

Configuring Hierarchical Modular QoS

Hierarchical QoS (H-QoS) is a QoS model that enables you to specify QoS behavior at multiple levels of hierarchy. This chapter provides information about this feature and the different steps involved in configuring it.

Table 1: Feature History for Hierarchical Modular QoS

Release	Modification
Release 6.3.1	Initial Release

This chapter covers the following topics:

- Overview of Hierarchical Modular QoS, on page 1
- Restrictions for Configuring H-QoS, on page 2
- Configuring Hierarchical Queuing, on page 3
- Conform Aware Hierarchical Policy Overview, on page 8

Overview of Hierarchical Modular QoS

Hierarchical QoS (H-QoS) allows you to specify QoS behavior at multiple policy levels, which provides a high degree of granularity in traffic management.

H-QoS is applied on the router interface using nested traffic policies. The first level of traffic policy, the parent traffic policy, is used for controlling the traffic at the main interface or sub-interface level. The second level of traffic policy, the child traffic policy, is used for more control over a specific traffic stream or class. The child traffic policy, is a previously defined traffic policy, that is referenced within the parent traffic policy using the **service-policy** command.

Two-level H-QoS is supported on both ingress and egress directions on all line cards and on physical or bundle main interfaces and sub-interfaces.

Three-level Hierarchical QoS (H-QoS) enables enforcement of class/service, group/ Ethernet Flow Point (EFP), and port level SLAs. You can apply regular two-level egress H-QoS policies on the sub-interfaces to achieve class and EFP SLAs at child and parent levels. In addition, you can apply a port shaper policy on the main interface to achieve an aggregated port level SLA in a 1+2 H-QoS or three-level H-QoS model.

An important point to note is that before Release 6.6.25 (where the three-level H-QoS capability was introduced), when you applied class-default shaper on a main interface, it was enforced *only* on the traffic going through the main interface. With three-level HQoS, a class default shaper that is applied on the main

interface is considered as a port shaper and enforced on *all* traffic going out of that physical port. The advantage of three-level H-QoS is that the parent shaper on the sub-interfaces is allowed to oversubscribe, thus enabling best effort sharing of the aggregate port shaper at the third level.

Note

From Cisco IOS XR Release 7.3.1 onwards, systems with Cisco NC57 line cards running in compatibility mode support QoS over Layer 2 services for:

- Local switching [xconnect or bridging]
- L2 VPN VPWS

Starting with Cisco IOS XR Release 7.4.1 systems with Cisco NC57 line cards running in native mode support QoS over Layer 2 services for:

- Local switching [xconnect or bridging]
- L2 VPN VPWS

Restrictions for Configuring H-QoS

The following restrictions are applicable while configuring H-QoS:

- 1. The parent traffic policy only supports the traffic class of type class-default.
- 2. The parent traffic policy only supports the class-action **shape** and no other queuing action can be configured in it.
- **3.** While configuring on the router, it is mandatory that the priority class must have traffic shaper in the child traffic policy.
- **4.** The sum of the bandwidth of the child policies must be less than the parent policy's traffic shaper.
- **5.** For congestion avoidance and management, the traffic shaper in the parent traffic policy calculates the queue limit and drop priority.
- **6.** H-QoS profile and ingress peering profile don't work simultaneously. Hence, features requiring a peering profile also do not work with the H-QoS profile enabled.
- 7. PBTS feature does not work when the H-QoS profile is enabled. This is due to TCAM limitations.
- **8.** A maximum of 896 bundle sub-interfaces are only supported in the system, even if there are no QoS policies applied. This is due to an internal LAG_ID resource consumption in HQoS profile mode for bundle sub-interfaces with or without QoS policies being applied.
- 9. A maximum of 4 priority levels are only supported in HQoS profile mode unlike the default mode where 7-priority levels are supported. The restriction also applies to physical and bundle main interface policies where 7-level priorities were previously used in non-H-QoS profile mode.
- 10. Bandwidth and Bandwidth remaining configurations are not supported simultaneously within the same policy-map. If a class has bandwidth (CIR), other classes must also have only bandwidth configuration. If a class-map has bandwidth remaining percent/ratio (EIR), other classes should also have only the bandwidth remaining configuration. Shaping is applied on any class.

- 11. In HQOS Mode, if multiple queues are configured with BRR and there is high congestion on the LP (Low Priority) queues then one queue with BRR gets more credits than rest of the LP queues. The deviation is proportional to the congestion in LP queues.
- 12. Priority classes must have rate limit configuration by using a Shaping configuration. The effective shaper value is taken as priority bandwidth reservation. Sum of priority bandwidth reservations across all sub-interfaces and main interfaces must not exceed the network interface (NIF) port speed. This is to avoid over-subscription of priority traffic across the network interface port.
 - Rates of non-priority classes and parent shaping can be over-subscribed.
- 13. The granularity of bandwidth or bandwidth remaining ration (BRR) is 1:64 as compared to 1:4096 in non-hops mode. So, there could be accuracy differences in bandwidth performance based on the values used.
- 14. Filtering for egress IPv4 and IPv6 multicast traffic is not supported if H-QoS is configured on the router.

The following restrictions are applicable while configuring three-level H-QoS:

- There is no support for bandwidth action at the EFP parent level. All EFP/sub-interface policies get a fair share of the port shaper.
- Three-level H-QoS does not apply to ingress policies or to egress marking policies.
- Executing **clear qos counters** on the main interface clears only the main interface policy statistics. Use the "all" option to clear all sub-interface statistics or alternately, clear the sub-interface policy statistics individually.
- Main interface policy statistics do not reflect the sub-interface packet / byte counters, although the port shaper is enforced on all logical ports for a given physical interface. The sub-interface policy-map statistics reflect the transmitted and dropped packet/byte count post-port shaper enforcement.

Configuring Hierarchical Queuing

Before you configure H-QoS, you must enable the H-QoS profile on the router. After enabling H-QoS profile, reload the router, as shown in the following configuration.

```
admin
hw-module location all reload
Router# configure
Router(config)# hw-module profile qos hqos-enable
Router(config)# commit
Router# admin
sysadmin-vm:0 RPO# hw-module location all reload
```

The steps that are involved in configuring hierarchical queuing are as follows:

- 1. Configure a class-map.
- 2. Configure a child traffic policy using the class-map that was configured in the previous step.
- 3. Configure a parent traffic policy and add the child traffic policy in it.

The parent traffic policy is the H-QoS traffic policy and it can be applied on physical or bundle main interfaces and sub-interfaces.

Configuration Example

Configuration of a class-map is as follows:

```
Router# configure
Router(config)# class-map match-any tc2
Router(config-cmap)# match traffic-class 1
Router(config-cmap)# end-class-map
Router(config)# commit
```

Configuration of a child traffic policy is as follows:

```
Router# configure
Router(config)# policy-map child
Router(config-pmap)# class tc2
Router(config-pmap-c)# shape average percent 20
Router(config-pmap-c)# exit
Router(config-pmap)# class class-default
Router(config-pmap-c)# shape average percent 1
Router(config-pmap)# end-policy-map
Router(config)# commit
```

Configuration of a parent traffic policy is as follows:

```
Router# configure
Router(config)# policy-map parent
Router(config-pmap)# class class-default
Router(config-pmap-c)# service-policy child
Router(config-pmap-c)# shape average percent 50
Router(config-pmap)# end-policy-map
Router(config)# commit
```

Running Configuration

```
/* Configuration of a Class-map */
class-map match-any tc2
match traffic-class 1
end-class-map
/* Configuration of a Child Traffic Policy */
policy-map child
class tc2
 shape average percent 20
 class class-default
 shape average percent 1
end-policy-map
/* Configuration of a Parent Traffic Policy */
policy-map parent
class class-default
 service-policy child
 shape average percent 50
end-policy-map
```

Applying the Parent Traffic Policy on a Main Interface

```
Router# configure
Router(config)# Interface TenGigE 0/0/0/10
Router(config-int)# service-policy output parent
Router(config-int)# commit
```

Applying the Parent Traffic Policy on a Sub-interface

```
Router# configure
Router(config)# Interface TenGigE 0/0/0/10.1
Router(config-int)# service-policy output parent
Router(config-int)# commit
```

Verification

Verify if the H-QoS traffic policy is applied correctly on the interface using the commands **show qos interface** *interface-name* **output**. In the following example, the **Level1 Class** gives information about the class-map that is associated with the parent traffic policy and the **Level2 Class** gives information about the class-maps that are associated with the child traffic policy.

```
RP/0/RP0/CPU0:ios#show qos interface ten0/0/0/10 output
```

```
NOTE: - Configured values are displayed within parentheses
Interface TenGigE0/0/0/10 ifh 0x1e0 -- output policy
NPU Id:
Total number of classes:
                              3
Interface Bandwidth:
                             10000000 kbps
VOQ Base:
Accounting Type:
                             Layer1 (Include Layer 1 encapsulation and above)
Level1 Class
                                            class-default
                                        = no max (50 %)
Queue Max. BW.
                                        = 0 kbps (default)
Queue Min. BW.
Inverse Weight / Weight
                                          0 / (BWR not configured)
  Level2 Class
                                               tc2
  Egressq Queue ID
                                               1138 (LP queue)
  Queue Max. BW.
                                               1020015 kbps (20 %)
                                               0 kbps (default)
  Oueue Min. BW.
  Inverse Weight / Weight
                                               1 / (BWR not configured)
  Guaranteed service rate
                                               1000000 kbps
  TailDrop Threshold
                                               1253376 bytes / 10 ms (default)
  WRED not configured for this class
  Level2 Class
                                           = class-default
  Egressq Queue ID
                                               1136 (Default LP queue)
  Queue Max. BW.
                                               50625 kbps (1 %)
                                               0 kbps (default)
  Oueue Min. BW.
  Inverse Weight / Weight
                                               1 / (BWR not configured)
  Guaranteed service rate
                                               50000 kbps
  TailDrop Threshold
                                               62720 bytes / 10 ms (default)
  WRED not configured for this class
```

The statistics for the packets that have matched the different traffic classes of the parent and child traffic policies can be viewed using the command **show policy-map interface** *interface-name* **output**. Also, this command also shows the number of packets that are transmitted or dropped when the specified action is applied on the packets that have matched the respective traffic class.

```
Router# show policy-map interface ten0/0/0/10 output
TenGigE0/0/0/10 output: parent
```

```
Class class-default
 Classification statistics (packets/bytes) (rate - kpps)

Matched : 2313578823/296138089344 8494665
   Matched :
Transmitted :
                              232805738/29799134464
2080773085/266338954880
                                                                854465
   Total Dropped :
                                                                 7640200
  Policy child Class tc2
   Classification statistics
Matched :
Transmitted :
                                      (packets/bytes) (rate - kbps)
                                  2313578823/296138089344 8494665
                                    232805738/29799134464
                                                                   854465
     Transmitted :
Total Dropped :
                                  2080773085/266338954880
                                                                  7640200
    Queueing statistics
     Oueue ID
                                         : 1138
     Taildropped(packets/bytes)
                                          : 2080773085/266338954880
  Policy child Class class-default
   Classification statistics
                                    (packets/bytes)
                                                        (rate - kbps)
     Matched
                                           0/0
                                                                  0
                                             0/0
                                                                    0
     Transmitted
                        :
     Total Dropped
                                             0/0
                                                                    0
    Queueing statistics
     Queue ID
                                          . 1136
      Taildropped(packets/bytes)
                                        : 0/0
```

When using hierarchical policers, there is no independent set of hardware counters to store the parent policer statistics. Instead, parent policer statistics are manipulated in the software to be the sum of all child policers under the same policy-map.

This is shown in the following example where two streams of traffic, with CoS value of 1 and 2 are sent at a speed of 3.5 Gbps each.

```
/*Hierarchical Policy Map Configuration*/
______
Router# show running-config policy-map Hingress
policy-map Hingress
class class-default
 service-policy ingress
 police rate 5 gbps peak-rate 9 gbps
end-policy-map
/*Ingress Policy Map Configuration*/
______
Router#show running-config policy-map ingress
policy-map ingress
class cos1
 set traffic-class 1
 police rate 5 gbps
 !
class cos2
 set traffic-class 2
 police rate 5 gbps
class class-default
end-policy-map
/*Policy Map applied at TenGigEO/0/0/6.100 Interface*/
______
Router#show policy-map interface tenGigE 0/0/0/6.100 input
```

```
TenGigE0/0/0/6.100 input: Hingress
Class class-default

      lass class-default
      (packets/bytes)
      (rate - kbps)

      Matched
      : 856717937/109659895936
      6683676

      Transmitted
      : 856717937/109659895936
      6683676

      Total Dropped
      : 0/0
      0

      Policing statistics
      (packets/bytes)
      (rate - kbps)

      Policed(conform)
      : 856717937/109659895936
      6683674

      Policed(exceed)
      : 0/0
      0

      Policed(violate)
      : 0/0
      0

                                                                                                                      0/0
                                                                                                                                                                                     0
          Policed(violate)
          Policed and dropped:
                                                                                                                       0/0
         Classification statistics (packets/bytes) (rate - kbps)

Matched : 437826303/56041766784 3341838

Transmitted : 437826303/56041766784 3341838

Total Dropped : 0/0 0

Policing statistics (packets/bytes) (rate - kbps)

Policed(conform) : 437826303/56041766784 3341838

Policed(exceed) : 0/0 0

Policed(violate) : 0/0 0

Policed and dropped : 0/0 0
     Policy ingress Class cos1
               Policed(violate) :
Policed and dropped :
                                                                                                                            0/0
                Policed and dropped(parent policer) : 0/0
     Policy ingress Class cos2

      colicy ingress Class cos2
      (packets/bytes)
      (rate - kbps)

      Matched
      :
      418891634/53618129152
      3341838

      Transmitted
      :
      418891634/53618129152
      3341838

      Total Dropped
      :
      0/0
      0

      Policing statistics
      (packets/bytes)
      (rate - kbps)

      Policed(conform)
      :
      418891634/53618129152
      3341838

      Policed(exceed)
      :
      0/0
      0

      Policed(violate)
      :
      0/0
      0

      Policed and dropped
      :
      0/0
      0

      Policed and dropped (parent policer)
      :
      0/0

                Policed and dropped(parent policer) : 0/0
     Policy ingress Class class-default
          Classification statistics (packets/bytes) (rate - kbps)
                                                                   : 0/0
               Matched : Transmitted :
                                                                                                                                                               0
              Transmitted :
Total Dropped :
                                                                                                                       0/0
                                                                                                                                                                                          Ω
Policy Bag Stats time: 0
Policy Bag Stats time: 0
```

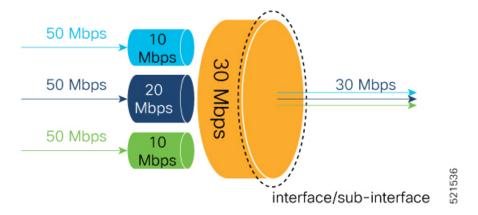
Configuration Example for Three-Level H-QoS

To configure three-level H-QoS:

- 1. Configure the port shaper or EFP group shaper.
- 2. Configure the two-level H-QoS policy with an EFP parent shaper and class or service level actions
- 3. Enable the port or EFP group shaper on the main interface to become the root policy.
- **4.** Enable the two-level H-QoS policy on each EFP instance, thus providing a three-level hierarchy of service, EFP and EFP group or port SLAs.

A sample configuration for three-level H-QoS is as follows.

```
policy-map port_shaper
  class class-default
```


```
shape average 6 gbps
end-policy-map
policy-map efp policy
class class-default
 service-policy efp_policy_child
 shape average 4 gbps
end-policy-map
policy-map efp_policy_child
class tc1
 shape average 50 mbps
 priority level 1
class tc2
 bandwidth percent 50
class tc3
 bandwidth percent 30
class class-default
end-policy-map
interface TenGigE0/5/0/4
service-policy output port shaper
interface TenGigE0/5/0/4.1
service-policy output efp_policy
encapsulation dot1q 11
interface TenGigE0/5/0/4.2
service-policy output efp policy
encapsulation dot1q 12
```

Verification

Run the **show policy-map interface** command in XR EXEC mode to display the packet/byte count and rate post port shaper enforcement on each of the sub-interface/EFP policies.

Conform Aware Hierarchical Policy Overview

Hierarchical QoS (H-QoS), while allowing for granular and multi-level management of traffic, does not allow for conform traffic from a child-level policy to a parent-level policy to get priority. This means that in case of excess traffic, the parent policer drops conform traffic packets from the child level as well.

The conform-aware hierarchical policy feature enables the parent-level policy to prioritize conform traffic from child-level policy over exceed and violate traffic.

Here is how it works: the child-level policer initially marks its packets as red, yellow, or green. Packets are marked based on the committed information rate (CIR) value and the two associated burst sizes - committed burst size (CBS) and excess burst size (EBS). If a packet does not exceed the CBS, it is marked as conformed packet (green). The packet is marked as exceeded if it exceeds CBS, but not the EBS (yellow). If it exceeds the EBS as well, it is marked as violate packet (red).

When the packets arrive at the parent level policer (which is color aware), the policer prioritizes the packets marked green over the packets marked yellow. After all the conform traffic (green) is transmitted and there are tokens available still, the yellow packets are transmitted next, instead of being marked as violate traffic (red).

To enable the conform-aware hierarchical policy feature run the command.

hw-module profile qos conform-aware-policer

Conform Aware Hierarchical Policy Restrictions

The parent-policy traffic police rate must be greater than or equal to the sum of child conform rates.

Configuring Conform Aware Hierarchy Policy

To enable and configure shared policer:

- 1. Run the hw-module profile qos conform-aware-policer command.
- 2. Reload the affected line card.
- 3. Configure class maps to be used for matching packets to the class specified.
- **4.** Create a child policy map.
- 5. Configure traffic policing for the classes in the child policy map.
- **6.** Attach the child policy-map to the parent's class-default class.
- 7. Configure traffic policing for the parent policy map.

RP/0/RP0/CPU0:ios(config) #hw-module profile qos conform-aware-policer RP/0/RP0/CPU0:router# reload location 0/0/CPU0

```
RP/0/RSP0/CPU0:ios(config)#class-map match-any c1
RP/0/RSP0/CPU0:ios(config-cmap) #match precedence 1
RP/0/RSP0/CPU0:ios(config-cmap)#end-class-map
RP/0/RSP0/CPU0:ios(config)#class-map match-any c2
RP/0/RSP0/CPU0:ios(config-cmap) #match precedence 2
RP/0/RSP0/CPU0:ios(config-cmap)#end-class-map
RP/0/RSP0/CPU0:ios(config-pmap)# policy-map child
RP/0/RSP0/CPU0:ios(config-pmap-c)#class class1
RP/0/RSP0/CPU0:ios(config-pmap-c-police)#police rate 20 mbps peak-rate 50 mbps
RP/0/RSP0/CPU0:ios(config-pmap-c)#class class2
RP/0/RSP0/CPU0:ios(config-pmap-c-police) #police rate 30 mbps peak-rate 60 mbps
RP/0/RSP0/CPU0:ios(config-pmap)#policy-map parent
RP/0/RSP0/CPU0:ios(config-pmap-c)#class class-default
RP/0/RSP0/CPU0:ios(config-pmap-c)#service-policy child
RP/0/RSP0/CPU0:ios(config-pmap-c-police) #police rate 60 mbps
RP/0/RSP0/CPU0:ios(config-pmap-c-police)#exit
RP/0/RSP0/CPU0:ios(config-pmap-c)#exit
RP/0/RSP0/CPU0:ios(config-pmap)#exit
RP/0/RSP0/CPU0:ios(config-if)#commit
```

Running Configuration

```
class-map match-any class1
match precedence 1
end-class-map

class-map match-any class2
match precedence 2
end-class-map

policy-map child
class class1
   police rate 20 mbps peak-rate 50 mbps
   !
!
class class2
   police rate 30 mbps peak-rate 60 mbps
   !

policy-map parent
class class-default
   service-policy child
   police rate 60 mbps
!
```

In this example, the 20 mbps rate in child class1 and 30 mbps rate in child class2 are guaranteed as conform traffic and the parent will not drop them.

Verification

Run the **show policy-map interface** command in XR EXEC mode to confirm that the committed information rate (CIR) is prioritized over the peak information rate (PIR).

In the example below, **Policed (conform)** or CIR from each class is prioritized over **Policed (exceed)** or PIR.

```
RP/0/RP0/CPU0:ios(config-if)#do show running-config policy-map parent_conform
Tue Apr 28 11:19:09.785 UTC
policy-map parent_conform
class class-default
  service-policy child_conform
  police rate 80 mbps peak-rate 120 mbps
  !
```

```
end-policy-map
RP/0/RP0/CPU0:ios(config-if)#do show running-config policy-map child conform
Tue Apr 28 11:19:14.219 UTC
policy-map child conform
class match_prec1
  police rate 30 mbps peak-rate 35 mbps
  set gos-group 3
 class match prec2
 police rate 20 mbps peak-rate 25 mbps
  set gos-group 4
 class class-default
 police rate 20 mbps peak-rate 30 mbps
 1
 end-policy-map
1
RP/0/RP0/CPU0:ios(config-if)#do show policy-map interface tenGigE 0/0/0/11/2 input
Tue Apr 28 11:23:48.915 UTC
TenGigE0/0/0/11/2 input: parent conform
Class class-default
                                              (packets/bytes) (rate - kbps)
  Classification statistics
    Matched :
                                           217797200/111512166400 2344847
                            : 8314388/4256966006
: 209482812/107255199744
     Transmitted
     Total Dropped
                                                                                    2256758
                                              (packets/bytes) (rate - kbps)
  Policing statistics
                                        6602174/3380313088 69926
1712214/876653568 18165
209482812/107255199744 22567
209482812/107255199744
     Policed(conform) :
    Policed(exceed) :
Policed(violate) :
Policed and dropped :
                                                                                     2256782
  Policy child conform Class match prec1
     Classification statistics (packets/bytes) (rate - kbps)
Matched : 54449300/27878041600 506
    Matched : 54449300/27878041600 586215
Transmitted : 3246813/1662368256 34399
Total Dropped : 51202487/26215673344 551816
Policing statistics (packets/bytes) (rate - kbps)
Policed(conform) : 2818471/1443057152 29851
Policed(exceed) : 428342/219311104 4547
Policed(violate) : 51202487/26215673344 551816
Policed and dropped : 51202487/26215673344
Policed and dropped : 51202487/26215673344
       Policed and dropped(parent policer) : 0/0
     Classification statistics (packets/bytes) (rate - kbps)

Matched : 54449300/27878041600 586213
  Policy child conform Class match prec2
       Matched : Transmitted :
                                                 2319731/1187702272
                                                                                        24577
     Transmitted .
Total Dropped :
                                               52129569/26690339328
                                                                                      561636
     Policing statistics
                                                (packets/bytes) (rate - kbps)
                                                 1891851/968627712 20037
427880/219074560 4540
       Policed(conform) :
       Policed (exceed) : 427880/219074560
Policed (violate) : 52129569/26690339328
Policed and dropped : 52129569/26690339328
                                                                                       561636
       Policed and dropped(parent policer) : 0/0
```

```
Policy child_conform Class class-default
   Classification statistics (packets/bytes) (rate - kbps)
Matched : 108898600/55756083200 1172419
Transmitted : 2747844/1406896128 29113
      Total Dropped :
                                         2747844/1406896128
                                                                        29113
                                      106150756/54349187072
                                                                        1143306
                                       (packets/bytes) (rate - kbps)
    Policing statistics
                                        1891852/968628224
      Policed(conform) :
                                                                       20036
      Policed(exceed)
                         :
                                          855992/438267904
                                                                        9076
                         : 106150756/54349187072
ed: 106150756/54349187072
                                                                        1143306
      Policed(violate)
      Policed and dropped:
                                       106150756/54349187072
      Policed and dropped(parent policer) : 0/0
Policy Bag Stats time: 1588072996538
```

Related Commands

hw-module profile qos conform-aware-policer