THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2017 Cisco Systems, Inc. All rights reserved.
CONTENTS

PREFACE

- Preface vii
 - Changes to This Document vii
 - Communications, Services, and Additional Information vii

CHAPTER 1

- New and Changed QoS Features 1
 - New and Changed QoS Features 1

CHAPTER 2

- Configuring Modular QoS Service Packet Classification 3
 - Packet Classification Overview 3
 - Traffic Class Elements 4
 - Default Traffic Class 5
 - Create a Traffic Class 5
 - Traffic Policy Elements 7
 - Create a Traffic Policy 8
 - Attach a Traffic Policy to an Interface 9
 - Packet Marking 11
 - QoS Re-marking of IP Packets in Egress Direction 12
 - QoS Re-marking of Ethernet Packets in Egress Direction 13
 - Bundle Traffic Policies 14
 - Configuring QoS Groups with an ACL 14
 - Restrictions 17
 - In-Place Policy Modification 18
 - References for Modular QoS Service Packet Classification 19
 - Specification of the CoS for a Packet with IP Precedence 19
 - IP Precedence Bits Used to Classify Packets 20
 - IP Precedence Value Settings 20
Preface

This preface contains these sections:

• Changes to This Document, on page vii
• Communications, Services, and Additional Information, on page vii

Changes to This Document

<table>
<thead>
<tr>
<th>Date</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2017</td>
<td>Initial release of this document.</td>
</tr>
<tr>
<td>March 2018</td>
<td>Republished for Release 6.3.2.</td>
</tr>
</tbody>
</table>

Communications, Services, and Additional Information

• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.
• To submit a service request, visit Cisco Support.
• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
• To obtain general networking, training, and certification titles, visit Cisco Press.
• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides you with detailed defect information about your products and software.
New and Changed QoS Features

Table 2: QoS Features Added or Modified in IOS XR Release 6.3.x

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchical Modular QoS (H-QoS)</td>
<td>H-QoS is a QoS model that enables you to specify QoS behavior at multiple levels of hierarchy.</td>
<td>Release 6.3.1</td>
<td>Configuring Hierarchical Modular QoS, on page 61 chapter</td>
</tr>
<tr>
<td>Conditional Marking of MPLS Experimental bits for L3VPN traffic</td>
<td>This features allows the L3VPN traffic packets to be marked for differential treatment.</td>
<td>Release 6.3.2</td>
<td>Configuring Modular QoS Service Packet Classification, on page 3 chapter</td>
</tr>
</tbody>
</table>
Configuring Modular QoS Service Packet Classification

Table 3: Feature History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.2.2</td>
<td>Added support for QoS re-marking of IP packets in egress direction.</td>
</tr>
<tr>
<td>Release 6.3.2</td>
<td>Added support for conditional marking of MPLS Experimental bits for L3VPN traffic.</td>
</tr>
<tr>
<td>Release 6.5.1</td>
<td>Added support for QPPB.</td>
</tr>
</tbody>
</table>

This chapter covers these topics:

- Packet Classification Overview, on page 3
- Traffic Class Elements, on page 4
- Traffic Policy Elements, on page 7
- Configuring QoS Groups with an ACL, on page 14
- Restrictions, on page 17
- In-Place Policy Modification, on page 18
- References for Modular QoS Service Packet Classification, on page 19
- QPPB, on page 23

Packet Classification Overview

Packet classification involves categorizing a packet within a specific group (or class) and assigning it a traffic descriptor to make it accessible for QoS handling on the network. The traffic descriptor contains information about the forwarding treatment (quality of service) that the packet should receive. Using packet classification, you can partition network traffic into multiple priority levels or classes of service. The source agrees to adhere to the contracted terms and the network promises a quality of service. Traffic policers and traffic shapers use the traffic descriptor of a packet to ensure adherence to the contract.

Traffic policers and traffic shapers rely on packet classification features, such as IP precedence, to select packets (or traffic flows) traversing a router or interface for different types of QoS service. After you classify packets, you can use other QoS features to assign the appropriate traffic handling policies including congestion management, bandwidth allocation, and delay bounds for each traffic class.
The Modular Quality of Service (QoS) command-line interface (MQC) is used to define the traffic flows that must be classified, where each traffic flow is called a class of service, or class. Subsequently, a traffic policy is created and applied to a class. All traffic not identified by defined classes fall into the category of a default class.

Traffic Class Elements

The purpose of a traffic class is to classify traffic on your router. Use the `class-map` command to define a traffic class.

A traffic class contains three major elements:

- A name
- A series of `match` commands - to specify various criteria for classifying packets.
- An instruction on how to evaluate these `match` commands (if more than one `match` command exists in the traffic class)

Packets are checked to determine whether they match the criteria specified in the `match` commands. If a packet matches the specified criteria, that packet is considered a member of the class and is forwarded according to the QoS specifications set in the traffic policy. Packets that fail to meet any of the matching criteria are classified as members of the default traffic class.

This table shows the details of match types supported on the router.

<table>
<thead>
<tr>
<th>Match Type Supported</th>
<th>Min, Max</th>
<th>Max Entries</th>
<th>Support for Match NOT</th>
<th>Support for Ranges</th>
<th>Direction Supported on Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 DSCP</td>
<td>(0,63)</td>
<td>64</td>
<td>Yes</td>
<td>Yes</td>
<td>Ingress</td>
</tr>
<tr>
<td>IPv6 DSCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv4 Precedence</td>
<td>(0,7)</td>
<td>8</td>
<td>Yes</td>
<td>No</td>
<td>Ingress</td>
</tr>
<tr>
<td>IPv6 Precedence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precedence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPLS</td>
<td>(0,7)</td>
<td>8</td>
<td>Yes</td>
<td>No</td>
<td>Ingress</td>
</tr>
<tr>
<td>Experimental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topmost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access-group</td>
<td>Not applicable</td>
<td>8</td>
<td>No</td>
<td>Not applicable</td>
<td>Ingress</td>
</tr>
<tr>
<td>QoS-group</td>
<td>(1,7)</td>
<td>7</td>
<td>No</td>
<td>No</td>
<td>Egress</td>
</tr>
<tr>
<td>CoS</td>
<td>(0,7)</td>
<td>8</td>
<td>No</td>
<td>Yes</td>
<td>Ingress</td>
</tr>
<tr>
<td>DEI</td>
<td>(0,1)</td>
<td>1</td>
<td>No</td>
<td>No</td>
<td>Ingress</td>
</tr>
<tr>
<td>Protocol</td>
<td>(0,255)</td>
<td>1</td>
<td>Yes</td>
<td>Not applicable</td>
<td>Ingress</td>
</tr>
</tbody>
</table>
Egress queue statistics are displayed only for those classes which have a corresponding match criteria in the egress. Therefore, if you have a set qos-group x configured in the ingress, you must have a corresponding match qos-group x in the egress, in order to see the statistics in the egress side. Also, see Usage of QoS-group and Queue Selection, on page 20.

Default Traffic Class

Unclassified traffic (traffic that does not meet the match criteria specified in the traffic classes) is treated as belonging to the default traffic class.

If the user does not configure a default class, packets are still treated as members of the default class. However, by default, the default class has no enabled features. Therefore, packets belonging to a default class with no configured features have no QoS functionality. These packets are then placed into a first in, first out (FIFO) queue and forwarded at a rate determined by the available underlying link bandwidth. This FIFO queue is managed by a congestion avoidance technique called tail drop.

For egress classification, match on qos-group (1-7) is supported. Match qos-group 0 cannot be configured. The class-default in the egress policy maps to qos-group 0.

This example shows how to configure a traffic policy for the default class:

```
configure
policy-map ingress_policy1
class class-default
  police rate percent 30
!
```

Create a Traffic Class

To create a traffic class containing match criteria, use the class-map command to specify the traffic class name, and then use the match commands in class-map configuration mode, as needed.

Guidelines

- Users can provide multiple values for a match type in a single line of configuration; that is, if the first value does not meet the match criteria, then the next value indicated in the match statement is considered for classification.

- Use the not keyword with the match command to perform a match based on the values of a field that are not specified.

- All match commands specified in this configuration task are considered optional, but you must configure at least one match criterion for a class.

- If you specify match-any, one of the match criteria must be met for traffic entering the traffic class to be classified as part of the traffic class. This is the default. If you specify match-all, the traffic must match all the match criteria.

- For the match access-group command, QoS classification based on the packet length or TTL (time to live) field in the IPv4 and IPv6 headers is not supported.
• For the **match access-group** command, when an ACL list is used within a class-map, the deny action of the ACL is ignored and the traffic is classified based on the specified ACL match parameters.

• The **match qos-group, traffic-class, and discard-class** are supported only in egress direction, and these are the only match criteria supported in egress direction.

• The egress default class implicitly matches **qos-group 0**.

• Multicast takes a system path that is different than unicast on router, and they meet later on the egress in a multicast-to-unicast ratio of 20:80 on a per interface basis. This ratio is maintained on the same priority level as that of the traffic.

• Egress QoS for multicast traffic treats traffic classes 0-5 as low-priority and traffic classes 6-7 as high priority. Currently, this is not user-configurable.

• Egress shaping does not take effect for multicast traffic in the high priority (HP) traffic classes. It only applies to unicast traffic.

• If you set a traffic class at the ingress policy and do not have a matching class at egress for the corresponding traffic class value, then the traffic at ingress with this class will not be accounted for in the default class at the egress policy map.

• Only traffic class 0 falls in the default class. A non-zero traffic class assigned on ingress but with no assigned egress queue, falls neither in the default class nor any other class.

• Also, see Usage of QoS-group and Queue Selection, on page 20.

Configuration Example

You have to accomplish the following to complete the traffic class configuration:

1. Creating a class map

2. Specifying the match criteria for classifying the packet as a member of that particular class

(For a list of supported match types, see Traffic Class Elements, on page 4.)

```bash
Router# configure
Router(config)# class-map match-any qos-1
Router(config-cmap)# match qos-group 1
Router(config-cmap)# end-class-map
Router(config-cmap)# commit
```

Use this command to verify the class-map configuration:

```bash
Router# show class-map qos-1
1) ClassMap: qos-1  Type: qos
   Referenced by 2 Policymaps
```

Also see, Running Configuration, on page 10.

Also see, Verification, on page 10.

Related Topics

• Traffic Class Elements, on page 4
• Traffic Policy Elements, on page 7

Associated Commands

• class-map
• match access-group
• match dscp
• match mpls experimental topmost
• match precedence
• match qos-group

Traffic Policy Elements

A traffic policy contains three elements:

• Name
• Traffic class
• QoS policies

After choosing the traffic class that is used to classify traffic to the traffic policy, the user can enter the QoS features to be applied to the classified traffic.

The MQC does not necessarily require that the users associate only one traffic class to one traffic policy.

The order in which classes are configured in a policy map is important. The match rules of the classes are programmed into the TCAM in the order in which the classes are specified in a policy map. Therefore, if a packet can possibly match multiple classes, only the first matching class is returned and the corresponding policy is applied.

The router supports 32 classes per policy-map in the ingress direction and 8 classes per policy-map in the egress direction.

This table shows the supported class-actions on the router.

<table>
<thead>
<tr>
<th>Supported Action Types</th>
<th>Direction supported on Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum-bandwidth</td>
<td>egress</td>
</tr>
<tr>
<td>bandwidth-remaining</td>
<td>egress</td>
</tr>
<tr>
<td>mark</td>
<td>(See Packet Marking, on page 11)</td>
</tr>
<tr>
<td>police</td>
<td>ingress</td>
</tr>
<tr>
<td>priority</td>
<td>egress (level 1 to level 7)</td>
</tr>
<tr>
<td>queue-limit</td>
<td>egress</td>
</tr>
<tr>
<td>shape</td>
<td>egress</td>
</tr>
</tbody>
</table>
WRED supports **default** and **discard-class** options; the only values to be passed to the discard-class being 0 and 1.

Create a Traffic Policy

The purpose of a traffic policy is to configure the QoS features that should be associated with the traffic that has been classified in a user-specified traffic class or classes.

To configure a traffic class, see *Create a Traffic Class, on page 5*. After you define a traffic policy with the **policy-map** command, you can attach it to one or more interfaces to specify the traffic policy for those interfaces by using the **service-policy** command in interface configuration mode. With dual policy support, you can have two traffic policies, one marking and one queuing attached at the output. See, *Attach a Traffic Policy to an Interface, on page 9*.

Configuration Example

You have to accomplish the following to complete the traffic policy configuration:

1. Creating a policy map that can be attached to one or more interfaces to specify a service policy
2. Associating the traffic class with the traffic policy
3. Specifying the class-action(s) (see *Traffic Policy Elements, on page 7*)

```plaintext
Router# configure
Router(config)# policy-map test-shape-1
Router(config-pmap)# class qos-1

/* Configure class-action ('shape' in this example). 
Repeat as required, to specify other class-actions */
Router(config-pmap-c)# shape average percent 40
Router(config-pmap-c)# exit

/* Repeat class configuration as required, to specify other classes */

Router(config-pmap)# end-policy-map
Router(config)# commit
```

See, *Running Configuration, on page 10*. See, *Verification, on page 10*.

Related Topics

- Traffic Policy Elements, on page 7
- Traffic Class Elements, on page 4
Associated Commands

- bandwidth
- bandwidth remaining
- class
- police
- policy-map
- priority
- queue-limit
- service-policy
- set discard-class
- set dscp
- set mpls experimental
- set precedence
- set qos-group
- shape

Attach a Traffic Policy to an Interface

After the traffic class and the traffic policy are created, you must attach the traffic policy to interface, and specify the direction in which the policy should be applied.

Note

Hierarchical policies are not supported.

When a policy-map is applied to an interface, the transmission rate counter of each class is not accurate. This is because the transmission rate counter is calculated based on the exponential decay filter.

Configuration Example

You have to accomplish the following to attach a traffic policy to an interface:

1. Creating a traffic class and the associated rules that match packets to the class (see Create a Traffic Class, on page 5)

2. Creating a traffic policy that can be attached to one or more interfaces to specify a service policy (see Create a Traffic Policy, on page 8)

3. Associating the traffic class with the traffic policy

4. Attaching the traffic policy to an interface, in the ingress or egress direction

Router# configure
Attach a Traffic Policy to an Interface

Router(config)# interface HundredGigE 0/6/0/18
Router(config-int)# service-policy output test-shape-1
Router(config-int)# commit

Running Configuration

/* Class-map configuration */

class-map match-any traffic-class-1
 match traffic-class 1
end-class-map

/* Traffic policy configuration */

policy-map test-shape-1
 class traffic-class-1
 shape average percent 40
 class class-default
end-policy-map

/* Attaching traffic policy to an interface in egress direction */

interface HundredGigE0/6/0/18
 service-policy output test-shape-1

Verification

Router# show qos interface hundredGigE 0/6/0/18 output

NOTE:- Configured values are displayed within parentheses Interface HundredGigE0/6/0/18 ifh
0x30001f8 -- output policy
NPU Id: 3
Total number of classes: 2
Interface Bandwidth: 100000000 kbps
VOQ Base: 11112
VOQ Stats Handle: 0x88430698
Accounting Type: Layer1 (Include Layer 1 encapsulation and above)

Levell Class = qos-1
Egressq Queue ID = 11113 (LP queue)
Queue Max. BW. = 40329846 kbps (40 %)
Queue Min. BW. = 0 kbps (default)
Inverse Weight / Weight = 1 / (BWR not configured)
Guaranteed service rate = 40000000 kbps
TailDrop Threshold = 50069504 bytes / 10 ms (default)
WRED not configured for this class

Levell Class = class-default
Egressq Queue ID = 11112 (Default LP queue)
Queue Max. BW. = 101803495 kbps (default)
Queue Min. BW. = 0 kbps (default)
Inverse Weight / Weight = 1 / (BWR not configured)
Guaranteed service rate = 50000000 kbps
TailDrop Threshold = 62652416 bytes / 10 ms (default)
WRED not configured for this class

Related Topics
- Traffic Policy Elements, on page 7
- Traffic Class Elements, on page 4

Associated Commands
- service-policy

Packet Marking

The packet marking feature provides users with a means to differentiate packets based on the designated markings. The router supports egress packet marking (used with discard-class only).

The router also supports L2 ingress marking.

For ingress marking:
Ingress traffic— For the ingress pop operation, re-marking the customer VLAN tag (CoS, DEI) is not supported.

Egress traffic— The ingress ‘pop VLAN’ is translated to a ‘push VLAN’ for the egress traffic, and (CoS, DEI) marking is supported for newly pushed VLAN tags. If two VLAN tags are pushed to the packet header at the egress side, both inner and outer VLAN tags are marked. For example:
1. rewrite ingress tag pop 1 symmetric
2. rewrite ingress tag pop 2 symmetric
3. rewrite ingress tag translate 2-to-1 dot1q/dot1ad <> symmetric

Limitation
The statistics and counters for the egress marking policy cannot be viewed on the router.

Supported Packet Marking Operations
This table shows the supported packet marking operations.

<table>
<thead>
<tr>
<th>Supported Mark Types</th>
<th>Range</th>
<th>Support for Unconditional Marking</th>
<th>Support for Conditional Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>set cos</td>
<td>0-7</td>
<td>ingress</td>
<td>No</td>
</tr>
<tr>
<td>set dei</td>
<td>0-1</td>
<td>ingress</td>
<td>No</td>
</tr>
<tr>
<td>set discard-class</td>
<td>0-1</td>
<td>ingress</td>
<td>No</td>
</tr>
<tr>
<td>set dscp</td>
<td>0-63</td>
<td>ingress</td>
<td>No</td>
</tr>
<tr>
<td>set mpls experimental</td>
<td>0-7</td>
<td>ingress</td>
<td>No</td>
</tr>
<tr>
<td>topmost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Class-based Unconditional Packet Marking

The packet marking feature allows you to partition your network into multiple priority levels or classes of service, as follows:

- Use QoS unconditional packet marking to set the IP precedence or IP DSCP values for packets entering the network. Routers within your network can then use the newly marked IP precedence values to determine how the traffic should be treated.

 On ingress direction, after matching the traffic based on either the IP Precedence or DSCP value, you can set it to a particular discard-class. Weighted random early detection (WRED), a congestion avoidance technique, thereby uses discard-class values to determine the probability that a packet is dropped.

- Use QoS unconditional packet marking to assign MPLS packets to a QoS group. The router uses the QoS group to determine how to prioritize packets for transmission. To set the QoS group identifier on MPLS packets, use the `set qos-group` command in policy map class configuration mode.

 Note Setting the QoS group identifier does not automatically prioritize the packets for transmission. You must first configure an egress policy that uses the QoS group.

- Use QoS unconditional packet marking to assign packets to set the priority value of IEEE 802.1p/Inter-Switch Link (ISL) packets. The router uses the CoS value to determine how to prioritize packets for transmission and can use this marking to perform Layer 2-to-Layer 3 mapping. To set the Layer 2 CoS value of an outgoing packet, use the `set cos` command in policy map configuration mode.

- Use QOS unconditional packet marking to mark a packet based on the drop eligible indicator value (DEI) bit on 802.1ad frames. To set the DEI value, use the `set dei` command to set the drop eligible indicator value (DEI) in policy map class configuration mode.

 Note

 - Conditional packet marking is not supported.

 - Unless otherwise indicated, the class-based unconditional packet marking for Layer 3 physical interfaces applies to bundle interfaces.

QoS Re-marking of IP Packets in Egress Direction

The router support the marking of IP DSCP bits of all IP packets to zero, in the egress direction. This feature helps to re-mark the priority of IP packets, which is mostly used in scenarios like IP over Ethernet over MPLS over GRE. This functionality is achieved using the ingress policy-map with `set dscp 0` option configured in class-default.

<table>
<thead>
<tr>
<th>Supported Mark Types</th>
<th>Range</th>
<th>Support for Unconditional Marking</th>
<th>Support for Conditional Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>set precedence</td>
<td>0-7</td>
<td>ingress</td>
<td>No</td>
</tr>
<tr>
<td>set qos-group</td>
<td>0-7</td>
<td>ingress</td>
<td>No</td>
</tr>
</tbody>
</table>
Configuration Example

Router# configure
Router(config)# policy-map ingress-set-dscp-zero-policy
Router(config-pmap)# class class-default
Router(config-pmap-c)# set dscp 0
Router(config-pmap-c)# end-policy-map
Router(config-pmap)# commit

Running Configuration

```
policy-map ingress-set-dscp-zero-policy
  class class-default
    set dscp 0
  !
  end-policy-map
```

QoS Re-marking of Ethernet Packets in Egress Direction

The router supports Layer 2 marking of Ethernet packets in the egress direction. To enable this feature, you must:

- Configure the policy maps for queuing and marking at the egress interface.
- Set traffic-class in the ingress and use `match traffic-class` in the egress for queuing.
- Ensure that the `set qos-group` command is configured in ingress policy and the corresponding `match qos-group` command is configured in the egress marking policy. If there is no corresponding QoS group, you will experience traffic failure.

The ingress ‘push VLAN’ is translated to ‘pop VLAN’ for the egress traffic. In this case, (CoS, DEI) re-marking is not supported for the VLAN tag. For example:

1. rewrite ingress tag push dot1q/dot1ad <> symmetric
2. rewrite ingress tag push dot1q/dot1ad <> second-dot1q <> symmetric
3. rewrite ingress tag translate 1-to-2 dot1q/dot1ad <> second-dot1q <> symmetric

Note

Cisco IOS XR software Release 6.3.1 does not support policy maps for egress marking on the Layer 3 interface.

Running Configuration

```
policy-map egress-marking
  class qos1
    set cos 1
  !
  class qos2
    set cos 2
    set dei 1
  !
```
Bundle Traffic Policies

A policy can be bound to bundles. When a policy is bound to a bundle, the same policy is programmed on every bundle member (port). For example, if there is a policer or shaper rate, the same rate is configured on every port. Traffic is scheduled to bundle members based on the load balancing algorithm.

Both ingress and egress traffic is supported. Percentage-based policies and time-based policies are supported.

Note

Egress marking is not supported on BVI interfaces.

For details, see Configure QoS on Link Bundles, on page 56.

Configuring QoS Groups with an ACL

You can create QoS groups and configure ACLs to classify traffic into the groups based on a specified match condition. In this example, we match by the QoS group value (0-511).

Prerequisites

Before you can configure QoS groups with an ACL, the QoS peering profile must be enabled on the router or the line card. After enabling QoS peering, the router or line card must be reloaded, as shown in the following configuration.

Enabling QoS Peering Profile on the Router

Enter the global configuration mode and enable the QoS peering profile for the router as shown:

```
RP/0/RP0/CPU0:router(config)# hw-module profile qos ingress-model peering
RP/0/RP0/CPU0:router(config)# exit
RP/0/RP0/CPU0:router# reload
```

Enabling QoS Peering Profile on the Line Card

Enter the global configuration mode and enable the QoS peering profile for the line card as shown:

```
RP/0/RP0/CPU0:router(config)# hw-module profile qos ingress-model peering location 0/0/CPU0
RP/0/RP0/CPU0:router(config)# exit
RP/0/RP0/CPU0:router# reload location 0/0/CPU0
```

Configuration

Use the following set of configuration statements to configure an ACL with QoS groups.

```bash
/*
class qos3
set cos 3
!
class class-default
set cos 7
!
end-policy-map
!```
Enter the global configuration mode, and configure an ACL with the required QoS groups.

/*
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# ipv4 access-list qos-acl
RP/0/RP0/CPU0:router(config-ipv4-acl)# 10 permit ipv4 host 5.0.0.1 any set qos-group 1
RP/0/RP0/CPU0:router(config-ipv4-acl)# 11 permit ipv4 host 6.0.0.1 any set qos-group 2
RP/0/RP0/CPU0:router(config-ipv4-acl)# 12 permit ipv4 host 7.0.0.1 any set qos-group 3
RP/0/RP0/CPU0:router(config-ipv4-acl)# 13 deny ipv4 any any

/* Create a policy map with the required classes. 
In this example, we also create a default class for traffic that does not belong to any of the specified classes. */
RP/0/RP0/CPU0:router(config)# policy-map qos-acl-map
RP/0/RP0/CPU0:router(config-pmap)# class qos1
RP/0/RP0/CPU0:router(config-pmap-c)# set dscp af43
RP/0/RP0/CPU0:router(config-pmap-c)# set traffic-class 2
RP/0/RP0/CPU0:router(config-pmap-c)# exit
RP/0/RP0/CPU0:router(config-pmap)# class qos2
RP/0/RP0/CPU0:router(config-pmap-c)# set precedence critical
RP/0/RP0/CPU0:router(config-pmap-c)# set traffic-class 7
RP/0/RP0/CPU0:router(config-pmap-c)# exit
RP/0/RP0/CPU0:router(config-pmap)# class qos3
RP/0/RP0/CPU0:router(config-pmap-c)# set precedence 2
RP/0/RP0/CPU0:router(config-pmap-c)# set traffic-class 2
RP/0/RP0/CPU0:router(config-pmap-c)# exit
RP/0/RP0/CPU0:router(config-pmap)# class qos4
RP/0/RP0/CPU0:router(config-pmap-c)# set traffic-class 4
RP/0/RP0/CPU0:router(config-pmap-c)# set dscp cs4
RP/0/RP0/CPU0:router(config-pmap-c)# exit
RP/0/RP0/CPU0:router(config-pmap)# class class-default
RP/0/RP0/CPU0:router(config-pmap-c)# police rate percent 20
RP/0/RP0/CPU0:router(config-pmap-c-police)# exit

/* Create the class maps for specifying the match conditions. */
RP/0/RP0/CPU0:router(config)# class-map match-any qos1
RP/0/RP0/CPU0:router(config-cmap)# match qos-group 1
RP/0/RP0/CPU0:router(config-cmap)# end-class-map
RP/0/RP0/CPU0:router(config)# class-map match-any qos2
RP/0/RP0/CPU0:router(config-cmap)# match qos-group 2
RP/0/RP0/CPU0:router(config-cmap)# end-class-map
RP/0/RP0/CPU0:router(config)# class-map match-any qos3
RP/0/RP0/CPU0:router(config-cmap)# match qos-group 3
RP/0/RP0/CPU0:router(config-cmap)# end-class-map
RP/0/RP0/CPU0:router(config)# class-map match-any qos4
RP/0/RP0/CPU0:router(config-cmap)# match qos-group 4
RP/0/RP0/CPU0:router(config-cmap)# end-class-map

/* Apply the access list and the QoS map to the Gigabit interface, and commit your configuration. */
RP/0/RP0/CPU0:router(config)# interface TenGigE0/0/1/0/0
RP/0/RP0/CPU0:router(config-if)# ipv4 address 12.0.0.1/24
RP/0/RP0/CPU0:router(config-if)# no shut
Configuring Modular QoS Packet Classification

Configuring QoS Groups with an ACL

```plaintext
RP/0/RP0/CPU0:router(config-if)# service-policy input qos-acl-map
RP/0/RP0/CPU0:router(config-if)# ipv4 access-group qos-acl ingress compress level 3
RP/0/RP0/CPU0:router(config-if)# commit

Tue Mar 28 10:23:34.106 IST

RP/0/RP0/CPU0:Mar 28 10:37:48.570 : ifmgr[397]: %PKT_INFRA-LINK-3-UPDOWN : Interface
TenGigE0/0/1/0/0, changed state to Down
RP/0/RP0/CPU0:Mar 28 10:37:48.608 : ifmgr[397]: %PKT_INFRA-LINK-3-UPDOWN : Interface
TenGigE0/0/1/0/0, changed state to Up
RP/0/RP0/CPU0:router(config-if)# exit

Running Configuration

Confirm your configuration.

RP/0/RP0/CPU0:router(config)# show run
Tue Mar 28 10:37:55.737 IST

Building configuration...
!! IOS XR Configuration 0.0.0

ipv4 access-list qos-acl
10 permit ipv4 host 5.0.1.1 any set qos-group 1
11 permit ipv4 host 6.0.1.1 any set qos-group 2
12 permit ipv4 host 7.0.1.1 any set qos-group 3
13 deny any any

class-map match-any qos1
match qos-group 1
end-class-map
!
class-map match-any qos2
match qos-group 2
end-class-map
!
class-map match-any qos3
match qos-group 3
end-class-map
!
class-map match-any qos4
match qos-group 4
end-class-map
!

policy-map qos-acl-map
class qos1
 set dscp af43
 set traffic-class 2
!
class qos2
 set precedence critical
 set traffic-class 7
!
class qos3
 set precedence 2
 set traffic-class 2
!
class qos4
 set traffic-class 4
 set dscp cs4
!
```
class class-default
    police rate percent 20
!
end-policy-map
!

interface TenGigE0/0/1/0/0
    service-policy input qos-acl-map
    ipv4 address 12.0.0.1 255.255.255.0
    ipv4 access-group qos-acl ingress compress level 3
!

You have successfully configured an ACL with QoS groups.

Restrictions

Please refer to the below table for Ingress QoS Scale limitation.

Table 4: Ingress QoS Scale Limitation

<table>
<thead>
<tr>
<th>QoS Mode</th>
<th>Class-Map Size</th>
<th>Maximum number of Interfaces with Ingress QoS Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Per Core</td>
</tr>
<tr>
<td>Normal</td>
<td>4</td>
<td>1024</td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>512</td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>256</td>
</tr>
<tr>
<td>Normal</td>
<td>32</td>
<td>128</td>
</tr>
<tr>
<td>Enhanced</td>
<td>4</td>
<td>872</td>
</tr>
<tr>
<td>Enhanced</td>
<td>8</td>
<td>436</td>
</tr>
<tr>
<td>Enhanced</td>
<td>16</td>
<td>218</td>
</tr>
<tr>
<td>Enhanced</td>
<td>32</td>
<td>109</td>
</tr>
</tbody>
</table>

Example: For Default Configuration, which is Normal (2 counter mode) QoS Mode & 32 Class Map-Size, you can configure 128 interfaces with Ingress Policy per core.

Other restrictions to follow:

• If you have a set traffic class statement explicitly configured in ingress service policy, it is mandatory to have a corresponding match traffic class on egress for the traffic to be correctly matched and the stats to be accounted in show policy-map interface <> output command. To match the ingress traffic to egress class-default, traffic class should be set to 0 on ingress.

• If you have a set traffic class configured in Ingress service policy, and no corresponding match traffic class on egress, the traffic will not go to class default and the stats for this traffic flow will not be seen in show policy-map interface <> output command.
• If you do not have any set traffic class statement in ingress, then traffic will hit the default-class on egress.

• If you have a set discard-class statement configured in ingress service policy, it is mandatory to have a corresponding match discard-class on egress for the traffic to be correctly matched and the stats to be accounted in show policy-map interface <> output command.

• If you have a set discard-class statement configured in ingress service policy and do not have a corresponding match discard-class on egress, the traffic will not hit the class-default and the stats for this flow will not be accounted in show policy-map interface <> output command.

• The system does not support class-map size on peering mode.

Restrictions for Peering QoS Profile

• explicit set discard-class statement is not supported.

• This feature is supported only on L3 interfaces and is limited to 1000 L3 interfaces per system.

• set mpls exp topmost statement is not supported within QoS in peering mode.

• access group statement is not supported.

• No egress marking support on L3 interfaces.

• (Only in Release 6.2.x and Release 6.3.x) set mpls exp imposition statement is not supported on ingress interface.

Restrictions for QoS on BVI

• Ingress QoS policy on BVI does not support policer.

• The system does not support egress QoS policy on BVI.

• If you apply L3 ingress QoS policy on L2 interface, which is a part of the same bridge-domain as BVI, the classification might not work if packets are destined to the BVI MAC address.

• If a QoS policy is attached to BVI, the policy is inherited by the L2 interfaces, which are part of the same bridge-domain. Hence, any other policy cannot be applied on the L2 interfaces. Similarly, if a QoS policy is attached to any of the L2 interfaces, any QoS policy cannot be applied on the BVI, which is part of the same bridge-domain.

In-Place Policy Modification

The In-Place policy modification feature allows you to modify a QoS policy even when the QoS policy is attached to one or more interfaces. A modified policy is subjected to the same checks that a new policy is subject to when it is bound to an interface. If the policy-modification is successful, the modified policy takes effect on all the interfaces to which the policy is attached. However, if the policy modification fails on any one of the interfaces, an automatic rollback is initiated to ensure that the pre-modification policy is in effect on all the interfaces.

You can also modify any class map used in the policy map. The changes made to the class map take effect on all the interfaces to which the policy is attached.
• The QoS statistics for the policy that is attached to an interface are lost (reset to 0) when the policy is modified.

• When a QoS policy attached to an interface is modified, there might not be any policy in effect on the interfaces in which the modified policy is used for a short period of time.

• The system does not support the show policy-map statistics for marking policies.

• An in-place modification of an ACL does not reset the policy-map statistics counter.

Note

• For QOS EXP-Egress marking applied on L3 interface, there is a limit of 3 unique policy-maps per NPU. When the maximum limit for policy-maps is reached and you try to modify a policy-map which is shared between different interfaces, you may get an error.

• For QOS egress marking (CoS, DEI) applied on L2 interface, there is a limit of 13 unique policy-maps per NPU. When the maximum limit for policy-maps is reached and you try to modify a policy-map which is shared between different interfaces, you may get an error.

Verification

If unrecoverable errors occur during in-place policy modification, the policy is put into an inconsistent state on target interfaces. No new configuration is possible until the configuration session is unblocked. It is recommended to remove the policy from the interface, check the modified policy and then re-apply accordingly.

References for Modular QoS Service Packet Classification

Specification of the CoS for a Packet with IP Precedence

Use of IP precedence allows you to specify the CoS for a packet. You can create differentiated service by setting precedence levels on incoming traffic and using them in combination with the QoS queuing features. So that, each subsequent network element can provide service based on the determined policy. IP precedence is usually deployed as close to the edge of the network or administrative domain as possible. This allows the rest of the core or backbone to implement QoS based on precedence.

Figure 1: IPv4 Packet Type of Service Field
You can use the three precedence bits in the type-of-service (ToS) field of the IPv4 header for this purpose. Using the ToS bits, you can define up to eight classes of service. Other features configured throughout the network can then use these bits to determine how to treat the packet in regard to the ToS to grant it. These other QoS features can assign appropriate traffic-handling policies, including congestion management strategy and bandwidth allocation. For example, queueing features such as LLQ can use the IP precedence setting of the packet to prioritize traffic.

**IP Precedence Bits Used to Classify Packets**

Use the three IP precedence bits in the ToS field of the IP header to specify the CoS assignment for each packet. You can partition traffic into a maximum of eight classes and then use policy maps to define network policies in terms of congestion handling and bandwidth allocation for each class.

Each precedence corresponds to a name. IP precedence bit settings 6 and 7 are reserved for network control information, such as routing updates. These names are defined in RFC 791.

**IP Precedence Value Settings**

By default, the routers leave the IP precedence value untouched. This preserves the precedence value set in the header and allows all internal network devices to provide service based on the IP precedence setting. This policy follows the standard approach stipulating that network traffic should be sorted into various types of service at the edge of the network and that those types of service should be implemented in the core of the network. Routers in the core of the network can then use the precedence bits to determine the order of transmission, the likelihood of packet drop, and so on.

Because traffic coming into your network can have the precedence set by outside devices, we recommend that you reset the precedence for all traffic entering your network. By controlling IP precedence settings, you prohibit users that have already set the IP precedence from acquiring better service for their traffic simply by setting a high precedence for all of their packets.

The class-based unconditional packet marking and LLQ features can use the IP precedence bits.

**IP Precedence Compared to IP DSCP Marking**

If you need to mark packets in your network and all your devices support IP DSCP marking, use the IP DSCP marking to mark your packets because the IP DSCP markings provide more unconditional packet marking options. If marking by IP DSCP is undesirable, however, or if you are unsure if the devices in your network support IP DSCP values, use the IP precedence value to mark your packets. The IP precedence value is likely to be supported by all devices in the network.

You can set up to 8 different IP precedence markings and 64 different IP DSCP markings.

**Usage of QoS-group and Queue Selection**

The router supports up to 8 CoS for each egress interface, in the range of 0 through 7, with 0 being the default CoS. The `qos-group` value is used to select a CoS and eventually a virtual output queue (VOQ).

In order to designate the traffic class to a certain CoS other than CoS 0, in the ingress policy-map, you must explicitly configure `set qos-group x` command in the class-map, where ‘x’ is the CoS value.

In the egress policy-map, a class-map with a corresponding `match qos-group x` allows further QoS actions to be applied to the traffic class.

For example,
class-map prec1
match prec 1

policy-map test-ingress
class prec1
  set qos-group 1
  police rate percent 50

class-map qg1
match qos-group 1

policy-map test-egress
class qg1
  set cos 1

**Conditional Marking of MPLS Experimental bits for L3VPN Traffic**

The conditional marking of MPLS experimental bits is achieved for Layer 3 Virtual Private Network (L3VPN) traffic by applying a combination of ingress and egress policy-maps on the Provider Edge (PE) router. In the ingress policy-map, the qos-group or discard-class is set either based on the result of the policing action or implicitly. The egress policy-map matches on qos-group or discard-class and sets the mpls experiment bits to the corresponding value.

This feature is supported on both IPv4 and IPv6 traffic in the L3VPN network. Conditional marking can be used to mark the MPLS experimental bits differently for in-contract and out-of-contract packets. In-contract packets are the confirmed packets with the color green and discard-class set to 0. Out-of-contract packets are the packets which have exceeded the limit and have the color yellow and discard-class set to 1.

Conditional marking of MPLS experimental bits for L3VPN traffic is supported on both physical and bundle main interfaces as well as sub-interfaces.

**Restrictions for Conditional Marking of MPLS Experimental bits on L3VPN**

1. In the case of 2 PE routers connected back-to-back and the only label that the traffic between the routers have is the BGP label, then the explicit null label should be configured.

2. A maximum of 3 policy-maps which perform conditional marking of MPLS experimental bits can be configured per Network Processor Unit (NPU) of the Cisco NCS 5500 Series Routers.

3. In the ingress policy-map if qos-group is being set for the incoming traffic packets, then setting of dscp and mpls experimental bits will not work.

4. Both the ingress and egress policy-maps must be applied in order to attain the expected behaviour. If either one of them is not applied then it may lead to undefined behaviour.

5. If the egress policy-map does not match on qos-group or discard-class and set the mpls experiment bits to the required value, then the mpls experimental bits will be set to a value of zero, by default.

---

**Note**

The DSCP value of the packet is preserved only for L3VPN networks when the packets are destined to the directly connected routes on the PE routers. To preserve the DSCP value for packets to destinations beyond the egress PE routers for L3VPN, you should use the `label mode per-vrf` command under the VRF at the PE routers. Similarly for MPLS networks, the default behaviour is uniform mode where the penultimate hop copies the MPLS EXP bit to IP DSCP and IP DSCP value is not preserved beyond the egress PE router. To preserve IP DSCP value, you should use the `mpls ip-ttl-propogate disable` command at the penultimate hop.
Policy-map for conditional marking of incoming IPv4 and IPv6 traffic

The incoming packets are classified based on the ingress policy-map and the following actions are done.

- Set qos-group
- Discard class or drop precedence is set implicitly or as a result of a policing action.
- Packets that violate the configured policer are dropped in the ingress processing itself.

Running Configuration:

```plaintext
policy-map ingress
 class af11
 police rate percent 10 peak-rate percent 20
 set qos-group 1
 !
 class af22
 police rate percent 30 peak-rate percent 50
 set qos-group 2
 !
 class af32
 set qos-group 3
 police rate percent 30 peak-rate percent 60
 !
 class class-default
 !
end-policy-map
```

Policy-map for conditional marking of outgoing MPLS traffic

The IPv4 or IPv6 ingress packet undergoes MPLS encapsulation during the egress processing in the PE router which performs the label imposition. The MPLS experimental bits are marked on the basis of egress policy-map which performs the following actions:

- Match on qos-group or discard class or both
- Set the MPLS experimental bits based on the match criteria

Running Configuration:

```plaintext
policy-map egress
 class qos1_disc0 # This class matches on qos-group 1 and discard-class 0
 set mpls experimental imposition 1
 !
 class qos1_disc1 # This class matches on qos-group 1 and discard-class 1
 set mpls experimental imposition 5
 !
 class qos2_disc0 # This class matches on qos-group 2 and discard-class 0
 set mpls experimental imposition 2
 !
 class qos2_disc1 # This class matches on qos-group 2 and discard-class 1
 set mpls experimental imposition 6
 !
 class qos3_disc0 # This class matches on qos-group 3 and discard-class 0
 set mpls experimental imposition 3
```
QoSPolicyPropagationviaBGP(QPPB)isamechanismthatallowspropagationofqualityofservice(QoS)
policyandclassificationbythesendingpartythatisbasedonthefollowing:

- Access lists
- Community lists
- Autonomous system paths in the Border Gateway Protocol (BGP)

Thus, helps in classification that is based on the destination address instead of the source address.

QoS policies that differentiate between different types of traffic are defined for a single enterprise network.
For instance, one enterprise may want to treat important web traffic, not-important web traffic, and all other
data traffic as three different classes. And thereafter, use the different classes for the voice and video traffic.

Hence, QPPB is introduced to overcome the following problems:

- The administrative challenges of classifying that is based on ACLs.
- The administrative problems of just listing the networks that need premium services.

QPPB allows marking of packets that are based on QoS group value associated with a Border Gateway Protocol
(BGP) route.

Benefits of QPPB

- QPPB provides an IP prefix-based QoS capability.
- Traffic to IP addresses that have specific IP prefixes can be prioritized above other IP addresses.
- IP prefixes of interest are tagged through the control plane that uses common BGP route-map techniques,
  including the community attribute.
- Traffic to the tagged BGP prefixes is then classified and prioritized via the data forwarding plane by
  using the IOS-XR MQC (Modular QoS CLI) mechanisms, such as re-marking.
- QPPB provides the glue between the BGP control plane and the IP data forwarding plane in support of
  IP prefix-based QoS.
- BGP configuration within QPPB uses a table map to match specific prefixes learned through BGP
  neighbors, and then sets the router’s local QoS Group variable maintained within the Forwarding
  Information Base (FIB) for those specific prefixes.
- The router supports a subset of full QPPB options - only IP destination prefix mode on input policy is supported.
Router A learns routes from AS 200 and AS 100. QoS policy is applied to any ingress interface of Router A to match the defined route maps with destination prefixes of incoming packets. Matching packets on Router A to AS 200 or AS 100 are sent with the appropriate QoS policy from Router A.

BGP maintains a scalable database of destination prefixes, QPPB, by using BGP table maps. BGP adds the ability to map a qos-group value to desired IP destinations. These qos-group values are used in QOS policies applied locally on ingress interfaces. Whenever a packet bound for such destinations is encountered, the qos-group value matching that destination route looks up with work inside the policy classmap, and marks that packet for any configured policy actions.

**Configuration Workflow**

Use the following configuration workflow for QPPB:

- Define route policy.
- Put Route policy at table-policy attach point under BGP.
- Define classmaps and ingress policy to use the qos-groups that are used in table-policy.
- Enable ipv4/ipv6 QPPB configuration under the desired interfaces.
- Configure the QPPB hardware profile, `hw-module profile qos ipv6 short`.
- If you use ipv6 QPPB, you must reload that linecard. If you use only ipv4 QPPB, linecard reload is not mandatory.
Define route policy

A routing policy instructs the router to inspect routes, filter them, and potentially modify their attributes as they are accepted from a peer, advertised to a peer, or redistributed from one routing protocol to another.

The routing policy language (RPL) provides a language to express routing policy. You must set up destination prefixes either to match inline values or one of a set of values in a prefix set.

Example:

```
prefix-set prefix-list-v4
 70.1.1.1,
 70.2.1.0/24,
 70.2.2.0/24 gt 28,
 70.2.3.0/24 le 28
end-set
prefix-set prefix-list-v6
 2001:300::2,
 2003:200::3
end-set

route-policy qppb1
 if destination in (60.60.0.2/24) then
 set qos-group 5
 else if destination in prefix-list-v4 then
 set qos-group 4
 else
 set qos-group 1
 pass
end-policy
route-policy qppb2
 if destination in prefix-list-v6 then
 set qos-group 5
 else if destination in (2001:300::2) then
 set qos-group 4
 else
 set qos-group 1
 pass
end-policy
```

Put Route policy at table-policy attach point under BGP

The table-policy attach point permits the route policy to perform actions on each route as they are installed into the RIB routing table. QPPB uses this attachment point to intercept all routes as they are received from peers. Ultimately the RIB will update the FIB in the hardware forwarding plane to store destination prefix routing entries, and in cases where table policy matches a destination prefix, the qos-group value is also stored with the destination prefix entry for use in the forwarding plane.

Example:

```
router bgp 900
 [vrf <name>]
 bgp router-id 22.22.22.22
 address-family ipv4 unicast
 table-policy qppb1
 address-family ipv6 unicast
 table-policy qppb2
 neighbor 30.2.2.1
 remote-as 500
 address-family ipv4 unicast
 route-policy pass in
 route-policy pass out
 address-family ipv6 unicast
```

Configuration Workflow
route-policy pass in
route-policy pass out

**Ingress interface QoS and ipv4/ipv6 bgp configuration**

QPPB would be enabled per interface and individually for V4 and V6. An ingress policy would match on the qos groups marked by QPPB and take desired action.

If a packet is destined for a destination prefix on which BGP route policy has stored a qos-group, but it ingresses on an interface on which qppb is not enabled, it would not be remarked with qos-group.

Earlier, NCS5500 supported matching on qos-group only in peering profile ‘hw-module profile qos ingress-model peering location <>’ now QPPB will permit classmaps to match qos-group in the default “non peering mode qos” as well. Also QPPB and hierarchical QOS policy profiles can work together if Hqos is used.

Example:
```
class-map match-any qos-group5
 match qos-group 5
 end-class-map

class-map match-any qos-group4
 match qos-group 4
 end-class-map

policy-map ingress-marker-pol1
 class qos-group5
 set precedence 0
 set discard-class 0
 class qos-group4
 set precedence 1
 set discard-class 1
 class class-default
 end-policy-map
```

Interface HundredGigE 0/0/0/0
   [vrf vrfA]
   ipv4 address 25.1.1.1/24
   ipv6 address 2001:db8:a0b:12f0::1/64
   [no] ipv4 bgp policy propagation input qos-group destination
   [no] ipv6 bgp policy propagation input qos-group destination
   service-policy input ingress-marker-pol

**Configuring QPPB on an Interface**

1. RP/0/RP0/CPU0:router # configure
   
   Enters interface configuration mode and associates one or more interfaces to the VRF.

2. RP/0/RP0/CPU0:router(config)# interface
   type interface-path-id
   
   Enters interface configuration mode and associates one or more interfaces to the VRF.

3. ipv4 | ipv6 bgp policy propagation input qos-group destination
   
   Example:
Enables QPPB on an interface

4. commit

Egress Interface Configuration

The qos-group set on ingress has no existence outside the device. Also, qos-group is not a part of any packet header but is associated internal context data on relevant packets. It can be used as a match criteria in an egress policy to set up various fields on the outgoing packet or shape flows.

Restrictions:

• No IP precedence marking.
• No policing on egress policy.

class-map match-any level1
  match precedence 0
end-class-map

class-map match-any level2
  match precedence 1
end-class-map

policy-map output-po1
  class level1
    bandwidth percent 50
  class level2
    bandwidth percent 20
    queue-limit 50ms
end-policy-map

interface hun 0/5/0/0
  ipv4 address 30.1.1.1/24
  ipv6 address 2001:da8:b0a:12f0::1/64
  service-policy output output-po1
Configuring Modular QoS Congestion Avoidance

- Modular QoS Congestion Avoidance, on page 29
- Tail Drop and the FIFO Queue, on page 29
- Random Early Detection and TCP, on page 31
- Weighted Random Early Detection, on page 33

Modular QoS Congestion Avoidance

Congestion avoidance techniques monitor traffic flow in an effort to anticipate and avoid congestion at common network bottlenecks. Avoidance techniques are implemented before congestion occurs as compared with congestion management techniques that control congestion after it has occurred.

Congestion avoidance is achieved through packet dropping. The router supports these QoS congestion avoidance techniques:

- Tail Drop and the FIFO Queue, on page 29
- Random Early Detection and TCP, on page 31
- Weighted Random Early Detection, on page 33

Tail Drop and the FIFO Queue

Tail drop is a congestion avoidance technique that drops packets when an output queue is full until congestion is eliminated. Tail drop treats all traffic flow equally and does not differentiate between classes of service. It manages the packets that are unclassified, placed into a first-in, first-out (FIFO) queue, and forwarded at a rate determined by the available underlying link bandwidth.

Configure Tail Drop

Packets satisfying the match criteria for a class accumulate in the queue reserved for the class until they are serviced. The queue-limit command is used to define the maximum threshold for a class. When the maximum threshold is reached, the enqueued packets to the class queue result in tail drop (packet drop).
Restrictions

- When configuring the `queue-limit` command, you must configure one of the following commands: `priority`, `shape average`, `bandwidth` or `bandwidth remaining`, except for the default class.

Configuration Example

You have to accomplish the following to complete the tail drop configuration:

1. Creating (or modifying) a policy map that can be attached to one or more interfaces to specify a service policy
2. Associating the traffic class with the traffic policy
3. Specifying the maximum limit the queue can hold for a class policy configured in a policy map.
4. Specifying priority to a class of traffic belonging to a policy map.
5. (Optional) Specifying the bandwidth allocated for a class belonging to a policy map or specifying how to allocate leftover bandwidth to various classes.
6. Attaching a policy map to an output interface to be used as the service policy for that interface.

```conf
Router# configure
Router(config)# policy-map test-qlimit-1
Router(config-pmap)# class qos-1
Router(config-pmap-c)# queue-limit 100 us
Router(config-pmap-c)# priority level 7
Router(config-pmap-c)# exit
Router(config-pmap)# exit

Router(config)# interface HundredGigE 0/6/0/18
Router(config-if)# service-policy output test-qlimit-1
Router(config-if)# commit
```

Running Configuration

```
policy-map test-qlimit-1
 class qos-1
 queue-limit 100 us
 priority level 7
 !
 class class-default
 !
end-policy-map
```

Verification

```conf
Router# show qos int hundredGigE 0/6/0/18 output

NOTE:- Configured values are displayed within parentheses
Interface HundredGigE0/6/0/18 ifh 0x3000220 -- output policy
NPU Id: 3
Total number of classes: 2
Interface Bandwidth: 100000000 kbps
```
Random Early Detection and TCP

The Random Early Detection (RED) congestion avoidance technique takes advantage of the congestion control mechanism of TCP. By randomly dropping packets prior to periods of high congestion, RED tells the packet source to decrease its transmission rate. Assuming the packet source is using TCP, it decreases its transmission rate until all packets reach their destination, indicating that the congestion is cleared. You can use RED as a way to cause TCP to slow transmission of packets. TCP not only pauses, but it also restarts quickly and adapts its transmission rate to the rate that the network can support.

RED distributes losses in time and maintains normally low queue depth while absorbing traffic bursts. When enabled on an interface, RED begins dropping packets when congestion occurs at a rate you select during configuration.

Configure Random Early Detection

The `random-detect` command with the `default` keyword must be used to enable random early detection (RED).

Guidelines

If you configure the `random-detect default` command on any class including class-default, you must configure one of the following commands: `shape average`, `bandwidth`, and `bandwidth remaining`.

Configuration Example

You have to accomplish the following to complete the random early detection configuration:
1. Creating (or modifying) a policy map that can be attached to one or more interfaces to specify a service policy

2. Associating the traffic class with the traffic policy

3. Enabling RED with default minimum and maximum thresholds.

4. (Optional) Specifying the bandwidth allocated for a class belonging to a policy map or specifying how to allocate leftover bandwidth to various classes.

5. (Optional) Shaping traffic to the specified bit rate or a percentage of the available bandwidth.

6. Attaching a policy map to an output interface to be used as the service policy for that interface.

```
Router# configure
Router(config)# policy-map test-wred-2
Router(config-pmap)# class qos-1
Router(config-pmap-c)# random-detect default
Router(config-pmap-c)# shape average percent 10
Router(config-pmap-c)# end-policy-map
Router(config)# commit
Router(config)# interface HundredGigE 0/6/0/18
Router(config-if)# service-policy output test-wred-2
Router(config-if)# commit
```

**Running Configuration**

```
policy-map test-wred-2
 class qos-1
 random-detect default
 shape average percent 10
 !
 class class-default
 !
 end-policy-map

interface HundredGigE 0/6/0/18
 service-policy output test-wred-2

```

**Verification**

```
Router# show qos int hundredGigE 0/6/0/18 output

NOTE:- Configured values are displayed within parentheses
Interface HundredGigE0/6/0/18 ifh 0x3000220 -- output policy
NPV Id: 3
Total number of classes: 2
Interface Bandwidth: 100000000 kbps
VOQ Base: 11176
VOQ Stats Handle: 0x88550ea0
Accounting Type: Layer1 (Include Layer 1 encapsulation and above)

--
Level1 Class = qos-1
Egressq Queue ID = 11177 (LP queue)
Queue Max. BW. = 10082461 kbps (10 %)
```

Modular QoS Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
Weighted Random Early Detection

The Weighted Random Early Detection (WRED) drops packets selectively based on any specified criteria, like discard-class. WRED uses this matching criteria to determine how to treat different types of traffic.

You can configure WRED using the `random-detect` command and different discard-class values. The value can be range or a list of values that are valid for that field. You can also use minimum and maximum queue thresholds to determine the dropping point. Ensure that the WRED maximum threshold value is close to the queue limit. When the maximum threshold value is reached, packets start to get dropped.

When a packet arrives, the following actions occur:

- The average queue size is calculated.
- If the average queue size is less than the minimum queue threshold, the arriving packet is queued.
- If the average queue size is between the minimum queue threshold for that type of traffic and the maximum threshold for the interface, the packet is either dropped or queued, depending on the packet drop probability for that type of traffic.
- If the average queue size is greater than the maximum threshold, the packet is dropped.

**Average Queue Size for WRED**

The router automatically determines the parameters to use in the WRED calculations. The average queue size is based on the previous average and current size of the queue. The formula is:

```
average = (old_average * (1-2-x)) + (current_queue_size * 2 -x)
```
where $x$ is the exponential weight factor.

For high values of $x$, the previous average becomes more important. A large factor smooths out the peaks and lows in queue length. The average queue size is unlikely to change very quickly, avoiding a drastic change in size. The WRED process is slow to start dropping packets, but it may continue dropping packets for a time after the actual queue size has fallen below the minimum threshold. The slow-moving average accommodates temporary bursts in traffic.

**Note**

- The exponential weight factor, $x$, is fixed and is not user configurable.
- If the value of $x$ gets too high, WRED does not react to congestion. Packets are sent or dropped as if WRED were not in effect.
- If the value of $x$ gets too low, WRED overreacts to temporary traffic bursts and drops traffic unnecessarily.

For low values of $x$, the average queue size closely tracks the current queue size. The resulting average may fluctuate with changes in the traffic levels. In this case, the WRED process responds quickly to long queues. Once the queue falls below the minimum threshold, the process stops dropping packets.

**Configure Weighted Random Early Detection**

This configuration task is similar to that used for RED except that the `random-detect` command is not configured in RED.

**Restrictions**

- You cannot use the `random-detect` command in a class configured with the `priority` command, because WRED cannot be configured in a class that has been set for priority queueing (PQ).
- When configuring the `random-detect` command, you must configure one of the following commands: `shape average`, `bandwidth`, and `bandwidth remaining`.

**Configuration Example**

You have to accomplish the following to complete the random early detection configuration:

1. Creating (or modifying) a policy map that can be attached to one or more interfaces to specify a service policy
2. Associating the traffic class with the traffic policy
3. Enabling WRED by specifying the match criteria (discard-class).
4. (Optional) Specifying the bandwidth allocated for a class belonging to a policy map or specifying how to allocate leftover bandwidth to various classes.
5. (Optional) Shaping traffic to the specified bit rate or a percentage of the available bandwidth.
6. (Optional) Changing queue limit to fine-tune the amount of buffers available for each queue.
7. Attaching a policy map to an output interface to be used as the service policy for that interface.
Router# configure
Router(config)# policy-map test-wred-1
Router(config-pmap)# class qos-1
Router(config-pmap-c)# random-detect default
Router(config-pmap-c)# random-detect 10 ms 500 ms
Router(config-pmap-c)# shape average percent 10
Router(config-pmap-c)# commit

Router(config)# interface HundredGigE 0/6/0/18
Router(config-if)# service-policy output policy1
Router(config-if)# commit

Running Configuration

policy-map test-wred-1
class qos-1
  random-detect default
  random-detect 10 ms 500 ms
  shape average percent 10
! class class-default
! end-policy-map
!

interface HundredGigE 0/6/0/18
  service-policy output test-wred-1
!

Verification

Router# show qos int hundredGigE 0/6/0/18 output

NOTE:- Configured values are displayed within parentheses
Interface HundredGigE0/6/0/18 ifh 0x3000220  -- output policy
NPU Id: 3
Total number of classes: 2
Interface Bandwidth: 100000000 kbps
VOQ Base: 11176
VOQ Stats Handle: 0x88550ea0
Accounting Type: Layer1 (Include Layer 1 encapsulation and above)
-----------------------------------------------------------------------------
Level1 Class  - qos-1
Egressq Queue ID  - 11177 (LP queue)
Queue Max. BW.  - 10082461 kbps (10 %)
Queue Min. BW.  - 0 kbps (default)
Inverse Weight / Weight  - 1 (BWR not configured)
Guaranteed service rate  - 10000000 kbps
TailDrop Threshold  - 1073741824 bytes / 858 ms (default)
Default RED profile
WRED Min. Threshold  - 12517376 bytes (10 ms)
WRED Max. Threshold  - 629145600 bytes (500 ms)

Level1 Class  - class-default
Egressq Queue ID  - 11176 (Default LP queue)
Queue Max. BW.  - 101803495 kbps (default)
Queue Min. BW.  - 0 kbps (default)
### Configure Weighted Random Early Detection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse Weight / Weight</td>
<td>1 (BWR not configured)</td>
</tr>
<tr>
<td>Guaranteed service rate</td>
<td>50000000 kbps</td>
</tr>
<tr>
<td>TailDrop Threshold</td>
<td>62652416 bytes / 10 ms (default)</td>
</tr>
<tr>
<td>WRED not configured for this class</td>
<td></td>
</tr>
</tbody>
</table>

**Related Topics**
- Weighted Random Early Detection, on page 33
- Configure Random Early Detection, on page 31

**Associated Commands**
- `random-detect`
Configuring Modular QoS Congestion Management

- Congestion Management Overview, on page 37
- Class-based Weighted Fair Queueing, on page 37
- Low-Latency Queueing with Strict Priority Queueing, on page 40
- Traffic Shaping, on page 42
- Traffic Policing, on page 44
- References for Modular QoS Congestion Management, on page 51

Congestion Management Overview

Congestion management features allow you to control congestion by determining the order in which a traffic flow (or packets) is sent out an interface based on priorities assigned to packets. Congestion management entails the creation of queues, assignment of packets to those queues based on the classification of the packet, and scheduling of the packets in a queue for transmission.

The types of traffic regulation mechanisms supported are:

- Class-based Weighted Fair Queueing, on page 37
- Low-Latency Queueing with Strict Priority Queueing, on page 40
- Traffic Shaping, on page 42
- Traffic Policing, on page 44

Class-based Weighted Fair Queueing

Class-based Weighted Fair Queueing (CBWFQ) allows definition of traffic classes based on customer match criteria. With CBWFQ you can define traffic classes and assign guaranteed amount of minimum bandwidth to them. CBWFQ also allows for a strict priority queue for delay-sensitive traffic.
Bandwidth Remaining

The CBWFQ algorithm derives the weight for each class from the bandwidth remaining value allocated to the class. The **bandwidth remaining** option specifies a weight for the class to the CBWFQ. After the priority-queue is serviced, the leftover bandwidth is distributed as per bandwidth remaining ratio (BWRR) or percentage. If you do not configure this command for any class, the default value of the BWRR is considered as 1 (one). In the case of **bandwidth remaining percent**, the remaining bandwidth is equally distributed among other classes, to make it 100 percentage (100%).

**Restrictions**

- The **bandwidth remaining** command is supported only for egress policies.

Configure Minimum Bandwidth and Bandwidth Remaining

**Guidelines**

- The **bandwidth**, **bandwidth remaining**, **shaping**, **queue-limit** and **wred** commands may be configured together in the same class. But, **priority** cannot be configured along with them (**priority** command can be configured along with **shape** and **queue-limit**)

**Configuration Example**

You have to accomplish the following to complete the minimum bandwidth and bandwidth remaining configuration:

1. Creating or modifying a policy-map that can be attached to one or more interfaces
2. Specifying the traffic class whose policy has to be created or changed
3. Allocating the minimum bandwidth and leftover bandwidth for the class
4. Attaching the policy-map to an output interface

```
Router# configure
Router(config)# policy-map test-bw-bw-rem
Router(config-pmap)# class qos-6
Router(config-pmap-c)# bandwidth percent 60
Router(config-pmap-c)# bandwidth remaining percent 60
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface HundredGigE 0/6/0/18
Router(config-if)# service-policy output test-bw-bw-rem
Router(config-if)# commit
```

**Running Configuration**

```
policy-map test-bw-bw-rem
class qos-6
 bandwidth percent 60
 bandwidth remaining percent 60
!
class qos-5
```

![Modular QoS Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x](image)
bandwidth percent 20
bandwidth remaining percent 40
!
class class-default
!
end-policy-map
!

interface HundredGigE0/6/0/18
service-policy input 100g-s1-1
service-policy output test-bw-bw-rem
!

Verification

Router# show qos interface HundredGigE 0/6/0/18 output

NOTE:- Configured values are displayed within parentheses
Interface HundredGigE0/6/0/18 ifh 0x3000220 -- output policy
NPU Id: 3
Total number of classes: 3
Interface Bandwidth: 100000000 kbps
VOQ Base: 11176
VOQ Stats Handle: 0x88550ea0
Accounting Type: Layer1 (Include Layer 1 encapsulation and above)
------------------------------------------------------------------------------
Level1 Class = qos-6
Egressq Queue ID = 11182 (LP queue)
Queue Max. BW. = 100824615 kbps (default)
Queue Min. BW. = 60494769 kbps (60 %)
Inverse Weight / Weight = 2 (60%)
Guaranteed service rate = 71881188 kbps
TailDrop Threshold = 90177536 bytes / 10 ms (default)
WRED not configured for this class

Level1 Class = qos-5
Egressq Queue ID = 11181 (LP queue)
Queue Max. BW. = 100824615 kbps (default)
Queue Min. BW. = 20164923 kbps (20 %)
Inverse Weight / Weight = 3 (40%)
Guaranteed service rate = 27920792 kbps
TailDrop Threshold = 35127296 bytes / 10 ms (default)
WRED not configured for this class

Level1 Class = class-default
Egressq Queue ID = 11176 (Default LP queue)
Queue Max. BW. = 101803495 kbps (default)
Queue Min. BW. = 0 kbps (default)
Inverse Weight / Weight = 120 (BWR not configured)
Guaranteed service rate = 198019 kbps
TailDrop Threshold = 247808 bytes / 10 ms (default)
WRED not configured for this class

Related Topics

• Bandwidth Remaining, on page 38
Low-Latency Queueing with Strict Priority Queueing

The Low-Latency Queueing (LLQ) feature brings strict priority queuing (PQ) to the CBWFQ scheduling mechanism. Priority Queuing (PQ) in strict priority mode ensures that one type of traffic is sent, possibly at the expense of all others. For PQ, a low-priority queue can be detrimentally affected, and, in the worst case, never allowed to send its packets if a limited amount of bandwidth is available or the transmission rate of critical traffic is high. Strict PQ allows delay-sensitive data, such as voice, to be de-queued and sent before packets in other queues are de-queued.

Configure Low Latency Queueing with Strict Priority Queueing

Configuring low latency queueing (LLQ) with strict priority queuing (PQ) allows delay-sensitive data such as voice to be de-queued and sent before the packets in other queues are de-queued.

Guidelines

- Only priority level 1 to 7 is supported, with 1 being the highest priority and 7 being the lowest. However, the default CoS SQ 0 has the lowest priority among all.
- Egress policing is not supported. Hence, in the case of strict priority queuing, there are chances that the other queues do not get serviced.
- You can configure shape average and queue-limit commands along with priority.

Configuration Example

You have to accomplish the following to complete the LLQ with strict priority queuing:

1. Creating or modifying a policy-map that can be attached to one or more interfaces
2. Specifying the traffic class whose policy has to be created or changed
3. Specifying priority to the traffic class
4. (Optional) Shaping the traffic to a specific bit rate
5. Attaching the policy-map to an output interface

Router# configure
Router(config)# policy-map test-priority-1
Router(config-pmap)# class qos1
Router(config-pmap-c)# priority level 7
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface HundredGigE 0/6/0/18
Router(config-if)# service-policy output test-priority-1
Router(config-if)# no shutdown
Running Configuration

```
policy-map test-priority-1
 class qos-1
 priority level 7
 !
 class qos-2
 priority level 6
 !
 class class-default
 !
end-policy-map
!
interface HundredGigE0/6/0/18
 service-policy input 100g-s1-1
 service-policy output test-priority-1
!
```

Verification

```
Router# show qos int hundredGigE 0/6/0/18 output
NOTE:- Configured values are displayed within parentheses
Interface HundredGigE0/6/0/18 ifh 0x3000220 -- output policy
NPU Id: 3
Total number of classes: 3
Interface Bandwidth: 100000000 kbps
VOQ Base: 11176
VOQ Stats Handle: 0x88550ea0
Accounting Type: Layer1 (Include Layer 1 encapsulation and above)

Level1 Class (HP7) = qos-1
 Egress Queue ID = 11177 (HP7 queue)
 TailDrop Threshold = 125304832 bytes / 10 ms (default)
 WRED not configured for this class

Level1 Class (HP6) = qos-2
 Egress Queue ID = 11178 (HP6 queue)
 TailDrop Threshold = 125304832 bytes / 10 ms (default)
 WRED not configured for this class

Level1 Class = class-default
 Egress Queue ID = 11176 (Default LP queue)
 Queue Max. BW. = 101803495 kbps (default)
 Queue Min. BW. = 0 kbps (default)
 Inverse Weight / Weight = 1 (BWR not configured)
 TailDrop Threshold = 1253376 bytes / 10 ms (default)
 WRED not configured for this class

Related Topics

- Congestion Management Overview, on page 37
- Configure Traffic Shaping, on page 42
Traffic Shaping

Traffic shaping allows you to control the traffic flow exiting an interface to match its transmission to the speed of the remote target interface and ensure that the traffic conforms to policies contracted for it. Traffic adhering to a particular profile can be shaped to meet downstream requirements, thereby eliminating bottlenecks in topologies with data-rate mismatches.

Note
Traffic shaping is supported only in egress direction.

Configure Traffic Shaping

The traffic shaping performed on outgoing interfaces is done at the Layer 1 level and includes the Layer 1 header in the rate calculation.

Guidelines

- Only egress traffic shaping is supported.
- It is mandatory to configure all the eight qos-group classes (including class-default) for the egress policies.
- You can configure `shape average` command along with `priority` command.

Configuration Example

You have to accomplish the following to complete the traffic shaping configuration:

1. Creating or modifying a policy-map that can be attached to one or more interfaces
2. Specifying the traffic class whose policy has to be created or changed
3. Shaping the traffic to a specific bit rate
4. Attaching the policy-map to an output interface

```bash
Router# configure
Router(config)# policy-map egress_policy1
Router(config-pmap)# class c5
Router(config-pmap-c)# shape average percent 40
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface HundredGigE 0/1/0/0
Router(config-if)# service-policy output egress_policy1
Router(config-if)# commit
```
Running Configuration

policy-map egress_policy1
 class c5
 shape average percent 40

 class class-default

end-policy-map

interface HundredGigE0/6/0/18
 service-policy input 100g-s1-1
 service-policy output egress_policy1

Verification

Router# show qos interface hundredGigE 0/6/0/18 output

NOTE:- Configured values are displayed within parentheses
Interface HundredGigE0/6/0/18 ifh 0x3000220 -- output policy
NPU Id: 3
Total number of classes: 2
Interface Bandwidth: 100000000 kbps
VOQ Base: 11176
VOQ Stats Handle: 0x88550ea0
Accounting Type: Layer1 (Include Layer 1 encapsulation and above)

--
Level1 Class = c5
Egressq Queue ID = 11177 (LP queue)
Queue Max. BW. = 40329846 kbps (40 %)
Queue Min. BW. = 0 kbps (default)
Inverse Weight / Weight = 1 (BWR not configured)
Guaranteed service rate = 40000000 kbps
TailDrop Threshold = 50069504 bytes / 10 ms (default)
WRED not configured for this class

Level1 Class = class-default
Egressq Queue ID = 11176 (Default LP queue)
Queue Max. BW. = 101803495 kbps (default)
Queue Min. BW. = 0 kbps (default)
Inverse Weight / Weight = 1 (BWR not configured)
Guaranteed service rate = 50000000 kbps
TailDrop Threshold = 62652416 bytes / 10 ms (default)
WRED not configured for this class

Related Topics

- Congestion Management Overview, on page 37

Associated Commands

- shape average
Traffic Policing

Traffic policing allows you to control the maximum rate of traffic sent or received on an interface and to partition a network into multiple priority levels or class of service (CoS). Traffic policing manages the maximum rate of traffic through a token bucket algorithm. The token bucket algorithm uses user-configured values to determine the maximum rate of traffic allowed on an interface at a given moment in time. The token bucket algorithm is affected by all traffic entering or leaving the interface (depending on where the traffic policy with traffic policing is configured) and is useful in managing network bandwidth in cases where several large packets are sent in the same traffic stream. By default, the configured bandwidth value takes into account the Layer 2 encapsulation that is applied to traffic leaving the interface.

Traffic policing also provides a certain amount of bandwidth management by allowing you to set the burst size (Bc) for the committed information rate (CIR). See, Committed Bursts and Excess Bursts, on page 44.

The router supports the following traffic policing mode(s):

- Single-Rate Two-Color (SR2C) in color-blind mode. See Single-Rate Policer, on page 45.
- Single-Rate Three-Color (SR3C) in color-blind mode.
- Two-Rate Three-Color (2R3C) in color-blind mode. See Two-Rate Policer, on page 49.

Restrictions

- Traffic policing is supported only in ingress direction, and only color-blind mode is supported.
- Policer marking is not supported.
- Policers are configured in the interface at the core level and “show qos int <>” value is displayed at the NPU level.

For policers configured in a bundle interface where bundle members are from the same NPU but different cores (NPU cores), each member sends the traffic up to the core level policer configuration, but “show qos int <>” displays the NPU level policer output.

Example:

For bundle interface with two 10GE members (same NPU, but one interface from core0, one interface from core1) 2R3C policer applied on bundle interface (1G confirm rate, 1G exceed rate – total 2G policer rate) will be shown on the “show qos int <>” output:

Interface in core0 – 500 Mbps confirm rate, 500 Mbps exceed rate
Interface in core1 – 500 Mbps confirm rate, 500 Mbps exceed rate

For traffic in one out of two interfaces, the policed rate will be 1Gbps. For traffic on two interfaces, policed rate will be 2Gbps.

Committed Bursts and Excess Bursts

Unlike a traffic shaper, a traffic policer does not buffer excess packets and transmit them later. Instead, the policer executes a “send or do not send” policy without buffering. Policing uses normal or committed burst (bc) values and excess burst values (be) to ensure that the router reaches the configured committed information rate (CIR). Policing decides if a packet conforms or exceeds the CIR based on the burst values you configure.
Burst parameters are based on a generic buffering rule for routers, which recommends that you configure buffering to be equal to the round-trip time bit-rate to accommodate the outstanding TCP windows of all connections in times of congestion. During periods of congestion, proper configuration of the excess burst parameter enables the policer to drop packets less aggressively.

For more details, see Committed Bursts, on page 51 and Excess Bursts, on page 52.

Single-Rate Policer

Single-Rate Two-Color Policer

A single-rate two-color (SR2C) policer provides one token bucket with two actions for each packet: a conform action and an exceed action.

Figure 3: Workflow of Single-Rate Two-Color Policer

Based on the committed information rate (CIR) value, the token bucket is updated at every refresh time interval. The Tc token bucket can contain up to the Bc value, which can be a certain number of bytes or a period of time. If a packet of size B is greater than the Tc token bucket, then the packet exceeds the CIR value and a default action is performed. If a packet of size B is less than the Tc token bucket, then the packet conforms and a different default action is performed.

Single-Rate Three-Color Policer

A single-rate three-color (SR3C) policer provides one token bucket with three actions for each packet: a conform action, an exceed action and a violate action. The packet is marked based on the CIR value and the two associated burst size - committed burst size (CBS) and excess burst size (EBS). If a packet does not exceed the CBS, it is marked as conformed packet. The packet is marked as exceeded if it exceeds CBS, but not the EBS. If it exceeds the EBS as well, it is marked as violate packet.
Configure Traffic Policing (Single-Rate Two-Color)

Traffic policing is often configured on interfaces at the edge of a network to limit the rate of traffic entering or leaving the network. The default conform action for single-rate two color policer is to transmit the packet and the default exceed action is to drop the packet. Users cannot modify these default actions.

Configuration Example

You have to accomplish the following to complete the traffic policing configuration:

1. Creating or modifying a policy-map that can be attached to one or more interfaces
2. Specifying the traffic class whose policy has to be created or changed
3. (Optional) Specifying the marking action
4. Specifying the policy rate for the traffic
5. Attaching the policy-map to an input interface

```
Router(config)# configure
Router(config)# policy-map test-police-1
Router(config-pmap)# class ipv6-6
Router(config-pmap-c)# set dscp cs2 (optional)
Router(config-pmap-c)# set qos-group 7 (optional)
Router(config-pmap-c)# police rate percent 20 burst 10000 bytes
Router(config-pmap-c-policer)# exit
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface HundredGigE 0/6/0/18
Router(config-if)# service-policy input test-police-1
Router(config-if)# commit
```

Running Configuration

```
class-map match-any ipv6-6
 match precedence 3
 end-class-map
!
policy-map test-police-1
 class ipv6-6
 set dscp cs2
 set qos-group 7
 police rate percent 20 burst 10000 bytes
!
!
end-policy-map
!
interface HundredGigE0/6/0/18
 service-policy input test-police-1
 service-policy output test-priority-1
!
```
Verification

Router# show qos interface hundredGigE 0/6/0/18 input

NOTE:- Configured values are displayed within parentheses
Interface HundredGigE0/6/0/18 ifh 0x3000220 -- input policy
NPU Id: 3
Total number of classes: 2
Interface Bandwidth: 100000000 kbps
Accounting Type: Layer1 (Include Layer 1 encapsulation and above)

Level1 Class = ipv6-6
New dscp = 16
New qos group = 7
Policer Bucket ID = 0x102a0
Policer Stats Handle = 0x8a8090c0
Policer committed rate = 1998000 kbps (20 %)
Policer conform burst = 9856 bytes (10000 bytes)
Level1 Class = class-default
Default Policer Bucket ID = 0x102a1
Default Policer Stats Handle = 0x8a808e78
Policer not configured for this class

Related Topics

• Traffic Policing, on page 44

Associated Commands

• policer rate

Configure Traffic Policing (Single-Rate Three-Color)

The default conform action and exceed actions for single-rate three-color policer are to transmit the packet and the default violate action is to drop the packet. User cannot modify these default actions.

Configuration Example

You have to accomplish the following to complete the traffic policing configuration:
1. Creating or modifying a policy-map that can be attached to one or more interfaces
2. Specifying the traffic class whose policy has to be created or changed
3. (Optional) Specifying the marking action
4. Configuring the policy rate for the traffic along with the peak-burst values
5. Attaching the policy-map to an input interface

Router# configure
Router(config)# policy-map test-police-1R3C
Router(config-pmap)# class ipv4-5
Router(config-pmap-c)# set qos-group 2 (optional)
```
Router(config-pmap-c)# police rate percent 20 burst 100000 bytes peak-burst 190000 bytes
Router(config-pmap-c-police)# exit
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface HundredGigE 0/6/0/18
Router(config-if)# service-policy input test-police-1R3C
Router(config-if)# commit

Running Configuration

class-map match-any ipv4-5
    match precedence 3
end-class-map

policy-map test-police-1R3C
    class ipv4-5
        set qos-group 7
        police rate percent 20 burst 100000 bytes peak-burst 190000 bytes
    
end-policy-map

interface HundredGigE0/6/0/18
    service-policy input test-police-1R3C
    service-policy output test-priority-1

Verification

Router# show qos interface hundredGigE 0/6/0/18 input

NOTE:- Configured values are displayed within parentheses
Interface HundredGigE0/6/0/18 ifh 0x3000220 -- input policy
NPU Id: 3
Total number of classes: 2
Interface Bandwidth: 100000000 kbps
Accounting Type: Layer1 (Include Layer 1 encapsulation and above)

Level1 Class = ipv4-5
New qos group = 2

Policer Bucket ID = 0x102a1
Policer Stats Handle = 0x8a8090c0
Policer committed rate = 19980000 kbps (20 %)
Policer conform burst = 99584 bytes (100000 bytes)
Policer exceed burst = 188672 bytes (190000 bytes)

Level1 Class = class-default
Default Policer Bucket ID = 0x102a1
Default Policer Stats Handle = 0x8a808e78
Policer not configured for this class
```
Related Topics
 • Traffic Policing, on page 44

Associated Commands
 • police rate

Two-Rate Policer

The two-rate policer manages the maximum rate of traffic by using two token buckets: the committed token bucket and the peak token bucket. The dual-token bucket algorithm uses user-configured values to determine the maximum rate of traffic allowed on a queue at a given moment. In this way, the two-rate policer can meter traffic at two independent rates: the committed information rate (CIR) and the peak information rate (PIR).

The dual-token bucket algorithm provides users with three actions for each packet—a conform action, an exceed action, and an optional violate action. Traffic entering a queue with the two-rate policer configured is placed into one of these categories. The actions are pre-determined for each category. The default conform and exceed actions are to transmit the packet, and the default violate action is to drop the packet.

This figure shows how the two-rate policer marks a packet and assigns a corresponding action to the packet.

Figure 4: Marking Packets and Assigning Actions—Two-Rate Policer

Also, see Two-Rate Policer Details, on page 52.

The router supports Two-Rate Three-Color (2R3C) policer.

Configure Traffic Policing (Two-Rate Three-Color)

The default conform and exceed actions for two-rate three-color (2R3C) policer are to transmit the packet and the default violate action is to drop the packet. Users cannot modify these default actions.
Configuration Example

You have to accomplish the following to complete the two-rate three-color traffic policing configuration:

1. Creating or modifying a policy-map that can be attached to one or more interfaces
2. Specifying the traffic class whose policy has to be created or changed
3. Specifying the packet marking
4. Configuring two rate traffic policing
5. Attaching the policy-map to an input interface

```
Router# configure
Router(config)# policy-map policy1
Router(config-pmap)# class ipv4-7
Router(config-pmap-c)# set qos-group 4
Router(config-pmap-c)# police rate percent 20 burst 100000 bytes peak-rate percent 50
     peak-burst 200000 bytes
Router(config-pmap-c-police)# exit
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface HundredGigE 0/6/0/18
Router(config-if)# service-policy input policy1
Router(config-if)# commit
```

Running Configuration

```
policy-map policy1
  class ipv4-7
    set qos-group 4
    police rate percent 20 burst 100000 bytes peak-rate percent 50 peak-burst 200000 bytes

interface HundredGigE 0/6/0/18
  service-policy input policy1
```

Verification

```
Router# show policy-map interface HundredGigE 0/6/0/18
NOTE:- Configured values are displayed within parentheses
Interface HundredGigE0/6/0/18 ifh 0x3000220 -- input policy
NPU Id: 3
Total number of classes: 8
Interface Bandwidth: 100000000 kbps
Accounting Type: Layer1 (Include Layer 1 encapsulation and above)
---------------------------------------------------------------------
Level1 Class = ipv4-4
  - - -
  - - -
Level1 Class = ipv4-7
New qos group = 4
Policer Bucket ID = 0x102a3
```

Policer Stats Handle = 0x8a8089e8
Policer committed rate = 19980000 kbps (20 %)
Policer peak rate = 49860000 kbps (50 %)
Policer conform burst = 99584 bytes (100000 bytes)
Policer exceed burst = 199168 bytes (200000 bytes)

Level1 Class = class-default
Policer Bucket ID = 0x102a7
Policer Stats Handle = 0x8a7c8510
Policer committed rate = 29880000 kbps (30 %)
Policer conform burst = 4194304 bytes (default)

Related Topics
- Two-Rate Policier, on page 49

Associated Commands
- police rate

References for Modular QoS Congestion Management

Committed Bursts

The committed burst (bc) parameter of the police command implements the first, conforming (green) token bucket that the router uses to meter traffic. The bc parameter sets the size of this token bucket. Initially, the token bucket is full and the token count is equal to the committed burst size (CBS). Thereafter, the meter updates the token counts the number of times per second indicated by the committed information rate (CIR).

The following describes how the meter uses the conforming token bucket to send packets:

- If sufficient tokens are in the conforming token bucket when a packet arrives, the meter marks the packet green and decrements the conforming token count by the number of bytes of the packet.

- If there are insufficient tokens available in the conforming token bucket, the meter allows the traffic flow to borrow the tokens needed to send the packet. The meter checks the exceeding token bucket for the number of bytes of the packet. If the exceeding token bucket has a sufficient number of tokens available, the meter marks the packet.

Green and decrements the conforming token count down to the minimum value of 0.

Yellow, borrows the remaining tokens needed from the exceeding token bucket, and decrements the exceeding token count by the number of tokens borrowed down to the minimum value of 0.

- If an insufficient number of tokens is available, the meter marks the packet red and does not decrement either of the conforming or exceeding token counts.
When the meter marks a packet with a specific color, there must be a sufficient number of tokens of that color to accommodate the entire packet. Therefore, the volume of green packets is never smaller than the committed information rate (CIR) and committed burst size (CBS). Tokens of a given color are always used on packets of that color.

Excess Bursts

The excess burst (be) parameter of the police command implements the second, exceeding (yellow) token bucket that the router uses to meter traffic. The exceeding token bucket is initially full and the token count is equal to the excess burst size (EBS). Thereafter, the meter updates the token counts the number of times per second indicated by the committed information rate (CIR).

The following describes how the meter uses the exceeding token bucket to send packets:

- When the first token bucket (the conforming bucket) meets the committed burst size (CBS), the meter allows the traffic flow to borrow the tokens needed from the exceeding token bucket. The meter marks the packet yellow and then decrements the exceeding token bucket by the number of bytes of the packet.

- If the exceeding token bucket does not have the required tokens to borrow, the meter marks the packet red and does not decrement the conforming or the exceeding token bucket. Instead, the meter performs the exceed-action configured in the police command (for example, the policer drops the packets).

Two-Rate Policer Details

The committed token bucket can hold bytes up to the size of the committed burst (bc) before overflowing. This token bucket holds the tokens that determine whether a packet conforms to or exceeds the CIR as the following describes:

- A traffic stream is conforming when the average number of bytes over time does not cause the committed token bucket to overflow. When this occurs, the token bucket algorithm marks the traffic stream green.

- A traffic stream is exceeding when it causes the committed token bucket to overflow into the peak token bucket. When this occurs, the token bucket algorithm marks the traffic stream yellow. The peak token bucket is filled as long as the traffic exceeds the police rate.

The peak token bucket can hold bytes up to the size of the peak burst (be) before overflowing. This token bucket holds the tokens that determine whether a packet violates the PIR. A traffic stream is violating when it causes the peak token bucket to overflow. When this occurs, the token bucket algorithm marks the traffic stream red.

For example, if a data stream with a rate of 250 kbps arrives at the two-rate policer, and the CIR is 100 kbps and the PIR is 200 kbps, the policer marks the packet in the following way:

- 100 kbps conforms to the rate

- 100 kbps exceeds the rate

- 50 kbps violates the rate
The router updates the tokens for both the committed and peak token buckets in the following way:

- The router updates the committed token bucket at the CIR value each time a packet arrives at the interface. The committed token bucket can contain up to the committed burst (bc) value.
- The router updates the peak token bucket at the PIR value each time a packet arrives at the interface. The peak token bucket can contain up to the peak burst (be) value.
- When an arriving packet conforms to the CIR, the router takes the conform action on the packet and decrements both the committed and peak token buckets by the number of bytes of the packet.
- When an arriving packet exceeds the CIR, the router takes the exceed action on the packet, decrements the committed token bucket by the number of bytes of the packet, and decrements the peak token bucket by the number of overflow bytes of the packet.
- When an arriving packet exceeds the PIR, the router takes the violate action on the packet, but does not decrement the peak token bucket.

See Two-Rate Policer, on page 49.
Two-Rate Policer Details
CHAPTER 5

Configuring Modular QoS on Link Bundles

• QoS on Link Bundles, on page 55

QoS on Link Bundles

A bundle is a group of one or more ports that are aggregated together and treated as a single link. The router supports Ethernet interfaces and VLAN interfaces (bundle sub-interfaces) bundles. All QoS features currently supported on physical interfaces, are also supported on all link bundle interfaces. Applying QoS on bundle members is not supported.

Restrictions for Link Bundles

• Only Ethernet link bundling is supported.
• A bundle interface can only contain physical interface.
• All links within a single bundle must be configured either to run 802.3ad (LACP) or Etherchannel (non-LACP). Mixed links within a single bundle are not supported.
• MAC accounting is not supported on Ethernet link bundles.
• Maximum number of links supported in each link bundle is 64.
• The maximum number of link bundles supported is 128.

Load Balancing

Load balancing function is a forwarding mechanism to distribute traffic over multiple links based on Layer 3 routing information in the router. Per-destination load balancing is only supported on the router, where the router is allowed to distribute packets over one of the links in the bundle. When the per-destination load balancing is enabled, all packets for a certain source-destination pair goes through the same link, though there are multiple links available. In other words, per-destination load balancing can ensure that packets for a certain source-destination pair could arrive in order.

Layer 3 Load Balancing on Link Bundles

Layer 3 load balancing for link bundles is done on Ethernet Flow Points (EFPs) and is based on the IPv4 source and destination addresses in the packet. When Layer 3 service-specific load balancing is configured,
all egress bundles are load balanced based on the IPv4 source and destination addresses. When packets do not have IPv4 addresses, default load-balancing (based on the MAC SA/DA fields in the packet header) is used.

Configure QoS on Link Bundles

QoS is configured on link bundles in the same way that it is configured on individual interfaces.

Guidelines

- When a QoS policy is applied on a bundle (ingress or egress direction), the policy is applied at each member interface. The reference bandwidth that is used to calculate shaper or bandwidth values is applied as per the physical member interface bandwidth.
- If a QoS policy is not applied to a bundle interface, both the ingress and egress traffic use the default queue of the per link member port.
- The shape rate specified in the bundle policy-map is not an aggregate for all bundle members. The shape rate applied to the bundle depends on the load balancing of the links. For example, if a policy map with a shape rate of 10 Mbps is applied to a bundle with two member links, and if the traffic is always load-balanced to the same member link, then an overall rate of 10 Mbps applies to the bundle. However, if the traffic is load-balanced evenly between the two links, the overall shape rate for the bundle becomes 20 Mbps.
- If a member is deleted from a bundle, the total bundle statistics changes because the statistics that belongs to the detached link is lost.
- The QoS policy applied on bundle is inherited to all its member links and the reference bandwidth used to calculate shaper/bandwidth is applied as per the physical member interface bandwidth, and not the bundle as a whole.

Configuration Example

You have to accomplish the following to complete the QoS configuration on link bundles:

1. Creating a class-map
2. Creating a policy-map and specifying the respective class-map
3. Specifying the action type for the traffic

 Refer [Attach a Traffic Policy to an Interface, on page 9](#) for details on step 1, 2 and 3.
4. Creating a link bundle
5. Applying traffic policy to the link bundle

```bash
/* Configure Ether-Bundle and apply traffic policy */
Router(config)# interface Bundle-Ether 12000
Router(config-if)# mtu 9100
Router(config-if)# service-policy input ingress
Router(config-if)# service-policy output egress
Router(config-if)# ipv4 address 100.12.0.0 255.255.255.254
Router(config-if)# bundle maximum-active links 64
Router(config-if)# commit
```
Running Configuration

This example shows how a traffic policy is applied on an Ethernet link bundle. The policy is applied to all interfaces that are members of the Ethernet link bundle.

/* Policy-map */

policy-map ingress
 class inet4-classifier-af1
 set qos-group 1
 class inet4-classifier-af2
 set qos-group 2
 class inet4-classifier-af3
 set qos-group 3
 class inet4-classifier-af4
 set qos-group 4
 class inet4-classifier-be1
 set qos-group 5
 class inet4-classifier-nc1
 set qos-group 6
 class class-default
end-policy-map

/* Ether Bundle */

interface Bundle-Ether12000
 mtu 9100
 service-policy input ingress
 service-policy output egress
 ipv4 address 100.12.0.0 255.255.255.254
 load-interval 30
 flow ipv4 monitor FMM-V4 sampler SM ingress
 flow ipv6 monitor FMM-V6 sampler SM ingress
 flow mpls monitor FMM-MPLS sampler SM ingress
 ipv4 access-group IPV4ACL_101 ingress
 ipv6 access-group IPV6ACL_101 ingress

Verification

• Verify that the bundle status is UP.

 router# show bundle bundle-ether 1200
 Wed Dec 16 19:55:49.974 PST

 Bundle-Ether12000
 Status: Up
 Local links <active/standby/configured>: 35 / 0 / 35
 Local bandwidth <effective/available>: 3500000000 (3500000000) kbps
 MAC address (source): ea3b.745f.c4b0 (Chassis pool)
 Inter-chassis link: No
 Minimum active links / bandwidth: 1 / 1 kbps
 Maximum active links: 64
 Wait while timer: 2000 ms
Configure QoS on Link Bundles

Load balancing: Default
LACP: Operational
Flap suppression timer: Off
Cisco extensions: Disabled
Non-revertive: Disabled
mLACP: Not configured
IPv4 BFD: Not configured

<table>
<thead>
<tr>
<th>Port</th>
<th>Device</th>
<th>State</th>
<th>Port ID</th>
<th>B/W, kbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu0/4/0/0</td>
<td>Local</td>
<td>Active</td>
<td>0x8000, 0x0009</td>
<td>100000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Link is Active</td>
<td></td>
</tr>
<tr>
<td>Hu0/4/0/1</td>
<td>Local</td>
<td>Active</td>
<td>0x8000, 0x000a</td>
<td>100000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Link is Active</td>
<td></td>
</tr>
<tr>
<td>Hu0/4/0/35</td>
<td>Local</td>
<td>Active</td>
<td>0x8000, 0x002b</td>
<td>100000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Link is Active</td>
<td></td>
</tr>
</tbody>
</table>

- Verify the bundle statistics:

 router# show policy-map interface bundle-ether 12000

Bundle-Ether12000 input: ingress

Class inet4-classifier-af1
 Classification statistics (packets/bytes) (rate - kbps)
 Matched : 4647401962/21236124455654 26403040
 Transmitted : 4647401962/21236124455654 26403040
 Total Dropped : 0/0 0

Class inet4-classifier-af2
 Classification statistics (packets/bytes) (rate - kbps)
 Matched : 4502980177/2057658433939 25571493
 Transmitted : 4502980177/2057658433939 25571493
 Total Dropped : 0/0 0

Class inet4-classifier-af3
 Classification statistics (packets/bytes) (rate - kbps)
 Matched : 4647404125/21236213667880 26389086
 Transmitted : 4647404125/21236213667880 26389086
 Total Dropped : 0/0 0

Class inet4-classifier-af4
 Classification statistics (packets/bytes) (rate - kbps)
 Matched : 9291188840/42456120548683 52771168
 Transmitted : 9291188840/42456120548683 52771168
 Total Dropped : 0/0 0

Class inet4-classifier-bel
 Classification statistics (packets/bytes) (rate - kbps)
 Matched : 4647413429/21235847852686 26393414
 Transmitted : 4647413429/21235847852686 26393414
 Total Dropped : 0/0 0

Class inet4-classifier-ncl
 Classification statistics (packets/bytes) (rate - kbps)
 Matched : 9294887621/42473100149807 52778258
 Transmitted : 9294887621/42473100149807 52778258
 Total Dropped : 0/0 0

Class class-default
 Classification statistics (packets/bytes) (rate - kbps)
 Matched : 0/0 0
 Transmitted : 0/0 0
 Total Dropped : 0/0 0
Bundle-Ether12000 output: egress

<table>
<thead>
<tr>
<th>Class</th>
<th>Classification statistics (packets/bytes)</th>
<th>(rate - kbps)</th>
<th>Matched</th>
<th>Transmitted</th>
<th>Total Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class c1</td>
<td></td>
<td>16665494532/75878118942463</td>
<td>8760591</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16655834643/75834136022017</td>
<td>8760591</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9659889/43982920446</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queueing statistics</td>
<td></td>
<td>None (Bundle)</td>
<td>9659889/43982920446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class c2</td>
<td></td>
<td>16665421959/75877849543188</td>
<td>8718687</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16665187414/75877234624197</td>
<td>8718687</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60419/274831261</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queueing statistics</td>
<td></td>
<td>None (Bundle)</td>
<td>60419/274831261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class c3</td>
<td></td>
<td>16665247833/75877509455458</td>
<td>8703470</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16665187414/75877234624197</td>
<td>8703470</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150710/683644380</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queueing statistics</td>
<td></td>
<td>None (Bundle)</td>
<td>150710/683644380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class c4</td>
<td></td>
<td>33330986131/151755393012945</td>
<td>17470745</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3333074521/151754709368565</td>
<td>17470745</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150710/683644380</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queueing statistics</td>
<td></td>
<td>None (Bundle)</td>
<td>150710/683644380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class c5</td>
<td></td>
<td>16878910340/76849791869834</td>
<td>8833939</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16878849464/76849514633309</td>
<td>8833939</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60876/277236525</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queueing statistics</td>
<td></td>
<td>None (Bundle)</td>
<td>60876/277236525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class c6</td>
<td></td>
<td>33330989844/151756094112925</td>
<td>17456785</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33330792668/151755427708382</td>
<td>17456785</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>146176/666404543</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queueing statistics</td>
<td></td>
<td>None (Bundle)</td>
<td>146176/666404543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class c7</td>
<td></td>
<td>244106/79922040</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>244106/79922040</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queueing statistics</td>
<td></td>
<td>None (Bundle)</td>
<td>0/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class class-default</td>
<td></td>
<td>267075066180/1215993441123215</td>
<td>139917482</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>267075066180/1215993441123215</td>
<td>139917482</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queueing statistics</td>
<td></td>
<td>None (Bundle)</td>
<td>0/0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Queue ID: None (Bundle)
Taildropped (packets/bytes): 0/0

Related Topics
• QoS on Link Bundles, on page 55

Associated Commands
• bundle maximum-active links
• interface Bundle-Ether
Hierarchical QoS (H-QoS) is a QoS model that enables you to specify QoS behavior at multiple levels of hierarchy. This chapter provides information about this feature and the different steps involved in configuring it.

Overview of Hierarchical Modular QoS

Hierarchical QoS (H-QoS) allows you to specify QoS behavior at multiple policy levels, which provides a high degree of granularity in traffic management.

H-QoS is applied on the router interface using nested traffic policies. The first level of traffic policy, the parent traffic policy, is used for controlling the traffic at the main interface or sub-interface level. The second level of traffic policy, the child traffic policy, is used for additional control over a specific traffic stream or class. The child traffic policy, is a previously defined traffic policy, that is referenced within the parent traffic policy using the `service-policy` command.

Two-level H-QoS is supported on both ingress and egress directions on all line cards and on physical or bundle main interfaces and sub-interfaces.

Restrictions for Configuring H-QoS

The following restrictions are applicable while configuring H-QoS:

1. Only two-level hierarchical queuing is supported.
2. The parent traffic policy only supports the traffic class of type class-default.
3. The parent traffic policy only supports the class-action **shape** and no other queuing action can be configured in it.

4. While configuring on the router, it is mandatory that the priority class must have traffic shaper in the child traffic policy.

5. The sum of the bandwidth of the child policies must be less than the parent policy’s traffic shaper.

6. For congestion avoidance and management, the traffic shaper in the parent traffic policy calculates the queue limit and drop priority.

7. H-QoS profile and ingress peering profile do not work simultaneously. Hence, features requiring peering profile like lawful intercept also do not work with the HQoS profile enabled.

8. PBTS feature does not work when the H-QoS profile is enabled. This is due to TCAM limitations.

9. A maximum of 896 bundle sub-interfaces are only supported in the system, even if there are no QoS policies applied. This is due to an internal LAG_ID resource consumption in HQoS profile mode for bundle sub-interfaces with or without QoS policies being applied.

10. A maximum of 4 priority levels are only supported in HQoS profile mode unlike the default mode where 7-priority levels are supported. The restriction also applies to physical and bundle main interface policies where 7-level priorities were previously used in non-H-QoS profile mode.

11. Bandwidth and Bandwidth remaining configurations are not supported simultaneously within the same policy-map. If a class has bandwidth (CIR), other classes must also have only bandwidth configuration. If a class-map has bandwidth remaining percent/ratio (EIR), other classes should also have only the bandwidth remaining configuration. Shaping is applied on any class.

12. Priority classes must have rate limit configuration by using a Shaping configuration. The effective shaper value is taken as priority bandwidth reservation. Sum of priority bandwidth reservations across all sub-interfaces and main interfaces must not exceed the network interface (NIF) port speed. This is to avoid over-subscription of priority traffic across the network interface port.

 Rates of non-priority classes and parent shaping can be over-subscribed.

13. The granularity of bandwidth or bandwidth remaining ration (BRR) is 1:64 as compared to 1:4096 in non-hqos mode. So, there could be accuracy differences in bandwidth performance based on the values used.

Configuring Hierarchical Queuing

Before you configure H-QoS, you must enable the H-QoS profile on the router. After enabling H-QoS profile, reload the router, as shown in the following configuration.

```
Router# configure
Router(config)# hw-module profile qos hqos-enable
Router(config)# commit
Router# reload
Router# admin
sysadmin-vm:0_RP0# hw-module location all reload
```

The steps that are involved in configuring hierarchical queuing are as follows:

1. Configure a class-map.
2. Configure a child traffic policy using the class-map that was configured in the previous step.

3. Configure a parent traffic policy and add the child traffic policy in it.

The parent traffic policy is the H-QoS traffic policy and it can be applied on physical or bundle main interfaces and sub-interfaces.

Configuration Example

Configuration of a class-map is as follows:

```
Router# configure
Router(config)# class-map match-any tc2
Router(config-cmap)# match traffic-class 1
Router(config-cmap)# end-class-map
Router(config)# commit
```

Configuration of a child traffic policy is as follows:

```
Router# configure
Router(config)# policy-map child
Router(config-pmap)# class tc2
Router(config-pmap-c)# shape average percent 20
Router(config-pmap-c)# exit
Router(config-pmap)# class class-default
Router(config-pmap-c)# shape average percent 1
Router(config-pmap)# end-policy-map
Router(config)# commit
```

Configuration of a parent traffic policy is as follows:

```
Router# configure
Router(config)# policy-map parent
Router(config-pmap)# class class-default
Router(config-pmap-c)# service-policy child
Router(config-pmap-c)# shape average percent 50
Router(config-pmap)# end-policy-map
Router(config)# commit
```

Running Configuration

`/* Configuration of a Class-map */
class-map match-any tc2
 match traffic-class 1
 end-class-map

!`
`/* Configuration of a Child Traffic Policy */
policy-map child
 class tc2
 shape average percent 20

!
 class class-default
 shape average percent 1

!
 end-policy-map

!`
`/* Configuration of a Parent Traffic Policy */
policy-map parent
 class class-default
`
service-policy child
shape average percent 50
!
end-policy-map
!

Applying the Parent Traffic Policy on a Main Interface

```plaintext
Router# configure
Router(config)# Interface TenGigE 0/0/0/10
Router(config-int)# service-policy output parent
Router(config-int)# commit
```

Applying the Parent Traffic Policy on a Sub-interface

```plaintext
Router# configure
Router(config)# Interface TenGigE 0/0/0/10.1
Router(config-int)# service-policy output parent
Router(config-int)# commit
```

Verification

Verify if the H-QoS traffic policy is applied correctly on the interface using the commands `show qos interface interface-name output`. In the following example, the **Level1 Class** gives information about the class-map that is associated with the parent traffic policy and the **Level2 Class** gives information about the class-maps that are associated with the child traffic policy.

```plaintext
RP/0/RP0/CPU0:ios# show qos interface ten0/0/0/10 output
```

NOTE: Configured values are displayed within parentheses

Interface TenGigE0/0/0/10 ifh 0x1e0 -- output policy
NPU Id: 0
Total number of classes: 3
Interface Bandwidth: 10000000 kbps
VOQ Base: 1136
Accounting Type: Layer1 (Include Layer 1 encapsulation and above)

<table>
<thead>
<tr>
<th>Level1 Class</th>
<th>Queue Max. BW.</th>
<th>Queue Min. BW.</th>
<th>Inverse Weight / Weight</th>
<th>Guaranteed service rate</th>
<th>TailDrop Threshold</th>
<th>WRED not configured for this class</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-default</td>
<td>no max (50 %)</td>
<td>0 kbps (default)</td>
<td>0 / (BWR not configured)</td>
<td>1000000 kbps</td>
<td>1253376 bytes / 10 ms (default)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level2 Class</th>
<th>Queue Max. BW.</th>
<th>Queue Min. BW.</th>
<th>Inverse Weight / Weight</th>
<th>Guaranteed service rate</th>
<th>TailDrop Threshold</th>
<th>WRED not configured for this class</th>
</tr>
</thead>
<tbody>
<tr>
<td>tc2</td>
<td>1020015 kbps</td>
<td>0 kbps (default)</td>
<td>1 / (BWR not configured)</td>
<td>1000000 kbps</td>
<td>62720 bytes / 10 ms (default)</td>
<td></td>
</tr>
<tr>
<td>class-default</td>
<td>50625 kbps</td>
<td>0 kbps (default)</td>
<td>1 / (BWR not configured)</td>
<td>50000 kbps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The statistics for the packets that have matched the different traffic classes of the parent and child traffic policies can be viewed using the command `show policy-map interface interface-name output`. Also, this command also shows the number of packets that are transmitted or dropped when the specified action is applied on the packets that have matched the respective traffic class.

Router# `show policy-map interface ten0/0/0/10 output`

TenGigE0/0/0/10 output: parent
Class class-default

<table>
<thead>
<tr>
<th>Classification statistics (packets/bytes) (rate - kbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched : 2313578823/296138089344 8494665</td>
</tr>
<tr>
<td>Transmitted : 232805738/29799134464 854465</td>
</tr>
<tr>
<td>Total Dropped : 2080773085/266338954880 7640200</td>
</tr>
</tbody>
</table>

Policy child Class tc2

<table>
<thead>
<tr>
<th>Classification statistics (packets/bytes) (rate - kbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched : 2313578823/296138089344 8494665</td>
</tr>
<tr>
<td>Transmitted : 232805738/29799134464 854465</td>
</tr>
<tr>
<td>Total Dropped : 2080773085/266338954880 7640200</td>
</tr>
</tbody>
</table>

Queueing statistics

Queue ID : 1138
Taildropped(packets/bytes) : 2080773085/266338954880

Policy child Class class-default

<table>
<thead>
<tr>
<th>Classification statistics (packets/bytes) (rate - kbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched : 0/0 0</td>
</tr>
<tr>
<td>Transmitted : 0/0 0</td>
</tr>
<tr>
<td>Total Dropped : 0/0 0</td>
</tr>
</tbody>
</table>

Queueing statistics

Queue ID : 1136
Taildropped(packets/bytes) : 0/0

When using hierarchical policers, there is no independent set of hardware counters to store the parent policer statistics. Instead, parent policer statistics are manipulated in the software to be the sum of all child policers under the same policy-map.

This is shown in the following example where two streams of traffic, with CoS value of 1 and 2 are sent at a speed of 3.5 Gbps each.

/*Hierarchical Policy Map Configuration*/

Router# `show running-config policy-map Hingress`

policy-map Hingress
 class class-default
 service-policy ingress
 police rate 5 gbps peak-rate 9 gbps
 !
end-policy-map
!

/*Ingress Policy Map Configuration*/

Router# `show running-config policy-map ingress`

policy-map ingress
 class cos1
 set traffic-class 1
 police rate 5 gbps
 !
 class cos2
 set traffic-class 2
 police rate 5 gbps
 !
class class-default
!
end-policy-map

/*Policy Map applied at TenGigE0/0/0/6.100 Interface*/

Router#show policy-map interface tenGigE 0/0/0/6.100 input

TenGigE0/0/0/6.100 input: Hingress

Class class-default
Classification statistics (packets/bytes) (rate - kbps)
Matched : 856717937/109659895936 6683676
Transmitted : 856717937/109659895936 6683676
Total Dropped : 0/0 0
Policing statistics (packets/bytes) (rate - kbps)
Policed(conform) : 856717937/109659895936 6683674
Policed(exceed) : 0/0 0
Policed(violate) : 0/0 0
Policing and dropped : 0/0

Policy ingress Class cos1
Classification statistics (packets/bytes) (rate - kbps)
Matched : 437826303/56041766784 3341838
Transmitted : 437826303/56041766784 3341838
Total Dropped : 0/0 0
Policing statistics (packets/bytes) (rate - kbps)
Policed(conform) : 437826303/56041766784 3341838
Policed(exceed) : 0/0 0
Policed(violate) : 0/0 0
Policing and dropped : 0/0

Policy ingress Class cos2
Classification statistics (packets/bytes) (rate - kbps)
Matched : 418891634/53618129152 3341838
Transmitted : 418891634/53618129152 3341838
Total Dropped : 0/0 0
Policing statistics (packets/bytes) (rate - kbps)
Policed(conform) : 418891634/53618129152 3341838
Policed(exceed) : 0/0 0
Policed(violate) : 0/0 0
Policing and dropped : 0/0

Policy ingress Class class-default
Classification statistics (packets/bytes) (rate - kbps)
Matched : 0/0 0
Transmitted : 0/0 0
Total Dropped : 0/0 0
Policy Bag Stats time: 0
Policy Bag Stats time: 0