
Implementing Keychain Management

This module describes how to implement keychain management on. Keychain management is a common
method of authentication to configure shared secrets on all entities that exchange secrets such as keys, before
establishing trust with each other. Routing protocols and network management applications on
Cisco IOS XR software often use authentication to enhance security while communicating with peers.

• Implementing Keychain Management, on page 1

Implementing Keychain Management
This module describes how to implement keychain management on. Keychain management is a common
method of authentication to configure shared secrets on all entities that exchange secrets such as keys, before
establishing trust with each other. Routing protocols and network management applications on
Cisco IOS XR software often use authentication to enhance security while communicating with peers.

Restrictions for Implementing Keychain Management
Youmust be aware that changing the system clock impacts the validity of the keys in the existing configuration.

Configure Keychain
This task configures a name for the keychain.

You can create or modify the name of the keychain.

SUMMARY STEPS

1. configure
2. key chain key-chain-name

3. Use the commit or end command.
4. show key chain key-chain-name

DETAILED STEPS

Step 1 configure

Implementing Keychain Management
1

Example:

RP/0/RP0/CPU0:router# configure

Enters global configuration mode.

Step 2 key chain key-chain-name

Example:

RP/0/RP0/CPU0:router(config)# key chain isis-keys
RP/0/RP0/CPU0:router(config-isis-keys)#

Creates a name for the keychain.

Configuring only the keychain name without any key identifiers is considered a nonoperation. When you
exit the configuration, the router does not prompt you to commit changes until you have configured the key
identifier and at least one of the mode attributes or keychain-key configuration mode attributes (for example,
lifetime or key string).

Note

Step 3 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 4 show key chain key-chain-name

Example:

RP/0/RP0/CPU0:router# show key chain isis-keys

(Optional) Displays the name of the keychain.

The key-chain-name argument is optional. If you do not specify a name for the key-chain-name argument,
all the keychains are displayed.

Note

Example

The following example shows how to configure keychain management:

configure
key chain isis-keys
accept-tolerance infinite
key 8
key-string mykey91abcd
cryptographic-algorithm MD5
send-lifetime 1:00:00 june 29 2006 infinite
accept-lifetime 1:00:00 june 29 2006 infinite
end

Implementing Keychain Management
2

Implementing Keychain Management
Configure Keychain

Uncommitted changes found, commit them? [yes]: yes

show key chain isis-keys

Key-chain: isis-keys/ -

accept-tolerance -- infinite
Key 8 -- text "1104000E120B520005282820"
cryptographic-algorithm -- MD5
Send lifetime: 01:00:00, 29 Jun 2006 - Always valid [Valid now]
Accept lifetime: 01:00:00, 29 Jun 2006 - Always valid [Valid now]

Configure Tolerance Specification to Accept Keys
This task configures the tolerance specification to accept keys for a keychain to facilitate a hitless key rollover
for applications, such as routing and management protocols.

SUMMARY STEPS

1. configure
2. key chain key-chain-name

3. accept-tolerance value [infinite]
4. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters global configuration mode.

Step 2 key chain key-chain-name

Example:

RP/0//CPU0:router(config)# key chain isis-keys

Creates a name for the keychain.

Step 3 accept-tolerance value [infinite]

Example:

RP/0//CPU0:router(config-isis-keys)# accept-tolerance infinite

Configures a tolerance value to accept keys for the keychain.

• Use the value argument to set the tolerance range in seconds. The range is from 1 to 8640000.

• Use the infinite keyword to specify that the tolerance specification is infinite.

Implementing Keychain Management
3

Implementing Keychain Management
Configure Tolerance Specification to Accept Keys

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure Key Identifier for Keychain
This task configures a key identifier for the keychain.

You can create or modify the key for the keychain.

SUMMARY STEPS

1. configure
2. key chain key-chain-name

3. key key-id

4. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters global configuration mode.

Step 2 key chain key-chain-name

Example:

RP/0//CPU0:router(config)# key chain isis-keys

Creates a name for the keychain.

Step 3 key key-id

Example:

RP/0//CPU0:router(config-isis-keys)# key 8

Creates a key for the keychain. The key ID number is translated from decimal to hexadecimal to create the command
mode subprompt.

• Use the key-id argument as a 48-bit integer.

Implementing Keychain Management
4

Implementing Keychain Management
Configure Key Identifier for Keychain

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure Text for Key String
This task configures the text for the key string.

SUMMARY STEPS

1. configure
2. key chain key-chain-name

3. key key-id

4. key-string [clear | password] key-string-text

5. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters global configuration mode.

Step 2 key chain key-chain-name

Example:

RP/0//CPU0:router(config)# key chain isis-keys

Creates a name for the keychain.

Step 3 key key-id

Example:

RP/0//CPU0:router(config-isis-keys)# key 8
RP/0//CPU0:router(config-isis-keys-0x8)#

Creates a key for the keychain.

Step 4 key-string [clear | password] key-string-text

Implementing Keychain Management
5

Implementing Keychain Management
Configure Text for Key String

Example:

RP/0//CPU0:router(config-isis-keys-0x8)# key-string password 8

Specifies the text string for the key.

• Use the clear keyword to specify the key string in clear text form; use the password keyword to specify the key in
encrypted form.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Determine Valid Keys
This task determines the valid keys for local applications to authenticate the remote peers.

SUMMARY STEPS

1. configure
2. key chain key-chain-name

3. key key-id

4. accept-lifetime start-time [duration duration-value | infinite | end-time]
5. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters global configuration mode.

Step 2 key chain key-chain-name

Example:

RP/0/RP0/CPU0:router(config)# key chain isis-keys

Creates a a name for the keychain.

Step 3 key key-id

Implementing Keychain Management
6

Implementing Keychain Management
Determine Valid Keys

Example:

RP/0/RP0/CPU0:router(config-isis-keys)# key 8
RP/0/RP0/CPU0:router(config-isis-keys-0x8)#

Creates a key for the keychain.

Step 4 accept-lifetime start-time [duration duration-value | infinite | end-time]

Example:

RP/0/RP0/CPU0:router(config-isis-keys)# key 8
RP/0/RP0/CPU0:router(config-isis-keys-0x8)# accept-lifetime 1:00:00 october 24 2005 infinite

(Optional) Specifies the validity of the key lifetime in terms of clock time.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure Keys to Generate Authentication Digest for Outbound Application
Traffic

This task configures the keys to generate authentication digest for the outbound application traffic.

SUMMARY STEPS

1. configure
2. key chain key-chain-name

3. key key-id

4. send-lifetime start-time [duration duration-value | infinite | end-time]
5. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters global configuration mode.

Step 2 key chain key-chain-name

Implementing Keychain Management
7

Implementing Keychain Management
Configure Keys to Generate Authentication Digest for Outbound Application Traffic

Example:

RP/0/RP0/CPU0:router(config)# key chain isis-keys

Creates a name for the keychain.

Step 3 key key-id

Example:

RP/0/RP0/CPU0:router(config-isis-keys)# key 8
RP/0/RP0/CPU0:router(config-isis-keys-0x8)#

Creates a key for the keychain.

Step 4 send-lifetime start-time [duration duration-value | infinite | end-time]

Example:

RP/0/RP0/CPU0:router(config-isis-keys)#key 8
RP/0/RP0/CPU0:router(config-isis-keys-0x8)# send-lifetime 1:00:00 october 24 2005 infinite

(Optional) Specifies the set time period during which an authentication key on a keychain is valid to be sent. You can
specify the validity of the key lifetime in terms of clock time.

In addition, you can specify a start-time value and one of the following values:

• duration keyword (seconds)

• infinite keyword

• end-time argument

If you intend to set lifetimes on keys, Network Time Protocol (NTP) or some other time synchronization method is
recommended.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure Cryptographic Algorithm
This task allows the keychain configuration to accept the choice of the cryptographic algorithm.

FromCisco IOSXRSoftware Release 7.2.1 and later, youmust follow the below guidelines while configuring
the key chain. These are applicable only for FIPS mode (that is, when crypto fips-mode is configured).

• You must configure the session with a FIPS-approved cryptographic algorithm. A session configured
with non-approved cryptographic algorithm for FIPS (such as, MD5 and HMAC-MD5) does not work.

Implementing Keychain Management
8

Implementing Keychain Management
Configure Cryptographic Algorithm

This is applicable for OSPF, BGP, RSVP, ISIS, or any application using key chain with non-approved
cryptographic algorithm.

• If you are using any HMAC-SHA algorithm for a session, then you must ensure that the configured
key-string has a minimum length of 14 characters. Otherwise, the session goes down.

SUMMARY STEPS

1. configure
2. key chain key-chain-name

3. key key-id

4. cryptographic-algorithm [HMAC-MD5 | HMAC-SHA1-12 | HMAC-SHA1-20 | MD5 | SHA-1 |
AES-128-CMAC-96 | HMAC-SHA-256 | HMAC-SHA1-96]

5. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters global configuration mode.

Step 2 key chain key-chain-name

Example:

RP/0/RP0/CPU0:router(config)# key chain isis-keys
RP/0/RP0/CPU0:router(config-isis-keys)#

Creates a name for the keychain.

Step 3 key key-id

Example:

RP/0/RP0/CPU0:router(config-isis-keys)# key 8
RP/0/RP0/CPU0:router(config-isis-keys-0x8)#

Creates a key for the keychain.

Step 4 cryptographic-algorithm [HMAC-MD5 |HMAC-SHA1-12 |HMAC-SHA1-20 |MD5 | SHA-1 |AES-128-CMAC-96
| HMAC-SHA-256 | HMAC-SHA1-96]

Example:

RP/0/RP0/CPU0:router(config-isis-keys-0x8)# cryptographic-algorithm MD5

Specifies the choice of the cryptographic algorithm. You can choose from the following list of algorithms:

• HMAC-MD5

• HMAC-SHA1-12

Implementing Keychain Management
9

Implementing Keychain Management
Configure Cryptographic Algorithm

• HMAC-SHA1-20

• MD5

• SHA-1

• HMAC-SHA-256

• HMAC-SHA1-96

• AES-128-CMAC-96

The routing protocols each support a different set of cryptographic algorithms:

• Border Gateway Protocol (BGP) supports HMAC-MD5, HMAC-SHA1-12, HMAC-SHA1-96 and
AES-128-CMAC-96.

• Intermediate System-to-Intermediate System (IS-IS) supports HMAC-MD5, SHA-1, MD5, AES-128-CMAC-96,
HMAC-SHA-256, HMAC-SHA1-12, HMAC-SHA1-20, and HMAC-SHA1-96.

• Open Shortest Path First (OSPF) supports MD5, HMAC-MD5, HMAC-SHA-256, HMAC-SHA1-12,
HMAC-SHA1-20, and HMAC-SHA1-96.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Lifetime of Key
If you are using keys as the security method, you must specify the lifetime for the keys and change the keys
on a regular basis when they expire. To maintain stability, each party must be able to store and use more than
one key for an application at the same time. A keychain is a sequence of keys that are collectively managed
for authenticating the same peer, peer group, or both.

Keychain management groups a sequence of keys together under a keychain and associates each key in the
keychain with a lifetime.

Any key that is configured without a lifetime is considered invalid; therefore, the key is rejected during
configuration.

Note

The lifetime of a key is defined by the following options:

• Start-time—Specifies the absolute time.

• End-time—Specifies the absolute time that is relative to the start-time or infinite time.

Implementing Keychain Management
10

Implementing Keychain Management
Lifetime of Key

Each key definition within the keychain must specify a time interval for which that key is activated; for
example, lifetime. Then, during a given key's lifetime, routing update packets are sent with this activated key.
Keys cannot be used during time periods for which they are not activated. Therefore, we recommend that for
a given keychain, key activation times overlap to avoid any period of time for which no key is activated. If a
time period occurs during which no key is activated, neighbor authentication cannot occur; therefore, routing
updates can fail.

Multiple keychains can be specified.

Implementing Keychain Management
11

Implementing Keychain Management
Lifetime of Key

Implementing Keychain Management
12

Implementing Keychain Management
Lifetime of Key

	Implementing Keychain Management
	Implementing Keychain Management
	Restrictions for Implementing Keychain Management
	Configure Keychain
	Configure Tolerance Specification to Accept Keys
	Configure Key Identifier for Keychain
	Configure Text for Key String
	Determine Valid Keys
	Configure Keys to Generate Authentication Digest for Outbound Application Traffic
	Configure Cryptographic Algorithm
	Lifetime of Key

