
Enabling Segment Routing Flexible Algorithm

Segment Routing Flexible Algorithm allows operators to customize IGP shortest path computation according
to their own needs. An operator can assign custom SR prefix-SIDs to realize forwarding beyond link-cost-based
SPF. As a result, Flexible Algorithm provides a traffic engineered path automatically computed by the IGP
to any destination reachable by the IGP.

The SR architecture associates prefix-SIDs to an algorithm which defines how the path is computed. Flexible
Algorithm allows for user-defined algorithms where the IGP computes paths based on a user-defined
combination of metric type and constraint.

This document describes the IS-IS and OSPF extensions to support Segment Routing Flexible Algorithm on
an MPLS data-plane.

• Prerequisites for Flexible Algorithm, on page 1
• Building Blocks of Segment Routing Flexible Algorithm, on page 1
• Configuring Flexible Algorithm, on page 4
• Example: Configuring IS-IS Flexible Algorithm, on page 5
• Example: Configuring OSPF Flexible Algorithm, on page 6
• Example: Traffic Steering to Flexible Algorithm Paths, on page 7

Prerequisites for Flexible Algorithm
Segment routing must be enabled on the router before the Flexible Algorithm functionality is activated.

Building Blocks of Segment Routing Flexible Algorithm
This section describes the building blocks that are required to support the SR Flexible Algorithm functionality
in IS-IS and OSPF.

Flexible Algorithm Definition
Many possible constraints may be used to compute a path over a network. Some networks are deployed with
multiple planes. A simple form of constraint may be to use a particular plane. A more sophisticated form of
constraint can include some extended metric, like delay, as described in [RFC7810]. Even more advanced
case could be to restrict the path and avoid links with certain affinities. Combinations of these are also possible.
To provide a maximum flexibility, the mapping between the algorithm value and its meaning can be defined

Enabling Segment Routing Flexible Algorithm
1

by the user. When all the routers in the domain have the common understanding what the particular algorithm
value represents, the computation for such algorithm is consistent and the traffic is not subject to looping.
Here, since the meaning of the algorithm is not defined by any standard, but is defined by the user, it is called
a Flexible Algorithm.

Flexible Algorithm Membership
An algorithm defines how the best path is computed by IGP. Routers advertise the support for the algorithm
as a node capability. Prefix-SIDs are also advertised with an algorithm value and are tightly coupled with the
algorithm itself.

An algorithm is a one octet value. Values from 128 to 255 are reserved for user defined values and are used
for Flexible Algorithm representation.

Flexible Algorithm Definition Advertisement
To guarantee the loop free forwarding for paths computed for a particular Flexible Algorithm, all routers in
the network must share the same definition of the Flexible Algorithm. This is achieved by dedicated router(s)
advertising the definition of each Flexible Algorithm. Such advertisement is associated with the priority to
make sure that all routers will agree on a single and consistent definition for each Flexible Algorithm.

Definition of Flexible Algorithm includes:

• Metric type

• Affinity constraints

To enable the router to advertise the definition for the particular Flexible Algorithm, advertise-definition
command is used. At least one router in the area, preferably two for redundancy, must advertise the Flexible
Algorithm definition. Without the valid definition being advertised, the Flexible Algorithm will not be
functional.

Flexible Algorithm Prefix-SID Advertisement
To be able to forward traffic on a Flexible Algorithm specific path, all routers participating in the Flexible
Algorithm will install a MPLS labeled path for the Flexible Algorithm specific SID that is advertised for the
prefix. Only prefixes for which the Flexible Algorithm specific Prefix-SID is advertised is subject to Flexible
Algorithm specific forwarding.

Calculation of Flexible Algorithm Path
A router may compute path for multiple Flexible Algorithms. A router must be configured to support particular
Flexible Algorithm before it can compute any path for such Flexible Algorithm. A router must have a valid
definition of the Flexible Algorithm before Flexible Algorithm is used.

The router uses the following rules to prune links from the topology during the Flexible Algorithm computation:

• All nodes that don't advertise support for Flexible Algorithm are pruned from the topology.

• Affinities:

Enabling Segment Routing Flexible Algorithm
2

Enabling Segment Routing Flexible Algorithm
Flexible Algorithm Membership

• Check if any exclude affinity rule is part of the Flexible Algorithm Definition. If such exclude rule
exists, check if any color that is part of the exclude rule is also set on the link. If such a color is set,
the link must be pruned from the computation.

• Check if any include-any affinity rule is part of the Flexible AlgorithmDefinition. If such include-any
rule exists, check if any color that is part of the include-any rule is also set on the link. If no such
color is set, the link must be pruned from the computation.

• Check if any include-all affinity rule is part of the Flexible Algorithm Definition. If such include-all
rule exists, check if all colors that are part of the include-all rule are also set on the link. If all such
colors are not set on the link, the link must be pruned from the computation

See Flexible Algorithm Affinity Constraint.Note

• Router uses the metric that is part of the Flexible Algorithm definition. If the metric isn't advertised for
the particular link, the link is pruned from the topology.

Configuring Microloop Avoidance for Flexible Algorithm

By default, Microloop Avoidance per Flexible Algorithm instance followsMicroloop Avoidance configuration
for algo-0. For information about configuringMicroloopAvoidance, see Configure Segment RoutingMicroloop
Avoidance.

You can disable Microloop Avoidance for Flexible Algorithm using the following commands:
router isis instance flex-algo algo microloop avoidance disable

router ospf process flex-algo algo microloop avoidance disable

Configuring LFA / TI-LFA for Flexible Algorithm

By default, LFA/TI-LFA per Flexible Algorithm instance follows LFA/TI-LFA configuration for algo-0. For
information about configuring TI-LFA, see Configure Topology-Independent Loop-Free Alternate (TI-LFA).

You can disable TI-LFA for Flexible Algorithm using the following commands:
router isis instance flex-algo algo fast-reroute disable

router ospf process flex-algo algo fast-reroute disable

Installation of Forwarding Entries for Flexible Algorithm Paths
Flexible Algorithm path to any prefix must be installed in the forwarding using the Prefix-SID that was
advertised for such Flexible Algorithm. If the Prefix-SID for Flexible Algorithm is not known, such Flexible
Algorithm path is not installed in forwarding for such prefix..

Only MPLS to MPLS entries are installed for a Flexible Algorithm path. No IP to IP or IP to MPLS entries
are installed. These follow the native IPG paths computed based on the default algorithm and regular IGP
metrics.

Enabling Segment Routing Flexible Algorithm
3

Enabling Segment Routing Flexible Algorithm
Installation of Forwarding Entries for Flexible Algorithm Paths

b-segment-routing-cg-ncs5500-72x_chapter14.pdf#nameddest=unique_138
b-segment-routing-cg-ncs5500-72x_chapter14.pdf#nameddest=unique_138
b-segment-routing-cg-ncs5500-72x_chapter13.pdf#nameddest=unique_139

Flexible Algorithm Prefix-SID Redistribution
Prefix redistribution from IS-IS to another IS-IS instance or protocol was limited to SR algorithm 0 (regular
SPF) prefix SIDs; SR algorithm 1 (Strict SPF) and SR algorithms 128-255 (Flexible Algorithm) prefix SIDs
were not redistributed along with the prefix. The Segment Routing IS-IS Flexible Algorithm Prefix SID
Redistribution feature allows redistribution of strict and flexible algorithms prefix SIDs from IS-IS to another
IS-IS instance or protocols. This feature is enabled automatically when you configure redistribution of IS-IS
Routes with strict or flexible algorithm SIDs.

Flexible Algorithm Prefix Metric
A limitation of the existing Flexible Algorithm functionality in IS-IS is the inability to compute the best path
to a prefix in a remote area or remote IGP domain. Prefixes are advertised between IS-IS areas or between
protocol domains, but the existing prefix metric does not reflect any of the constraints used for Flexible
Algorithm path. Although the best Flexible Algorithm path can be computed to the inter-area or redistributed
prefix inside the area, the path may not represent the overall best path through multiple areas or IGP domains.

The Flexible Algorithm Prefix Metric feature introduces a Flexible Algorithm-specific prefix-metric in the
IS-IS prefix advertisement. The prefix-metric provides a way to compute the best end-to-end Flexible Algorithm
optimized paths across multiple areas or domains.

The Flexible Algorithm definition must be consistent between domains or areas. Refer to section 8 in IETF
draft https://datatracker.ietf.org/doc/draft-ietf-lsr-flex-algo/.

Note

Configuring Flexible Algorithm
The following IS-IS and OSPF configuration sub-mode is used to configure Flexible Algorithm:

router isis instance flex-algo algo

router ospf process flex-algo algo

algo—value from 128 to 255

Configuring Flexible Algorithm Definitions

The following commands are used to configure Flexible Algorithm definition under the flex-algo sub-mode:

• IS-IS
metric-type delay

By default the regular IGPmetric is used. If delay metric is enabled, the advertised
delay on the link is used as a metric for Flexible Algorithm computation.

Note

OSPF
metric-type {delay | te-metric}

Enabling Segment Routing Flexible Algorithm
4

Enabling Segment Routing Flexible Algorithm
Flexible Algorithm Prefix-SID Redistribution

https://datatracker.ietf.org/doc/draft-ietf-lsr-flex-algo/

By default the regular IGP metric is used. If delay or TE metric is enabled, the
advertised delay or TEmetric on the link is used as a metric for Flexible Algorithm
computation.

Note

• affinity {include-any | include-all | exclude-any} name1, name2, …

name—name of the affinity map

• priority priority value

priority value—priority used during the Flexible Algorithm definition election.

The following command is used to to include the Flexible Algorithm prefix metric in the advertised Flexible
Algorithm definition in IS-IS :

router isis instance flex-algo algo prefix-metric

The following command is used to enable advertisement of the Flexible Algorithm definition in IS-IS:
router isis instance flex-algo algo advertise-definition

Configuring Affinity

The following command is used for defining the affinity-map. Affinity-map associates the name with the
particular bit positions in the Extended Admin Group bitmask.
router isis instance flex-algo algo affinity-map name bit-position bit number

router ospf process flex-algo algo affinity-map name bit-position bit number

name—name of the affinity-map

Configuring Prefix-SID Advertisement

The following command is used to advertise prefix-SID for default and strict-SPF algorithm:
router isis instance interface type interface-path-id address-family {ipv4 | ipv6} [unicast]
prefix-sid [strict-spf | algorithm algorithm-number] [index | absolute] sid value

router ospf process area area interface Loopback interface-instance prefix-sid [strict-spf
| algorithm algorithm-number] [index | absolute] sid value

• algorithm-number—Flexible Algorithm number

• sid value—SID value

Example: Configuring IS-IS Flexible Algorithm
router isis 1
affinity-map red bit-position 65

Enabling Segment Routing Flexible Algorithm
5

Enabling Segment Routing Flexible Algorithm
Example: Configuring IS-IS Flexible Algorithm

affinity-map blue bit-position 8
affinity-map green bit-position 201

flex-algo 128
advertise-definition
affinity exclude-any red
affinity include-any blue
!
flex-algo 129
affinity exclude-any green
!
!
address-family ipv4 unicast
segment-routing mpls
!
interface Loopback0
address-family ipv4 unicast
prefix-sid algorithm 128 index 100
prefix-sid algorithm 129 index 101

!
!
interface GigabitEthernet0/0/0/0
affinity flex-algo red
!
interface GigabitEthernet0/0/0/1
affinity flex-algo blue red
!
interface GigabitEthernet0/0/0/2
affinity flex-algo blue
!

Example: Configuring OSPF Flexible Algorithm
router ospf 1
flex-algo 130
priority 200
affinity exclude-any
red
blue
!
metric-type delay
!
flex-algo 140
affinity include-all
green
!
affinity include-any
red
!
!

interface Loopback0
prefix-sid index 10
prefix-sid strict-spf index 40
prefix-sid algorithm 128 absolute 16128
prefix-sid algorithm 129 index 129
prefix-sid algorithm 200 index 20
prefix-sid algorithm 210 index 30
!
!

interface GigabitEthernet0/0/0/0

Enabling Segment Routing Flexible Algorithm
6

Enabling Segment Routing Flexible Algorithm
Example: Configuring OSPF Flexible Algorithm

flex-algo affinity
color red
color blue
!
!

affinity-map
color red bit-position 10
color blue bit-position 11
!

Example: Traffic Steering to Flexible Algorithm Paths

BGP Routes on PE – Color Based Steering
SR-TE On Demand Next-Hop (ODN) feature can be used to steer the BGP traffic towards the Flexible
Algorithm paths.

The following example configuration shows how to setup BGP steering local policy, assuming two router:
R1 (2.2.2.2) and R2 (4.4.4.4), in the topology.

Configuration on router R1:

vrf Test
address-family ipv4 unicast
import route-target
1:150
!
export route-policy SET_COLOR_RED_HI_BW
export route-target
1:150
!

!
!
interface Loopback0
ipv4 address 2.2.2.2 255.255.255.255
!
interface Loopback150
vrf Test
ipv4 address 2.2.2.222 255.255.255.255
!
interface TenGigE0/1/0/3/0
description exr1 to cxr1
ipv4 address 10.0.20.2 255.255.255.0
!
extcommunity-set opaque color129-red-igp
129

end-set
!
route-policy PASS
pass

end-policy
!
route-policy SET_COLOR_RED_HI_BW
set extcommunity color color129-red-igp
pass

end-policy
!
router isis 1
is-type level-2-only

Enabling Segment Routing Flexible Algorithm
7

Enabling Segment Routing Flexible Algorithm
Example: Traffic Steering to Flexible Algorithm Paths

net 49.0001.0000.0000.0002.00
log adjacency changes
affinity-map RED bit-position 28
flex-algo 128
priority 228

!
address-family ipv4 unicast
metric-style wide
advertise link attributes
router-id 2.2.2.2
segment-routing mpls

!
interface Loopback0
address-family ipv4 unicast
prefix-sid index 2
prefix-sid algorithm 128 index 282
!

!
interface TenGigE0/1/0/3/0
point-to-point
address-family ipv4 unicast
!

!
!
router bgp 65000
bgp router-id 2.2.2.2
address-family ipv4 unicast
!
address-family vpnv4 unicast
retain route-target all

!
neighbor-group RR-services-group
remote-as 65000
update-source Loopback0
address-family ipv4 unicast
!
address-family vpnv4 unicast
!

!
neighbor 4.4.4.4
use neighbor-group RR-services-group

!
vrf Test
rd auto
address-family ipv4 unicast
redistribute connected
!

segment-routing
traffic-eng
logging
policy status
!
segment-list sl-cxr1
index 10 mpls label 16294
!
policy pol-foo
color 129 end-point ipv4 4.4.4.4
candidate-paths
preference 100
explicit segment-list sl-cxr1
!
!
!
!

Enabling Segment Routing Flexible Algorithm
8

Enabling Segment Routing Flexible Algorithm
BGP Routes on PE – Color Based Steering

!
!

Configuration on router R2:

vrf Test
address-family ipv4 unicast
import route-target
1:150
!
export route-policy SET_COLOR_RED_HI_BW
export route-target
1:150
!

!
!
interface TenGigE0/1/0/1
description cxr1 to exr1
ipv4 address 10.0.20.1 255.255.255.0
!
extcommunity-set opaque color129-red-igp
129

end-set
!
route-policy PASS
pass

end-policy
!
route-policy SET_COLOR_RED_HI_BW
set extcommunity color color129-red-igp
pass

end-policy
!
router isis 1
is-type level-2-only
net 49.0001.0000.0000.0004.00
log adjacency changes
affinity-map RED bit-position 28
affinity-map BLUE bit-position 29
affinity-map GREEN bit-position 30
flex-algo 128
priority 228

!
flex-algo 129
priority 229

!
flex-algo 130
priority 230

!
address-family ipv4 unicast
metric-style wide
advertise link attributes
router-id 4.4.4.4
segment-routing mpls

!
interface Loopback0
address-family ipv4 unicast
prefix-sid index 4
prefix-sid algorithm 128 index 284
prefix-sid algorithm 129 index 294
prefix-sid algorithm 130 index 304
!

!
interface GigabitEthernet0/0/0/0

Enabling Segment Routing Flexible Algorithm
9

Enabling Segment Routing Flexible Algorithm
BGP Routes on PE – Color Based Steering

point-to-point
address-family ipv4 unicast
!

!
interface TenGigE0/1/0/1
point-to-point
address-family ipv4 unicast
!

!
router bgp 65000
bgp router-id 4.4.4.4
address-family ipv4 unicast
!
address-family vpnv4 unicast
!
neighbor-group RR-services-group
remote-as 65000
update-source Loopback0
address-family ipv4 unicast
!
address-family vpnv4 unicast
!

!
neighbor 10.1.1.1
use neighbor-group RR-services-group

!
neighbor 2.2.2.2
use neighbor-group RR-services-group

!
vrf Test
rd auto
address-family ipv4 unicast
redistribute connected
!
neighbor 25.1.1.2
remote-as 4
address-family ipv4 unicast
route-policy PASS in
route-policy PASS out
!
!

!
!
segment-routing
!
end

Enabling Segment Routing Flexible Algorithm
10

Enabling Segment Routing Flexible Algorithm
BGP Routes on PE – Color Based Steering

	Enabling Segment Routing Flexible Algorithm
	Prerequisites for Flexible Algorithm
	Building Blocks of Segment Routing Flexible Algorithm
	Flexible Algorithm Definition
	Flexible Algorithm Membership
	Flexible Algorithm Definition Advertisement
	Flexible Algorithm Prefix-SID Advertisement
	Calculation of Flexible Algorithm Path
	Installation of Forwarding Entries for Flexible Algorithm Paths
	Flexible Algorithm Prefix-SID Redistribution
	Flexible Algorithm Prefix Metric

	Configuring Flexible Algorithm
	Example: Configuring IS-IS Flexible Algorithm
	Example: Configuring OSPF Flexible Algorithm
	Example: Traffic Steering to Flexible Algorithm Paths
	BGP Routes on PE – Color Based Steering

