

Additional Install Operations

After you upgrade your system, based on your requirement, you can perform additional install operations:

- View the Version of Installed Packages, on page 1
- Build a Golden ISO, on page 3
- Upgrade the System to Obtain Bug Fixes, on page 6
- Downgrade to a Previously Installed Package, on page 12
- Roll Back Software to a Previously Saved Installation Point , on page 15

View the Version of Installed Packages

The router is shipped with a pre-installed operating system. You can view the version of the installed software and the active packages. If you have upgraded your system, installed additional packages or bug fixes, you can view the version of the committed packages.

Review the software version information:

- · Package name and version
- User who built the package
- · Time the package was built
- Build workspace
- Build host
- ISO label:
 - · Label is present if GISO boots using PXE boot
 - Label is present if GISO is installed using the install replace method
 - Label reverts to default (only release version) if there is any change since the time the image with the label was installed.
 - Label is nullified and reverts to default if an RPM is added or removed on top of an existing GISO.
 - Label is repopulated if an RPM from the GISO is added or removed and a rollback operation is performed.
- Copyright information

• Hardware information

Step 1 View the version of the Cisco IOS XR software, and its various software components that are installed on the router.

Example:

The following example shows the version information for a non-GISO image:

NCS 5500 Series:

```
Router#show version
```

```
Cisco IOS XR Software, Version 7.3.1 LNT
Copyright (c) 2013-2022 by Cisco Systems, Inc.
Build Information:
Built By : xyz
           : Tue June 07 19:43:44 UTC 2021
Built On
Build Host : iox-lnx-064
          : ../ncs5700/ws
: 7.3.1
Workspace
Version
          : 7.3.1
Label
cisco NCS5700 (D-1563N @ 2.00GHz)
cisco NCS-57B1-5DSE-SYS (D-1563N @ 2.00GHz) processor with 32GB of memory
ios uptime is 3 weeks, 1 day, 10 hours, 11 minutes
NCS-57B1-5DSE-SYS Fixed Scale HW Flexible Consumption Need Smart Lic
```

The following example shows the version information for a GISO image. The customer label is appended to the Label field in the GISO image:

NCS 5500 Series:

```
Router#show version

Cisco IOS XR Software, Version 7.3.1 LNT

Copyright (c) 2013-2022 by Cisco Systems, Inc.

Build Information:

Built By : xyz

Built On : Tue June 07 19:43:44 UTC 2021

Build Host : iox-lnx-064

Workspace : ../ncs5700/ws

Version : 7.3.1

Label : 7.3.1-Customer_Label
```

cisco NCS5700 (D-1563N @ 2.00GHz) cisco NCS-57B1-5DSE-SYS (D-1563N @ 2.00GHz) processor with 32GB of memory ios uptime is 3 weeks, 1 day, 10 hours, 11 minutes NCS-57B1-5DSE-SYS Fixed Scale HW Flexible Consumption Need Smart Lic

You can also use the get RPC on the install.version data model.

Step 2 View the active packages.

Example:

NCS 5700 Series:

xr-eigrp	7.3.1v1.0.0-1
xr-ipsla	7.3.1v1.0.0-1
xr-is-is	7.3.1v1.0.0-1
xr-lldp	7.3.1v1.0.0-1
xr-mcast	7.3.1v1.0.0-1
xr-mpls-oam	7.3.1v1.0.0-1
xr-ncs5700-mcast	7.3.1v1.0.0-1
xr-ncs5700-netflow	7.3.1v1.0.0-1
xr-netflow	7.3.1v1.0.0-1
xr-ospf	7.3.1v1.0.0-1
xr-perf-meas	7.3.1v1.0.0-1
xr-perfmgmt	7.3.1v1.0.0-1
xr-telnet	7.3.1v1.0.0-1
xr-track	7.3.1v1.0.0-1
xr-xcare	7.3.1v1.0.0-1

You can also use the get RPC on the install.packages.active.node and the install.packages.active.node.summary data models.

To understand the data model structure and its arguments, see the Obtain Data Models for Install Operation topic.

Build a Golden ISO

Table 1: Feature History Table

Feature Name	Release Information	Description
Build Golden ISO (GISO) Using gisobuild.py Tool	Release 7.6.1	This feature allows you to build your GISO image without support from Cisco. You can now select the install files, add your RPMs, repackage them as a custom image, and install the image. In previous releases, you had to contact Cisco to get your GISO built.

Golden ISO (ISO) upgrades the router to a version that has a predefined set of RPMs with a single operation. For example, you can create a customized ISO with the base OS package and specific optional RPMs based on your network requirements.

GISO supports automatic dependency management, and provides these functionalities:

- · Builds RPM database of all the packages present in package repository.
- Skips and removes Cisco RPMs that do not match the base ISO version.
- Skips and removes third-party RPMs that are not part of already existing third-party base package in the base ISO.

Step 1 Contact Cisco Support to build the GISO image with the set of packages based on your requirement.

Step 2 Build GISO image using gisobuild.py tool.

To build GISO, provide the following input parameters to the script:

- Base mini-x.iso (mandatory)
- Set of packages to install (Cisco signed packages)
- XR configuration file (optional)
- Label for golden ISO (optional)
- ZTP initialization ztp.ini file (optional)
- Note GISO build tool verifies the RPM dependecnies and RPM signatures. GISO build fails if the RPM is unsigned or incorrectly signed.
- a) Copy the repository from the Github location to an offline system or external server where the GISO will be built.
- b) Run the script gisobuild.py and provide parameters to build the GISO image. Ensure that all RPMs and SMUs are present in the same directory or on a repository.

Example:

```
--out-directory <out_directory> --clean
```

The following parameters can be provided as input to the GISO build tool:

• -- iso: ISO path to mini.iso or full.iso file

- --xrconfig: XR configuration file
- · -- label: GISO label
- · --repo: Path to repositories containing RPMs and tarballs
- · --pkglist: Optional RPMs or SMUs to package
- --ztp-ini: Path to the ZTP initialization file
- --remove-packages: Remove RPMs from the GISO. To remove multiple RPMs, separate the RPM names using comma. For example, --remove-packages xr-bgp, xr-mcast command removes the xr-bgp and xr-mast packages from GISO
- · --out-directory: Output directory to store output of the operations performed on the file
- --clean: Delete contents of the output directory
- --skip-dep-check: Skip dependency checking between files
- --version: Print version of the tool
- · --pkglist: Optional RPM or SMU to package
- · --yamlfile: Provide CLI arguments via YAML markup file
- --docker: Load and run pre-built docker image

The tool uses the input parameters to build the GISO image.

- **Step 3** Copy the GISO image to the /harddisk: location on the router.
- **Step 4** Upgrade the system to replace the current software with the .iso image, and install the RPMs.

Example:

Router#install replace <source location> <giso name.iso>

If you are using a configuration file in GISO, use the following command to extract and replace the configuration.

Router# install replace <source location> <GISO-with-cfg>-<platform>.iso

- **Note** The default option is to replace the existing configuration. The install operation applies the configuration from a GISO, the router reboots to activate the configuration.
- Step 5 View the version information for the GISO image. You can include a label to indicate the runing software version on the router. For example, create a label v1 for the current GISO version. When you rebuild GISO with additional RPMs, you can create a label v2 to distinguish the builds.

Example:

Router#show version

```
Cisco IOS XR Software, Version 7.5.27.3.1 LNT
Copyright (c) 2013-2022 by Cisco Systems, Inc.
Build Information:
Built By
           : XVZ
            : Tue June 07 19:43:44 UTC 2021
Built On
Build Host
            : iox-lnx-064
Workspace
            : ../ncs5500ncs5700/ws
Version
            : 7.5.27.3.1
            : 7.5.2-Customer Label7.3.1-Customer Label
Label
cisco NCS5500LNCS5700 (D-1563N @ 2.00GHz)
```

```
cisco NCS-55A1-36H-SNCS-57B1-5DSE-SYS (D-1563N @ 2.00GHz) processor with 32GB of memory
ios uptime is 3 weeks, 1 day, 10 hours, 11 minutes
NCS-55A1-36H-SNCS-57B1-5DSE-SYS
NCS55B1 Fixed Scale HW Flexible Consumption Need Smart Lic
```

Upgrade the System to Obtain Bug Fixes

You can upgrade the system to obtain all available bug fixes or choose specific bug fix using bug ID.

Bug fixes are available as optional RPMs. The bug fixes replace packages in the base ISO without adding up to the image size. For example, even if you add 20 RPMs to the GISO, the GISO file size will remain the same as the initial ISO.

You can download the bug fix RPMs from the Cisco Software Download portal .

The README file provides the relevant information about the bug fix and also identifies the dependencies, if any, where other bug fix RPMs may be required for a complete fix.

The following image shows the options to install the bug fix RPMs.

The software is split into modular blocks and the package manager infrastructure computes the dependencies between the blocks. Each block of software has a top-level package and various partition-level packages. Bug

fixes that span multiple blocks may lead to creating multiple dependent packages that are built as part of earlier bug fixes.

Note We recommend that you leverage the GISO workflow. Contact Cisco Support to build a new GISO with the required bug fixes. The RPMs are present in the initid, which is the initial RAM disk for the boot loader, and this requires that the package is signed by Cisco. You can install GISO using a single install replace operation. For more information about GISO, see the *Build a Golden GISO* section.

However, if you do not prefer using the GISO, here are a few alternative ways to install bug fixes:

- Create tarballs to install one or more bug fixes. For example, if you are installing bug fixes CSCxx11111, CSCyy22222 and CSCzz33333, you can use the individual tarball files and create a single tarball file.
- Use a Dandified Yum- or DNF repository to install, update, or remove relevant bug fixes. See, Create Repository to Access Files for Installing IOS XR Software.

Note Use the RPM repository to harvest the benefits of package manager. The package manager queries the available packages, and downloads only those packages and their dependencies that are needed for installation.

Step 1 View the list of available bug fixes.

Example:

NCS 5700 Series:

```
Router#show install fixes available

Bug Id Packages Repository

CSCxx12345 xr-5700-core-7.3.1v1.0.1-1 <repository-name>

xr-core-7.3.1v1.0.1-1 <repository-name>
```

- **Step 2** Install the bug fix or package using one of the following options:
 - Install the package where the bug fix is applied.

NCS 5700 Series:

```
Router#install package upgrade xr-5700-core-7.3.1v1.0.1-1 xr-core-7.0.1v1.0.1-1
Packaging operation 1.1.1 started - xr-5700-core-7.3.1v1.0.1-1 xr-core-7.0.1v1.0.1-1
```

This task can also be accomplished using Cisco-IOS-XR-install-augmented-oper data model.

Apply the changes.

Router#install apply [reload | restart]

Note

To identify if you must reload or restart the system while applying the changes, use one of these two methods:

· History of last transaction

Router#show install history last transaction verbose 2019-09-11 17:01:46 UTC Transaction 3 started 2019-09-11 17:01:46 UTC Atomic change 3.1 started 2019-09-11 17:01:46 UTC Packaging operation 3.1.1 started 2019-09-11 17:16:46 UTC Transaction 3 complete

```
Least impactful apply method: process restart
```

The command also displays the information about the changes to files and processes because of the install operation, and the package operations carried out on each node.

Show install request

Router:#show install request Wed Sep 14 02:53:21.525 PDT User request: install package abort latest Operation ID: 2.1.2 Failure since 2022-09-14 02:48:15 UTC-07:00 State: Disk space check failed on nodes: 0/0/CPU0. Query 'show install history id 2.1.2 errors' for more details and next steps Current activity: Await user input 2022-09-14 02:48:20 UTC-07:00 Time started: The following actions are available: install package add install package remove install package upgrade install package downgrade install package abort latest install package abort all-since-apply install apply restart install apply reload install reimage

NCS 5700 Series:

Router#show install request User request: install package upgrade xr-5700-core-7.3.1v1.0.1-1 Operation ID: 2.1.1 State: Success Current activity: Await user input Time started: The following actions are available: install package add install package remove install package upgrade install package downgrade install package replace install package rollback install package abort latest install package abort all-since-apply install apply restart install apply reload

Here, both install apply restart and install apply reload options are available. In this case, use install apply restart command because the impact on the system is the least. But

when only an install apply reload option is available, then reload is the only option to apply the change.

• Install the optional package. Changes are applied automatically.

Attention Automatic change may trigger a reload of the router depending on the package that is installed.

Router#install source /harddisk:/files xr-<platform>-core-7.3.1v1.0.1-1

Note Packages can also be installed using the package name.

```
Router#install source /harddisk:/files xr-<platform>-core
```

• This task can also be performed using YANG data models. Use install RPC on the Cisco-IOS-XR-install-act data model. Here is an example usage with an HTTP repository:

```
<install>
    cpackages>
        cpackagename>pkg1/packagename>
        cource-type>
        <source-type>http</source-type>
        <source><path-to-source></source>
</install>
```

Step 3 View the state of the packaging operation.

Example:

```
Router#show install request
User request: install package upgrade xr-<platform>-core-<version> xr-core-<version>
Operation ID: 2.1.2
State: In progress since
Current activity: Initiate operation
Next activity: Begin transaction
Time started: 2019-06-25 07:41:06
```

No per-location information.

Step 4 View the log to ensure that the installation is successful.

Example:

```
      Router#show install log

      2019-06-25 07:41:06 UTC
      Transaction 1 started

      2019-06-25 07:45:08 UTC
      Upgrade (Success)

      2019-06-25 07:45:08 UTC
      xr-<platform>-core-<version>

      2019-06-25 07:45:08 UTC
      xr-core-<version>

      2019-06-25 07:57:02 UTC
      Atomic change 1.1 successfully applied by reload
```

Step 5 View the history of the install operation.

Example:

```
      Router#show install history table
      Packaging Operations

      Transaction
      Atomic Change
      Packaging Operations

      Id
      Status
      Id Method
      Status

      Id
      Status
      Id Operation
      In progress

      1
      In progress
      1
      Reload
      Success
```

The command can also be used to view more details if there is a failed operation.

Use show install history id <operation-id> command to filter the history of install information by ID. IDs are of the form <transaction id>.<atomic id>.<packaging id>.

```
Router#show install history id ?
WORD Specify an operation ID (e.g. 1, 1.2, 1.2.3)
```

Use **show install history last** command to view the last packaging operation, atomic change, or transaction.

Router#show install history last ?

atom	lc-change	Show	the	last	atomic ch	ange
packa	age	Show	the	last	packaging	operation
trans	saction	Show	the	last	transacti	on

Step 6 After the operation is complete, verify that the packages xr-5700-core-7.3.1v1.0.1-1 and xr-core-7.3.1v1.0.1-1 and xr-core-7.5.2v1.0.1-1 are installed and active.

Example:

Example:

NCS 5700 Series:

```
Router#show install active summary
Fri Mar 5 17:37:23.205 UTC
Active Packages: XR: 156
                           All: 1214
Label:
                 7.4.1-LABEL
               28dd70ef227aeca3d3fd3ecf8d1792a4f51fabb299ec7d38725869575fd9cfaf
Software Hash:
Optional Packages
                                                                 Version
  _____
xr-bgp
                                                         7.3.1v1.0.0-1
                                                         7.3.1v1.0.0-1
xr-cdp
xr-eigrp
                                                        7.3.1v1.0.0-1
                                                         7.3.1v1.0.0-1
xr-ipsla
xr-is-is
                                                         7.3.1v1.0.0-1
xr-lldp
                                                         7.3.1v1.0.0-1
xr-mcast
                                                         7.3.1v1.0.0-1
                                                         7.3.1v1.0.0-1
xr-mpls-oam
xr-ncs5700-mcast
                                                         7.3.1v1.0.0-1
xr-ncs5700-netflow
                                                         7.3.1v1.0.0-1
xr-netflow
                                                         7.3.1v1.0.0-1
xr-ospf
                                                         7.3.1v1.0.0-1
                                                         7.3.1v1.0.0-1
xr-perf-meas
xr-perfmgmt
                                                         7.3.1v1.0.0-1
                                                         7.3.1v1.0.0-1
xr-telnet
                                                         7.3.1v1.0.0-1
xr-track
xr-xcare
                                                         7.3.1v1.0.0-1
```

Example:

Router#show install active summary

The version has changed. The version 1.0.1-1 indicates that the bug fix is installed.

This task can also be accomplished using data models. Use the get RPC for install.fixes.active operation using Cisco-IOS-XR-install-augmented-oper data model.

Step 7 Commit the changes for the changes to persist after a reload operation.

Example:

Router#install commit

Step 8 View the list of bug IDs for which fixes are committed.

Example:

Router#show install fixes committed

This task can also be accomplished using data models. Use the get RPC for install.fixes.committed operation using Cisco-IOS-XR-install-augmented-oper data model.

Step 9 View the list of active bug fix RPMs.

Example:

Router#show install fixes active

This task can also be accomplished using data models. Use the get RPC for install.fixes.active operation using Cisco-IOS-XR-install-augmented-oper data model.

Downgrade to a Previously Installed Package

You can downgrade a package to a previously installed version. By default, the subsequent previous version (version previous to the current version) is installed. Also, you can downgrade the software to a specific version of interest. To remove a bug fix RPM from the installed packages, downgrade the package to a version where the fix was not applied.

Note

While downgrading, you can choose any previous version, including the base version of the RPM. However, when downgrading a bug fix RPMs, ensure that you also consider all dependencies of the current version.

Bug fix RPM is an upgrade to the existing package. The action of removing a bug fix RPM either removes the entire feature, or fails if the package is mandatory.

The following example shows the package is downgraded to . The path to source can be a local location or a configured repository.

NCS 5700 Series: This example shows the package xr-telnet-7.3.1v1.0.1 is downgraded to xr-telnet-7.0.1v1.0.0.

Before you begin

Ensure you have access to the previously installed package and its source.

- **Step 1** Downgrade the package using one of the following options:
 - Downgrade the package where the fix was applied. When multiple older versions of the package are present in the configured repositories, the immediate previous version of the package is installed. Use caution when using this command as the current version of the package is removed completely.

Router#install package downgrade xr-telnet

Apply the changes.

Router#install apply [reload | restart]

Attention To identify whether to reload the router or restart the affected processes as part of the apply operation, use either show install history last transaction verbose command or show install request command.

Install a specific earlier version of the optional package. The changes are applied automatically.

Attention An automatic change may trigger a reload of the router depending on the package being downgraded.

Router#install source <path-to-source> xr-telnet-7.0.1v1.0.0

• Use install RPC on the Cisco-IOS-XR-install-act data model. Here is an example usage with a local repository:

```
<install>
<packages>
<packagename>
```

```
xr-telnet-7.3.lvl.0.0
</packagename>
</packages>
    <source>file://<path-to-source>/</source>
</install>
```

The package version xr-telnet-7.3.1v1.0.1 is downgraded to xr-telnet-7.3.1v1.0.0.

Step 2 Commit the operation.

Example:

Router#install commit

Caveats

Table 2: Upgrade Caveats

From	То	Bridge SMUs Required	Caveats
7.5.2	7.10.1 and later	Yes	1*, 2*
7.6.1	7.10.1 and later	Yes	1*, 2*
7.6.2	7.10.1 and later	None	1*
7.7.1	7.10.1 and later	None	1*
7.7.2	7.10.1 and later	None	1*
7.8.1	7.10.1 and later	None	1*
7.8.2	7.10.1 and later	None	1*
7.9.1	7.10.1 and later	None	1*

From	То	Bridge SMUs Required	Caveats
7.9.2	7.10.1 and later	None	1*

1^{*}: You can't roll back using the **install rollback** command.

2^{*}: Ensure that a reload bridging SMU (CSCwd71524) is installed.

Note CSCwd71524:

- When you upgrade from earlier than Release 7.10.1 to Release 7.10.1, system supports the installation process seemlessly.
- When you downgrade from Release 7.10.1, system preserves the present configuration and the install history from last transaction.

The following downgrade caveats are applicable for Release 7.10.1 and later:

Table 3: Downgrade Caveats

From	То	Bridge SMUs Required	Caveats
7.10.1 and later	7.5.2	Yes	***, A*, B*
7.10.1 and later	7.6.1	Yes	***, A*, B*
7.10.1 and later	7.6.2	Yes	***, A*, B*
7.10.1 and later	7.7.1	Yes	***, A*, B*
7.10.1 and later	7.7.2	Yes	***, A*, B*
7.10.1 and later	7.8.1	Yes	***, A*, B*
7.10.1 and later	7.8.2	Yes	***, A*, B*
7.10.1 and later	7.9.1	Yes	***
7.10.1 and later	7.9.2	Yes	***

- You don't need to run the **install commit** command after a downgrade operation because the operation is automatically committed.
- You can't roll back after a downgrade. To revert to the previous IOS XR previous version, replace or reimage to the relevant ISO.
- IOS XR configuration history is lost after a downgrade, but the router preserves the latest configuration.
- Install history from the last transaction is preserved after a downgrade operation.

- Downtime takes a longer time as the operation is performed through reimage.
- You can't downgrade using the **install package replace** command. Instead, use the **install replace** command to downgrade.
- Ensure that you reinstall third-party application once you complete the downgrade.
- You must re-install the *Type 6 masterkey* and reapply the configuration encrypted by it because they are lost after the downgrade.
- · You must regenerate crypto keys and certificates after a downgrade.
- PXE recovery is required if the image downgrading isn't bootable.

A^{*}: You can't downgrade to the base ISO. You can downgrade to a GISO containing the bridge SMU (CSCwd71524).

B^{*}: You must recover the router through PXE if a power cycle occurs during the downgrade.

Use the show install upgrade-matrix running command to view the caveats.

Roll Back Software to a Previously Saved Installation Point

You can roll your system software back to a previous version. This could be used to discard an ongoing install operation, or to undo an install operation that has already been committed. After each commit operation, the system saves a record of the committed software packages. Each record is a restoration point, and is assigned a unique ID. This ID is known as a transaction ID. You can use the transaction ID to roll back the software to a restoration point associated with this ID. Up to 900MB of space is allowed for rollback points, instead of a specific number of rollback points.


```
Note
```

- Use transaction ID 0 to roll back to the software that was present after the system booted for the first time.
- If you commit an install transaction using install commit command, the GISO ZTP configuration is saved along with the rest of the software changes. This means that if you use the install rollback or install package rollback command to revert the software to the state of a previous transaction, the GISO ZTP configuration is also reverted to its previous state. To undo this install operation, as well as the change in GISO ZTP configuration, use install package abort command. If there is no GISO ZTP configuration is reverted to the existing GISO ZTP configuration is reverted to the previous state when the rollback operation of that transaction is applied.
- **Step 1** View the list of available transaction IDs.

Example:

Router# show install rollback list-ids

Step 2Explore the main packages that can be installed if you roll the software back to the specific transaction ID.Example:

```
Router# show install rollback id <id>
```

Step 3 View the relative changes that are made to the currently installed software if it is rolled back to a transaction ID.

Example:

```
Router# show install rollback id <id> changes
```

To perform these tasks using data models, use the get RPC on the Cisco-IOS-XR-install-augmented-oper data model.

```
<rpc>
<get>
<get>
<filter type="subtree">
<install xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-install-augmented-oper">
</orlback/>
</orlback/>
</install>
</filter>
</get>
</rpc>
```

Step 4 Roll back to the software associated with the specific transaction ID.

Example:

Router# install rollback <id> [commit]

If you want to apply the change and roll back to the associated transaction ID, commit the change. You can also include the keyword noprompt in the command to enable the system to bypass your permission to reload the router.

Attention This roll back operation installs the previous software and also applies the change automatically. This may reload the router depending on the package that is rolled back.

Alternatively, use the **install package rollback** command to only roll back the package but not apply the changes. You can check whether the router will reload or restart if you apply the change using the **show install history last transaction verbose** command or **show install request** command. Based on the command output, you can take the appropriate action using **install apply reload** | **restart** command to either reload or restart the system. Use the **install commit** command to commit the transaction.

To perform this task using data models, use the install-rollback RPC on the Cisco-IOS-XR-install-augmented-oper data model.

```
<rpc>
<install-rollback xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-install-augmented-act">
<commit>true</commit>
<transaction-id>0</transaction-id>
</install-rollback>
</rpc>
```

To understand the data model structure and its arguments, see the Access the Install-Related Data Model.

Step 5 Commit the operation.

Example:

Router#install commit