Use gRPC Protocol to Define Network Operations
with Data Models

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automated mechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure using protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a
series of name-value pairs.

gRPC encodes requests and responses in binary. gRPC is extensible to other content types along with Protobuf.
The Protobuf binary data object in gRPC is transported over HTTP/2.

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server. The structure of the data is defined by YANG models.

N

Note

TCP protocol.

All 64-bit IOS XR platforms support gRPC and TCP protocols. All 32-bit IOS XR platforms support only

Cisco gRPC IDL uses the protocol buffers interface definition language (IDL) to define service methods, and
define parameters and return types as protocol buffer message types. The gRPC requests are encoded and sent
to the router using JSON. Clients can invoke the RPC calls defined in the IDL to program the router.

The following example shows the syntax of the proto file for a gRPC configuration:

syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {
rpc GetConfig(ConfigGetArgs) returns (stream ConfigGetReply) {};
rpc MergeConfig (ConfigArgs) returns (ConfigReply) {};

rpc DeleteConfig (ConfigArgs) returns (ConfigReply) {};

Use gRPC Protocol to Define Network Operations with Data Models [JJj

Use gRPC Protocol to Define Network Operations with Data Models |

rpc ReplaceConfig(ConfigArgs) returns (ConfigReply) {};
rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};
rpc GetOper (GetOperArgs) returns (stream GetOperReply) {};

rpc CommitReplace (CommitReplaceArgs) returns (CommitReplaceReply) {};
}
message ConfigGetArgs {

int64 ReqId = 1;

string yangpathijson = 2;

message ConfigGetReply {
int64 ResReqgld = 1;
string yangjson = 2;
string errors = 3;

message GetOperArgs {
int64 ReqId = 1;
string yangpathijson = 2;

message GetOperReply {
int64 ResReqId = 1;
2;

string yangjson =
string errors = 3;

}

message ConfigArgs {
int64 ReqId = 1;
string yangjson = 2;

message ConfigReply {
int64 ResReqId = 1;
string errors = 2;

message CliConfigArgs {
int64 ReqId = 1;
string cli = 2;

message CliConfigReply {
int64 ResReqld = 1;
string errors = 2;

message CommitReplaceArgs {
int64 ReqId = 1;
string cli = 2;
string yangjson = 3;

message CommitReplaceReply {
int64 ResReqgld = 1;
string errors = 2;

}
Example for gRPCExec configuration:

[l Use gRPC Protocol to Define Network Operations with Data Models

Use gRPC Protocol to Define Network Operations with Data Models

service gRPCExec {
rpc ShowCmdTextOutput (ShowCmdArgs) returns(stream ShowCmdTextReply) {};
rpc ShowCmdJSONOutput (ShowCmdArgs) returns(stream ShowCmdJSONReply) {};

message ShowCmdArgs {
int64 ReqId = 1;
string cli = 2;

message ShowCmdTextReply {
int64 ResReqgld =1;
string output = 2;
string errors = 3;

Example for OpenConfiggRPC configuration:

service OpenConfiggRPC {
rpc SubscribeTelemetry (SubscribeRequest) returns (stream SubscribeResponse) {};
rpc UnSubscribeTelemetry (CancelSubscribeReq) returns (SubscribeResponse) {};
rpc GetModels (GetModelsInput) returns (GetModelsOutput) {};

message GetModelsInput {

uint64 requestId = 1;
string name = 2;
string namespace = 3;
string version = 4;

enum MODLE_REQUEST_ TYPE {
SUMMARY = 0;
DETAIL = 1;
}
MODLE_REQUEST TYPE requestType = 5;

message GetModelsOutput {

uint64 requestId = 1;
message ModelInfo {
string name =1;
string namespace = 2;
string version = 3;

GET_MODEL_TYPE modelType = 4;
string modelData = 5;
}
repeated ModelInfo models = 2;
OC_RPC_RESPONSE TYPE responseCode = 3;
string msg = 4;

}

This article describes, with a use case to configure interfaces on a router, how data models helps in a faster
programmatic and standards-based configuration of a network, as comapared to CLI.

* gRPC Operations, on page 4

» gRPC Network Management Interface, on page 5

* gRPC Network Operations Interface , on page 5

» gRPC Authentication Modes, on page 5

* Configure Interfaces Using Data Models in a gRPC Session, on page 9

Use gRPC Protocol to Define Network Operations with Data Models [JJj

. gRPC Operations

gRPC Operations

The following are the defined manageability service gRPC operations for Cisco I0OS XR:

Use gRPC Protocol to Define Network Operations with Data Models |

gRPC Operation Description

GetConfig Retrieves the configuration from the router.

GetModels Gets the supported Yang models on the router

MergeConfig Merges the input config with the existing device configuration.
DeleteConfig Deletes one or more subtrees or leaves of configuration.
ReplaceConfig Replaces part of the existing configuration with the input configuration.
CommitReplace Replaces all existing configuration with the new configuration provided.
GetOper Retrieves operational data.

CliConfig Invokes the input CLI configuration.

ShowCmdTextOutput Returns the output of a show command in the text form
ShowCmdJSONOutput Returns the output of a show command in JSON form.

gRPC Operation to Get Configuration

This example shows how a gRPC GetConfig request works for CDP feature.

The client initiates a message to get the current configuration of CDP running on the router. The
router responds with the current CDP configuration.

[l Use gRPC Protocol to Define Network Operations with Data Models

| Use gRPC Protocol to Define Network Operations with Data Models

gRPC Network Management Interface .

gRPC Request (Client to Router)

gRPC Response (Router to Client)

rpc GetConfig
{
"Cisco-I0S-XR-cdp-cfg:cdp": [
"cdp": "running-configuration"
]
}

rpc GetConfig
{

"Cisco-I0S-XR-ethernet-1ldp-cfg:11ldp":

{
"Cisco-I0S-XR-cdp-cfg:cdp": {

"timer": 50,
"enable": true,
"log-adjacency": [
null

1,

"hold-time": 180,
"advertise-vl-only": [
null

1

"11ldp": "running-configuration" }
]
}

{
"Cisco-I0S-XR-ethernet-1ldp-cfg:11ldp": {

}

"timer": 60,
"enable": true,
"reinit": 3,

"holdtime": 150

gRPC Network Management Interface

gRPC Network Management Interface (gNMI) is a gRPC-based network management protocol used to modify,
install or delete configuration from network devices. It is also used to view operational data, control and
generate telemetry streams from a target device to a data collection system. It uses a single protocol to manage
configurations and stream telemetry data from network devices.

The subscription in a gNMI does not require prior sensor path configuration on the target device. Sensor paths
are requested by the collector (such as pipeline), and the subscription mode can be specified for each path.
gNMI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

gRPC Network Operations Interface

gRPC Network Operations Interface (gNOI) defines a set of gRPC-based microservices for executing
operational commands on network devices. These services are to be used in conjunction with gRPC network
management interface (gNMI) for all target state and operational state of a network. gNOI uses gRPC as the
transport protocol and the configuration is same as that of gRPC. For more information about gNOI, see the
Github repository.

gRPC Authentication Modes

gRPC supports the following authentication modes to secure communication between clients and servers.
These authentication modes help ensure that only authorized entities can access the gRPC services, like gNOI,
gRIBI, and P4RT. Upon receiving a gRPC request, the device will authenticate the user and perform various
authorization checks to validate the user.

Use gRPC Protocol to Define Network Operations with Data Models [JJj

https://github.com/openconfig/gnoi

Use gRPC Protocol to Define Network Operations with Data Models |
. gRPC Authentication Modes

The following table lists the authentication type and configuration requirements:

Table 1: gRPC Authentication Modes and Configuration Requirements

Type Authentication Authorization Configuration Requirement From
Method Method Requirement Client

Metadata with TLS |username, password | username grpc username, password,

and CA

Metadata without | username, password | username grpc no-tls username, password

TLS

Metadata with username, password | username grpc tlsmutual username, password,

Mutual TLS client certificate,

client key, and CA

Certificate based client certificate's | username from grpc tlsmutual client certificate,
Authentication common name field | client certificate's client key, and CA
common name field and

grpc certificate
authentication

Certificate based Authentication
In Extensible Manageability Services (EMS) gRPC, the certificates play a vital role in ensuring secure and
authenticated communication. The EMS gRPC utilizes the following certificates for authentication:

/misc/config/grpc/ems.pem
/misc/config/grpc/ems.key
/misc/config/grpc/ca.cert

N\

Note For clients to use the certificates, ensure to copy the certificates from /misc/config/grpc/

Generation of Certificates

These certificates are typically generated using a Certificate Authority (CA) by the device. The EMS certificates,
including the server certificate (ems.pem), public key (ems.key), and CA certificate (ca.cert), are generated
with specific parameters like the common name ems.cisco.com to uniquely identify the EMS server and
placed in the /misc/config/grpc/ location.

The default certificates that are generated by the server are Server-only TLS certificates and by using these
certificates you can authenticate the identity of the server.

Usage of Certificates

These certificates are used for enabling secure communication through Transport Layer Security (TLS) between
gRPC clients and the EMS server. The client should use ems.pem and ca.cert to initiate the TLS authentication.

To update the certificates, ensure to copy the new certificates that has been generated earlier to the location
and restart the server.

Custom Certificates

[l Use gRPC Protocol to Define Network Operations with Data Models

| Use gRPC Protocol to Define Network Operations with Data Models
Certificate Common-Name For Dial-in Using gRPC Protocol .

If you want to use your own certificates for EMS gRPC communication, then you can follow a workflow to
generate a custom certificates with the required parameters and then configure the EMS server to use these
custom certificates. This process involves replacing the default EMS certificates with the custom ones and
ensuring that the gRPC clients also trust the custom CA certificate. For more information on how to customize
the common-name, see Certificate Common-Name For Dial-in Using gRPC Protocol.

Certificate Common-Name For Dial-in Using gRPC Protocol

Table 2: Feature History Table

Feature Name Release Information Description
Certificate Common-Name For Release 24.1.1 You can now specify a
Dial-in Using gRPC Protocol common-name for the certificate

generated by the router while using
gRPC dial-in. Earlier, the
common-name in the certificate
was fixed as ems.cisco.comand was
not configurable. Using a specified
common-name avoids potential
certification failures where you may
specify a hostname different from
the fixed common name to connect
to the router.

The feature introduces these
changes:

CLI:

YANG Data M odel:

* New XPath for
Cisco-IOS-XR-um-grpc-cfg.yang

e New XPath for

Cisco-I0S-XR-man-ems-cfg

(see GitHub, YANG Data Models
Navigator)

When using gRPC dial-in on Cisco IOS-XR router, the common-nameassociated with the certificate generated
by the router is fixed as ems.cisco.com and this caused failure during certificate verification.

From Cisco IOS XR Release 24.1.1, you can now have the flexibility of specifying the common-name in the
certificate using the grpc certifcate common-name command. This allows gRPC clients to verify if the
domain name in the certificate matches the domain name of the gRPC server being accessed.

Configure Certificate Common Name For Dial-in

Configure a common name to be used in EMSD certificates for gRPC dial-in.

Use gRPC Protocol to Define Network Operations with Data Models [JJj

https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

. Configure Certificate Common Name For Dial-in

Procedure

Step 1 Configure a common name.

Example:

Router#config

Router (config) #grpc

Use gRPC Protocol to Define Network Operations with Data Models |

Router (config-grpc) #certificate common-name cisco.com
Router (config-grpc) #commit

Use the show command to verify the common name:

Router#show grpc
Certificate common name

Note

cisco.com

For the above configuration to be successful, ensure to regenerate the certificate. so that the new EMSD certificates
include the configured common name.

To regener ate the self-signed certificate, perform the following steps.

Step 2 Remove the certificates: /misc/config/grpc/ems
from /misc/config/grpc file.

Example:

Router#run 1s

total 16

drwx------ 2
-rw-rw-rw-. 1
—rw---—---- 1
-rw-r--r--. 1

Router#run rm

Router#run 1ls

total 8
drwx------ .2
-rw-r—--r--. 1

-1ltr

root
root
root
root

/misc/config/grpc/

root
root
root
root

4096
1505
1675
1505

Feb 14
Feb 14
Feb 14
Feb 14

09:
10:
10:
10:

17
58
58
58

.pem, /misc/config/grpc/ems.key, and /misc/config/grpc/ca.cert

dialout
ems .pem
ems . key
ca.cert

-rf /misc/config/grpc/ems.pem /misc/config/grpc/ems.key

-ltr /misc/config/grpc/

root root 4096 Feb 14 09:17 dialout
root root 1505 Feb 14 10:58 ca.cert

Step 3 Restart gRPC server by toggling the TLS configuration.

Configure gRPC with non TLS and then re-configure with TLS.

Example:

Router#config

Router (config) #grpc

Router (config-grpc) #no-tls
Router (config-grpc) #commit

Router#run 1ls -ltr /misc/config/grpc/

total 8

drwx------ . 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert
Router#config

Router (config) #grpc

[l Use gRPC Protocol to Define Network Operations with Data Models

| Use gRPC Protocol to Define Network Operations with Data Models

Configure Interfaces Using Data Models in a gRPC Session .

Router (config-grpc) #no no-tls
Router (config-grpc) #fcommit

Routerf#run 1ls -ltr /misc/config/grpc/

total 16

-. 2 root root 4096 Feb 14 09:17 dialout

-rw-rw-rw-. 1 root root 1505 Feb 14 14:23 ems.pem

-. 1 root root 1675 Feb 14 14:23 ems.key

-rw-r—--r--. 1 root root 1505 Feb 14 14:23 ca.cert

Copy the newly generated /misc/config/grpc/ems. pen certificate in this path (from the device) to the gRPC client.

Configure Interfaces Using Data Models in a gRPC Session

Google-defined remote procedure call () is an open-source RPC framework. gRPC supports IPv4 and IPv6
address families. The client applications use this protocol to request information from the router, and make
configuration changes to the router.

The process for using data models involves:

* Obtain the data models.
* Establish a connection between the router and the client using gRPC communication protocol.

» Manage the configuration of the router from the client using data models.

)

Note

user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol

(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid

granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide.

Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR

In this section, you use native data models to configure loopback and ethernet interfaces on a router using a
gRPC session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper IP addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

Use gRPC Protocol to Define Network Operations with Data Models [JJj

. Configure Interfaces Using Data Models in a gRPC Session

Figure 1: Network Topology for gRPC session

Use gRPC Protocol to Define Network Operations with Data Models |

Controller Out-of-band network
i oocc
3
198.18.1.127/24
v
198.18.1.11/24 198.18.1.111/24 198.18.1.112/24 198.18.1.12/24
% g0/0/0/0 % go/0/0f2 % g0/0/0/0 %
172.16.1.0/31 172.16.2.4/31 172.16.2.0/31
LER1 LSR1 LSR2 LER2
lo0 lo0 100 loD
172.16.255.1/32 172.16.255.101/32 172.16.255.102/32 172.16.255.2/32
g0/
172.16.1.2/31 g0/0/0A .
=1
172.16.2.2/31 g

You use Cisco IOS XR native model cisco-10S-XR-ifmgr-cfg.yang to programmatically configure router

LERI.

Before you begin

* Retrieve the list of YANG modules on the router using NETCONF monitoring RPC. For more information

* Configure Transport Layer Security (TLS). Enabling gRPC protocol uses the default HTTP/2 transport
with no TLS. gRPC mandates AAA authentication and authorization for all gRPC requests. If TLS is
not configured, the authentication credentials are transferred over the network unencrypted. Enabling
TLS ensures that the credentials are secure and encrypted. Non-TLS mode can only be used in secure

internal network.

Procedure

Step 1 Enable gRPC Protocol

To configure network devices and view operational data, gRPC proptocol must be enabled on the server. In this example,

you enable gRPC protocol on LER1, the server.

Note

Cisco I0S XR 64-bit platforms support gRPC protocol. The 32-bit platforms do not support gRPC protocol.

a) Enable gRPC over an HTTP/2 connection.

Example:

Router#configure
Router (config) #grpc
Router (config-grpc) #port <port-number>

[l Use gRPC Protocol to Define Network Operations with Data Models

| Use gRPC Protocol to Define Network Operations with Data Models

Step 2

Configure Interfaces Using Data Models in a gRPC Session .

The port number ranges from 57344 to 57999. If a port number is unavailable, an error is displayed.

b) Set the session parameters.

Example:

Router (config) #grpc {address-family | certificate-authentication | dscp | max-concurrent-streams
| max-request-per-user | max-request-total | max-streams |

max-streams-per-user | no-tls | tlsvl-disable | tls-cipher | tls-mutual | tls-trustpoint |
service-layer | vrf}
where:

* address-family: set the address family identifier type.

* certificate-authentication: enables certificate based authentication
* dscp: set QoS marking DSCP on transmitted gRPC.

* max-request-per-user: set the maximum concurrent requests per user.
* max-request-total: set the maximum concurrent requests in total.

* max-streams: set the maximum number of concurrent gRPC requests. The maximum subscription limit is 128
requests. The default is 32 requests.

* max-streams-per-user: set the maximum concurrent gRPC requests for each user. The maximum subscription
limit is 128 requests. The default is 32 requests.

* no-tls: disable transport layer security (TLS). The TLS is enabled by default
* tlsvl-disable: disable TLS version 1.0
* service-layer: enable the grpc service layer configuration.

This parameter is not supported in Cisco ASR 9000 Series Routers, Cisco NCS560 Series Routers, , and Cisco
NCS540 Series Routers.

* tls-cipher: enable the gRPC TLS cipher suites.
* tls-mutual: set the mutual authentication.
* tls-trustpoint: configure trustpoint.

* server-vrf: enable server vrf.
After gRPC is enabled, use the YANG data models to manage network configurations.

Configure the interfaces.

In this example, you configure interfaces using Cisco IOS XR native model Cisco-T0S-XR-ifmgr-cfg.yang. You gain
an understanding about the various gRPC operations while you configure the interface. For the complete list of operations,
see gRPC Operations, on page 4. In this example, you merge configurations with merge-config RPC, retreive operational
statistics using get-oper RPC, and delete a configuration using delete-config RPC. You can explore the structure of

the data model using YANG validator tools such as pyang.

LERI1 is the gRPC server, and a command line utility grpcc is used as a client on the controller. This utility does not
support YANG and, therefore, does not validate the data model. The server, LER1, validates the data mode.

Note
The OC interface maps all IP configurations for parent interface under a VLAN with index 0. Hence, do not configure a
sub interface with tag 0.

Use gRPC Protocol to Define Network Operations with Data Models [JJj

https://github.com/mbj4668/pyang

Use gRPC Protocol to Define Network Operations with Data Models |
Configure Interfaces Using Data Models in a gRPC Session

a) Explore the XR configuration model for interfaces and its IPv4 augmentation.

Example:

controller:grpc$ pyang --format tree --tree-depth 3 Cisco-IOS-XR-ifmgr-cfg.yang
Cisco-I0S-XR-ipv4-io-cfg.yang
module: Cisco-IOS-XR-ifmgr-cfg
+--rw global-interface-configuration
| +--rw link-status? Link-status-enum
+--rw interface-configurations
+--rw interface-configuration* [active interface-name]
+--rw dampening
|
+--rw mtus
|
+--rw encapsulation
|
+--rw shutdown? empty
+--rw interface-virtual? empty
+--rw secondary-admin-state? Secondary-admin-state-enum
+--rw interface-mode-non-physical? Interface-mode-enum
+--rw bandwidth? uint32
+--rw link-status? empty
+--rw description? string
+--rw active Interface-active
+--rw interface-name xr:Interface-name
+--rw ipvé4-io-cfg:ipv4-network
|
+--rw ipvé4-io-cfg:ipvé4-network-forwarding

b) Configure a loopback0 interface on LER1.

Example:

controller:grpc$ more xr-interfaces-lo0-cfg.json
{
"Cisco-I0S-XR-ifmgr-cfg:interface-configurations":
{ "interface-configuration": [
{
"active": "act",
"interface-name": "LoopbackO",
"description": "LOCAL TERMINATION ADDRESS",
"interface-virtual": [
null
] 4
"Cisco-IOS-XR-ipv4-io-cfg:ipv4d-network": {
"addresses": {
"primary": {
"address": "172.16.255.1",
"netmask": "255.255.255.255"

¢) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server addr 198.18.1.11:57400 -json in file xr-interfaces-giO-cfg.json

[l Use gRPC Protocol to Define Network Operations with Data Models

| Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session .

emsMergeConfig: Sending ReqId 1

emsMergeConfig: Received ReqId 1, Response '
\l

d) Configure the ethernet interface on LER1.

Example:

controller:grpc$ more xr-interfaces-giO-cfg.json
{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [

{

"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"description": "CONNECTS TO LSR1 (g0/0/0/0)",
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": ({
"addresses":
"primary": {
"address": "172.16.1.0",

"netmask": "255.255.255.254"

e) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server addr 198.18.1.11:57400 -json_in file xr-interfaces-giO-cfg.json
emsMergeConfig: Sending RegId 1

emsMergeConfig: Received RegId 1, Response '

L}

f) Enable the ethernet interface GigabitEthernet 0/0/0/0 on LERI to bring up the interface. To do this, delete shutdown
configuration for the interface.

Example:

controller:grpc$ grpcc -username admin -password admin -oper delete-config
-server addr 198.18.1.11:57400 -yang path "$(< xr-interfaces-giO-shutdown-cfg.json)"
emsDeleteConfig: Sending RegId 1, yangJdson {
"Cisco-I0S-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [

{

"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"shutdown": [

null

emsDeleteConfig: Received RegId 1, Response ''

Step 3 Verify that the loopback interface and the ethernet interface on router LER1 are operational.

Use gRPC Protocol to Define Network Operations with Data Models [JJj

Use gRPC Protocol to Define Network Operations with Data Models |
. Configure Interfaces Using Data Models in a gRPC Session

Example:

controller:grpc$ grpcc -username admin -password admin -oper get-oper
-server addr 198.18.1.11:57400 -oper yang path "$(< xr-interfaces-briefs-oper-filter.json)"
emsGetOper: Sending ReqId 1, yangPath {
"Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {
"interface-briefs": [
null
]

}
{ "Cisco-IO0S-XR-pfi-im-cmd-oper:interfaces": ({
"interface-briefs": {
"interface-brief": [
{
"interface-name": "GigabitEthernet0/0/0/0",
"interface": "GigabitEthernet0/0/0/0",
"type": "IFT GETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000
}I

"interface-name": "GigabitEthernet0/0/0/1",
"interface": "GigabitEthernet0/0/0/1",
"type": "IFT GETHERNET",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,

"bandwidth": 1000000

}I

"interface-name": "LoopbackO",
"interface": "LoopbackO",

"type": "IFT LOOPBACK",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "loopback",
"encapsulation-type-string": "Loopback",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,

"bandwidth": 0

"interface-name": "MgmtEthO/RP0O/CPU0/0",
"interface": "MgmtEthO0/RP0O/CPUO/O",
"type": "IFT ETHERNET",

"state": "im-state-up",

[l Use gRPC Protocol to Define Network Operations with Data Models

| Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session .

"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,

"bandwidth": 1000000

"interface-name": "NullO",
"interface": "NullO",

"type": "IFT NULL",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "null",
"encapsulation-type-string": "Null",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,

"bandwidth": 0

emsGetOper: Reqgld 1, byteRecv: 2325

In summary, router LER1, which had minimal configuration, is now programmatically configured using data models
with an ethernet interface and is assigned a loopback address. Both these interfaces are operational and ready for network
provisioning operations.

Use gRPC Protocol to Define Network Operations with Data Models [JJj

Use gRPC Protocol to Define Network Operations with Data Models |
. Configure Interfaces Using Data Models in a gRPC Session

[l Use gRPC Protocol to Define Network Operations with Data Models

	Use gRPC Protocol to Define Network Operations with Data Models
	gRPC Operations
	gRPC Network Management Interface
	gRPC Network Operations Interface
	gRPC Authentication Modes
	Certificate Common-Name For Dial-in Using gRPC Protocol
	Configure Certificate Common Name For Dial-in

	Configure Interfaces Using Data Models in a gRPC Session

