Configure Segment Routing Path Computation Element

The Segment Routing Path Computation Element (SR-PCE) provides stateful PCE functionality by extending the existing IOS-XR PCEP functionality with additional capabilities. SR-PCE is supported on the MPLS data plane and IPv4 control plane.

To install SR-PCE, you need to install an instance of Cisco IOS XRv 9000 Router. Refer to the Cisco IOS XRv 9000 Router Installation and Configuration Guide for more information.

• About SR-PCE, on page 1
• Configure SR-PCE, on page 2
• PCE-Initiated SR Policies for Traffic Management, on page 5
• ACL Support for PCEP Connection, on page 7

About SR-PCE

The path computation element protocol (PCEP) describes a set of procedures by which a path computation client (PCC) can report and delegate control of head-end label switched paths (LSPs) sourced from the PCC to a PCE peer. The PCE can request the PCC to update and modify parameters of LSPs it controls. The stateful model also enables a PCC to allow the PCE to initiate computations allowing the PCE to perform network-wide orchestration.

SR-PCE learns topology information by way of IGP (OSPF or IS-IS) or through BGP Link-State (BGP-LS). SR-PCE is capable of computing paths using the following methods:

• TE metric—SR-PCE uses the TE metric in its path calculations to optimize cumulative TE metric.
• IGP metric—SR-PCE uses the IGP metric in its path calculations to optimize reachability.
• LSP Disjointness—SR-PCE uses the path computation algorithms to compute a pair of disjoint LSPs. The disjoint paths can originate from the same head-end or different head-ends. Disjoint level refers to the type of resources that should not be shared by the two computed paths. SR-PCE supports the following disjoint path computations:
 • Link – Specifies that links are not shared on the computed paths.
• Node – Specifies that nodes are not shared on the computed paths.
• SRLG – Specifies that links with the same SRLG value are not shared on the computed paths.
• SRLG-node – Specifies that SRLG and nodes are not shared on the computed paths.

When the first request is received with a given disjoint-group ID, the first LSP is computed, encoding the shortest path from the first source to the first destination. When the second LSP request is received with the same disjoint-group ID, information received in both requests is used to compute two disjoint paths: one path from the first source to the first destination, and another path from the second source to the second destination. Both paths are computed at the same time.

Configure SR-PCE

This task explains how to configure SR-PCE.

Before you begin

Optionally install and configure an instance of Cisco IOS XRv 9000 Router.

SUMMARY STEPS

1. configure
2. pce
3. address ipv4 address
4. state-sync ipv4 address
5. tcp-buffer size
6. password (clear | encrypted) password
7. segment-routing {strict-sid-only | te-latency}
8. timers
9. keepalive time
10. minimum-peer-keepalive time
11. reoptimization time
12. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 pce</td>
<td>Enables PCE and enters PCE configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# pce</td>
<td></td>
</tr>
<tr>
<td>Step 3 address ipv4 address</td>
<td>Configures a PCE IPv4 address.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><code>address ipv4 192.168.0.1</code></td>
<td>Configures the remote peer for state synchronization.</td>
</tr>
<tr>
<td>Step 4 <code>state-sync ipv4 address</code></td>
<td>Configures the transmit and receive TCP buffer size for each PCEP session, in bytes. The default buffer size is 256000. The valid range is from 204800 to 1024000.</td>
</tr>
<tr>
<td>Step 5 <code>tcp-buffer size 1024000</code></td>
<td>Enables TCP authentication for all PCEP peers. Any TCP segment coming from the PCC that does not contain a MAC matching the configured password will be rejected. Specify if the password is encrypted or clear text.</td>
</tr>
<tr>
<td>Step 6 `password {clear</td>
<td>encrypted} password`</td>
</tr>
<tr>
<td>Step 7 `segment-routing {strict-sid-only</td>
<td>te-latency}`</td>
</tr>
<tr>
<td>Step 8 <code> timers</code></td>
<td>Configures the timer value for locally generated keep-alive messages. The default time is 30 seconds.</td>
</tr>
<tr>
<td>Step 9 <code>keepalive time</code></td>
<td>Configures the minimum acceptable keep-alive timer that the remote peer may propose in the PCEP OPEN message during session establishment. The default time is 20 seconds.</td>
</tr>
</tbody>
</table>
Configure the Disjoint Policy (Optional)

This task explains how to configure the SR-PCE to compute disjointness for a pair of LSPs signaled by PCCs that do not include the PCEP association group-ID object in their PCEP request. This can be beneficial for deployments where PCCs do not support this PCEP object or when the network operator prefers to manage the LSP disjoint configuration centrally.

SUMMARY STEPS

1. **disjoint-path**
2. **group-id** `value` `type` `{link | node | srlg | srlg-node}` `[sub-id `value`]`
3. **strict**
4. **lsp** `{1 | 2}` **pcc ipv4** `address lsp-name` `lsp_name` `[shortest-path]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td><code>minimum-peer-keepalive 30</code></td>
<td>Configures the re-optimization timer. The default timer is 60 seconds.</td>
</tr>
<tr>
<td>Step 11</td>
<td>reoptimization <code>time</code></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config-pce-timers)# reoptimization 30</code></td>
<td>Exits timer configuration mode and returns to PCE configuration mode.</td>
</tr>
<tr>
<td>Step 12</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config-pce-timers)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

Configure Segment Routing Path Computation Element

Configure the Disjoint Policy (Optional)
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• <code>srlg</code>—Specifies that links with the same SRLG value are not shared on the computed paths.</td>
</tr>
<tr>
<td></td>
<td>• <code>srlg-node</code>—Specifies that SRLG and nodes are not shared on the computed paths.</td>
</tr>
</tbody>
</table>

If a pair of paths that meet the requested disjointness level cannot be found, then the paths will automatically fallback to a lower level:

• If the requested disjointness level is SRLG or node, then link-disjoint paths will be computed.

• If the requested disjointness level was link, or if the first fallback from SRLG or node disjointness failed, then the lists of segments encoding two shortest paths, without any disjointness constraint, will be computed.

Step 3

strict

Example:

```
RP/0/RP0/CPU0:router(config-pce-disjoint) # strict
```

(Optional) Prevents the automatic fallback behavior of the preferred level of disjointness. If a pair of paths that meet the requested disjointness level cannot be found, the disjoint calculation terminates and no new path is provided. The existing path is not modified.

Step 4

lsp {1 | 2} **pcc ipv4** **address** **lsp-name** **lsp_name** [**shortest-path**]

Example:

```
RP/0/RP0/CPU0:router(config-pce-disjoint) # lsp 1 pcc ipv4 192.168.0.1 lsp-name rtrA_t1 shortest-path
RP/0/RP0/CPU0:router(config-pce-disjoint) # lsp 2 pcc ipv4 192.168.0.5 lsp-name rtrE_t2
```

Adds LSPs to the disjoint group.

The **shortest-path** keyword forces one of the disjoint paths to follow the shortest path from the source to the destination. This option can only be applied to the first LSP specified.

PCE-Initiated SR Policies for Traffic Management

An SR-TE policy can be configured on the path computation element (PCE) to reduce link congestion or to minimize the number of network touch points.

Note

The PCE-initiated SR-TE policies are entered in PCE configuration mode. For more information on configuring SR-TE policies, see the [Configure SR-TE Policies](#).

The PCE collects network information, such as traffic demand and link utilization. When the PCE determines that a link is congested, it identifies one or more flows that are causing the congestion. The PCE finds a suitable path and deploys an SR-TE policy to divert those flows, without moving the congestion to another part of the network. When there is no more link congestion, the policy is removed.
To minimize the number of network touch points, an application, such as a Network Services Orchestrator (NSO), can request the PCE to create an SR-TE policy. PCE deploys the SR-TE policy using PCC-PCE communication protocol (PCEP).

1. PCE sends a PCInitiate message to the PCC.
2. If the PCInitiate message is valid, the PCC sends a PCRpt message; otherwise, it sends PCErr message.
3. If the PCInitiate message is accepted, the PCE updates the SR-TE policy by sending PCUpd message.

You can achieve high-availability by configuring multiple PCEs with SR-TE policies. If the head-end (PCC) loses connectivity with one PCE, another PCE can assume control of the SR-TE policy.

Configuration Example

To configure a PCE-initiated SR-TE policy, you must complete the following configurations:

1. Enter PCE configuration mode.
2. Create the segment list.
3. Create the policy.

```bash
/* Enter PCE configuration mode and create the SR-TE segment lists */
Router# configure
Router(config)# pce

/* Create the SR-TE segment lists */
Router(config-pce)# segment-routing
Router(config-pce-sr)# traffic-eng
Router(config-pce-sr-te)# segment-list name addr2a
Router(config-pce-sr-te-sl)# index 1 address ipv4 14.14.14.4
Router(config-pce-sr-te-sl)# exit

/* Create the SR-TE policy */
Router(config-pce-sr-te)# peer ipv4 1.1.1.1
Router(config-pce-sr-te)# policy P1
Router(config-pce-sr-te-policy)# color 2 end-point ipv4 2.2.2.2
Router(config-pce-sr-te-policy)# candidate-paths
Router(config-pce-sr-te-policy-path)# preference 50
Router(config-pce-sr-te-pp-index)# explicit segment-list addr2a
Router(config-pce-sr-te-pp-info)# end
Router(config)#
```

Running Config

```bash
pce
  segment-routing
  traffic-eng
    segment-list name addr2a
      index 1 address ipv4 14.14.14.4
    peer ipv4 1.1.1.1
    policy P1
    color 2 end-point ipv4 2.2.2.2
    candidate-paths
    preference 50
    explicit segment-list addr2a
```
ACL Support for PCEP Connection

PCE protocol (PCEP) (RFC5440) is a client-server model running over TCP/IP, where the server (PCE) opens a port and the clients (PCC) initiate connections. After the peers establish a TCP connection, they create a PCE session on top of it.

The ACL Support for PCEP Connection feature provides a way to protect a PCE server using an Access Control List (ACL) to restrict IPv4 PCC peers at the time the TCP connection is created based on the source address of a client. When a client initiates the TCP connection, the ACL is referenced, and the client source address is compared. The ACL can either permit or deny the address and the TCP connection will proceed or not.

Refer to the Implementing Access Lists and Prefix Lists chapter in the IP Addresses and Services Configuration Guide for Cisco NCS 5500 Series Routers for detailed ACL configuration information.

To apply an ACL to the PCE, use the `pce peer-filter ipv4 access-list acl_name` command.
ACL Support for PCEP Connection