Perform System Upgrade and Install Feature Packages The system upgrade and package installation processes are executed using **install** commands on the router. The processes involve adding and activating the iso images (*.iso*) and feature packages on the router. These files are accessed from a network server and then activated on the router. If the installed package or SMU causes any issue on the router, it can be uninstalled. The topics covered in this chapter are: - Upgrading the System, on page 1 - View supported software upgrade or downgrade versions, on page 3 - Upgrading Features, on page 6 - Upgrading Cisco IOS XR from 7.10.x/7.11.1 to 7.11.2 or later releases, on page 8 - Install Prepared Packages, on page 9 - Install Packages, on page 12 - Uninstall Packages, on page 17 - View Features and Capabilities Supported on a Platform, on page 20 ### **Upgrading the System** Upgrading the system is the process of installing a new version of the Cisco IOS XR operating system on the router. The router comes preinstalled with the Cisco IOS XR image. However, you can install the new version in order to keep router features up to date. The system upgrade operation is performed from the XR VM. However, during system upgrade, the software that runs on both the XR VM and the System Admin VM get upgraded. Note The 1G interface flaps twice instead of once in the Modular Port Adapter (MPA) NC55-MPA-12T-S after you reload any of these NCS 55A2 Fixed Chassis - NCS-55A2-MOD-SL, NCS-55A2-MOD-HD-S, NCS-55A2-MOD-HX-S, or NCS-55A2-MOD-SE-S. Note If you insert a line card on a router that is running a lower version than the one the line card supports, the line card fails to boot. You must first upgrade the router to a software version that supports the line card, insert the line card and iPXE boot the line card. Note If an interface on a router doesn't have a configuration and is brought up by performing no-shut operation, then upon router reload, the interface state changes to **admin-shutdown** automatically. Note - Ensure that you have adequate disk space. - Run the fsck command to check the status of the file system, for a successful IOS XR upgrade. You must run the fsck command in the System Admin EXEC mode to install a System Admin package, and in the XR EXEC mode to install the XR package. - All install commands are applicable in both the System Admin EXEC mode and in XR EXEC mode. System Admin install operations are done from XR EXEC mode. Perform a system upgrade by installing a base package—Cisco IOS XR Unicast Routing Core Bundle. To install this bundle, run the **install** command. The filename for the Cisco IOS XR Unicast Routing Core Bundle bundle is *ncs5500-mini-x.iso*. Caution Do not perform any install operations when the router is reloading. Do not reload the router during an upgrade operation. Note To enable hardware programming after upgrading the chassis from an older software version to IOS XR Release 7.6.x or later through ISSU, initiate a chassis reload. The chassis reload is mandatory, if you must enable a maximum transmission unit (MTU) value of 9646 on applicable interfaces. Note Ensure that the system is on Cisco IOS XR Software Release 7.3.x, for a successful upgrade to Cisco IOS XR Software Release 7.6.x. Cisco IOS XR supports RPM signing and signature verification for Cisco IOS XR RPM packages in the ISO and upgrade images. All RPM packages in the Cisco IOS XR ISO and upgrade images are signed to ensure cryptographic integrity and authenticity. This guarantees that the RPM packages haven't been tampered with and the RPM packages are from Cisco IOS XR. The private key, which is used for signing the RPM packages, is created and securely maintained by Cisco. ### View supported software upgrade or downgrade versions Cisco routers come preinstalled with Cisco IOS XR software. You can upgrade the software to access new features and fixes, or downgrade it if needed. To take advantage of the latest features and software improvements, we recommend that you keep your router updated with the current version. Table 1: Feature History Table | Feature Name | Release Information | Description | |---------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Supported software upgrade or downgrade IOS XR versions | Release 7.5.1 | You can determine whether a software version can be upgraded or downgraded to another version using this functionality. Before an actual upgrade or downgrade process, you can also view the hardware or software limitations that could cause the upgrade or downgrade to fail. This feature helps you plan successful software upgrades or downgrades. This feature introduces the show install upgrade-matrix command. | ### Compatibility checks for Cisco IOS XR software upgrades and downgrades The compatibility check feature for Cisco IOS XR software facilitates choosing a release that follows Cisco-certified upgrade and downgrade paths, asking critical questions such as: - Which upgrade or downgrade releases are supported for my current release - If I want to upgrade from Release X to Release Y, does my router support this upgrade - Are there any bridging SMUs that must be installed before upgrading? This feature checks whether your current release can upgrade or downgrade to a specified target release. This automatic validation occurs during the start of a software upgrade or downgrade using the **install replace** command. If the validation fails, the upgrade is blocked, and the system notifies you of the reason for the failure. This validation allows you to proactively determine upgrade or downgrade compatibility thus saving planning effort. The feature details prerequisites and limitations for a specific upgrade or downgrade such as: - Required bridging SMU RPMs - Blocking SMU RPMs - Unsupported hardware - · Caveats or restrictions If needed, bypass automatic validation by including the **force** keyword with the **install replace** command. When you use this option, the system displays warning messages if the upgrade fails, but it does not stop the software upgrade. Explore **force?** for any impacts beyond this. ### Show commands for software upgrade and downgrade You can view the software upgrade and downgrade information using the **show** commands in this table or through the operational data. | Command | Description | |----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | show install upgrade-matrix running | Displays all supported software upgrades from the current version according to the support data installed on the running system | | show install upgrade-matrix iso path-to-ISO | Displays details about the software upgrade from the current version to the version of the target ISO according to the support data in both the running system and the ISO image | | show install upgrade-matrix iso path-to-ISO all | Displays all supported software upgrades from any version according to the support data in the target ISO image | | show install upgrade-matrix iso path-to-ISO from-running | Displays details about the software upgrade from the current version to the version of ISO according to the support matrices in both the running system and the target ISO image | ### Supported software upgrade from running version This example shows all supported releases for upgrade from the current version on the NCS 5500 and NCS 5700 routers: #### **Example 1: NCS 5500** Router#show install upgrade-matrix running Fri Jul 29 10:12:47.740 IST This may take a while ... The current software can be upgraded from and downgraded to the following releases: | From | To | Bridge SMUs Required | Caveats | |-------|-------|----------------------|---------| | 7.0.2 | 7.5.1 | None | None | | 7.5.1 | 7.0.2 | None | None | | 7.5.1 | 7.4.1 | None | None | | 7.5.1 | 7.1.3 | None | None | | 7.5.1 | 7.1.2 | None | None | | | 7.2.1 | | None | |-------|-------|------|------| | 7.5.1 | 7.2.2 | None | None | | 7.5.1 | 7.3.1 | None | None | | | 7.3.2 | | None | | 7.4.1 | 7.5.1 | None | None | | 7.1.3 | 7.5.1 | None | None | | 7.1.2 | 7.5.1 | None | None | | 7.2.1 | 7.5.1 | None | None | | 7.2.2 | 7.5.1 | None | None | | 7.3.1 | 7.5.1 | None | None | | 7.3.2 | 7.5.1 | None | None | | | | | | ### Supported releases to upgrade software from current version to target version This example shows the supported release to upgrade software from the current version to a target version. ``` Router#show install upgrade-matrix iso /harddisk:/ncs5500-goldenk9-x-7.5.2-rev1.iso Fri Jul 29 10:16:43.233 IST This may take a while ... Upgrade from the current software [7.5.1] to 7.5.2 is supported From To Bridge SMUs Required Caveats 7.5.1 7.5.2 None None ``` The current image has the upgrade matrix that specifies only its supported upgrade or downgrade versions up to a certain version. If you want to determine the upgrade path of a newer version of ISO that is higher than the version in the current matrix, the upgrade matrix from the new ISO provides the supported upgrade or downgrade paths. ### Supported releases from current version to an ISO version This example shows the software upgrade paths, downgrade paths, and restrictions to an upgrade from the current version to the target ISO version: ``` Router#show install upgrade-matrix iso /harddisk:/ncs5500-goldenk9-x-7.5.2-rev1.iso all Fri Jul 29 10:17:02.826 IST This may take a while ... 7.5.2 can be upgraded from and downgraded to the following releases: From To Bridge SMUs Required Caveats ``` | 7.5.1 | 7.5.2 | None | None | |-------|-------|------|------| | 7.4.2 | 7.5.2 | None | None | | 7.4.1 | 7.5.2 | None | None | | 7.5.2 | 7.4.2 | None | None | | 7.5.2 | 7.6.1 | None | None | | 7.5.2 | 7.4.1 | | None | | 7.5.2 | 7.2.1 | None | None | | 7.5.2 | 7.2.2 | None | None | | 7.5.2 | 7.3.1 | None | None | | 7.5.2 | 7.3.2 | None | None | | 7.2.1 | 7.5.2 | None | None | | 7.2.2 | 7.5.2 | None | None | | 7.6.1 | 7.5.2 | None | None | | 7.3.1 | 7.5.2 | None | None | | 7.3.2 | 7.5.2 | None | None | | | | | | ### Supported releases from running version to an ISO version This example displays details about the software upgrade from the current version to the version of ISO according to the support matrices in both the running system and the target ISO image: Router#show install upgrade-matrix iso /harddisk:/ncs5500-goldenk9-x-7.5.2-rev1.iso from-running Fri Jul 29 10:17:35.583 IST This may take a while ... Upgrade from the current software [7.5.1] to 7.5.2 is supported | ======= | | | | |---------|-------|----------------------|---------| | From | To | Bridge SMUs Required | Caveats | | ======= | | | | | 7.5.1 | 7.5.2 | None | None | | | | | | ## **Upgrading Features** Upgrading features is the process of deploying new features and software patches on the router. Perform a feature upgrade by installing packages. Perform a software patch installation by installing Software Maintenance Upgrade (SMU) files. Installing a package on the router installs specific features that are part of that package. Cisco IOS XR Software is divided into various software packages; this enables you to select the features to run on your router. Each package contains components that perform a specific set of router functions, such as routing, security, and so on. For example, the components of the routing package are split into individual RPMs such as BGP and OSPF. BGP is a part of the base software version and is a mandatory RPM, and hence can't be removed. However, you can add and remove optional RPMs such as OSPF as required. The naming convention of the package is <platform>-<pkg>-<pkg version>-<release version>.<architecture>.rpm. | Feature | Package | |--------------|-------------------------------------------------------------------| | Forwarding | ncs5500-fwding-1.0.0.0-< <i>release-number</i> >.x86_64.rpm | | BGP | ncs5500-bgp-1.0.0.0-< <i>release-number</i> >.x86_64.rpm | | mpls-te-rsvp | ncs5500-mpls-te-rsvp-1.0.0.0-< <i>release-number</i> >.x86_64.rpm | | k9sec | ncs5500-k9sec-1.0.0.0-< <i>release-number</i> >.x86_64.rpm | | mgbl | ncs5500-mgbl-2.0.0.0-< <i>release-number</i> >.x86_64.rpm | | mpls | ncs5500-mpls-1.0.0.0-< <i>release-number</i> >.x86_64.rpm | | infra | ncs5500-infra-1.0.0.0-< <i>release-number</i> >.x86_64.rpm | | os | ncs5500-os-1.0.0.0-< <i>release-number</i> >.x86_64.rpm | | routing | ncs5500-routing-1.0.0.0-< <i>release-number</i> >.x86_64.rpm | | security | ncs5500-security-1.0.0.0-< <i>release-number</i> >.x86_64.rpm | | os-support | ncs5500-os-support-1.0.0.0-< <i>release-number</i> >.x86_64.rpm | Use the **install** commands to install packages and SMUs. For more information about the install process, see Install Packages, on page 12. #### Note - Ensure that you have adequate disk space. - Run the **fsck** command to check the status of the file system, for a successful IOS XR upgrade. You must run the **fsck** command in the System Admin EXEC mode to install a System Admin package, and in the XR EXEC mode to install the XR package. - All install commands are applicable in both the System Admin EXEC mode and in XR EXEC mode. System Admin install operations are done from XR EXEC mode. There are separate packages and SMUs for the XR VM and the System Admin VM. They can be identified by their filenames. The XR and System Admin packages and SMUs can be activated from XR and System Admin VMs. You can alternatively perform a cross VM operation, by activating or deactivating the System Admin packages and SMUs from XR. #### Third-Party SMUs Consider these points while activating and deactivating third-party SMUs: - To activate a third-party SMU, you should have a corresponding base package. - When you activate a third-party SMU, the corresponding third-party base package state is inactive, this is an expected behavior. - To deactivate a third-party SMU, ensure that you activate the corresponding third-party base package. Third-party SMUs deactivated explicitly might lead to triages to the install team. Note All SMUs are bundled together with the base package in a TAR file Note All Cisco RPMs have the platform name in the filename. For example, ncs5500-sysadmin. # **Upgrading Cisco IOS XR from 7.10.x/7.11.1 to 7.11.2 or later** releases Ensure that you follow these steps to avoid continuous process restarts affecting the SDR console. This issue is particularly common when base and VRF configurations are in place in Native mode, including setups for VRF, OSPF, BGP L3VPN, L2VPN xconnect, and MPLS OAM. However, if the MDB profile is configured along with Native mode, you will not encounter this issue. #### Before you begin You don't need to follow these steps if you are upgrading from Cisco IOS XR Software Release 7.11.2 to Release 24.x.y and later releases. #### **Procedure** **Step 1** Check that NPU Operating Mode is *native*, using the **show hw-module profile npu-operating-mode** command. #### Example: Router#show hw-module profile npu-operating-mode NPU Operation Mode: Native - If the NPU operation Mode is *Compatibility* mode or *Not Applicable*, you do not need to follow these steps. - If the NPU operation mode is *Native*, follow further steps. - **Step 2** Check if any hw-module is already configured for mdb-profile, using the **show running configuration** command. #### **Example:** ``` Router#show running-config | i hw hw-module profile mdb 13max-se <-- MDB profile configured ``` If mdb profile is not configured, please perform **Step 4.** Step 3 Verify if mdb profile is already activated, using the show hw-module profile mdb-scale command. #### **Example:** ``` Router#show hw-module profile mdb-scale MDB scale profile: 13max-se ``` The MDB scale profile can be 13max, 13max-se, 12max, 12max-se. If the profile is already configured and activated, no further steps are needed. **Step 4** If mdb profile is not configured, then check the default MDB Profile, using the **show hw-module profile mdb-scale** command. #### Example: ``` Router#show hw-module profile mdb-scale MDB scale profile: 13max ``` The default mdb profile can be 13max or 13max-se. In the above example, the deafult mdb profile is 13max. **Step 5** Configure default MDB profile, using the **hw-module profile mdb/***mdb profile-name***]** command. #### **Example:** ``` Router#hw-module profile mdb 13max In order to activate this new mdb profile, you must manually reload the chassis Router(config)#commit ``` **Step 6** Proceed with the upgrade, you don't need to manually reload the chassis at this point since we are in upgrade. # **Install Prepared Packages** A system upgrade or feature upgrade is performed by activating the ISO image file, packages, and SMUs. It is possible to prepare these installable files before activation. During the prepare phase, preactivation checks are made and the components of the installable files are loaded on to the router setup. The prepare process runs in the background and the router is fully usable during this time. When the prepare phase is over, all the prepared files can be activated instantaneously. The advantages of preparing before activation are: - If the installable file is corrupted, the prepare process fails. This provides an early warning of the problem. If the corrupted file was activated directly, it might cause router malfunction. - Directly activating an ISO image for system upgrade takes considerable time during which the router is not usable. However, if the image is prepared before activation, not only does the prepare process run asynchronously, but when the prepared image is subsequently activated, the activation process too takes less time. As a result, the router downtime is considerably reduced. - It performs a disk-space check that is required for a successful operation. This quantifies the disk-space deficit, and provides you possible alternatives to free up space in the filesystem. - It performs a package compatibility check. This ensures that all the required installation packages are available. For any package compatibility check error, details of the package and version are logged. Complete this task to upgrade the system and install packages by making use of the prepare operation. Note Depending on whether you are installing a System Admin package or a XR package, execute the **install** commands in the System Admin EXEC mode or XR EXEC mode respectively. All **install** commands are applicable in both these modes. System Admin install operations can be done from XR mode. #### **Procedure** #### **Step 1** Add the required ISO image and packages to the repository. For details, see Install Packages, on page 12. #### **Step 2** show install repository #### **Example:** RP/0/RP0/CPU0:router#show install repository Perform this step to verify that the required installable files are available in the repository. Packages are displayed only after the "install add" operation is complete. #### **Step 3** show install request #### **Example:** RP/0/RP0/CPU0:router#show install request (Optional) Displays the operation ID of the add operation and its status. The operation ID can be later used to execute the **activate** command. Install operation 8 is still in progress #### **Step 4** Execute one of these: - install prepare package_name - install prepare id operation_id #### Example: RP/0/RP0/CPU0:router#install prepare ncs5500-mpls-1.0.0.0-r60023I.x86_64.rpm or RP/0/RP0/CPU0:router#install prepare id 8 The prepare process takes place. This operation is performed in asynchronous mode. The **install prepare** command runs in the background, and the EXEC prompt is returned as soon as possible. If you use the operation ID, all packages that were added in the specified operation are prepared together. For example, if 5 packages are added in operation 8, by executing **install prepare id 8**, all 5 packages are prepared together. You do not have to prepare the packages individually. #### **Step 5** show install prepare #### **Example:** RP/0/RP0/CPU0:router#show install prepare Displays packages that are prepared. From the result, verify that all the required packages have been prepared. #### Step 6 install activate #### **Example:** RP/0/RP0/CPU0:router#install activate All the packages that have been prepared are activated together to make the package configurations active on the router. #### Note You should not specify any package name or operation ID in the CLI. Activations of some SMUs require manual reload of the router. When such SMUs are activated, a warning message is displayed to perform reload. The components of the SMU get activated only after the reload is complete. Perform router reload immediately after the execution of the **install activate** command is completed. #### **Step 7** show install active #### Example: RP/0/RP0/CPU0:router#show install active Displays packages that are active. ``` Node 0/RP0/CPU0 [RP] Boot Partition: xr lv70 Active Packages: 24 ncs5500-xr-6.0.0 version=6.0.0 [Boot image] ncs5500-k9sec-1.0.0.0-r600 ncs5500-mgbl-2.0.0.0-r600 ncs5500-mpls-1.0.0.0-r600 ncs5500-mpls-te-rsvp-1.0.0.0-r600 ncs5500-infra-2.0.0.2-r600.CSCxr22222 ncs5500-iosxr-fwding-2.0.0.2-r600.CSCxr22222 ncs5500-iosxr-fwding-2.0.0.5-r600.CSCxr90016 ncs5500-iosxr-fwding-2.0.0.1-r600.CSCxr55555 ncs5500-iosxr-fwding-2.0.0.6-r600.CSCxr90017 ncs5500-dpa-1.0.0.1-r600.CSCxr90002 ncs5500-dpa-1.0.0.2-r600.CSCxr90004 ncs5500-dpa-fwding-1.0.0.1-r600.CSCxr90005 ncs5500-k9sec-1.0.0.1-r600.CSCxr80008 ncs5500-os-support-1.0.0.1-r600.CSCxr90013 ncs5500-os-support-1.0.0.2-r600.CSCxr90014 ncs5500-fwding-1.0.0.2-r600.CSCxr90011 ncs5500-fwding-1.0.0.5-r600.CSCxr90019 ncs5500-fwding-1.0.0.1-r600.CSCxr90010 ncs5500-fwding-1.0.0.4-r600.CSCxr90018 ncs5500-mgbl-2.0.0.2-r600.CSCxr80009 ncs5500-mpls-1.0.0.1-r600.CSCxr33333 ncs5500-mpls-te-rsvp-1.0.0.2-r600.CSCxr33335 ``` From the result, verify that on all RPs and LCs, the same image and package versions are active. #### Step 8 install commit #### **Example:** RP/0/RP0/CPU0:router#install commit #### **Installing Packages: Related Commands** | Related Commands | Purpose | |------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------| | show install log Displays the log information for the install process; this cat troubleshooting in case of install failure. | | | show install package | Displays the details of the packages that have been added to the repository. Use this command to identify individual components of a package. | | install prepare clean | Clears the prepare operation and removes all the packages from the prepared state. | #### What to do next - After performing a system upgrade, upgrade FPD by using the upgrade hw-module location all fpd all command from the System Admin EXEC mode. The progress of FPD upgrade process can be monitored using the show hw-module fpd command in the System Admin EXEC mode. Reload the router after the FPD upgrade is completed. - Verify the installation using the **install verify packages** command. - Uninstall the packages or SMUs if their installation causes any issues on the router. See Uninstall Packages. Note ISO images cannot be uninstalled. However, you can perform a system downgrade by installing an older ISO version. ### **Install Packages** Complete this task to upgrade the system or install a patch. The system upgrade is done using an ISO image file, while the patch installation is done using packages and SMUs. You can also include SMUs in an upgrade operation along with mini ISO. This task is also used to install .rpm files. The .rpm file contains multiple packages and SMUs that are merged into a single file. The packaging format defines one RPM per component, without dependency on the card type. Note - Ensure that you have adequate disk space. - Run the **fsck** command to check the status of the file system, for a successful IOS XR upgrade. You must run the **fsck** command in the System Admin EXEC mode to install a System Admin package, and in the XR EXEC mode to install the XR package. - All install commands are applicable in both the System Admin EXEC mode and in XR EXEC mode. System Admin install operations are done from XR EXEC mode. Note - The system upgrade is supported only from XR EXEC mode. - While the System Admin package can be executed using **install** commands in the System Admin EXEC mode and XR EXEC mode, the XR package can only be executed using the install commands in XR EXEC mode. All **install** commands are applicable in both these modes. - While the System Admin SMUs can be installed in System Admin EXEC mode and XR EXEC mode, the XR SMUs can only be installed through the XR EXEC mode. - Install operation over IPv6 is not supported. The workflow for installing a package is shown in this flowchart. Figure 1: Installing Packages Workflow #### Before you begin • You can add a package to the repository from a local disk in the router, from an inserted USB disk, or from a remote repository accessible through the management port or any data port. If the installable file is located on a USB in the router's USB port, use the **show media** or **show filesystem** commands. The installable file is labeled as either **usb:** or **disk2:** in the command outputs. If the installable file is located in a remote location that can be accessed through the management port, you must configure and bring up the management port to ensure reachability to the remote location. For more information, see the *Configure the Management Port* section in the *Bring-up the Router* chapter. • Until Cisco IOS XR Release 7.11.21, after every user-triggered, ungraceful, or upgrade RP reload, you can check the sanity of the files from the install repository using the **run rpm -K --nosignature**/install_repo/gl/xr/<package_name> command in System Admin EXEC mode. This sanity check helps to detect the corrupt RPM files. Remove corrupt files, if detected and add valid files to avoid any file or file system corruption error that you may encounter during the installation or upgrade or post-upgrade process. #### **Procedure** #### **Step 1** Execute one of these: - install add source http://install.google-path/ filename 1 filename 2 ... - install add source <tftp transfer protocol>/package_path/ filename1 filename2 ... - install add source <ftp or sftp transfer protocol>//user@server:/package_path/_filename1 filename2 ... - install add source disk2: filename1 filename2 ... #### **Example:** ``` RP/O/RPO/CPUO:router#install add source /harddisk:/ ncs5500-mpls-1.0.0.0-r731.x86_64.rpm or RP/O/RPO/CPUO:router#install add source sftp://root@8.33.5.15:/auto/ncs/package/ ncs55000-mcast-1.0.0.0-731.x86_64.rpm ncs5500-iosxr-mpls-1.0.0.0-732.x86_64.rpm or RP/O/RPO/CPUO:router#install add source /harddisk:/ ncs5500-mpls-1.0.0.0-</re> RP/O/RPO/CPUO:router#install add source /harddisk:/ ncs5500-mpls-1.0.0.0-</re> RP/O/RPO/CPUO:router#install add source sftp://root@8.33.5.15:/auto/ncs/package/ ncs5500-mgbl-1.0.0.0-</re> RP/O/RPO/CPUO:router#install add source sftp://root@8.33.5.15:/auto/ncs/package/ ncs55000-mcast-1.0.0.0-</re> release-number>.x86_64.rpm ncs5500-iosxr-mpls-1.0.0.0-</re> ``` #### Note A space must be provided between the *package_path* and *filename*. The software files are unpacked from the package, validated, and then added to the software repository. This operation might take time depending on the size of the files being added. The operation is performed in asynchronous mode. The **install add** command runs in the background, and the EXEC prompt is returned when all files are unpacked. #### Note The repositories for the XR VM and the System Admin VM are different. The system automatically adds a routing package to the XR VM repository and a system administration package to the System Admin VM repository. #### **Important** Starting from Cisco IOS XR Release 7.11.21, if a file or file system corruption error is reported during the installation or upgrade or post-upgrade process, an alarm is raised to indicate that the RPM files are corrupted and a syslog is displayed. The alarm is automatically cleared once you replace the corrupt files with valid files. #### **Step 2** show install request #### Example: RP/0/RP0/CPU0:router#show install request (Optional) Displays the operation ID of the add operation and its status. The operation ID can be later used to execute the **activate** command. Install operation 8 is still in progress #### **Step 3** show install repository #### Example: RP/0/RP0/CPU0:router#show install repository Displays packages that are added to the repository. Packages are displayed only after the install add operation is complete. #### **Step 4** show install inactive #### **Example:** RP/0/RP0/CPU0:router#show install inactive Displays inactive packages that are present in the repository. Only inactive packages can be activated. #### **Step 5** Execute one of these: - install activate package_name - install activate id operation_id #### Example: RP/0/RP0/CPU0:router#install activate ncs5500-mpls-1.0.0.0-<release-number>.x86_64.rpm ncs5500-mgbl-2.0.0.0-<release-number>.x86 64.rpm or RP/0/RP0/CPU0:router#install activate id 8 The *operation_id* is that of the **install add** operation, see Install Packages, on page 12 Step Step 2, on page 15. This command can also be run from the Sys Admin mode. The package configurations are made active on the router. As a result, new features and software fixes take effect. This operation is performed in asynchronous mode, as this is the default. The **install activate** command runs in the background, and the EXEC prompt is returned. You can run the activate operation either through the synchronous mode or by selecting the sync option from the CLI. If you use the operation ID, all packages that were added in the specified operation are activated together. For example, if 5 packages are added in operation ID 8, by executing **install activate id 8**, all 5 packages are activated together. You do not have to activate the packages individually. Activation does not happen instantaneously, but takes some time. When activation completes, the system reloads automatically. For restart SMU activation, the SMU takes effect once the processes impacted by the SMU are restarted. If the SMU has dependency on both XR VM and System Admin VM, perform the reload after activating the SMU in both VMs so that they take effect simultaneously. To reload the router, use the **hw-module location all reload** command from the System Admin EXEC mode. #### **Step 6** show install active #### **Example:** RP/0/RP0/CPU0:router#show install active #### Displays packages that are active. ``` Node 0/RP0/CPU0 [RP] Boot Partition: xr lv70 Active Packages: 24 ncs5500-xr-<release-number> version=<release-number> [Boot image] ncs5500-k9sec-1.0.0.0-<release-number> ncs5500-mgbl-2.0.0.0-<release-number> ncs5500-mpls-1.0.0.0-<release-number> ncs5500-mpls-te-rsvp-1.0.0.0-<release-number> ncs5500-infra-2.0.0.2-<release-number>.CSCxr22222 ncs5500-iosxr-fwding-2.0.0.2-<release-number>.CSCxr22222 ncs5500-iosxr-fwding-2.0.0.5-<release-number>.CSCxr90016 ncs5500-iosxr-fwding-2.0.0.1-<release-number>.CSCxr55555 ncs5500-iosxr-fwding-2.0.0.6-<release-number>.CSCxr90017 ncs5500-dpa-1.0.0.1-<release-number>.CSCxr90002 ncs5500-dpa-1.0.0.2-<release-number>.CSCxr90004 ncs5500-dpa-fwding-1.0.0.1-<release-number>.CSCxr90005 ncs5500-k9sec-1.0.0.1-<release-number>.CSCxr80008 ncs5500-os-support-1.0.0.1-<release-number>.CSCxr90013 ncs5500-os-support-1.0.0.2-<release-number>.CSCxr90014 ncs5500-fwding-1.0.0.2-<release-number>.CSCxr90011 ncs5500-fwding-1.0.0.5-<release-number>.CSCxr90019 ncs5500-fwding-1.0.0.1-<release-number>.CSCxr90010 ncs5500-fwding-1.0.0.4-<release-number>.CSCxr90018 ncs5500-mgbl-2.0.0.2-<release-number>.CSCxr80009 ncs5500-mpls-1.0.0.1-<release-number>.CSCxr33333 ncs5500-mpls-te-rsvp-1.0.0.2-<release-number>.CSCxr33335 ``` From the result, verify that the same image and package versions are active on all RPs and LCs. #### Table 2: Example: Installing Packages: Related Commands | Related Commands | Purpose | |---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------| | show install log | Displays the log information for the install process; this can be used for troubleshooting in case of install failure. | | show install package | Displays the details of the packages that have been added to the repository. Use this command to identify individual components of a package. | | install prepare Makes pre-activation checks on an inactive package, to prepare it for activ | | | show install prepare | Displays the list of package that have been prepared and are ready for activation. | #### Step 7 install commit #### **Example:** RP/0/RP0/CPU0:router#install commit Commits the Host, XR, and System Admin newly active software. #### Note On Multi-SDR mode, you can use the **install commit sdr** to commit just the sdr from where the CLI is being triggered. For more information, see Secure Domain Router Commands. #### What to do next - After performing a system upgrade, upgrade FPD by using the upgrade hw-module location all fpd all command from the System Admin EXEC mode. The progress of FPD upgrade process can be monitored using the show hw-module fpd command in the System Admin EXEC mode. Reload the router after the FPD upgrade is completed. - Verify the installation using the **install verify packages** command. - Uninstall the packages or SMUs if their installation causes any issues on the router. See Uninstall PackagesUninstall Packages, on page 17. Note If you are upgrading power supply modules for NC55-PWR-3KW-DC and NC55-PWR-3KW-2HV, ensure that you first upgrade SC IO FPGA by using **upgrade hw-module location <SC0/SC1> fpd all** command from Sysadmin prompt followed by the **upgrade hw-module location pm-all fpd** command, to upgrade FPD. Finally use **hw-module location <SC0/SC1> reload**command from Sysadmin prompt to reload the shelf controller. ## **Uninstall Packages** Complete this task to uninstall a package. All router functionalities that are part of the uninstalled package are deactivated. Packages that are added in the XR VM cannot be uninstalled from the System Admin VM. However, the cross VM operation allows System Admin packages to be deactivated from XR as well. Note Installed ISO images cannot be uninstalled. Also, kernel SMUs that install third party SMU on host, XR VM and System Admin VM, cannot be uninstalled. However, subsequent installation of ISO image or kernel SMU overwrites the existing installation. The workflow for uninstalling a package is shown in this flowchart. Figure 2: Uninstalling Packages Workflow This task uninstalls XR VM packages. If you need to uninstall System Admin packages, run the same commands from the System Admin EXEC mode. #### **Procedure** #### **Step 1** show install active #### Example: RP/0/RP0/CPU0:router#show install active Displays active packages. Only active packages can be deactivated. ``` Node 0/RP0/CPU0 [RP] Boot Partition: xr lv70 Active Packages: 24 ncs5500-xr-6.0.0 version=6.0.0 [Boot image] ncs5500-k9sec-1.0.0.0-r600 ncs5500-mgbl-2.0.0.0-r600 ncs5500-mpls-1.0.0.0-r600 \verb|ncs5500-mpls-te-rsvp-1.0.0.0-r600|\\ ncs5500-infra-2.0.0.2-r600.CSCxr22222 ncs5500-iosxr-fwding-2.0.0.2-r600.CSCxr22222 ncs5500-iosxr-fwding-2.0.0.5-r600.CSCxr90016 ncs5500-iosxr-fwding-2.0.0.1-r600.CSCxr55555 ncs5500-iosxr-fwding-2.0.0.6-r600.CSCxr90017 ncs5500-dpa-1.0.0.1-r600.CSCxr90002 ncs5500-dpa-1.0.0.2-r600.CSCxr90004 ncs5500-dpa-fwding-1.0.0.1-r600.CSCxr90005 ncs5500-k9sec-1.0.0.1-r600.CSCxr80008 ncs5500-os-support-1.0.0.1-r600.CSCxr90013 ncs5500-os-support-1.0.0.2-r600.CSCxr90014 ncs5500-fwding-1.0.0.2-r600.CSCxr90011 ``` ``` ncs5500-fwding-1.0.0.5-r600.CSCxr90019 ncs5500-fwding-1.0.0.1-r600.CSCxr90010 ncs5500-fwding-1.0.0.4-r600.CSCxr90018 ncs5500-mgb1-2.0.0.2-r600.CSCxr80009 ncs5500-mpls-1.0.0.1-r600.CSCxr33333 ncs5500-mpls-te-rsvp-1.0.0.2-r600.CSCxr33335 ``` #### **Step 2** Execute one of these: - install deactivate package_name - install deactivate id operation_id #### Example: ``` RP/0/RP0/CPU0:router#install deactivate ncs5500-mpls-1.0.0.0-r60023I.x86_64.rpm ncs5500-mgbl-2.0.0.0-r60023I.x86_64.rpm or RP/0/RP0/CPU0:router#install deactivate id 8 ``` The *operation_id* is the ID from **install add** operation. All features and software patches associated with the package are deactivated. You can specify multiple package names and deactivate them simultaneously. If you use the operation ID, all packages that were added in the specified operation are deactivated together. You do not have to deactivate the packages individually. If System admin packages were added as a part of the **install add** operation (of the ID used in deactivate) then those packages will also be deactivated. #### **Step 3** show install inactive #### **Example:** RP/0/RP0/CPU0:router#show install inactive The deactivated packages are now listed as inactive packages. Only inactive packages can be removed from the repository. #### Step 4 install commit #### **Step 5** install remove package name #### **Example:** ``` RP/0/RP0/CPU0:router#install remove ncs5500-mpls-1.0.0.0-r60023I.x86_64.rpm ncs5500-mgbl-2.0.0.0-r60023I.x86 64.rpm ``` The inactive packages are removed from the repository. Use the **install remove** command with the **id** *operation-id* keyword and argument to remove all packages that were added for the specified operation ID. You can also use the **install remove inactive all** to remove all inactive packages from XR and System Admin. #### **Step 6** show install repository #### **Example:** ``` RP/0/RP0/CPU0:router#show install repository ``` Displays packages available in the repository. The package that are removed are no longer displayed in the result. #### What to do next Install required packages. . # **View Features and Capabilities Supported on a Platform** **Table 3: Feature History Table** | Feature Name | Release
Information | Description | |---|------------------------|---| | View Features and
Capabilities
Supported on a
Platform | Release 7.5.2 | This functionality displays a list of supported and unsupported features and their capabilities in a release for your router. With this feature, you are better equipped to plan your network configuration with features annotated for their support information. This feature introduces the show features command. | This feature provides an answer to the question Is feature X supported on my router? You can determine whether a feature and their capabilities are supported on your router for the release. The support information is based on the release and platform-specific data such as platform variants, RP, or LC present on the router. Note In Cisco IOS XR Software Release 7.5.2, only the capabilities for Access Control List (ACL) feature is supported. The functionality to determine the capabilities information is enabled by default when the supported release is installed on the router. Use the **show features** command to view the list of supported features and their capabilities. The feature capabilities are displayed in a tree structure with notations for the support information. For example, in ACL, the capability to use compression to accommodate a large number of Access Control Elements (ACEs) is supported, whereas IPv6 ACL BNG does not have support data in Cisco IOS XR Software Release 7.5.2. This support information about the feature is represented with the following key in the tree structure: | Кеу | Capability Support Information | Description | |-----|--------------------------------|---| | X | Unsupported | The feature capability is not supported on the platform for the release | | - | Supported | The feature capability is supported on the platform for the release | | ? | Support unknown | The support for the feature capability is unknown on the platform for the release. This data could be because the optional package for the feature is not installed on the router. | | * | Support data not available | The support for the feature capability is not available on the platform for the release. This data could be because the feature may be specific to a line card that is not present on the router. | #### **View the List of Supported Features** In this example, the supported features on the router are displayed. Note In Cisco IOS XR Software Release 7.5.2, only the feature capabilities for Access Control List (ACL) are supported. ``` Router#show features Fri June 3 19:16:58.298 UTC Key: X - Unsupported - - Supported ? - Support unknown (optional package not installed) * - Support data not available [-] Cisco IOS XR |--[-] XR Protocols |--[-] XR Base Protocols | |--[-] Services |--[-] Access Control List (ACL) |--[-] IPv6 ACL Support |--[*] IPv6 ACL ABF Track |--[*] IPv6 ACL BNG |--[*] IPv6 ACL Chaining (Meta ACL) |--[-] IPv6 ACL Common ACL |--[-] IPv6 ACL Compression |--[*] IPv6 ACL Default ABF |--[*] IPv6 ACL Fragment |--[-] IPv6 ACL ICMP Off |--[-] IPv6 ACL ICMP Protocol |--[-] IPv6 ACL Interface Statistics |--[-] IPv6 ACL Log Rate |--[-] IPv6 ACL Log Threshold |--[-] IPv6 ACL Logging |--[-] IPv6 ACL MIB |--[-] IPv6 ACL Object Groups (Scale) |--[-] IPv6 ACL Police |--[-] IPv6 ACL Priority |--[*] IPv6 ACL Protocol Range |--[-] IPv6 ACL Set Qos-Group |--[-] IPv6 ACL Set TTL |--[-] IPv6 ACL TCP Flags |--[-] IPv6 ACL TTL Match |--[-] IPv6 ACL UDF |--[-] ES-ACL Support (L2 ACL) |--[-] IPv4 ACL Support |--[-] IPv4 ACL Set Qos-group |--[*] IPv4 ACL ABF Track |--[*] IPv4 ACL BNG |--[*] IPv4 ACL Chaining (Meta ACL) |--[-] IPv4 ACL Common ACL |--[-] IPv4 ACL Compression |--[*] IPv4 ACL Default ABF |--[*] IPv4 ACL Fragment |--[-] IPv4 ACL Fragment Flags |--[-] IPv4 ACL ICMP Off |--[-] IPv4 ACL ICMP Protocol |--[-] IPv4 ACL Interface Statistics |--[-] IPv4 ACL Log Rate ``` ``` | |--[-] IPv4 ACL Log Threshold |--[-] IPv4 ACL Logging |--[-] IPv4 ACL MIB | |--[-] IPv4 ACL Object Groups (Scale) | |--[-] IPv4 ACL Police | |--[-] IPv4 ACL Priority |--[*] IPv4 ACL Protocol Range |--[-] IPv4 ACL Set TTL | |--[-] IPv4 ACL TCP Flags | | | |--[-] IPv4 ACL TTL |--[-] IPv4 Prefix-List |--[-] IPv6 Prefix-List ``` #### **View the List of Supported ACL Features** In this example, the capabilities for ACL features on the router are displayed. ``` Router#show features acl Fri June 3 19:17:31.635 UTC Kev: X - Unsupported - - Supported ? - Support unknown (optional package not installed) * - Support data not available [-] Access Control List (ACL) |--[-] IPv6 ACL Support | |--[*] IPv6 ACL ABF Track | |--[*] IPv6 ACL BNG |--[*] IPv6 ACL Chaining (Meta ACL) |--[-] IPv6 ACL Common ACL |--[-] IPv6 ACL Compression | |--[*] IPv6 ACL Default ABF | |--[*] IPv6 ACL Fragment |--[-] IPv6 ACL ICMP Off |--[-] IPv6 ACL ICMP Protocol |--[-] IPv6 ACL Interface Statistics |--[-] IPv6 ACL Log Rate |--[-] IPv6 ACL Log Threshold |--[-] IPv6 ACL Logging |--[-] IPv6 ACL MIB |--[-] IPv6 ACL Object Groups (Scale) |--[-] IPv6 ACL Police | |--[-] IPv6 ACL Priority | |--[*] IPv6 ACL Protocol Range |--[-] IPv6 ACL Set Qos-Group |--[-] IPv6 ACL Set TTL |--[-] IPv6 ACL TCP Flags |--[-] IPv6 ACL TTL Match | |--[-] IPv6 ACL UDF |--[-] ES-ACL Support (L2 ACL) |--[-] IPv4 ACL Support |--[-] IPv4 ACL Set Qos-group |--[*] IPv4 ACL ABF Track |--[*] IPv4 ACL BNG | |--[*] IPv4 ACL Chaining (Meta ACL) |--[-] IPv4 ACL Common ACL |--[-] IPv4 ACL Compression |--[*] IPv4 ACL Default ABF |--[*] IPv4 ACL Fragment | |--[-] IPv4 ACL Fragment Flags ``` ``` |--[-] IPv4 ACL ICMP Off |--[-] IPv4 ACL ICMP Protocol |--[-] IPv4 ACL Interface Statistics |--[-] IPv4 ACL Log Rate |--[-] IPv4 ACL Log Threshold |--[-] IPv4 ACL Logging |--[-] IPv4 ACL MIB |--[-] IPv4 ACL Object Groups (Scale) |--[-] IPv4 ACL Police |--[-] IPv4 ACL Priority |--[*] IPv4 ACL Protocol Range |--[-] IPv4 ACL Set TTL |--[-] IPv4 ACL TCP Flags |--[-] IPv4 ACL TTL | |--[-] IPv4 ACL UDF |--[-] IPv4 Prefix-List |--[-] IPv6 Prefix-List ``` #### View the List of Supported ACL Features for Specific RP In this example, the capabilities for ACL features on the RP location 0/RP0/CPU0 are displayed. ``` Router#show features acl detail location 0/RP0/CPU0 Fri June 3 19:15:49.889 UTC Kev: X - Unsupported - - Supported ? - Support unknown (optional package not installed) * - Support data not available [-] Access Control List (ACL) Cisco provides basic traffic filtering capabilities with access control lists (also referred to as access lists). User can configure access control lists (ACLs) for all routed network protocols to filter protocol packets when these packets pass through a device. User can configure access lists on your device to control access to a network, access lists can prevent certain traffic from entering or exiting a network. |--[-] IPv6 ACL Support IPv6 based ACL is a list of source IPv6 addresses that use Layer 3 or Layer 4 information to permit or deny access to traffic. IPv6 router ACLs apply only to IPv6 packets that are routed.. A filter contains the rules to match the packet matches, the rule also stipulates if the packet should be permitted or denied. |--[*] IPv6 ACL ABF Track IPv6 ACL ABF Track allows the user to configure a rule with track as nexthop inside the ACL rule . ACL Based Forwarding (ABF) denotes the ability to forward packets to another next hop router based on the criteria defined in the rule. Track takes precedence over VRF and IP, if present in the nexthop |--[*] IPv6 ACL BNG IPv6 ACL BNG is an ACL subscriber BNG feature. It allows the use of ACL on dynamic template. |--[*] IPv6 ACL Chaining (Meta ACL) IPv6 ACL Chaining (Meta ACL) allows the user to apply more than one ACL on the interface. is known as Meta ACL or ACL chaining. |--[-] IPv6 ACL Common ACL IPv6 ACL Common allows the user to apply the ACL on the interface using the common keyword. Using this feature the ACL won't be applied to the specific interface but it will be common to th entire NPU to which the interface belongs. - [|--[-] IPv6 ACL Compression IPv6 ACL Compression allows the user to apply the ACL on the ``` | | interface using a compression level. This helps in reducing the | |------|---| | | hardware resources needed to program the ACL. | | [*] | IPv6 ACL Default ABF | | | IPv6 ACL Default ABF allows the user to configure a rule with | | | default nexthop inside the ACL rule . ACL Based Forwarding (ABF) | | | denotes the ability to forward packets to another next hop router | | | based on the criteria defined in the rule | | [*] | IPv6 ACL Fragment | | | IPv6 ACL Fragment allows the user to configure a rule with fragment | | | inside the ACL rule and use it as a match criteria to filter traffic. | | [-] | IPv6 ACL ICMP Off | | | IPv6 ACL ICMP Off allows the user to not genearte the ICMP error | | | message on a deny action. When configured it will not send the | | | packet to FIB to generate ICMP error message. | |
 | Truncated for Brevity |