks of the devices in a network. Configuration of this delay asymmetry provides an option to configure static delays on a client clock for every server clock. You can configure this delay value in microseconds and nanoseconds. Configured PTP delay asymmetry is also synchronized with the Servo algorithm. Note - If you configure multiple PTP delay asymmetries for the same PTP profile, the latest PTP delay asymmetry that you configure is applied to the PTP profile. - For G8275.1 and G8275.2 PTP profiles, PTP delay asymmetry is supported for both, client port and dynamic port that act as a client. - Fixed delay can be measured by using any test and measurement tool. Fixed delay can be compensated by using the positive or negative values. For example, if the fixed delay is +10 nanoseconds, configure -10 nanoseconds to compensate the fixed delay. A positive value indicates that the server-to-client propagation time is longer than the client-to-server propagation time, and conversely for negative values. ### **Supported PTP Profiles** The following PTP profiles support the configuration of PTP delay asymmetry: - PTP over IP (G8275.2 or default profile) - PTP over L2 (G8275.1) #### Restrictions - PTP delay asymmetry can be configured only on the PTP port of the grandmaster clock, which can either be a boundary clock or an ordinary clock. - PTP delay asymmetry is
supported for delay compensation of fixed cables and not for variable delay in the network. - PTP delay asymmetry can be configured within the range of 3 microseconds and -3 microseconds or 3000 nanoseconds and -3000 nanoseconds. ### Configuration To configure PTP delay asymmetry: - 1. Configure an interface with PTP. - **2.** Configure PTP delay asymmetry on the client side. ### **Configuration Example** ``` /* Configure an interface with PTP. */ Router# configure Router(config)# interface HundredGigE 0/1/0/0 Router(config-if)# ptp /* Configure PTP delay asymmetry on the client side. */ Router(config-if-ptp)# delay-asymmetry 3 microseconds Router(config-if-ptp)# commit ``` ### **Running Configuration** ``` interface preconfigure HundredGigE 0/1/0/0 ptp delay-asymmetry 3 microseconds ``` ### **Verification** To verify if PTP delay asymmetry is applied, use the **show ptp foreign-masters** command: ``` Router# show ptp foreign-masters Sun Nov 1 10:19:21.874 UTC Interface HundredGigE0/1/0/0 (PTP port number 1) IPv4, Address 209.165.200.225, Unicast Configured priority: 1 Configured clock class: None Configured delay asymmetry: 3 microseconds <- configured variable delay asymmetry value ``` ``` Announce granted: every 2 seconds, 300 seconds Sync granted: 16 per-second, 300 seconds Delay-resp granted: 16 per-second, 300 seconds Qualified for 2 minutes, 45 seconds Clock ID: 80e01dfffe8ab73f Received clock properties: Domain: 0, Priority1: 128, Priority2: 128, Class: 6 Accuracy: 0x22, Offset scaled log variance: 0xcd70 Steps-removed: 1, Time source: GPS, Timescale: PTP Frequency-traceable, Time-traceable Current UTC offset: 37 seconds (valid) Parent properties: Clock ID: 80e01dfffe8ab73f Port number: 1 ``` To validate the approximate compensated delay value, use the **show ptp platform servo** command: ``` Router# show ptp platform servo Mon Jun 27 22:32:44.912 UTC Servo status: Running Servo stat index: 2 Device status: PHASE LOCKED Servo Mode: Hybrid Servo log level: 0 Phase Alignment Accuracy: -2 ns Sync timestamp updated: 18838 Sync timestamp discarded: 0 Delay timestamp updated: 18837 Delay timestamp discarded: 0 Previous Received Timestamp T1: 1657002314.031435081 T2: 1657002314.031436686 T3: 1657002314.026815770 T4: 1657002314.026814372 Last Received Timestamp T1: 1657002314.031435081 T2: 1657002314.031436686 T3: 1657002314.088857790 T4: 1657002314.088856392 Offset from master: 0 secs, 1502 nsecs <--compensated value shows 1.5 microseconds because the asymmetry configured under the interface is 3 microseconds.->> Mean path delay : 0 secs, 103 nsecs setTime():0 stepTime():0 adjustFreq():2 Last setTime: 0.000000000 flag: 0 Last stepTime: 0 Last adjustFreq:-5093 ``` # **Performance Monitoring for PTP Networks** Performance Monitoring in PTP involves tracking and analyzing the performance of PTP networks to ensure accurate time synchronization across devices. This includes monitoring various metrics such as clock accuracy, synchronization status, and network delays. The goal is to identify and address any issues that may affect the precision and reliability of time synchronization in the network. Performance Monitoring now has the ability to provide performance monitoring and time-stamp analysis information in a PTP network as per Annex J IEEE 1588-2019. This feature also includes additional monitoring granularity for time synchronization in telecommunication networks as per Annex F from the G8275 standard. For more information on PTP, Best TimeTransmitter Clock Algorithm (BTCA), see PTP Overview. You can use the following parameters to define the Performance Monitoring in a PTP Network: - Performance Monitoring Parameters - Port Specific Parameters ### **Performance Monitoring Parameters** In addition to using the timestamps received from the grandmaster to sync to the grandmaster's clock, the timestamps can now be used to calculate parameters that are of your interest in performance monitoring: - TimeTransmitter TimeReceiver Delay: corrected propagation time from TimeTransmitter to TimeReceiver. - **TimeReceiver TimeTransmitter Delay**: corrected propagation time from TimeReceiver to TimeTransmitter. - Mean Path Delay: mean propagation time over the PTP Communication Path. - Offset from TimeTransmitter: time difference between a TimeTransmitter PTP instance and a TimeReceiver PTP instance as computed by the TimeReceiver PTP instance. For each of these parameters, you can measure the average, minimum, maximum, and standard deviation for each measurement. These values are calculated and maintained for the following time intervals over the specified time periods: - 3-minute: maintained for the current 1-hour period. - **15-minute**: maintained for the current 24-hour period. - 1-hour: maintained for the current 2-hour period. - 24-hour: maintained for the current 48-hour period. The platform actively calculates the end-to-end latency between the TimeTransmitter and TimeReceiver through the Delay-Request-Response-Mechanism (DRRM), allowing Precision Time Protocol (PTP) to seamlessly operate across networks equipped with Transparent clocks, non-PTP aware switches, or a mix of both. Upon a request, PTP dynamically extracts these calculated values from the servo using a platform specific API, allowing you to make proactive changes to the network to ensure precise time synchronization essential for applications that depend on accurate timing. ### Additional Port Specific Parameters The parameters mentioned above apply to the entire Precision Time Protocol (PTP) instance, and there is an additional set of parameters specific to individual ports. These parameters include the counters for various packet types, - · received (rx) and - transmitted (tx) It is important to collect and maintain these counters for performance monitoring purposes, which follows the same time intervals and periods as those used for monitoring clock performance. Port-specific parameters play a crucial role in ensuring accurate time synchronization. These packet types are essential for maintaining the accuracy and reliability of time synchronization in a PTP network: - Sync Packets: These packets are sent by the master clock to the slave clocks to synchronize their time. They contain the precise time at which the packet was sent. - **Delay Request Packets**: Sent by the slave clock to the master clock, these packets measure the delay between the master and slave clocks. The master clock responds with a Delay Response packet. - Follow-Up Packets: These packets are sent by the master clock immediately after the Sync packet. They contain the exact time the Sync packet was sent, which helps in correcting any delays introduced by the network. - **Announce Packets**: These packets are used by the master clock to announce its presence and capabilities to the slave clocks. They help in the selection of the best master clock in the network. - Management Packets: These packets are used for configuration and management purposes within the PTP network. They allow for the adjustment of various parameters and settings. #### **Record format** Record format refers to the structure or layout of data within a record, which is used to store information about time synchronization events and measurements. This format can include various fields such as timestamps, event types, and other relevant data that PTP uses to maintain accurate time synchronization across a network. It is a single buffer for both annexes. The format is the same for both clock and port performance monitoring parameters that is presented in the operational data. The data is stored over a 48-hour period, resulting in a list of records as per Annex J 1588-2019, composed of the following: - 1 record for the current 15-minute set of statistics (stored at position 0 in the buffer). - 96 records for the 15-minute sets of statistics over the last 24-hour period (stored between positions 1-96 in the buffer). - 1 record for the current 24-hour set of statistics (stored at position 97 in the buffer). - 1 record for the previous 24-hour set of statistics (stored at position 98 in the buffer). The data buffer records data at 3-minute intervals over the most recent 1-hour period, creating a list of records that includes: - 1 record for the current 3-minute set of statistics (stored at position 100 in the buffer). - 20 records for the 3-minute set of statistics over the last 1-hour period (stored between positions 101-120). - 1 record for the current 1-hour set of statistics (stored at position 121 in the buffer). - 1 record for the previous 1-hour set of statistics (stored at position 122 in the buffer). ### **Configure PTP Performance Monitoring** The purpose of this task is to configure and verify PTP performance monitoring. #### **Procedure** **Step 1** Configure the **performance-monitoring** command to enable collection of performance monitoring statistics and for the users to make performance monitoring requests. #### **Example:** Router(config)# ptp ``` Router(config-ptp)# performance-monitoring Router(config-ptp)# commit ``` Step 2 Run the sh ptp platform performance-counters command to display the details of all 123 records. The existing command **show ptp platform** is extended to include the performance monitoring data for the local clock. The detail mode of the command displays all 123 records while the brief mode displays only the current windows for 15 minutes, 24 hours, 3minutes, and 1hour. #### **Example:** ``` Router#sh ptp platform performance-counters detail PTP Current record index 15 min: 96 PTP Current record index 3 min: 119 PTP performance monitoring statistics: 15 min stats 12 August 2024 07:08:59 UTC 15 min statistics Stat Min(sec.nsec) Max(sec.nsec) Mean(sec.nsec) St.d deviation Samples Master-slave-delay -00000000.15937 000000000.333 -000000000.1780 154 000000000.71191 Slave-master-delay 00000000.319 000000000.16593 000000000.2437 000000000.74103 154 000000000.334 00000000.327
mean-path-delay 00000000.322 000000000.4057 154 offset-from-master -00000000.16263 000000000.6 -000000000.2108 000000000.72546 Valid PmRef ``` Complete Valid PmRef ServoAtStart ServoAtEnd LastServoFlapTime FALSE FALSE TRUE PHASE_LOCKED HOLDOVER 12 Apr 2024 07:09:09 UTC ----- ... • **Step 3** Run the **show ptp dataset performance clock** command to display the performance monitoring data-set details in 15 minutes intervals. ### **Example:** ``` Router#show ptp dataset performance clock ``` ``` performanceMonitoringDS for the current 15-minute window: Clock ID ccccfffecccc00, steps removed 1, receiving-port 2: Start of time window: Thursday, April 11, 2024 14:18:59 Measurement is valid Period is complete Measurement has been taken with reference to system clock ``` ``` Master slave delay: Average: 50ns Min: 50ns Max: 70ns Std: 1ns Slave master delay: Average: 51ns Min: 51ns Max: 71ns Std: 2ns Mean path delay: Average: 52ns Min: 52ns Max: 72ns Std: 3ns Offset from master: Average: 53ns Min: 53ns Max: 73ns Std: 4ns Clock ID aaaabbbecccc00, steps removed 1, receiving-port 2: Start of time window: Thursday, April 11, 2024 14:18:59 Measurement is not valid Period is not complete Measurement has been taken with reference to system clock Master slave delay: Average: 50ns Min: 50ns Max: 70ns Std: 1ns Slave master delay: Average: 51ns Min: 51ns Max: 71ns Std: 2ns Mean path delay: Average: 52ns Min: 52ns Max: 72ns Std: 3ns Offset from master: Average: 53ns Min: 53ns Max: 73ns Std: 4ns ``` # Step 4 Run the show ptp dataset performance port to display the Performance Monitoring Port Data-set in 15 minutes intervals. ### **Example:** Router#show ptp dataset performance port GigabitEthernet 0/0/0/1 ``` performanceMonitoringPortDS for the current 15-minute window: Interface GigabitEthernet 0/0/0/1 Start of time window: Thursday, April 11, 2024 14:18:59 Measurement is valid Period is not complete Measurement has been taken with reference to system clock Sent Received Dropped Packets ______ 3 83 11 Announce 0 32 Sync 31 Follow-Up 0 0 ``` | Delay-Req | 22 | 0 | 0 | |-----------------------|----|-----|----| | Delay-Resp | 0 | 21 | 7 | | Pdelay-Req | 0 | 7 | 0 | | Pdelay-Resp | 0 | 0 | 0 | | Pdelay-Resp-Follow-Up | 0 | 0 | 0 | | Signaling | 2 | 1 | 0 | | Management | 0 | 0 | 0 | | Other | 0 | 3 | 12 | | | | | | | TOTAL | 27 | 178 | 35 | **Configure PTP Performance Monitoring**