EVPN Features

This chapter describes how to configure Layer 2 Ethernet VPN (EVPN) features on the router.

- EVPN Overview, on page 1
- EVPN Concepts, on page 2
- EVPN Operation, on page 3
- EVPN Route Types, on page 4
- Configure EVPN L2 Bridging Service, on page 5
- EVPN Software MAC Learning, on page 6
- EVPN Out of Service, on page 14
- EVPN Routing Policy, on page 17

EVPN Overview

Ethernet VPN (EVPN) is a next generation solution that provides Ethernet multipoint services over MPLS networks. EVPN operates in contrast to the existing Virtual Private LAN Service (VPLS) by enabling control-plane based MAC learning in the core. In EVPN, PEs participating in the EVPN instances learn customer MAC routes in control-plane using MP-BGP protocol. Control-plane MAC learning brings a number of benefits that allow EVPN to address the VPLS shortcomings, including support for multi-homing with per-flow load balancing.

EVPN provides the solution for network operators for the following emerging needs in their network:

- Data center interconnect operation (DCI)
- Cloud and services virtualization
- Remove protocols and network simplification
- Integration of L2 and L3 services over the same VPN
- Flexible service and workload placement
- Multi-tenancy with L2 and L3 VPN
- Optimal forwarding and workload mobility
- Fast convergence
- Efficient bandwidth utilization
EVPN Benefits

The EVPN provides the following benefits:

- **Integrated Services**: Integrated L2 and L3 VPN services, L3VPN-like principles and operational experience for scalability and control, all-active multi-homing and PE load-balancing using ECMP, and enables load balancing of traffic to and from CEs that are multihomed to multiple PEs.

- **Network Efficiency**: Eliminates flood and learn mechanism, fast-reroute, resiliency, and faster reconvergence when the link to dual-homed server fails, optimized Broadcast, Unknown-unicast, Multicast (BUM) traffic delivery.

- **Service Flexibility**: MPLS data plane encapsulation, support existing and new services types (E-LAN, E-Line), peer PE auto-discovery, and redundancy group auto-sensing.

EVPN Modes

The following EVPN modes are supported:

- **Single-homing**: This enables you to connect a customer edge (CE) device to one provider edge (PE) device.

- **Multihoming**: This enables you to connect a customer edge (CE) device to more than one provider edge (PE) device. Multihoming ensures redundant connectivity. The redundant PE device ensures that there is no traffic disruption when there is a network failure. Following are the types of multihoming:
 - **Single-Active**: In single-active mode only a single PE among a group of PEs attached to the particular Ethernet-Segment is allowed to forward traffic to and from that Ethernet Segment.
 - **All-Active**: In all-active mode all the PEs attached to the particular Ethernet-Segment is allowed to forward traffic to and from that Ethernet Segment.

EVPN Concepts

To implement EVPN features, you need to understand the following concepts:

- **Ethernet Segment (ES)**: An Ethernet segment is a set of Ethernet links that connects a multihomed device. If a multi-homed device or network is connected to two or more PEs through a set of Ethernet links, then that set of links is referred to as an Ethernet segment. The Ethernet segment route is also referred to as Route Type 4. This route is used for designated forwarder (DF) election for BUM traffic.

- **Ethernet Segment Identifier (ESI)**: Ethernet segments are assigned a unique non-zero identifier, which is called an Ethernet Segment Identifier (ESI). ESI represents each Ethernet segment uniquely across the network.

- **EVI**: The EVPN instance (EVI) is represented by the virtual network identifier (VNI). An EVI represents a VPN on a PE router. It serves the same role of an IP VPN Routing and Forwarding (VRF), and EVIs are assigned import/export Route Targets (RTs). Depending on the service multiplexing behaviors at the User to Network Interface (UNI), all traffic on a port (all-to-one bundling), or traffic on a VLAN (one-to-one mapping), or traffic on a list/range of VLANs (selective bundling) can be mapped to a Bridge Domain (BD). This BD is then associated to an EVI for forwarding towards the MPLS core.

- **EAD/ES**: Ethernet Auto Discovery Route per ES is also referred to as Route Type 1. This route is used to converge the traffic faster during access failure scenarios. This route has Ethernet Tag of 0xFFFFFFFF.
- **EAD/EVI**: Ethernet Auto Discovery Route per EVI is also referred to as Route Type 1. This route is used for aliasing and load balancing when the traffic only hashes to one of the switches. This route cannot have Ethernet tag value of 0xFFFFFFFF to differentiate it from the EAD/ES route.

- **Aliasing**: It is used for load balancing the traffic to all the connected switches for a given Ethernet segment using the Route Type 1 EAD/EVI route. This is done irrespective of the switch where the hosts are actually learned.

- **Mass Withdrawal**: It is used for fast convergence during the access failure scenarios using the Route Type 1 EAD/ES route.

- **DF Election**: It is used to prevent forwarding of the loops. Only a single router is allowed to decapsulate and forward the traffic for a given Ethernet Segment.

EVPN Operation

At startup, PEs exchange EVPN routes in order to advertise the following:

- **VPN membership**: The PE discovers all remote PE members of a given EVI. In the case of a multicast ingress replication model, this information is used to build the PEs flood list associated with an EVI. BUM labels and unicast labels are exchanged when MAC addresses are learned.

- **Ethernet segment reachability**: In multihoming scenarios, the PE auto-discovers remote PE and their corresponding redundancy mode (all-active or single-active). In case of segment failures, PEs withdraw the routes used at this stage in order to trigger fast convergence by signaling a MAC mass withdrawal on remote PEs.

- **Redundancy Group membership**: PEs connected to the same Ethernet segment (multihoming) automatically discover each other and elect a Designated Forwarder (DF) that is responsible for forwarding Broadcast, Unknown unicast and Multicast (BUM) traffic for a given EVI.

Figure 1: EVPN Operation

EVPN can operate in single-homing or dual-homing mode. Consider single-homing scenario, when EVPN is enabled on PE, Route Type 3 is advertised where each PE discovers all other member PEs for a given EVPN instance. When an unknown unicast (or BUM) MAC is received on the PE, it is advertised as EVPN Route Type 2 to other PEs. MAC routes are advertised to the other PEs using EVPN Route Type 2. In multihoming scenarios, Route Types 1, 3, and 4 are advertised to discover other PEs and their redundancy modes.
(single-active or all-active). Use of Route Type 1 is to auto-discover other PE which hosts the same CE. The other use of this route type is to fast route unicast traffic away from a broken link between CE and PE. Route Type 4 is used for electing designated forwarder. For instance, consider the topology when customer traffic arrives at the PE, EVPN MAC advertisement routes distribute reachability information over the core for each customer MAC address learned on local Ethernet segments. Each EVPN MAC route announces the customer MAC address and the Ethernet segment associated with the port where the MAC was learned from and its associated MPLS label. This EVPN MPLS label is used later by remote PEs when sending traffic destined to the advertised MAC address.

EVPN Route Types

The EVPN network layer reachability information (NLRI) provides different route types.

<table>
<thead>
<tr>
<th>Route Type</th>
<th>Name</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ethernet Auto-Discovery (AD) Route</td>
<td>Few routes are sent per ES, carries the list of EVIs that belong to ES</td>
</tr>
<tr>
<td>2</td>
<td>MAC/IP Advertisement Route</td>
<td>Advertise MAC, address reachability, advertise IP/MAC binding</td>
</tr>
<tr>
<td>3</td>
<td>Inclusive Multicast Ethernet Tag Route</td>
<td>Multicast Tunnel End point discovery</td>
</tr>
<tr>
<td>4</td>
<td>Ethernet Segment Route</td>
<td>Redundancy group discovery, DF election</td>
</tr>
<tr>
<td>5</td>
<td>IP Prefix Route</td>
<td>Advertise IP prefixes.</td>
</tr>
</tbody>
</table>

Route Type 1: Ethernet Auto-Discovery (AD) Route

The Ethernet Auto-Discovery (AD) routes are advertised on per EVI and per ESI basis. These routes are sent per ES. They carry the list of EVIs that belong to the ES. The ESI field is set to zero when a CE is single-homed. This route type is used for mass withdrawal of MAC addresses and aliasing for load balancing.

Route Type 2: MAC/IP Advertisement Route

These routes are per-VLAN routes, so only PEs that are part of a VNI require these routes. The host's IP and MAC addresses are advertised to the peers within NRLI. The control plane learning of MAC addresses reduces unknown unicast flooding.

Route Type 3: Inclusive Multicast Ethernet Tag Route

This route establishes the connection for broadcast, unknown unicast, and multicast (BUM) traffic from a source PE to a remote PE. This route is advertised on per VLAN and per ESI basis.
Route Type 4: Ethernet Segment Route

Ethernet segment routes enable to connect a CE device to two or PE devices. ES route enables the discovery of connected PE devices that are connected to the same Ethernet segment.

Route Type 5: IP Prefix Route

The IP prefixes are advertised independently of the MAC-advertised routes. With EVPN IRB, host route /32 is advertised using RT-2 and subnet /24 is advertised using RT-5.

Note

With EVPN IRB, host route /32 are advertised using RT-2 and subnet /24 are advertised using RT-5.

Configure EVPN L2 Bridging Service

Perform the following steps to configure EVPN L2 bridging service.

Note

Always ensure to change the label mode from per-prefix to per-VRF label mode. Since L2FIB and VPNv4 route (labels) shares the same resource, BVI ping fails when you exhaust the resources.

Note

Flooding disable is not supported on EVPN bridge domains.

```bash
/* Configure address family session in BGP */
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router#(config)# router bgp 200
RP/0/RSP0/CPU0:router#(config-bgp)# bgp router-id 209.165.200.227
RP/0/RSP0/CPU0:router#(config-bgp)# address-family l2vpn evpn
RP/0/RSP0/CPU0:router#(config-bgp)# neighbor 10.10.10.10
RP/0/RSP0/CPU0:router#(config-bgp)# neighbor 10.10.10.10 remote-as 200
RP/0/RSP0/CPU0:router#(config-bgp)# neighbor 10.10.10.10 description MPLS-FACING-PEER
RP/0/RSP0/CPU0:router#(config-bgp)# neighbor 10.10.10.10 update-source Loopback 0
RP/0/RSP0/CPU0:router#(config-bgp)# address-family l2vpn evpn

/* Configure EVI and define the corresponding BGP route targets */

Router# configure
Router(config)# evpn
Router(config-evpn)# evi 6005
Router(config-evpn-evi)# bgp
Router(config-evpn-evi-bgp)# rd 200:50
Router(config-evpn-evi-bgp)# route-target import 100:6005
Router(config-evpn-evi-bgp)# route-target export 100:6005
Router(config-evpn-evi-bgp)# exit
Router(config-evpn-evi)# advertise-mac

/* Configure a bridge domain */
Router# configure
Router(config)# l2vpn
Router(config-l2vpn)# bridge group 1
```
Running Configuration

router bgp 200 bgp
 router-id 209.165.200.227
 address-family l2vpn evpn
 neighbor 10.10.10.10
 remote-as 200 description MPLS-FACING-PEER
 updatesource Loopback0
 addressfamily l2vpn evpn

configure
evpn
evi 6005
 bgp
 rd 200:50
 route-target import 100:6005
 route-target export 100:6005

 advertise-mac

configure
 l2vpn
 bridge group 1
 bridge-domain 1-1
 interface GigabitEthernet 0/0/0/1.1

 evi 6005

EVPN Software MAC Learning

The MAC addresses learned on one device needs to be learned or distributed on the other devices in a VLAN. EVPN Software MAC Learning feature enables the distribution of the MAC addresses learned on one device to the other devices connected to a network. The MAC addresses are learnt from the remote devices using BGP.

Figure 2: EVPN Software MAC Learning
The above figure illustrates the process of software MAC learning. The following are the steps involved in the process:

1. Traffic comes in on one port in the bridge domain.
2. The source MAC address (AA) is learnt on the PE and is stored as a dynamic MAC entry.
3. The MAC address (AA) is converted into a type-2 BGP route and is sent over BGP to all the remote PEs in the same EVI.
4. The MAC address (AA) is updated on the PE as a remote MAC address.

Configure EVPN Software MAC Learning

The following section describes how you can configure EVPN Software MAC Learning:

```bash
/* Configure bridge domain. */
RP/0/RSP0/CPU0:router(config)# l2vpn
RP/0/RSP0/CPU0:router(config-l2vpn)# bridge group EVPN_SH
RP/0/RSP0/CPU0:router(config-l2vpn-bg)# bridge-domain EVPN_2001
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd)# interface TenGigE0/4/0/10.2001
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd-ac)# exit
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd)# interface BundleEther 20.2001
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd-ac)# storm-control broadcast pps 10000 ← Enabling storm-control is optional
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd-ac)# exit
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd-bd-evi)# commit

/* Configure address family session in BGP. */
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# router bgp 200
RP/0/RSP0/CPU0:router(config-bgp)# bgp router-id 209.165.200.227
RP/0/RSP0/CPU0:router(config-bgp)# address-family l2vpn evpn
RP/0/RSP0/CPU0:router(config-bgp)# neighbor 10.10.10.10
RP/0/RSP0/CPU0:router(config-bgp)# address-family l2vpn evpn
```

Supported Modes for EVPN Software MAC Learning

The following are the modes in which EVPN Software MAC Learning is supported:
• Single Home Device (SHD) or Single Home Network (SHN)
• Dual Home Device (DHD)—All Active Load Balancing

Single Home Device or Single Home Network Mode

The following section describes how you can configure EVPN Software MAC Learning feature in single home device or single home network (SHD/SHN) mode:

Figure 3: Single Home Device or Single Home Network Mode

In the above figure, the PE (PE1) is attached to Ethernet Segment using bundle or physical interfaces. Null Ethernet Segment Identifier (ESI) is used for SHD/SHN.

Configure EVPN in Single Home Device or Single Home Network Mode

This section describes how you can configure EVPN Software MAC Learning feature in single home device or single home network mode.

/* Configure bridge domain. */

```
RP/0/RSP0/CPU0:router(config)# l2vpn
RP/0/RSP0/CPU0:router(config-l2vpn)# bridge group EVPN_ALL_ACTIVE
RP/0/RSP0/CPU0:router(config-l2vpn)# bridge-domain EVPN_2001
RP/0/RSP0/CPU0:router(config-l2vpn)# interface BundleEther1.2001
RP/0/RSP0/CPU0:router(config-l2vpn)# evi 2001
```

/* Configure advertisement of MAC routes. */

```
RP/0/RSP0/CPU0:router(config)# evpn
RP/0/RSP0/CPU0:router(config-evpn)# evi 2001
RP/0/RSP0/CPU0:router(config-evpn-evi)# advertise-mac
```

/* Configure address family session in BGP. */

```
RP/0/RSP0/CPU0:router(config)# configure
RP/0/RSP0/CPU0:router(config)# router bgp 200
RP/0/RSP0/CPU0:router(config-router)# (config-bgp)# bgp router-id 09.165.200.227
RP/0/RSP0/CPU0:router(config-router)# (config-bgp)# address-family l2vpn evpn
RP/0/RSP0/CPU0:router(config-router)# (config-bgp)# neighbor 10.10.10.10
RP/0/RSP0/CPU0:router(config-router)# (config-bgp)# neighbor 10.10.10.10
RP/0/RSP0/CPU0:router(config-router)# (config-bgp-nbr)# remote-as 200
RP/0/RSP0/CPU0:router(config-router)# (config-bgp-nbr)# address-family l2vpn evpn
```

Running Configuration
l2vpn
bridge group EVPN_ALLACTIVE
 bridge-domain EVPN_2001
 interface BundleEther1.2001
evi 2001
!
evpn
evi 2001
 advertise-mac
!
routing bgp 200 bgp
 router-id 40.40.40.40
 address-family l2vpn evpn
 neighbor 10.10.10.10
 remote-as 200 description MPLS-FACING-PEER
 updatesource Loopback0
 address-family l2vpn evpn

Verification
Verify EVPN in single home devices.

RP/0/RSP0/CPU0:router# show evpn ethernet-segment interface Te0/4/0/10 detail

<table>
<thead>
<tr>
<th>Ethernet Segment Id</th>
<th>Interface</th>
<th>Nexthops</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Te0/4/0/10</td>
<td>20.20.20.20</td>
</tr>
</tbody>
</table>

Topology:
- **Operational**: SH
- **Configured**: Single-active (AAPS) (default)

Dual Home Device—All-Active Load Balancing Mode

The following section describes how you can configure EVPN Software MAC Learning feature in dual home device (DHD) in all-active load balancing mode:

Figure 4: Dual Home Device—All-Active Load Balancing Mode

All-active load-balancing is known as Active/Active per Flow (AAPF). In the above figure, identical Ethernet Segment Identifier is used on both EVPN PEs. PEs are attached to Ethernet Segment using bundle interfaces.
In the CE, single bundles are configured towards two EVPN PEs. In this mode, the MAC address that is learnt is stored on both PE1 and PE2. Both PE1 and PE2 can forward the traffic within the same EVI.

Configure EVPN Software MAC Learning in Dual Home Device—All-Active Mode

This section describes how you can configure EVPN Software MAC Learning feature in dual home device—all-active mode:

/* Configure bridge domain. */

RP/0/RSP0/CPU0:router(config)# l2vpn
RP/0/RSP0/CPU0:router(config-l2vpn)# bridge group EVPN_ALL_ACTIVE
RP/0/RSP0/CPU0:router(config-l2vpn-bg)# bridge-domain EVPN_2001
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd)# interface BundleEther1.2001
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd)# evi 2001

/* Configure advertisement of MAC routes. */

RP/0/RSP0/CPU0:router(config)# evpn
RP/0/RSP0/CPU0:router(config-evpn)# evi 2001
RP/0/RSP0/CPU0:router(config-evpn-evi)# advertise-mac
RP/0/RSP0/CPU0:router(config-evpn-evi)# exit
RP/0/RSP0/CPU0:router(config-evpn)# interface bundle-ether1
RP/0/RSP0/CPU0:router(config-evpn-ac)# ethernet-segment
RP/0/RSP0/CPU0:router(config-evpn-ac-es)# identifier type 0 01.11.00.00.00.00.00.00.01

/* Configure address family session in BGP. */

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# router bgp 200
RP/0/RSP0/CPU0:router(config-bgp)# bgp router-id 209.165.200.227
RP/0/RSP0/CPU0:router(config-bgp)# address-family l2vpn evpn
RP/0/RSP0/CPU0:router(config-bgp-ac)# neighbor 10.10.10.10
RP/0/RSP0/CPU0:router(config-bgp-ac)# remote-as 200
RP/0/RSP0/CPU0:router(config-bgp-ac)# description MPLSFACING-PEER
RP/0/RSP0/CPU0:router(config-bgp-ac)# update-source Loopback 0
RP/0/RSP0/CPU0:router(config-bgp-ac)# address-family l2vpn evpn

/* Configure Link Aggregation Control Protocol (LACP) bundle. */

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# interface Bundle-Ether1 300
RP/0/RSP0/CPU0:router(config-if)# lacp switchover suppress-flaps 300
RP/0/RSP0/CPU0:router(config-if)# exit

/* Configure VLAN Header Rewrite.*/

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# interface bundle-Ether1.2001 12transport
RP/0/RSP0/CPU0:router(config-if)# encapsulation dot1q 10
RP/0/RSP0/CPU0:router(config-if)# rewrite ingress tag pop 1 symmetric

Running Configuration

l2vpn
bridge group EVPN_ALL_ACTIVE
bridge-domain EVPN_2001
interface Bundle-Ether1.2001
EVPN Features

Configure EVPN Software MAC Learning in Dual Home Device—All-Active Mode

! evpn
! advertise-mac
! interface bundle-ether1
 ethernet-segment
 identifier type 0 01.11.00.00.00.00.00.01
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Verification

Verify EVPN in dual home devices in All-Active mode.

RP/0/RSP0/CPU0:router# show evpn ethernet-segment interface bundle-Ether1 carvin$

Ethernet Segment Id Interface Nexthops
-------- ---------- -------- --------
0100.211b.fce5.df00.0b00 BE11 10.10.10.10 209.165.201.1

Topology:
 Operational : MHN
 Configured : All-active (AApF) (default)
 Primary Services : Auto-selection
 Secondary Services: Auto-selection
 Service Carving Results:
 Forwarders : 4003
 Elected : 2002
 EVI E : 2000, 2002, 36002, 36004, 36006, 36008

 Not Elected : 2001
 EVI NE : 2001, 36001, 36003, 36005, 36007, 36009

 MAC Flushing mode : Invalid

 Peering timer : 3 sec [not running]
 Recovery timer : 30 sec [not running]
 Local SHG label : 34251
 Remote SHG labels : 1
 38216 : nexthop 209.165.201.1
Verify EVPN Software MAC Learning

Verify the packet drop statistics.

```
RP/0/RSP0/CPU0:router# show l2vpn bridge-domain bd-name EVPN_2001 details
```

Bridge group: EVPN_ALL_ACTIVE, bridge-domain: EVPN_2001, id: 1110,
state: up, ShgId: 0, MSTi: 0
List of EVFNs:

EVPN, state: up
evi: 2001
XC ID 0x80000458
Statistics:
packets: received 28907734874 (unicast 9697466652), sent 76882059953
bytes: received 5550285095808 (unicast 1861913597184), sent 14799781851396
MAC move: 0
List of ACs:

AC: TenGigE0/4/0/10.2001, state is up
Type VLAN; Num Ranges: 1

Statistics:
packets: received 0 (multicast 0, broadcast 0, unknown unicast 0, unicast 0), sent 45573594908
bytes: received 0 (multicast 0, broadcast 0, unknown unicast 0, unicast 0), sent 8750130222336
MAC move: 0

Verify the EVPN EVI information with the VPN-ID and MAC address filter.

```
RP/0/RSP0/CPU0:router# show evpn evi vpn-id 2001 neighbor
```

```
Neighbor IP     vpn-id
-------------- --------
209.165.200.225 2001
209.165.201.30  2001
```

Verify the BGP L2VPN EVPN summary.

```
RP/0/RSP0/CPU0:router# show bgp l2vpn evpn summary
```

```
Neighbor Spk AS  MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd
209.165.200.225 0 200 216739 229871 200781341 0 0 3d00h 348032
209.165.201.30  0 200 6462962 4208831 200781341 10 0 2d22h 35750
```

Verify the MAC updates to the L2FIB table in a line card.

```
RP/0/RSP0/CPU0:router# show l2vpn mac mac all location 0/6/cpu0
```

```
Topo ID Producer Next Hop(s)   Mac Address   IP Address
-------------- ----------- ----------- ------------------------
1112           0/6/cpu0  Te0/6/0/1.36001 00a3.0001.0001
```

Verify the MAC updates to the L2FIB table in a route switch processor (RSP).

```
RP/0/RSP0/CPU0:router# show l2vpn mac mac all location 0/6/cpu0
```
Verify the summary information for the MAC address.

```
RP/0/RSP0/CPU0# show l2vpn forwarding bridge-domain EVPN_ALL_ACTIVE:EVPN_2001
mac-address location 0/6/CPU0
```

Verify the EVPN EVI information with the VPN-ID and MAC address filter.

```
RP/0/RSP0/CPU0# show evpn evi vpn-id 2001 mac
```

Verify the BGP routes associated with EVPN with bridge-domain filter.

```
RP/0/RSP0/CPU0# show bgp 12vpn evpn bridge-domain EVPN_2001 route-type 2
```
EVPN Out of Service

The EVPN Out of Service feature enables you to control the state of bundle interfaces that are part of an Ethernet segment that have Link Aggregation Control protocol (LACP) configured. This feature enables you to put a node out of service (OOS) without having to manually shutdown all the bundles on their provider edge (PE).

Use the `cost-out` command to bring down all the bundle interfaces belonging to an Ethernet VPN (EVPN) Ethernet segment on a node. The Ethernet A-D Ethernet Segment (ES-EAD) routes are withdrawn before shutting down the bundles. The PE signals to the connected customer edge (CE) device to bring down the corresponding bundle member. This steers away traffic from this PE node without traffic disruption. The traffic that is bound for the Ethernet segment from the CE is directed to the peer PE in a multi-homing environment.

Note

EVPN cost-out is supported only on manually configured ESIs.

In the following topology, the CE is connected to PE1 and PE2. When you configure the `cost-out` command on PE1, all the bundle interfaces on the Ethernet segment are brought down. Also, the corresponding bundle member is brought down on the CE. Hence, the traffic for this Ethernet segment is now sent to PE2 from the CE.

![Figure 5: EVPN Out of Service](image)

To bring up the node into service, use `no cost-out` command. This brings up all the bundle interfaces belonging to EVPN Ethernet segment on the PE and the corresponding bundle members on the CE.

When the node is in cost-out state, adding a new bundle Ethernet segment brings that bundle down. Similarly, removing the bundle Ethernet segment brings that bundle up.

Use `startup-cost-in` command to bring up the node into service after the specified time on reload. The node will cost-out when EVPN is initialized and remain cost-out until the set time. If you execute `evpn no startup-cost-in` command while timer is running, the timer stops and node is cost-in.

The 'cost-out' configuration always takes precedence over the 'startup-cost-in' timer. So, if you reload with both the configurations, cost-out state is controlled by the 'cost-out' configuration and the timer is not relevant.
Similarly, if you reload with the startup timer, and configure 'cost-out' while timer is running, the timer is stopped and OOS state is controlled only by the 'cost-out' configuration.

If you do a proc restart while the startup-cost-in timer is running, the node remains in cost-out state and the timer restarts.

Configure EVPN Out of Service

This section describes how you can configure EVPN Out of Service.

```plaintext
/* Configuring node cost-out on a PE */

Router# configure
Router(config)# evpn
Router(config-evpn)# cost-out
Router(config-evpn)commit

/* Bringing up the node into service */

Router# configure
Router(config)# evpn
Router(config-evpn)# no cost-out
Router(config-evpn)commit

/* Configuring the timer to bring up the node into service after the specified time on reload */

Router# configure
Router(config)# evpn
Router(config-evpn)# startup-cost-in 6000
Router(config-evpn)commit
```

Running Configuration

```plaintext
configure
evpn
cost-out
!

configure
evpn
startup-cost-in 6000
!
```

Verification

Verify the EVPN Out of Service configuration.

```plaintext
/* Verify the node cost-out configuration */

Router# show evpn summary
Fri Apr 7 07:45:22.311 IST
Global Information
-----------------------------
Number of EVIs : 2
Number of Local EAD Entries : 0
Number of Remote EAD Entries : 0
```
/* Verify the no cost-out configuration */

Router# show evpn summary
Fri Apr 7 07:45:22.311 IST
Global Information

EVPN Features
Verification

Number of Local MAC Routes : 0
Number of Local MAC Routes : 5
MAC : 5
MAC-IPv4 : 0
MAC-IPv6 : 0
Number of Local ES:Global MAC : 12
Number of Remote MAC Routes : 7
MAC : 7
MAC-IPv4 : 0
MAC-IPv6 : 0
Number of Local IMCAST Routes : 56
Number of Remote IMCAST Routes: 56
Number of Internal Labels : 5
Number of ES Entries : 9
Number of Neighbor Entries : 1
EVPN Router ID : 192.168.0.1
BGP Router ID : ::
BGP ASN : 100
PBB BSA MAC address : 0207.1fee.be00
Global peering timer : 3 seconds
Global recovery timer : 30 seconds
EVPN cost-out : TRUE
 startup-cost-in timer : Not configured

/* Verify the startup-cost-in timer configuration */

Router# show evpn summary
Fri Apr 7 07:45:22.311 IST
Global Information

EVPN Features
Verification
Number of EVIs : 2
Number of Local EAD Entries : 0
Number of Remote EAD Entries : 0
Number of Local MAC Routes : 5
 MAC : 5
 MAC-IPv4 : 0
 MAC-IPv6 : 0
Number of Local ES:Global MAC : 12
Number of Remote MAC Routes : 7
 MAC : 7
 MAC-IPv4 : 0
 MAC-IPv6 : 0
Number of Local IMCAST Routes : 56
Number of Remote IMCAST Routes: 56
Number of Internal Labels : 5
Number of ES Entries : 9
Number of Neighbor Entries : 1
EVPN Router ID : 192.168.0.1
BGP Router ID : ::
BGP ASN : 100
PBB BSA MAC address : 0207.1fee.be00
Global peering timer : 3 seconds
Global recovery timer : 30 seconds
EVPN node cost-out : TRUE
 startup-cost-in timer : 6000

EVPN Routing Policy

The EVPN Routing Policy feature provides the route policy support for address-family L2VPN EVPN. This feature adds EVPN route filtering capabilities to the routing policy language (RPL). The filtering is based on various EVPN attributes.

A routing policy instructs the router to inspect routes, filter them, and potentially modify their attributes as they are accepted from a peer, advertised to a peer, or redistributed from one routing protocol to another.

This feature enables you to configure route-policies using EVPN network layer reachability information (NLRI) attributes of EVPN route type 1 to 5 in the route-policy match criteria, which provides more granular definition of route-policy. For example, you can specify a route-policy to be applied to only certain EVPN route-types or any combination of EVPN NLRI attributes. This feature provides flexibility in configuring and deploying solutions by enabling route-policy to filter on EVPN NLRI attributes.

To implement this feature, you need to understand the following concepts:

- Routing Policy Language
- Routing Policy Language Structure
- Routing Policy Language Components
- Routing Policy Language Usage
- Policy Definitions
- Parameterization
- Semantics of Policy Application
- Policy Statements
• Attach Points

For information on these concepts, see Implementing Routing Policy.

Currently, this feature is supported only on BGP neighbor "in" and "out" attach points. The route policy can be applied only on inbound or outbound on a BGP neighbor.

EVPN Route Types

The EVPN NLRI has the following different route types:

Route Type 1: Ethernet Auto-Discovery (AD) Route

The Ethernet (AD) routes are advertised on per EVI and per Ethernet Segment Identifier (ESI) basis. These routes are sent per Ethernet segment (ES). They carry the list of EVIs that belong to the ES. The ESI field is set to zero when a CE is single-homed.

An Ethernet A-D route type specific EVPN NLRI consists of the following fields:

<table>
<thead>
<tr>
<th>Route Type (1 octet)</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (1 octet)</td>
<td></td>
</tr>
<tr>
<td>Route Distinguisher (RD) (8 octets)</td>
<td>*</td>
</tr>
<tr>
<td>Ethernet Segment Identifier (10 octets)</td>
<td>*</td>
</tr>
<tr>
<td>Ethernet Tag ID (4 octets)</td>
<td>*</td>
</tr>
<tr>
<td>MPLS Label (3 octets)</td>
<td></td>
</tr>
</tbody>
</table>

NLRI Format: Route-type 1:

[Type][Len][RD][ESI][ETag][MPLS Label]

Net attributes: [Type][RD][ESI][ETag]

Path attributes: [MPLS Label]

Example

```bash
route-policy evpn-policy
  if rd in (1.1.1:0) [and/or evpn-route-type is 1] [and/or esi in (0a1.a2a3.a4a5.a6a7.a8a9)]
  [and/or etag is 4294967295] then
    set ..
  endif
end-policy
!
route-policy evpn-policy
  if rd in (1.1.1:0) [and/or evpn-route-type is 1] [and/or esi in
  (00a1.a2a3.a4a5.a6a7.a8a9)] [and/or etag is 4294967295] then
    set ..
  endif
end-policy
```
Route Type 2: MAC/IP Advertisement Route

The host's IP and MAC addresses are advertised to the peers within NLRI. The control plane learning of MAC addresses reduces unknown unicast flooding.

A MAC/IP Advertisement Route type specific EVPN NLRI consists of the following fields:

```
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
|Route Type (1 octet) | Length (1 octet) | RD (8 octets)   | ESI (10 octets) |
+-----------------+-----------------+-----------------+-----------------+-----------------+
|Ethernet Segment Identifier (4 octets)| *               | MAC Addr Len | MAC Addr (6 octets) |
+-----------------+-----------------+-----------------+-----------------+-----------------+
|Ethernet Tag ID (4 octets) | *               | IP Addr Len | IP Addr (0, 4, or 16 octets) |
+-----------------+-----------------+-----------------+-----------------+-----------------+
|MPLS Label1 (3 octets) |                  |                |                |
+-----------------+-----------------+-----------------+-----------------+-----------------+
|MPLS Label2 (0 or 3 octets) |
```

NLRI Format: Route-type 2:

```
[Type][Len][RD][ESI][ETag][MAC Addr Len][MAC Addr][IP Addr Len][IP Addr][MPLS Label1][MPLS Label2]
```

Net attributes: [Type][RD][ETag][MAC Addr Len][MAC Addr][IP Addr Len][IP Addr]

Path attributes: [ESI], [MPLS Label1], [MPLS Label2]

Example

```
route-policy evpn-policy
if rd in (1.1.1.2:0) [and/or evpn-route-type is 2] [and/or esi in (0000.0000.0000.0000.0000)] [and/or etag is 0] [and/or macaddress in (0013.aabb.ccdd)] [and/or destination in (1.2.3.4/32)] then
  set ..
endif
end-policy
```
Route Type 3: Inclusive Multicast Ethernet Tag Route

This route establishes the connection for broadcast, unknown unicast, and multicast (BUM) traffic from a source PE to a remote PE. This route is advertised on per VLAN and per ESI basis.

An Inclusive Multicast Ethernet Tag route type specific EVPN NLRI consists of the following fields:

```
+---------------------------------+
| Route Type (1 octet)            |
+---------------------------------+
| Length (1 octet)                |
+---------------------------------+
| RD (8 octets)                   |
+---------------------------------+
| Ethernet Tag ID (4 octets)      |
+---------------------------------+
| IP Address Length (1 octet)     |
+---------------------------------+
| Originating Router's IP Address |
| (4 or 16 octets)                |
```

NLRI Format: Route-type 3:

```
[Type][Len][RD][ETag][IP Addr Len][Originating Router's IP Addr]
```

Net attributes:

```
[Type][RD][ETag][IP Addr Len][Originating Router's IP Addr]
```

Example

```
route-policy evpn-policy
    if rd in (1.1.1.1:300) [and/or evpn-route-type is 3] [and/or etag is 0] [and/or evpn-originator in (1.1.1.1)] then
        set ..
    endif
end-policy
```

Route Type 4: Ethernet Segment Route

Ethernet segment routes enable to connect a CE device to two or PE devices. ES route enables the discovery of connected PE devices that are connected to the same Ethernet segment.

An Ethernet Segment route type specific EVPN NLRI consists of the following fields:
NLRI Format: Route-type 4:

[Type][Len][RD][ESI][IP Addr Len][Originating Router's IP Addr]

Net attributes: [Type][RD][ESI][IP Addr Len][Originating Router's IP Addr]

Example

route-policy evpn-policy
 if rd in (1.1.1.1:0) [and/or evpn-route-type is 4] [and/or esi in (00a1.a2a3.a4a5.a6a7.a8a9)] [and/or evpn-originator in (1.1.1.1)] then
 set ..
 endif
end-policy

Route Type 5: IP Prefix Route

An IP Prefix Route type specific EVPN NLRI consists of the following fields:
NLRI Format: Route-type 5:

<table>
<thead>
<tr>
<th>Type</th>
<th>Len</th>
<th>RD</th>
<th>ESI</th>
<th>ETag</th>
<th>IP Addr Len</th>
<th>IP Addr</th>
<th>GW IP Addr</th>
<th>Label</th>
</tr>
</thead>
</table>

Net attributes: [Type][RD][ETag][Interval][IP Addr]

Path attributes: [ETag], [GW IP Addr], [Label]

Example

```plaintext
route-policy evpn-policy
  if rd in (30.30.30.30:1) [and/or evpn-route-type is 5] [and/or esi in (0000.0000.0000.0000.0000)] [and/or etag is 0] [and/or destination in (12.2.0.0/16)] [and/or evpn-gateway in (0.0.0.0)] then
    set ..
  endif
end-policy
```

EVPN RPL Attribute

Route Distinguisher

A Route Distinguisher (rd) attribute consists of eight octets. An rd can be specified for each of the EVPN route types. This attribute is not mandatory in route-policy.

Example

```plaintext
rd in (1.2.3.4:0)
```

EVPN Route Type

EVPN route type attribute consists of one octet. This specifies the EVPN route type. The EVPN route type attribute is used to identify a specific EVPN NLRI prefix format. It is a net attribute in all EVPN route types.
Example

evpn-route-type is 3

The following are the various EVPN route types that can be used:
1 - ethernet-ad
2 – mac-advertisement
3 - inclusive-multicast
4 - ethernet-segment
5 - ip-advertisement

IP Prefix

An IP prefix attribute holds IPv4 or IPv6 prefix match specification, each of which has four parts: an address, a mask length, a minimum matching length, and a maximum matching length. The address is required, but the other three parts are optional. When IP prefix is specified in EVPN route type 2, it represents either a IPv4 or IPv6 host IP Address (/32 or /128). When IP prefix is specified in EVPN route type 5, it represents either IPv4 or IPv6 subnet. It is a net attribute in EVPN route type 2 and 5.

Example

destination in (128.47.10.2/32)
destination in (128.47.0.0/16)
destination in (128:47::1/128)
destination in (128:47::0/112)

esi

An Ethernet Segment Identifier (ESI) attribute consists of 10 octets. It is a net attribute in EVPN route type 1 and 4, and a path attribute in EVPN route type 2 and 5.

Example

esi in (ffff.ffff.ffff.ffff.fff0)

etag

An Ethernet tag attribute consists of four octets. An Ethernet tag identifies a particular broadcast domain, for example, a VLAN. An EVPN instance consists of one or more broadcast domains. It is a net attribute in EVPN route type 1, 2, 3 and 5.

Example

etag in (10000)
mac
The mac attribute consists of six octets. This attribute is a net attribute in EVPN route type 2.

Example
mac in (0206.acb1.e806)

evpn-originator
The evpn-originator attribute specifies the originating router's IP address (4 or 16 octets). This is a net attribute in EVPN route type 3 and 4.

Example
evpn-originator in (1.2.3.4)

evpn-gateway
The evpn-gateway attribute specifies the gateway IP address. The gateway IP address is a 32-bit or 128-bit field (IPv4 or IPv6), and encodes an overlay next-hop for the IP prefixes. The gateway IP address field can be zero if it is not used as an overlay next-hop. This is a path attribute in EVPN route type 5.

Example
evpn-gateway in (1.2.3.4)

EVPN RPL Attribute Set
In this context, the term set is used in its mathematical sense to mean an unordered collection of unique elements. The policy language provides sets as a container for groups of values for matching purposes. Sets are used in conditional expressions. The elements of the set are separated by commas. Null (empty) sets are allowed.

prefix-set
A prefix-set holds IPv4 or IPv6 prefix match specifications, each of which has four parts: an address, a mask length, a minimum matching length, and a maximum matching length. The address is required, but the other three parts are optional. The prefix-set specifies one or more IP prefixes.

Example
prefix-set ip_prefix_set
14.2.0.0/16,
54.0.0.0/16,
12.12.12.0/24,
50:50::1:0/112
derend-set
mac-set
The mac-set specifies one or more MAC addresses.

Example

mac-set mac_address_set
1234.2345.6789,
2345.3456.7890
dend-set

esi-set
The esi-set specifies one or more ESI's.

Example

esi-set evpn_esi_set
1234.2345.3456.4567.5678,
1234.2345.3456.4567.5670
dend-set

etag-set
The etag-set specifies one or more Ethernet tags.

Example

etag-set evpn_etag_set
10000,
20000
dend-set

Configure EVPN RPL Feature

The following section describe how to configure mac-set, esi-set, evpn-gateway, and evpn-originator.

/* Configuring a mac-set and refering it in a route-policy (Attach point = neighbor-in) */
Router# configure
Router(config)# mac-set demo_mac_set
Router(config-mac)# 1234.ffff.aaa3,
Router(config-mac)# 2323.4444.ffff
Router(config-mac)# end-set
Router(config)# !
Router(config)# route-policy policy_use_pass_mac_set
Router(config-rpl)# if mac in demo_mac_set then
Router(config-rpl-if)# set med 200
Router(config-rpl-if)# else
Router(config-rpl-else)# set med 1000
Router(config-rpl-else)# endif
Router(config-rpl)# end-policy
Router(config)# commit
Router(config)# router bgp 100
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# !
Router(config-bgp-af)# neighbor 10.0.0.10
Router(config-bgp-nbr)# remote-as 8
Router(config-bgp-nbr)# address-family ipv4 unicast
Router(config-bgp-nbr-af)# route-policy policy_use_pass_mac_set in
Router(config-bgp-nbr-af)# commit

/* Configuring a esi-set and refering it in a route-policy (Attach point - neighbor-in) */
Router# configure
Router(config)# esi-set demo_esi
Router(config-esi)# ad34.1233.1222.ffff.44ff,
Router(config-esi)# ad34.1233.1222.ffff.6666
Router(config-esi)# end-set
Router(config)# !
Router(config)# route-policy use_esi
Router(config-rpl)# if esi in demo_esi then
Router(config-rpl-if)# set local-preference 100
Router(config-rpl-if)# else
Router(config-rpl-else)# set local-preference 300
Router(config-rpl-else)# endif
Router(config-rpl)# end-policy
Router(config)# commit

/* Configuring evpn-gateway/evpn-originator in a route-policy (Attach point - neighbor-in and out) */
Router# configure
Router(config)# route-policy gateway_demo
Router(config-rpl)# if evpn-gateway in (10.0.0.0/32) then
Router(config-rpl-if)# pass
Router(config-rpl-if)# endif
Router(config-rpl)# end-policy
Router(config)# commit
Router(config)# route-policy originator_demo
Router(config-rpl)# if evpn-originator in (10.0.0.1/32) then
Router(config-rpl-if)# set local-preference 100
Router(config-rpl-if)# else
Router(config-rpl-else)# set med 200
Router(config-rpl-else)# endif
Router(config-rpl)# end-policy
Router(config)# commit
Router(config)# router bgp 100
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# !
Router(config-bgp-af)# neighbor 10.0.0.10
Router(config-bgp-nbr)# remote-as 8
Router(config-bgp-nbr)# address-family ipv4 unicast
Router(config-bgp-nbr-af)# route-policy gateway_demo in
Router(config-bgp-nbr-af)# route-policy originator_demo out
Router(config-bgp-nbr-af)# commit

Running Configuration

/* Configuring a mac-set and refering it in a route-policy (Attach point - neighbor-in) */
mac-set demo_mac_set
1234.ffff.aaa3,
2323.4444.ffff
end-set
!
route-policy policy_use_pass_mac_set

EVPN Features

26
if mac in demo_mac_set then
 set med 200
else
 set med 1000
endif
end-policy
!
router bgp 100
 address-family ipv4 unicast
 !
 neighbor 10.0.0.10
 remote-as 8
 address-family ipv4 unicast
 route-policy policy_use_pass_mac_set in
 !
 !
end

/* Configuring a esi-set and refering it in a route-policy (Attach point - neighbor-in) */
Wed Oct 26 11:52:23.720 IST
esi-set demo_esi
 ad34.1233.1222.ffff.44ff,
 ad34.1233.1222.ffff.6666
end-set
!
route-policy use_esi
 if esi in demo_esi then
 set local-preference 100
 else
 set local-preference 300
 endif
end-policy

EVPN Route Policy Examples

route-policy ex_2
 if rd in (2.2.18.2:1004) and evpn-route-type is 1 then
 drop
 elseif rd in (2.2.18.2:1009) and evpn-route-type is 1 then
 drop
 else
 pass
 endif
end-policy
!
route-policy ex_3
 if evpn-route-type is 5 then
 set extcommunity bandwidth (100:9999)
 else
 pass
 endif
end-policy
!
route-policy samp
end-policy
!
route-policy samp1
 if rd in (30.0.101.2:0) then
 pass
 endif
end-policy
! route-policy samp2
 if rd in (30.0.101.2:0, 1:1) then
 pass
 endif
end-policy
!
route-policy samp3
 if rd in (*.*) then
 pass
 endif
end-policy
!
route-policy samp4
 if rd in (30.0.101.2:*) then
 pass
 endif
end-policy
!
route-policy samp5
 if evpn-route-type is 1 then
 pass
 endif
end-policy
!
route-policy samp6
 if evpn-route-type is 2 or evpn-route-type is 5 then
 pass
 endif
end-policy
!
route-policy samp7
 if evpn-route-type is 4 or evpn-route-type is 3 then
 pass
 endif
end-policy
!
route-policy samp8
 if evpn-route-type is 1 or evpn-route-type is 2 or evpn-route-type is 3 then
 pass
 endif
end-policy
!
route-policy samp9
 if evpn-route-type is 1 or evpn-route-type is 2 or evpn-route-type is 3 or evpn-route-type is 4 then
 pass
 endif
end-policy
!
route-policy test1
 if evpn-route-type is 2 then
 set next-hop 10.2.3.4
 else
 pass
 endif
end-policy
!
route-policy test2
 if evpn-route-type is 2 then
 set next-hop 10.10.10.10
 else
 drop
 endif
end-policy
end-policy
!
route-policy test3
 if evpn-route-type is 1 then
 set tag 9988
 else
 pass
 endif
end-policy
!
route-policy samp21
 if mac in (6000.6000.6000) then
 pass
 endif
end-policy
!
route-policy samp22
 if extcommunity rt matches-any (100:1001) then
 pass
 else
 drop
 endif
end-policy
!
route-policy samp23
 if evpn-route-type is 1 and esi in (aaaa.bbbb.cccc.dddd.eeee) then
 pass
 else
 drop
 endif
end-policy
!
route-policy samp24
 if evpn-route-type is 5 and extcommunity rt matches-any (100:1001) then
 pass
 else
 drop
 endif
end-policy
!
route-policy samp25
 if evpn-route-type is 2 and esi in (1234.1234.1234.1234.1236) then
 pass
 else
 drop
 endif
end-policy
!
route-policy samp26
 if etag in (20000) then
 pass
 else
 drop
 endif
end-policy
!
route-policy samp27
 if destination in (99.99.99.1) and etag in (20000) then
 pass
 else
 drop
 endif
end-policy
!
route-policy samp31
 if evpn-route-type is 1 or evpn-route-type is 2 or evpn-route-type is 3 or evpn-route-type is 4 or evpn-route-type is 5 then
 pass
 else
 drop
 endif
end-policy
!
route-policy samp33
 if esi in evpn esi_set1 then
 pass
 else
 drop
 endif
end-policy
!
route-policy samp34
 if destination in (90:1:1::9/128) then
 pass
 else
 drop
 endif
end-policy
!
route-policy samp35
 if destination in evpn_prefix_set1 then
 pass
 else
 drop
 endif
end-policy
!
route-policy samp36
 if evpn-route-type is 3 and evpn-originator in (80:1:1::3) then
 pass
 else
 drop
 endif
end-policy
!
route-policy samp37
 if evpn-gateway in (10:10::10) then
 pass
 else
 drop
 endif
end-policy
!
route-policy samp38
 if mac in evpn_mac_set1 then
 pass
 else
 drop
 endif
end-policy
!
route-policy samp39
 if mac in (6000.6000.6002) then
 pass
 else
 drop
 endif
end-policy
route-policy samp41
 if evpn-gateway in (10.10.10.10, 10:10::10) then
 pass
 else
 drop
 endif
end-policy
!
route-policy samp42
 if evpn-originator in (24.162.160.1/32, 70:1:1::1/128) then
 pass
 else
 drop
 endif
end-policy
!
route-policy example
 if rd in (62300:1903) and evpn-route-type is 1 then
 drop
 elseif rd in (62300:19032) and evpn-route-type is 1 then
 drop
 else
 pass
 endif
end-policy
!
route-policy samp100
 if evpn-route-type is 4 or evpn-route-type is 5 then
 drop
 else
 pass
 endif
end-policy
!
route-policy samp101
 if evpn-route-type is 4 then
 drop
 else
 pass
 endif
end-policy
!
route-policy samp102
 if evpn-route-type is 4 then
 drop
 elseif evpn-route-type is 5 then
 drop
 else
 pass
 endif
end-policy
!
route-policy samp103
 if evpn-route-type is 2 and destination in evpn_prefix_set1 then
 drop
 else
 pass
 endif
end-policy
!
route-policy samp104
 if evpn-route-type is 1 and etag in evpn_etag_set1 then
 drop
else if evpn-route-type is 2 and mac in evpn_mac_set1 then
 drop
else if evpn-route-type is 5 and esi in evpn_esi_set1 then
 drop
else
 pass
endif
end-policy
!