afran]n
CISCO.

L]
g
]
=
=
-
B
s
B
]
i

Programmability Configuration Guide for Cisco NCS 5500 Series Routers,
10S XR Release 7.3.x

First Published: 2021-02-01
Last Modified: 2021-10-01

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN' NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.
Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

The documentation set for this product strives to use bias-free language. For purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on
age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that
is hardcoded in the user interfaces of the product software, language used based on standards documentation, or language that is used by a referenced third-party product.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

©2021 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

« To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

« To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.

« To submit a service request, visit Cisco Support.

« To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
« To obtain general networking, training, and certification titles, visit Cisco Press.

« To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products
and software. BST provides you with detailed defect information about your products and software.

©2021 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://www.cisco.com/go/marketplace/
http://www.ciscopress.com
http://www.cisco-warrantyfinder.com
https://www.cisco.com/c/en/us/support/web/tools/bst/bsthelp/index.html

CONTENTS

PART | YANG Data Models 9

CHAPTER 1 New and Changed Feature Information 1

New and Changed Programmability Features 1

CHAPTER 2 Drive Network Automation Using Programmable YANG Data Models 3
YANG Data Model 4
Access the Data Models 7
Communication Protocols 8
NETCONF Protocol 9
gRPC Protocol 9
YANG Actions 9

CHAPTER 3 Use NETCONF Protocol to Define Network Operationswith Data Models 15
NETCONF Operations 18
Retrieve Default Parameters Using with-defaults Capability 22
Set Router Clock Using Data Model in a NETCONF Session 28

CHAPTER 4 Use gRPC Protocol to Define Network Operationswith Data Models 33
gRPC Operations 36
gRPC Network Management Interface 37
gRPC Network Operations Interface 37
gNOI RPCs 37
Configure Interfaces Using Data Models in a gRPC Session 42

CHAPTER 5 Enhancementsto Data Models 49

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

. Contents

OpenConfig Data Model Enhancements 50

Install Label in oc-platform Data Model 50

OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models
OpenConfig YANG Model:SR-TE Policies 57

Aggregate Prefix SID Counters for OpenConfig SR YANG Module 58
OpenConfig YANG Model:AFT 59

PART Il Automation Scripts 63

CHAPTER 6 New and Changed Feature Information 65

New and Changed Automation Script Features 65

CHAPTER 7 Achieve Network Operational Simplicity Using Automation Scripts 67

Explore the Types of Automation Scripts 68

CHAPTER 8 Config Scripts T
Workflow to Run Config Scripts 72
Enable Config Scripts Feature 73
Download the Script to the Router 74
Configure Checksum for Config Script 75
Validate or Commit Configuration to Invoke Config Script 77
Manage Scripts 79
Delete Config Script from the Router 79
Control Priority When Running Multiple Scripts 80
Example: Validate and Activate an SSH Config Script 81
Scenario 1: Validate the Script Without SSH Configuration 82
Scenario 2: Configure SSH and Validate the Script 83
Scenario 3: Set Rate-limit Value to Default Value in the Script 84

Scenario 4: Delete SSH Server Configuration 85

CHAPTER 9 Exec Scripts 87
Workflow to Run an Exec Script 87
Download the Script to the Router 89

Configure Checksum for Exec Script 90

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

52

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

Contents .

Run the Exec Script 92

View the Script Execution Details 93
Manage Scripts 95

Delete Exec Script from the Router 95

Example: Exec Script to Verify Bundle Interfaces 96

Process Scripts 101

Workflow to Run Process Scripts 101
Download the Script to the Router 102
Configure Checksum for Process Script 104
Register the Process Script as an Application 105
Activate the Process Script 106
Obtain Operational Data and Logs 107

Managing Actions on Process Script 109

Example: Check CPU Utilization at Regular Intervals Using Process Script 109

EEM Scripts 113

Workflow to Run Event Scripts 113
Download the Script to the Router 115
Define Trigger Conditions for an Event 116
Create Actions for Events 118
Create a Policy Map of Events and Actions 119
View Operational Status of Event Scripts 120

Example: Shut Inactive Bundle Interfaces Using EEM Script 121

M odel-Driven Command-Line Interface 123
Model-Driven CLI to Display Data Model Structure 123
Model-Driven CLI to Display Running Configuration in XML and JSON Formats 127

Manage Automation Scripts Using YANG RPCs 131
Manage Exec Scripts Using RPCs 131
Manage EEM Script Using RPCs 135

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

. Contents

CHAPTER 14 Script Infrastructure and Sample Templates 139
Cisco IOS XR Python Packages 139
Cisco IOS XR Python Libraries 141
Sample Script Templates 142

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

]
g
=
=
=
=
.
(-
B
(+
=
it
]

PART I

YANG Data Models

* New and Changed Feature Information, on page 1

* Drive Network Automation Using Programmable YANG Data Models, on page 3

» Use NETCONF Protocol to Define Network Operations with Data Models, on page 15
» Use gRPC Protocol to Define Network Operations with Data Models, on page 33

* Enhancements to Data Models, on page 49

CHAPTER 1

New and Changed Feature Information

This section lists all the new and changed features for the Programmability Configuration Guide.

* New and Changed Programmability Features, on page 1

New and Changed Programmability Features

Feature | Description Changed | Where Documented
in
Release

Revised | The OpenConfig MPLS data model provides data definitions |Release | OpenConfig Data Model
Qu(ag | for configuration of Multiprotocol Label Switching (MPLS) |7.3.3 | Enhancements, on page
MPLS |and associated protocols for signaling and traffic engineering. 50

Model |In this release, the following data models are revised for

to streaming telemetry from OpenConfig version 2.3.0 to version
Version |3.0.1:

3.0.1
for
Steanmng * openconfig-mpls-te
Tdemetry

* openconfig-mpls

* openconfig-mpls-rsvp
* openconfig-mpls-igp
* openconfig-mpls-types

* openconfig-mpls-sr

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

. New and Changed Programmability Features

YANG Data Models |

Feature | Description Changed | Where Documented
in
Release

Elames | The openconfig-platform YANG data model provides a structure | Release | Install Label in
to for querying hardware and software router components via the | 7.3.2 oc-platform Data Model,
qeofiim | NETCONF protocol. This release delivers an enhanced on page 50
YANG | openconfig-platform YANG data model to provide information
Data |about:
Model .

* software version

¢ golden ISO (GISO) label

» committed IOS XR packages

You can access this data model from the Github repository.
YANG | This release delivers enhancements to the Release | OAM for MPLS and
Data |cisco-I0S-XR-mpls-ping-act and 7.3.2 | SR-MPLS in mpls-ping
Models | cisco-T10S-XR-mpls-traceroute-act YANG data models to and mpls-traceroute Data
for accommodate OAM RPCs for MPLS and SR-MPLS. Models, on page 52
lg‘g\‘/[s You can access these Cisco IOS XR native data models from
RPCs the Github repository.
Unified | IOS XR supports NETCONF 1.0 and 1.1 programmable Release | Use NETCONF Protocol
NEKOVY | management interfaces. With this release, a client can choose |7.3.1 to Define Network
V1.0 |to establish a NETCONF 1.0 or 1.1 session using a separate Operations with Data
and interface for both these formats. This enhancement provides a Models, on page 15
V1.1 |secure channel to operate the network with both interface
specifications.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform.yang
https://github.com/YangModels/yang/tree/master/vendor/cisco/xr/732

CHAPTER 2

Drive Network Automation Using Programmable
YANG Data Models

Typically, a network operation center is a heterogeneous mix of various devices at multiple layers of the
network. Such network centers require bulk automated configurations to be accomplished seamlessly. CLIs
are widely used for configuring and extracting the operational details of a router. But the general mechanism
of CLI scraping is not flexible and optimal. Small changes in the configuration require rewriting scripts
multiple times. Bulk configuration changes through CLIs are cumbersome and error-prone. These limitations
restrict automation and scale. To overcome these limitations, you need an automated mechanism to manage
your network.

Cisco IOS XR supports a programmatic way of configuring and collecting operational data of a network
device using data models. They replace the process of manual configuration, which is proprietary, and highly
text-based. The data models are written in an industry-defined language and is used to automate configuration
task and retrieve operational data across heterogeneous devices in a network. Although configurations using
CLIs are easier and human-readable, automating the configuration using model-driven programmability results
in scalability.

Model-driven programmability provides a simple, flexible and rich framework for device programmability.
This programmability framework provides multiple choices to interface with an IOS XR device in terms of
transport, protocol and encoding. These choices are decoupled from the models for greater flexibility.

The following image shows the layers in model-driven programmability:

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |

[l YANG Data Model

Figure 1: Model-driven Programmability Layers

Application (client)

APls l Model-Driven APls. YANG Development Kit {YDK) J

Model-Driven

Configuration

Model-Driven Transport { SSH ’ ‘ HTTP J
Telemetry

& o [wermrmmomom |

Device (server)

369803

Data models provides access to the capabilities of the devices in a network using Network Configuration
Protocol (NETCONF Protocol) or google-defined Remote Procedure Calls (gRPC Protocol). The operations
on the router are carried out by the protocols using YANG models to automate and programme operations in

a network.

Benefits of Data Models

Configuring routers using data models overcomes drawbacks posed by traditional router management because

the data models:

* Provide a common model for configuration and operational state data, and perform NETCONF actions.

» Use protocols to communicate with the routers to get, manipulate and delete configurations in a network.

» Automate configuration and operation of multiple routers across the network.

This article describes how you benefit from using data models to programmatically manage your network

operations.

* YANG Data Model, on page 4

* Access the Data Models, on page 7

» Communication Protocols, on page 8
* YANG Actions, on page 9

YANG Data Model

A YANG module defines a data model through the data of the router, and the hierarchical organization and
constraints on that data. Each module is uniquely identified by a namespace URL. The YANG models describe
the configuration and operational data, perform actions, remote procedure calls, and notifications for network

devices.

The YANG models must be obtained from the router. The models define a valid structure for the data that is
exchanged between the router and the client. The models are used by NETCONF and gRPC-enabled

applications.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

YANG Data Models
YANG Data Model [

\)

Note gRPC is supported only in 64-bit platforms.

» Cisco-specific models: For a list of supported models and their representation, see Native models.

» Common models: These models are industry-wide standard YANG models from standard bodies, such
as IETF and IEEE. These models are also called Open Config (OC) models. Like synthesized models,
the OC models have separate YANG models defined for configuration data and operational data, and
actions.

YANG models can be: For a list of supported OC models and their representation, see OC models.
All data models are stamped with semantic version 1.0.0 as baseline from release 7.0.1 and later.
For more details about YANG, refer RFC 6020 and 6087.

Data models handle the following types of requirements on routers (RFC 6244):

« Configuration data: A set of writable data that is required to transform a system from an initial default
state into its current state. For example, configuring entries of the IP routing tables, configuring the
interface MTU to use a specific value, configuring an ethernet interface to run at a given speed, and so
on.

» Operational statedata: A set of data that is obtained by the system at runtime and influences the behavior
of the system in a manner similar to configuration data. However, in contrast to configuration data,
operational state data is transient. The data is modified by interactions with internal components or other
systems using specialized protocols. For example, entries obtained from routing protocols such as OSPF,
attributes of the network interfaces, and so on.

« Actions: A set of NETCONF actions that support robust network-wide configuration transactions. When
a change is attempted that affects multiple devices, the NETCONTF actions simplify the management of
failure scenarios, resulting in the ability to have transactions that will dependably succeed or fail atomically.

For more information about Data Models, see RFC 6244.

YANG data models can be represented in a hierarchical, tree-based structure with nodes. This representation
makes the models easy to understand.

Each feature has a defined YANG model, which is synthesized from schemas. A model in a tree format
includes:

* Top level nodes and their subtrees
* Subtrees that augment nodes in other YANG models
* Custom RPCs

YANG defines four node types. Each node has a name. Depending on the node type, the node either defines
a value or contains a set of child nodes. The nodes types for data modeling are:

* leaf node - contains a single value of a specific type
* leaf-list node - contains a sequence of leaf nodes

* list node - contains a sequence of leaf-list entries, each of which is uniquely identified by one or more
key leaves

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr/
https://github.com/openconfig/public/tree/master/release/models

YANG Data Models |
[l YANG Data Model

* container node - contains a grouping of related nodes that have only child nodes, which can be any of
the four node types

Structure of CDP Data Model

Cisco Discovery Protocol (CDP) configuration has an inherent augmented model
(interface-configuration). The augmentation indicates that CDP can be configured at both the global
configuration level and the interface configuration level. The data model for CDP interface manager
in tree structure is:

module: Cisco-IOS-XR-cdp-cfg

+--rw cdp
+--rw timer? uint32
+--rw advertise-vl-only? empty
+--rw enable? boolean
+--rw hold-time? uint32
+--rw log-adjacency? empty
augment /al:interface-configurations/al:interface-configuration:
+--rw cdp

+--rw enable? empty
In the CDP YANG model, the augmentation is expressed as:

augment "/al:interface-configurations/al:interface-configuration" ({
container cdp {
description "Interface specific CDP configuration";
leaf enable {
type empty;
description "Enable or disable CDP on an interface";

}

description
"This augment extends the configuration data of
'Cisco-I0S-XR-ifmgr-cfg'";

CDP Operational YANG:

The structure of a data model can be explored using a YANG validator tool such as pyang and the
data model can be formatted in a tree structure. The following example shows the CDP operational
model in tree format.

module: Cisco-IOS-XR-cdp-oper
+--ro cdp
+--ro nodes
+--ro node* [node-name]
+--ro neighbors
+--ro details
+--ro detail*
+--ro interface-name? xr:Interface-name
+--ro device-id? string
+--ro cdp-neighbor*
+--ro detail
+--ro network-addresses
| +--ro cdp-addr-entry*
| +--ro address
| +--ro address-type? Cdp-13-addr-protocol
| +--ro ipvé4-address? inet:ipv4-address
| +--ro ipv6-address? In6-addr
+--ro protocol-hello-list

|
|
|
|
|
|
|
|
|
|
|
|
|
| | +--ro cdp-prot-hello-entry*

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

https://github.com/mbj4668/pyang

| YANG Data Models
Access the Data Models .

| | | | +--ro hello-message? yang:hex-string

| | | +--ro version? string

| | | +--ro vtp-domain? string

| | | +--ro native-vlan? uint32

| | | +--ro duplex? Cdp-duplex

| | | +--ro system-name? string

| | +--ro receiving-interface-name? xr:Interface—-name

| | +--ro device-id? string

| | +--ro port-id? string

| | +--ro header-version? uint8

| | +--ro hold-time? uintlé

| | +--ro capabilities? string

| | +--ro platform? string
.......................... (snipped) ..ttt e

Components of a YANG Module

A YANG module defines a single data model. However, a module can reference definitions in other modules
and sub-modules by using one of these statements:

The YANG models configure a feature, retrieve the operational state of the router, and perform actions.
* import imports external modules
« include includes one or more sub-modules

 augment provides augmentations to another module, and defines the placement of new nodes in the data
model hierarchy

» when defines conditions under which new nodes are valid

* prefix references definitions in an imported module

\}

Note The gRPC YANG path or JSON data is based on YANG module name and not YANG namespace.

Access the Data Models

You can access the Cisco IOS XR native and OpenConfig data models from GitHub, a software development
platform that provides hosting services for version control.

CLI-based YANG data models, also known as unified configuration models were introduced in Cisco I0S
XR, Release 7.0.1. The new set of unified YANG config models are built in alignment with the CLI commands.

You can also access the supported data models from the router. The router ships with the YANG files that
define the data models. Use NETCONF protocol to view the data models available on the router using
ietf-netconf-monitoring request.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get>
<filter type="subtree">
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
<schemas/>
</netconf-state>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr
https://github.com/openconfig/public/tree/master/release/models

YANG Data Models |
. Communication Protocols

</filter>
</get>
</rpc>

All the supported YANG models are displayed as response to the RPC request.

<rpc-reply message-id="16a79£f87-1d47-4f7a-al6a-9405e6d865b9"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<data>

<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">

<schemas>

<schema>
<identifier>Cisco-I0OS-XR-crypto-sam-oper</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-I0S-XR-crypto-sam-oper</namespace>
<location>NETCONF</location>

</schema>

<schema>
<identifier>Cisco-IOS-XR-crypto-sam-oper-subl</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-I0S-XR-crypto-sam-oper</namespace>
<location>NETCONF</location>

</schema>

<schema>
<identifier>Cisco-IOS-XR-snmp-agent-oper</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-I0S-XR-snmp-agent-oper</namespace>
<location>NETCONF</location>

</schema>

<schema>
<identifier>openconfig-aft-types</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://openconfig.net/yang/fib-types</namespace>
<location>NETCONF</location>

</schema>

<schema>
<identifier>openconfig-mpls-ldp</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://openconfig.net/yang/ldp</namespace>
<location>NETCONF</location>

</schema>

</schemas>

</netconf-state>

Communication Protocols

Communication protocols establish connections between the router and the client. The protocols help the
client to consume the YANG data models to, in turn, automate and programme network operations.

YANG uses one of these protocols:
* Network Configuration Protocol (NETCONF)

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models

NETCONF Protocol [J|j

* RPC framework (gRPC) by Google

A\

Note gRPC is supported only in 64-bit platforms.

The transport and encoding mechanisms for these two protocols are shown in the table:

Protocol Transport Encoding/ Decoding
NETCONF ssh xml
gRPC http/2 json

NETCONF Protocol

NETCONF provides mechanisms to install, manipulate, or delete the configuration on network devices. It
uses an Extensible Markup Language (XML)-based data encoding for the configuration data, as well as
protocol messages. You use a simple NETCONF RPC-based (Remote Procedure Call) mechanism to facilitate
communication between a client and a server. To get started with issuing NETCONF RPCs to configure
network features using data models

gRPC Protocol

gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automated mechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure by defining protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a
series of name-value pairs. To get started with issuing NETCONF RPCs to configure network features using
data models

)

Note gRPC is supported only in 64-bit platforms.

YANG Actions

I0S XR and System Admin actions are RPC statements that trigger an operation or execute a command on
the router. Theses actions are defined as YANG models using RPC statements. An action is executed when
the router receives the corresponding NETCONF RPC or gRPC request. Once the router executes an action,
it replies with a NETCONF RPC or gRPC response.

For example, ping command is a supported action. That means, a YANG model is defined for the ping
command using RPC statements. This command can be executed on the router by initiating the corresponding
NETCONF RPC or gRPC request.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Il YANG Actions

\)

YANG Data Models |

Note NETCONF supports XML format, and gRPC supports JSON format.

For the list of supported actions, see the following table:

Actions YANG Models

logmsg Cisco-I0S-XR-syslog-act

snmp Cisco-10S-XR-snmp-test-trap-act

rollback Cisco-10S-XR-cfgmgr-rollback-act

ping Cisco-I0S-XR-ping-act
Cisco-10S-XR-ipv4-ping-act
Cisco-I0S-XR-ipv6-ping-act

traceroute Cisco-IOS-XR-traceroute-act
Cisco-10S-XR-ipv4-traceroute-act
Cisco-10S-XR-ipv6-traceroute-act

crypto Cisco-I0S-XR-crypto-act

clear ospf Cisco-10S-XR-ipv4-ospf-act
Cisco-I0S-XR-ipv6-ospfv3-act

clear isis Cisco-I0S-XR-isis-act

clear bgp Cisco-I0S-XR-ipv4-bgp-act

copy Cisco-I0S-XR-shellutil-copy-act.yang

delete Cisco-I0S-XR-shellutil-delete-act.yang

System Process Mgmt : process (restart) Cisco-I0S-XR-sysmgr-act
Cisco-10S-XR-sysadmin-pm

System Process Mgmt : Reload Cisco-I0S-XR-sysadmin-sm

(System Admin virtual machine (VM) reload, line

card (LC) reload)

System Process Mgmt : Reload Cisco-I0S-XR-sysadmin-sdr-mgr

(I0S XR VM node reload from System Admin)

System Process Mgmt : Install Cisco-10S-XR-spirit-install-act

dumpcore Cisco-I0S-XR-spirit-corehelper-cfg

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models
YANG Actions [J|]

\)

Note The System admin models support only <get> and <get-config> operations. The <edit-config> operation
works only with the merge operation. The other operations such as <delete>, <remove>, <replace> and so
on are not supported.

Example: PING NETCONF Action

This use case shows the IOS XR NETCONF action request to run the ping command on the router.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ping xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ping-act">
<destination>
<destination>1.2.3.4</destination>
</destination>
</ping>
</rpc>

This section shows the NETCONF action response from the router.

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ping-response xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ping-act">
<ipv4>
<destination>1.2.3.4</destination>
<repeat-count>5</repeat-count>
<data-size>100</data-size>
<timeout>2</timeout>
<pattern>0Oxabcd</pattern>
<rotate-pattern>0</rotate-pattern>
<reply-list>
<result>!</result>
<result>!</result>
<result>!</result>
<result>!</result>
<result>!</result>
</reply-list>
<hits>5</hits>
<total>5</total>
<success-rate>100</success-rate>
<rtt-min>1</rtt-min>
<rtt-avg>l</rtt-avg>
<rtt-max>1</rtt-max>
</ipv4>
</ping-response>
</rpc-reply>

Example: XR Process Restart Action
This example shows the process restart action sent to NETCONF agent.
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<sysmgr-process-restart xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-sysmgr-act">
<process-name>processmgr</process-name>
<location>0/RP0/CPUO</location>

</sysmgr-process-restart>
</rpc>

This example shows the action response received from the NETCONF agent.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |
YANG Actions

<?xml version="1.0"?>

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Example: Shutdown Dumper Process

This use case shows the System Admin NETCONF action request to shut down dumper process on the router.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<action xmlns="http://tail-f.com/ns/netconf/actions/1.0">
<data>
<processes xmlns="http://www.cisco.com/ns/yang/Cisco-I0S-XR-sysadmin-pm">
<all-locations>
<location>0/RP0</location>
<name>
<proc-name>dumper</proc-name>
<instance-id>0</instance-id>
<proc-action>
<do-what>shutdown</do-what>
<user-name>root</user-name>
<user-ip>1.2.3.4</user-ip>
</proc-action>
</name>
</all-locations>
</processes>
</data>
</action>
</rpc>

This section shows the NETCONF action response from the router.

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<processes xmlns="http://www.cisco.com/ns/yang/Cisco-I0S-XR-sysadmin-pm">
<all-locations>
<location>0/RP0</location>
<name>
<proc-name>dumper</proc-name>
<instance-id>0</instance-id>
<proc-action>
<proc-action-status>User root (1.2.3.4) requested shutdown for process dumper (0) at
0/RPO
'Sending signal 15 to stop process dumper (IID 0) pid=2439'</proc-action-status>
</proc-action>
</name>
</all-locations>
</processes>
</data>
</rpc-reply>

Example: Copy Action
This example shows the RPC request and response for copy action:

RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<copy xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-copy-act">

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models

YANG Actions [J|]

<sourcename>//root:<location>/100MB.txt</sourcename>
<destinationname>/</destinationname>
<sourcefilesystem>ftp:</sourcefilesystem>
<destinationfilesystem>harddisk:</destinationfilesystem>
<destinationlocation>0/RSP1/CPUO</destinationlocation>
</copy>
</rpc>

RPC response:

<?xml version="1.0"?>

<rpc-reply message-1d="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<response xmlns="http://cisco.com/ns/yang/Cisco-I0OS-XR-shellutil-copy-act">Successfully
completed copy operation</response>

</rpc-reply>

8.261830565s elapsed

Example: Delete Action
This example shows the RPC request and response for delete action:

RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<delete xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-delete-act">
<name>harddisk:/netconf.txt</name>
</delete>
</rpc>

RPC response:

<?xml version="1.0"?>
<rpc-reply message-1d="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<response xmlns="http://cisco.com/ns/yang/Cisco-I0OS-XR-shellutil-delete-act">Successfully
completed delete operation</response>
</rpc-reply>

395.099948ms elapsed

Example: Install Action

This example shows the Install action request sent to NETCONF agent.

<install-add xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-spirit-install-act">
<packagepath>/nobackup/hanaik/yang project/img-xrv9k</packagepath>
<packagename>xrv9k-mpls-2.1.0.0-r64102I.x86 64.rpm</packagename>
</install-add>

This example shows the Install action response received from NETCONF agent.
<?xml version="1.0"?2>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<op-id xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-spirit-install-act">6</op-id>
</rpc-reply>
This example shows how to use install add rpc request with multiple packages enclosed within packagename
tag.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |
Il YANG Actions

<install-add xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-spirit-install-act">
<packagepath>http://10.105.227.154/install repo/fretta/651/651 02</packagepath>

<packagename>ncs5500-k9sec-3.1.0.0-r65102I.x86 64.rpm</packagename>
<packagename>ncs5500-11-1.0.0.0-r65102I.x86 64.rpm</packagename>
<packagename>ncs5500-mcast-2.1.0.0-r65102I.x86 64.rpm</packagename>
<packagename>ncs5500-mini-x.iso0-6.5.1.02I</packagename>
<packagename>ncs5500-mpls-2.1.0.0-r65102I.x86 64.rpm</packagename>

</install-add>

</rpc>

Restrictionsfor Install Action

* Install upgrade command is deprecated. Hence, use install update command instead of the install
upgrade command.

* Only one request can be sent at a time.
* [SSU is not supported.

* Install Yang using NETCONF action can accept a maximum of 32 input parameters. Input parameters
can be any inputs used in install action commands, such as package names to add, activate, deactivate,
or remove, and operation IDs to retrieve any particular log related to that operation.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

CHAPTER 3

Use NETCONF Protocol to Define Network
Operations with Data Models

Table 1: Feature History Table

Feature Name Release Information Description

Unified NETCONF V1.0 and V1.1 | Release 7.3.1 Cisco I0S XR supports NETCONF
1.0 and 1.1 programmable
management interfaces. With this
release, a client can choose to
establish a NETCONF 1.0 or 1.1
session using a separate interface
for both these formats. This
enhancement provides a secure
channel to operate the network with
both interface specifications.

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

Network Configuration Protocol (NETCONF) is a standard transport protocol that communicates with network
devices. NETCONF provides mechanisms to edit configuration data and retrieve operational data from network
devices. The configuration data represents the way interfaces, routing protocols and other network features

are provisioned. The operational data represents the interface statistics, memory utilization, errors, and so on.

NETCONEF uses an Extensible Markup Language (XML)-based data encoding for the configuration data, as
well as protocol messages. It uses a simple RPC-based (Remote Procedure Call) mechanism to facilitate
communication between a client and a server. The client can be a script or application that runs as part of a
network manager. The server is a network device such as a router. NETCONF defines how to communicate
with the devices, but does not handle what data is exchanged between the client and the server.

To enable NETCONTF, use the ssh server capability netconf-xml command to reach XML subsystem on
port 22.

NETCONF Session

A NETCONEF session is the logical connection between a network configuration application (client) and a
network device (router). The configuration attributes can be changed during any authorized session; the effects

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |

are visible in all sessions. NETCONF is connection-oriented, with SSH as the underlying transport. NETCONF
sessions are established with a he110 message, where features and capabilities are announced. At the end of
each message, the NETCONF agent sends the]1>11> marker. Sessions are terminated using close or kill
messages.

Cisco I0S XR supports NETCONF 1.0 and 1.1 programmable management interfaces that are handled using
two separate interfaces. From I0S XR, Release 7.3.1, a client can choose to establish a NETCONF 1.0 or 1.1
session using an interface for both these formats. A NETCONF proxy process waits for the he110 message
from its peer. If the proxy does not receive a hel1o message within the timeout period, it sends a NETCONF
1.1 hel1o message.

<?xml version="1.0" encoding="UTF-8"?>

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>

<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:xpath:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability
--snip--

</capabilities>

<session-id>5</session-id>

</hello>]11>11>

The following examples show the he11o messages for the NETCONF versions:
netconf-xml agent listens on port 22

netconf-yang agent listens on port 830

Version 1.0 The NETCONF XML agent accepts the message.

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
</capabilities>

</hello>

Version 1.1 The NETCONF YANG agent accepts the message.

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.1</capability>
</capabilities>

</hello>

Using NETCONF 1.1, the RPC requests begin with #<number> and end with ##. The number indicates how
many bytes that follow the request.

Example:

#371
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<filter>
<isis xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-clns-isis-oper">
<instances>
<instance>
<neighbors/>
<instance-name/>
</instance>
</instances>
</isis>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models

</filter>
</get>
</rpc>

##

Configure NETCONF Agent

To configure a NETCONF TTY agent, use the netconf agent tty command. In this example, you configure
the throttle and session timeout parameters:

netconf agent tty
throttle (memory | process-rate)
session timeout

To enable the NETCONF SSH agent, use the following command:

ssh server v2
netconf agent tty

NETCONF Layers

NETCONF protocol can be partitioned into four layers:
Figure 2: NETCONF Layers

Lavar Example
Congenl Coadiuration Dala Moilazalion [asa
Opaations =pcil-coadin=
o o=
Messapes ape-raply> sncdilizalions.
Secime Transpor S5H, TLS BEEP/TLS, SOAPMITRLS, . | §
#

+ Content layer: includes configuration and notification data

 Operationslayer: defines a set of base protocol operations invoked as RPC methods with XML-encoded
parameters

» Messages layer: provides a simple, transport-independent framing mechanism for encoding RPCs and
notifications

* Secure Transport layer: provides a communication path between the client and the server

For more information about NETCONF, refer RFC 6241.

This article describes, with a use case to configure the local time on a router, how data models help in a faster
programmatic configuration as comapared to CLIL

* NETCONF Operations, on page 18
* Retrieve Default Parameters Using with-defaults Capability, on page 22
* Set Router Clock Using Data Model in a NETCONF Session, on page 28

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

[l NETCONF Operations

NETCONF Operations

NETCONF defines one or more configuration datastores and allows configuration operations on the datastores.
A configuration datastore is a complete set of configuration data that is required to get a device from its initial
default state into a desired operational state. The configuration datastore does not include state data or executive

commands.

YANG Data Models |

The base protocol includes the following NETCONF operations:

+--get-config
+--edit-Config

+--merge

+--replace

+--create

+--delete

+--remove
+--default-operations

+--replace
+--none
+--get
+--lock

+--unLock

+--close-session
+--kill-session

|
|
|
|
|
|
|
|
| +--merge
|
|
|
|
|
|
|

These NETCONF operations are described in the following table:

NETCONF
Operation

Description

Example

<get-config>

Retrieves all or part of a specified
configuration from a named data
store

Retrieve specific interface configuration details from
running configuration using filter option

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<get-config>

<source>

<running/>

</source>

<filter>

<interface-configurations
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-1ifmgr-cfg"\
<interface-configuration>
<active>act</active>
<interface-name>TenGigE0/0/0/2/0</interface-name
</interface-configuration>
</interface-configurations>

</filter>

</get-config>

</rpc>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models

NETCONF Operations]

NETCONF
Operation

Description

Example

< get>

Retrieves running configuration
and device state information

Retrieve all acl configuration and device state
information.

Request:

<get>

<filter>

<ipvé4-acl-and-prefix-list
xmlns="http://cisco.can/ns/yang/Cisco-I0S-XR-ipv4-acl-oper"/
</filter>

</get>

<edit-config>

Loads all or part of a specified
configuration to the specified
target configuration

Configure ACL configs using M erge operation

<rpc message-id="101"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

<edit-config>

<target><candidate/></target>

<config

xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0"

<ipvé4-acl-and-prefix-list

xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ipv4-acl-cfqg",
xc:operation="merge”>

<accesses>

<access>

<access-list-name>aclv4-1</access-list-name>

<access-list-entries>

<access-list-entry>

<sequence-number>10</sequence-number>

<remark>GUEST</remark>

</access-list-entry>

<access-list-entry>

<sequence-number>20</sequence-number>

<grant>permit</grant>

<source-network>

<source-address>172.0.0.0</source-address>

<source-wild-card-bits>0.0.255.255</source-wild-card-bits

</source-network>

</access-list-entry>

</access-list-entries>

</access>

</accesses>

</ipv4-acl-and-prefix-list>

</config>

</edit-config>

</rpc>

Commit:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<commit/>

</rpc>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

[l NETCONF Operations

YANG Data Models |

NETCONF
Operation

Description

Example

<lock>

Allows the client to lock the
entire configuration datastore
system of a device

Lock the running configuration.

Request:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<lock>

<target>

<running/>

</target>

</lock>

</rpc>

Response
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">|

<ok/>
</rpc-reply>

<Unlock>

Releases a previously locked
configuration.

An <unlock> operation will not
succeed if either of the following
conditions is true:

* The specified lock is not
currently active.

* The session issuing the
<unlock> operation is not
the same session that
obtained the lock.

Lock and unlock the running configuration from the same
session.

Request:

rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<unlock>

<target>

<running/>

</target>

</unlock>

</rpc>

Response -

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<ok/>

</rpc-reply>

<close-session>

Closes the session. The server
releases any locks and resources
associated with the session and
closes any associated
connections.

Close a NETCONF session.

Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<close-session/>

</rpc>

Response:

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<ok/>

</rpc-reply>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models
NETCONF Operations]

NETCONF Description Example
Operation

<kill-session> | Terminates operations currently | Terminate a session if the ID is other session ID.
in process, releases locks and

K . Request:
resources associated with the <rpc message-id="101"
Sesﬁon,andiﬂoseanyassockned xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
connections. <kill-session>

<session-id>4</session-id>
</kill-session>
</rpc>

Response:

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<ok/>

</rpc-reply>

N

Note The System admin models support only <get> and <get-config> operations. The <edit-config> operation
works only with the merge operation. The other operations such as <delete>, <remove>, <replace> and so
on are not supported.

NETCONF Operation to Get Configuration
This example shows how a NETCONF <get-config> request works for CDP feature.

The client initiates a message to get the current configuration of CDP running on the router. The
router responds with the current CDP configuration.

Netconf Request (Client to Router) Netconf Response (Router to Client)

<rpc message-id="101" <?xml version="1.0"?>
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>

<source><running/></source> <data>

<filter> <cdp

<cdp smlns="http://cisco.com/ns/yang/Cisco-I0S-XR-cdp-cfg">|
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-cdp-cfg"/

</filter> <timer>10</timer>

</get-config> <enable>true</enable>

</rpc> <log-adjacency></log-adjacency>

<hold-time>200</hold-time>
<advertise-vl-only></advertise-vl-only>
</cdp>
#22
</data>
</rpc-reply>

The <rpc> element in the request and response messages enclose a NETCONF request sent between
the client and the router. The message-id attribute in the <rpc> element is mandatory. This attribute
is a string chosen by the sender and encodes an integer. The receiver of the <rpc> element does not
decode or interpret this string but simply saves it to be used in the <rpc-reply> message. The sender

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |

. Retrieve Default Parameters Using with-defaults Capability

must ensure that the message-id value is normalized. When the client receives information from the
server, the <rpc-reply> message contains the same message-id.

Retrieve Default Parameters Using with-defaults Capability

You can retrieve the default parameters of a data node using a NETCONF protocol operation that includes
the <with-default> capability.

NETCONEF servers report default data nodes in response to RPC requests in the following ways:

» report-all: All data nodes are reported
* trim: Data nodes set to the YANG default aren't reported

» explicit: Data nodes set to the YANG default by the client are reported

Cisco IOS XR routers support only the explicit basic mode. A server that uses this mode must consider any
data node that isn’t explicitly set to be the default data. As per RFC 6243, the routers support <with-defaults>
capability for configuration and state data.

The <with-defaults> capability indicates which default-handling basic mode is supported by the server. It
also indicates support for additional defaults retrieval modes. These retrieval modes allow a NETCONF client
to control whether the server returns the default data.

By default, <with-defaults> capability is disabled. To enable this capability, use netconf-yang agent
with-defaults command in Config mode. Once enabled, the capability is applied to all netconf-yang requests.

\}

Note Currently, the <with-defaults> capability is supported only for openconfig-interface.yang data model.

The <get>, <get-config>, <copy-config>and ,<edit-config> operations support with-defaults capability.
Example 1. Create Operation

A valid create operation attribute for a data node that is set by the server to its schema default value must
succeed. It is set or used by the device whenever the NETCONF client does not provide a specific value for
the relevant data node. In the following example, an edit-config request is sent to create a configuration:

<edit-config> request sent to the NET CONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:43efc290-c312-4df0-bblb-a6elbf8aac50">
<edit-config>

<target>

<candidate/>

</target>

<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>

<name>TenGigE0/0/0/0</name>

<subinterfaces>

<subinterface>

<index>2</index>

<config>

<enabled xc:operation="create">false</enabled>

<index xc:operation="create">2</index>

</config>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models

Retrieve Default Parameters Using with-defaults Capability .

</subinterface>
</subinterfaces>
</interface>
</interfaces>
</config>
</edit-config>
</rpc>

Response received from the NETCONF agent:

<?xml version="1.0"?>

<rpc-reply message-1d="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Commit the configuration.

[host 172.x.x.x session-id 2985924161] Requesting 'Commit'

[host 172.x.x.x session-id 2985924161] Sending:

<?xml version="1.0" encoding="UTF-8"?><nc:rpc
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:295eff87-1fb6-4£84-bb7d-c40b268eablb"><nc:commit/></nc:rpc>

[host 172.x.x.x session-id 2985924161] Received:

<?xml version="1.0"?2>

<rpc-reply message—-id="urn:uuid:295eff87-1fb6-4£84-bb7d-c40b268eablb"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>

</rpc-reply>

CREATE operation completed

A create operation attribute for a data node that has been set by a client to its schema default value must fail
with a data-exists error tag. The client can only create a default node that was not previously created by it.
Else, the operation is rejected with the data-exists message.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:1£29267£-7593-4a3c-8382-6ab9%ec323ca">
<edit-config>
<target>
<candidate/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<enabled xc:operation="create">false</enabled>
<index xc:operation="create">2</index>
</config>
</subinterface>
</subinterfaces>
</interface>
</interfaces>
</config>
</edit-config>
</rpc>

[host 172.x.x.x session-id 2985924161] Received:
<?xml version="1.0"?>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |
. Retrieve Default Parameters Using with-defaults Capability

<rpc-reply message-id="urn:uuid:1£29267£f-7593-4a3c-8382-6ab%bec323ca"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error>

<error-type>application</error-type>

<error-tag>data-exists</error-tag>

<error-severity>error</error-severity>

<error-path
xmlns:nsl="http://openconfig.net/yang/interfaces">nsl:interfaces/nsl:interface[name =
'TenGigEO0/0/0/0"'] /nsl:subinterfaces/nsl:subinterface[index = '2']/nsl:config</error-path>
</rpc-error>
</rpc-reply>

Example 2: Delete Operation

A valid delete operation attribute for a data node set by a client to its schema default value must succeed.
Whereas a valid de1ete operation attribute for a data node set by the server to its schema default value fails
with a data-missing error tag.

<edit-config> request sent to the NET CONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:de95a248-29d7-4030-8351-cef8b8d47cdb">
<edit-config>

<target>

<candidate/>

</target>

<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>

<name>TenGigE0/0/0/0</name>

<subinterfaces>

<subinterface xc:operation="delete">

<index>2</index>

</subinterface>

</subinterfaces>

</interface>

</interfaces>

</config>

</edit-config>

</rpc>

Response received from the NETCONF agent:

<?xml version="1.0"?2>

<rpc-reply message-id="urn:uuid:de95a248-29d7-4030-8351-cef8b8d47cdb"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<rpc-error>

<error-type>application</error-type>

<error-tag>data-missing</error-tag>

<error-severity>error</error-severity>

<error-path xmlns:nsl="http://openconfig.net/yang/interfaces">nsl:interfaces/nsl:
interface[name = 'TenGigE0/0/0/0']/nsl:subinterfaces/nsl:subinterface([index =
'2'"]/nsl:config</error-path></rpc-error>

</rpc-reply>

Example 3: Copy Configuration

In the following example, a copy-config request is sent to copy a configuration.
<copy-config> request sent to the NET CONF agent:

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<copy-config>
<target>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models

Retrieve Default Parameters Using with-defaults Capability .

<candidate/>
</target>
<source>
<config>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<index>2</index>
</config>
</subinterface>
</subinterfaces>
</interface>

</interfaces>
</config>
</source>
<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>
</copy-config>
</rpc>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">
<commit/>
</rpc>

The show run command shows the copied configuration.

Router#show run

<data and time stamp>

Building configuration...

!'l TOS XR Configuration 7.2.1

'l Last configuration change at <data and time stamp> by root
|

interface TenGigE0/0/0/0.2

|

end
Example 4: Get Configuration

The following example shows a get-config request with explicit mode to query the default parameters
from the oc-interfaces.yang data model. The client gets the configuration values of what it sets.

<get-config> request sent to the NETCONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:63a49626-9f90-4ebe-89£fd-741410cddf29">

<get-config>

<source>

<running/>

</source>

<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>

<filter type="subtree">

<interfaces xmlns="http://openconfig.net/yang/interfaces"/>

</filter>

</get-config>

</rpc>

<get-config> response received from the NETCONF agent:

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |
Retrieve Default Parameters Using with-defaults Capability

<?xml version="1.0"?2>
<rpc-reply message-id="urn:uuid:99d8b2d0-ab05-474a-bc02-9242ba511308"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<index>2</index>
<enabled>false</enabled>
</config>
<ipv6 xmlns="http://openconfig.net/yang/interfaces/ip">
<config>
<enabled>false</enabled>
</config>
</ipv6>
</subinterface>
</subinterfaces>
</interface>
<interface>
<name>MgmtEth0/RSP0/CPU0/0</name>
<config>
<name>MgmtEth0/RSP0/CPU0/0</name>
<type xmlns:idx="urn:ietf:params:xml:ns:yang:iana-if-type">idx:ethernetCsmacd</type>

</config>
<ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">
<config>
<auto-negotiate>false</auto-negotiate>
</config>
</ethernet>
<subinterfaces>
<subinterface>
<index>0</index>
<ipv4 xmlns="http://openconfig.net/yang/interfaces/ip">
<addresses>
<address>
<ip>172.xx.xx.xx</ip>
<config>
<ip>172.xx.xx.xx</ip>
<prefix-length>24</prefix-length>
</config>
</address>
</addresses>
</ipvé>
</subinterface>
</subinterfaces>
</interface>
<interface>
<name>MgmtEth0/RSP1/CPU0/0</name>
<config>
<name>MgmtEth0/RSP1/CPU0/0</name>
<type xmlns:idx="urn:ietf:params:xml:ns:yang:iana-if-type">idx:ethernetCsmacd</type>
<enabled>false</enabled>
</config>
<ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">
<config>
<auto-negotiate>false</auto-negotiate>
</config>
</ethernet>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models
Retrieve Default Parameters Using with-defaults Capability .

</interface>
</interfaces>

</data>

</rpc-reply>

READ operation completed

Example 5: Get Operation

The following example shows a get request with explicit mode to query the default parameters from the
oc-interfaces.yang data model.

<get-config> request sent to the NETCONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:d8e52f0f-ceac-4193-89£6-d377ab8292d5">
<get>

<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>
<filter type="subtree">

<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>

<name>TenGigE0/0/0/0</name>

<subinterfaces>

<subinterface>

<index>2</index>

<state/>

</subinterface>

</subinterfaces>

</interface>

</interfaces>

</filter>

</get>

</rpc>

<get> response received from the NET CONF agent:

<?xml version="1.0"?>
<rpc-reply message-id="urn:uuid:933df011-191f-4£f31-9549-c4f7f6edd291"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<state>
<index>2</index>
<name>TenGigE0/0/0/0.2</name>
<enabled>false</enabled>
<admin-status>DOWN</admin-status>
<oper-status>DOWN</oper-status>
<last-change>0</last-change>
<counters>
<in-unicast-pkts>0</in-unicast-pkts>
<in-pkts>0</in-pkts>
<in-broadcast-pkts>0</in-broadcast-pkts>
<in-multicast-pkts>0</in-multicast-pkts>
<in-octets>0</in-octets>
<out-unicast-pkts>0</out-unicast-pkts>
<out-broadcast-pkts>0</out-broadcast-pkts>
<out-multicast-pkts>0</out-multicast-pkts>
<out-pkts>0</out-pkts>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |
. Set Router Clock Using Data Model in a NETCONF Session

<out-octets>0</out-octets>
<out-discards>0</out-discards>
<in-discards>0</in-discards>
<in-unknown-protos>0</in-unknown-protos>
<in-errors>0</in-errors>
<in-fcs-errors>0</in-fcs—-errors>
<out-errors>0</out-errors>
<carrier-transitions>0</carrier-transitions>
<last-clear>2020-03-02T15:35:30.927+00:00</last-clear>
</counters>
<ifindex>92</ifindex>
<logical>true</logical>
</state>
</subinterface>
</subinterfaces>
</interface>
</interfaces>
</data>
</rpc-reply>
READ operation completed

Set Router Clock Using Data Model in a NETCONF Session

The process for using data models involves:

* Obtain the data models.
* Establish a connection between the router and the client using NETCONF communication protocol.

* Manage the configuration of the router from the client using data models.

N

Note Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide.

The following image shows the tasks involved in using data models.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models

Set Router Clock Using Data Model in a NETCONF Session .

Figure 3: Process for Using Data Models

Router Client Application
Load software image;
data models are
part of image
k.
Enable protocol for Make YANG models available.
transport > Download from Github or
(NETCONF, gRPC) use NETCOMF query

l

Connect to router
over NETCONF

i

: : : For a configuration change
Configuration changes are made;
NETCONE reply s sent (EEEEEE in the fouter, NETCONF request
is sent using <edit-config=

L

. Far aperational data,
NETCONF reply is sent R
i ration - NETCOMF request is sent

using <get= or <get-config=

AEEMN3A

In this section, you use native data models to configure the router clock and verify the clock state using a
NETCONEF session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER?2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper [P addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |

. Set Router Clock Using Data Model in a NETCONF Session

Step 1

Step 2

Figure 4: Network Topology for gRPC session

Controller Out-of-band netwark
[netconf
NETCONF i
198.18.1.127/24
v
198.18.1.11/24 198.18.1.111/24 198.18.1.112/24 198.18.1.12/24
g0/0/0/0 o g0/0/0f2 % g0/0/0/0
60 172.16.1.0/31 lo0 172.16.2.4/31 lo0 172.16.2.0/31 100
LER1 LSR1 LSR2 LER2
2
3
g

You use Cisco IOS XR native models Cisco-I0S-XR-infra-clock-linux-cfg.yang and
Cisco-IOX-XR-shellutil-oper to programmatically configure the router clock. You can explore the structure
of the data model using YANG validator tools such as pyang.

Before you begin

Retrieve the list of YANG modules on the router using NETCONF monitoring RPC. For more information

Explore the native configuration model for the system local time zone.

Example:

controller:netconf$ pyang --format tree Cisco-IO0S-XR-infra-infra-clock-linux-cfg.yang
module: Cisco-IOS-XR-infra-infra-clock-linux-cfg
+--rw clock
+--rw time-zone!
+--rw time-zone-name string
+--rw area-name string

Explore the native operational state model for the system time.

Example:

controller:netconf$ pyang --format tree Cisco-IOS-XR-shellutil-oper.yang
module: Cisco-IOS-XR-shellutil-oper
+--ro system-time
+--ro clock
| +--ro year? uintle
| +--ro month? uint8
| +--ro day? uint8
| +--ro hour? uint8
| +--ro minute? uint8
| +--ro second? uint8
| +--ro millisecond? uintlé6
| +--ro wday? uintlé
| +--ro time-zone? string
| +--ro time-source? Time-source
+--ro uptime

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

https://github.com/mbj4668/pyang

| YANG Data Models

Step 3

Step 4

Step 5

Set Router Clock Using Data Model in a NETCONF Session .

+--ro host-name? string
+--ro uptime? uint32

Retrieve the current time on router LER1.

Example:

controller:netconf$ more xr-system-time-oper.xml <system-time
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-oper"/>
controller:netconf$ netconf get --filter xr-system-time-oper.xml
198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-oper">
<clock>
<year>2019</year>
<month>8</month>
<day>22</day>
<hour>17</hour>
<minute>30</minute>
<second>37</second>
<millisecond>690</millisecond>
<wday>1</wday>
<time-zone>UTC</time-zone>
<time-source>calendar</time-source>
</clock>
<uptime>
<host-name>lerl</host-name>
<uptime>851237</uptime>
</uptime>
</system-time>

Notice that the timezone vtc indicates that a local timezone is not set.

Configure Pacific Standard Time (PST) as local time zone on LERI.

Example:

controller:netconf$ more xr-system-time-oper.xml <system-time
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-oper"/>
controller:netconf$ get --filter xr-system-time-oper.xml
<username>:<password>@198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-oper">
<clock>
<year>2019</year>
<month>8</month>
<day>22</day>
<hour>9</hour>
<minute>52</minute>
<second>10</second>
<millisecond>134</millisecond>
<wday>1</wday>
<time-zone>PST</time-zone>
<time-source>calendar</time-source>
</clock>
<uptime>
<host-name>lerl</host-name>
<uptime>852530</uptime>
</uptime>
</system-time>

Verify that the router clock is set to PST time zone.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |
. Set Router Clock Using Data Model in a NETCONF Session

Example:

controller:netconf$ more xr-system-time-oper.xml
<system-time xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-oper"/>

controller:netconf$ netconf get --filter xr-system-time-oper.xml
<username>:<password>@198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-I0OS-XR-shellutil-oper">
<clock>
<year>2018</year>
<month>12</month>
<day>22</day>
<hour>9</hour>
<minute>52</minute>
<second>10</second>
<millisecond>134</millisecond>
<wday>1</wday>
<time-zone>PST</time-zone>
<time-source>calendar</time-source>
</clock>
<uptime>
<host-name>lerl</host-name>
<uptime>852530</uptime>
</uptime>
</system-time>

In summary, router LER 1, which had no local timezone configuration, is programmatically configured using data models.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

CHAPTER 4

Use gRPC Protocol to Define Network Operations
with Data Models

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automated mechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure using protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a
series of name-value pairs.

gRPC encodes requests and responses in binary. gRPC is extensible to other content types along with Protobuf.
The Protobuf binary data object in gRPC is transported over HTTP/2.

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server. The structure of the data is defined by YANG models.

N

Note

TCP protocol.

All 64-bit IOS XR platforms support gRPC and TCP protocols. All 32-bit IOS XR platforms support only

Cisco gRPC IDL uses the protocol buffers interface definition language (IDL) to define service methods, and
define parameters and return types as protocol buffer message types. The gRPC requests are encoded and sent
to the router using JSON. Clients can invoke the RPC calls defined in the IDL to program the router.

The following example shows the syntax of the proto file for a gRPC configuration:

syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {
rpc GetConfig(ConfigGetArgs) returns (stream ConfigGetReply) {};
rpc MergeConfig (ConfigArgs) returns (ConfigReply) {};

rpc DeleteConfig (ConfigArgs) returns (ConfigReply) {};

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

rpc ReplaceConfig(Con
rpc CliConfig(CliConf

rpc GetOper (GetOperAr

rpc CommitReplace (CommitReplaceArgs)

}

message ConfigGetArgs {
int64 ReqId = 1;
string yangpathijson

message ConfigGetReply {
int64 ResReqgld = 1;
string yangjson = 2;
string errors = 3;

message GetOperArgs {
int64 ReqId = 1;
string yangpathijson

message GetOperReply {
int64 ResReqld = 1;
2;

string yangjson =
string errors = 3;

}

message ConfigArgs {
int64 Reqgld = 1;
string yangjson = 2;

message ConfigReply {
int64 ResReqld = 1;
string errors = 2;

message CliConfigArgs {
int64 ReqId = 1;
string cli = 2;

message CliConfigReply {
int64 ResReqld = 1;
string errors = 2;

message CommitReplaceArgs
int64 Reqgld = 1;
string cli = 2;
string yangjson = 3;

message CommitReplaceRepl
int64 ResReqgld = 1;
string errors = 2;

}

figArgs) returns(ConfigReply) {};

igArgs) returns(CliConfigReply) {};

returns (stream GetOperReply) {};

gs)

returns (CommitReplaceReply)

= 2;

= 2;

{

y |

Example for gRPCExec configuration:

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

{};

YANG Data Models |

YANG Data Models

service gRPCExec ({
rpc ShowCmdTextOutput (ShowCmdArgs) returns(stream ShowCmdTextReply) {};
rpc ShowCmdJSONOutput (ShowCmdArgs) returns(stream ShowCmdJSONReply) {};
rpc ActionJSON (ActionJSONArgs) returns (stream ActionJSONReply) {};

message ShowCmdArgs {
int64 ReqId = 1;
string cli 2;

message ShowCmdTextReply {
int64 ResReqgld =1;
string output = 2;
string errors = 3;

message ActionJSONArgs {
int64 ReqId = 1;
string yangpathijson = 2;
}

message ActionJSONReply {
int64 ResReqld 1
string yangjson =
string errors = 3;

}

2;

Example for OpenConfiggRPC configuration:

service OpenConfiggRPC {
rpc SubscribeTelemetry (SubscribeRequest) returns (stream SubscribeResponse) {};
rpc UnSubscribeTelemetry (CancelSubscribeReq) returns (SubscribeResponse) {};
rpc GetModels (GetModelsInput) returns (GetModelsOutput) {};

message GetModelsInput {

uint64 requestId = 1;
string name = 2;
string namespace = 3;
string version = 4;

enum MODLE_REQUEST_ TYPE {
SUMMARY = 0;
DETAIL = 1;
}
MODLE_REQUEST TYPE requestType = 5;

message GetModelsOutput {

uint64 requestId = 1;
message ModelInfo {
string name =1;
string namespace = 2;
string version = 3;

GET_MODEL_TYPE modelType = 4;
string modelData = 5;
}
repeated ModelInfo models = 2;
OC_RPC_RESPONSE TYPE responseCode = 3;
string msg = 4;

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

. gRPC Operations

YANG Data Models |

This article describes, with a use case to configure interfaces on a router, how data models helps in a faster
programmatic and standards-based configuration of a network, as comapared to CLI.

* gRPC Operations, on page 36

* gRPC Network Management Interface, on page 37

» gRPC Network Operations Interface , on page 37

* Configure Interfaces Using Data Models in a gRPC Session, on page 42

gRPC Operations

You can issue the following gRPC operations:

gRPC Operation Description

GetConfig Retrieves a configuration

GetModels Gets the supported Yang models on the router

MergeConfig Appends to an existing configuration

DeleteConfig Deletes a configuration

ReplaceConfig Modifies a part of an existing configuration

CommitReplace Replaces existing configuration with the new
configuration file provided

GetOper Gets operational data using JSON

CliConfig Invokes the CLI configuration

ShowCmdTextOutput Displays the output of show command

ShowCmdJSONOutput Displays the JSON output of show command

ActionJSON Displays the gRPC JSON action

gRPC Operation to Get Configuration

This example shows how a gRPC GetConfig request works for CDP feature.

The client initiates a message to get the current configuration of CDP running on the router. The

router responds with the current CDP configuration.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models

gRPC Network Management Interface .

gRPC Request (Client to Router) gRPC Response (Router to Client)

rpc GetConfig {
{ "Cisco-I0S-XR-cdp-cfg:cdp": {
"Cisco-I0S-XR-cdp-cfg:cdp": ["timer": 50,
"cdp": "running-configuration" "enable": true,
] "log-adjacency": [
} null

1,
"hold-time": 180,
"advertise-vl-only": [
null
1

}

}

gRPC Network Management Interface

gRPC Network Management Interface (gNMI) is a gRPC-based network management protocol used to modify,
install or delete configuration from network devices. It is also used to view operational data, control and
generate telemetry streams from a target device to a data collection system. It uses a single protocol to manage
configurations and stream telemetry data from network devices.

The subscription in a gNMI does not require prior sensor path configuration on the target device. Sensor paths
are requested by the collector (such as pipeline), and the subscription mode can be specified for each path.
gNMI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

gRPC Network Operations Interface

gNOI RPCs

gRPC Network Operations Interface (gNOI) defines a set of gRPC-based microservices for executing
operational commands on network devices. These services are to be used in conjunction with gRPC network
management interface (gNMI) for all target state and operational state of a network. gNOI uses gRPC as the
transport protocol and the configuration is same as that of gRPC. For more information about gNOI, see the
Github repository.

To send gNOI RPC requests, you need a client that implements the gNOI client interface for each RPC.

All messages within the gRPC service definition are defined as protocol buffer (.proto) files. gNOI OpenConfig
proto files are located in the Github repository.

Table 2: Feature History Table

Feature Name Release Information | Description

Release 7.8.1 You can now avail the services of cancelReboot
to terminate outstanding reboot request, and
KillProcess RPCs to restart the process on

device.

gNOI System Proto

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi

YANG Data Models |
Bl onoirees

gNOI supports the following remote procedure calls (RPCs):

System RPCs

The RPCs are used to perform key operations at the system level such as upgrading the software, rebooting
the device, and troubleshooting the network. The System.proto file is available in the Github repository.

RPC Description
Reboot Reboots the target. The router supports the following reboot
options:

¢ COLD = 1; Shutdown and restart OS and all hardware
* POWERDOWN = 2; Halt and power down

* HALT = 3; Halt

* POWERUP = 7; Apply power

RebootStatus Returns the status of the target reboot.

SetPackage Places a software package including bootable images on the
target device.

Ping Pings the target device and streams the results of the ping
operation.
Traceroute Runs the traceroute command on the target device and streams

the result. The default hop count is 30.

Time Returns the current time on the target device.

SwitchControlProcessor Switches from the current route processor to the specified route
processor. If the target does not exist, the RPC returns an error
message.

File RPCs

The RPCs are used to perform key operations at the file level such as reading the contents if a file and its
metadata. The file.proto file is available in the Github repository.

RPC Description

Get Reads and streams the contents of a file from the target device.
The RPC streams the file as sequential messages with 64 KB of
data.

Remove Removes the specified file from the target device. The RPC

returns an error if the file does not exist or permission is denied
to remove the file.

Stat Returns metadata about a file on the target device.

Put Streams data into a file on the target device.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

https://github.com/openconfig/gnoi/blob/main/system/system.proto
https://github.com/openconfig/gnoi/blob/main/file/file.proto

| YANG Data Models

gnoirees I

RPC

Description

TransferToRemote

Transfers the contents of a file from the target device to a
specified remote location. The response contains the hash of the
transferred data. The RPC returns an error if the file does not
exist, the file transfer fails or an error when reading the file. This
is a blocking call until the file transfer is complete.

Certificate Management (Cert) RPCs

The RPCs are used to perform operations on the certificate in the target device. The cert.proto file is available

in the Github repository.

RPC Description

Rotate Replaces an existing certificate on the target device by creating
anew CSR request and placing the new certificate on the target
device. If the process fails, the target rolls back to the original
certificate.

Install Installs a new certificate on the target by creating a new CSR
request and placing the new certificate on the target based on
the CSR.

GetCertificates Gets the certificates on the target.

RevokeCertificates Revokes specific certificates.

CanGenerateCSR Asks a target if the certificate can be generated.

Interface RPCs
The RPCs are used to perform operations on the interfaces. The interface.proto file is available in the Github
repository.

RPC Description

SetLoopbackMode Sets the loopback mode on an interface.

GetLoopbackMode Gets the loopback mode on an interface.

ClearInterfaceCounters

Resets the counters for the specified interface.

Layer2 RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The layer 2.proto file is available in the Github repository.

Feature Name

Description

ClearLLDPInterface

Clears all the LLDP adjacencies on the specified interface.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

https://github.com/openconfig/gnoi/blob/main/cert/cert.proto
https://github.com/openconfig/gnoi/blob/cc419f3696d3a6d3e1a3999b75c51231b4773ace/interface/interface.proto
https://github.com/openconfig/gnoi/blob/main/layer2/layer2.proto

Bl onoirees

YANG Data Models |

BGP RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The bgp.proto file is available in the Github repository.

Feature Name Description

ClearBGPNeighbor Clears a BGP session.

Diagnostic (Diag) RPCs

The RPCs are used to perform diagnostic operations on the target device. You assign each bit error rate test
(BERT) operation a unique ID and use this ID to manage the BERT operations. The diag.proto file is available
in the Github repository.

Feature Name Description

StartBERT Starts BERT on a pair of connected ports between devices in
the network.

StopBERT Stops an already in-progress BERT on a set of ports.

GetBERTResult Gets the BERT results during the BERT or after the operation

is complete.

gNOI RPCs

The following examples show the representation of few gNOI RPCs:
Get RPC

Streams the contents of a file from the target.

RPC to 10.105.57.106:57900
RPC start time: 20:58:27.513638

RPC start time: 20:58:27.513668
remote file: "harddisk:/giso image repo/test.log"

RPC end time: 20:58:27.518413
contents: "GNOI \n\n"

hash {

method: MD5

hash: "D\002\375h\237\322\024\341\370\3619k\310\333\016\343"
}

Remove RPC

Remove the specified file from the target.

RPC to 10.105.57.106:57900

RPC start time: 21:07:57.089554

————————————————————— File Remove Request-----—-——————————————
remote file: "harddisk:/sample.txt"

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

https://github.com/openconfig/gnoi/blob/main/bgp/bgp.proto
https://github.com/openconfig/gnoi/blob/main/diag/diag.proto

| YANG Data Models

RPC end time: 21:09:27.796217
File removal harddisk:/sample.txt successful

Reboot RPC

Reloads a requested target.

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536

RPC start time: 21:12:49.811561
method: COLD

message: "Test Reboot"
subcomponents {

origin: "openconfig-platform"
elem {

name: "components"

}

elem {

name: "component"

key {

key: "name"
value: "O/RPO"

elem {

name: "state"

}

elem {

name: "location"

RPC end time: 21:12:50.023604
Set Package RPC

Places software package on the target.

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536

RPC start time: 15:33:34.378745

Sending SetPackage RPC

package {

filename: "harddisk:/giso image repo/<platform-version>-giso.iso"
activate: true

}

method: MD5

hash: "C\314\207\354\217\270=\021\341y\355\240\274\003\034\334"
RPC end time: 15:47:00.928361

Reboot Status RPC

Returns the status of reboot for the target.

RPC to 10.105.57.106:57900
RPC start time: 22:27:34.209473

subcomponents {
origin: "openconfig-platform"

gnoirees I

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |
. Configure Interfaces Using Data Models in a gRPC Session

elem {

name: "components"
}

elem {

name: "component"
key {

key: "name"
value: "O/RPO"
}

}

elem {

name: "state"

}

elem

name: "location"

}
}

RPC end time: 22:27:34.319618

Active : False

Wait : O

When : O

Reason : Test Reboot
Count : O

Configure Interfaces Using Data Models in a gRPC Session

Google-defined remote procedure call () is an open-source RPC framework. gRPC supports IPv4 and IPv6
address families. The client applications use this protocol to request information from the router, and make
configuration changes to the router.

The process for using data models involves:

* Obtain the data models.
* Establish a connection between the router and the client using gRPC communication protocol.

» Manage the configuration of the router from the client using data models.

)

Note Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide.

In this section, you use native data models to configure loopback and ethernet interfaces on a router using a
gRPC session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER2 are label edge routers, and two routers

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models

Step 1

Configure Interfaces Using Data Models in a gRPC Session .

LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper IP addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

Figure 5: Network Topology fo.

r gRPC session

Controller Out-of-band network
i oocc
3
198.18.1.127/24
v
198.18.1.11/24 198.18.1.111/24 198.18.1.112/24 198.18.1.12/24
% g0/0/0/0 % go/0/0f2 % g0/0/0/0 %
172.16.1.0/31 172.16.2.4/31 172.16.2.0/31
LER1 LSR1 LSR2 LER2
lo0 lo0 100 loD
172.16.255.1/32 172.16.255.101/32 172.16.255.102/32 172.16.255.2/32
g0/
172.16.1.2/31 g0/0/0A .
=1
172.16.2.2/31 g

You use Cisco IOS XR native model cisco-10S-XR-ifmgr-cfg.yang to programmatically configure router

LERI.

Before you begin

* Retrieve the list of YANG modules on the router using NETCONF monitoring RPC. For more information

* Configure Transport Layer Security (TLS). Enabling gRPC protocol uses the default HTTP/2 transport
with no TLS. gRPC mandates AAA authentication and authorization for all gRPC requests. If TLS is
not configured, the authentication credentials are transferred over the network unencrypted. Enabling
TLS ensures that the credentials are secure and encrypted. Non-TLS mode can only be used in secure

internal network.

Enable gRPC Protocol

To configure network devices and view operational data, gRPC proptocol must be enabled on the server. In this example,
you enable gRPC protocol on LERI1, the server.

Note

Cisco IOS XR 64-bit platforms support gRPC protocol. The 32-bit platforms do not support gRPC protocol.

a) Enable gRPC over an HTTP/2 connection.

Example:

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |

. Configure Interfaces Using Data Models in a gRPC Session

Step 2

b)

Router#configure
Router (config) #grpc
Router (config-grpc) #port <port-number>

The port number ranges from 57344 to 57999. If a port number is unavailable, an error is displayed.
Set the session parameters.

Example:

Router (config) #grpc {address-family | dscp | max-request-per-user | max-request-total | max-streams

max-streams-per-user | no-tls | tlsvl-disable | tls-cipher | tls-mutual | tls-trustpoint |
service-layer | vrf}
where:

* address-family: set the address family identifier type.

* dscp: set QoS marking DSCP on transmitted gRPC.

* max-request-per-user: set the maximum concurrent requests per user.
* max-request-total: set the maximum concurrent requests in total.

* max-streams: set the maximum number of concurrent gRPC requests. The maximum subscription limit is 128
requests. The default is 32 requests.

* max-streams-per-user: set the maximum concurrent gRPC requests for each user. The maximum subscription
limit is 128 requests. The default is 32 requests.

* no-tls: disable transport layer security (TLS). The TLS is enabled by default
* tlsvl-disable: disable TLS version 1.0

* service-layer: enable the grpc service layer configuration.

This parameter is not supported in Cisco ASR 9000 Series Routers, Cisco NCS560 Series Routers, and Cisco
NCS540 series Routers.

* tls-cipher: enable the gRPC TLS cipher suites.
* tls-mutual: set the mutual authentication.
* tls-trustpoint: configure trustpoint.

* server-vrf: enable server vrf.

After gRPC is enabled, use the YANG data models to manage network configurations.

Configure the interfaces.

In this example, you configure interfaces using Cisco IOS XR native model cisco-10S-XR-ifmgr-cfg.yang. You gain
an understanding about the various gRPC operations while you configure the interface. For the complete list of operations,
see gRPC Operations, on page 36. In this example, you merge configurations with merge-config RPC, retreive operational
statistics using get-oper RPC, and delete a configuration using delete-config RPC. You can explore the structure of

the data model using YANG validator tools such as pyang.

LERI1 is the gRPC server, and a command line utility grpcc is used as a client on the controller. This utility does not
support YANG and, therefore, does not validate the data model. The server, LER1, validates the data mode.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

https://github.com/mbj4668/pyang

YANG Data Models

Configure Interfaces Using Data Models in a gRPC Session .

Note The OC interface maps all IP configurations for parent interface under a VLAN with index 0. Hence, do not
configure a sub interface with tag 0.

a) Explore the XR configuration model for interfaces and its IPv4 augmentation.

Example:

controller:grpc$ pyang --format tree --tree-depth 3 Cisco-IOS-XR-ifmgr-cfg.yang

Cisco-IOS-XR-ipv4d-
module: Cisco-IOS-

io-cfg.yang
XR-ifmgr-cfg

+--rw global-interface-configuration
| +--rw link-status? Link-status-enum
+--rw interface-configurations
+--rw interface-configuration* [active interface-name]

+--rw
\
+--rw
\
+--rw
\
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
\
+--rw

dampening
mtus
encapsulation

shutdown? empty

interface-virtual? empty

secondary-admin-state? Secondary-admin-state-enum
interface-mode-non-physical? Interface-mode-enum
bandwidth? uint32

link-status? empty

description? string

active Interface-active

interface-name xr:Interface-name
ipvd4-io-cfg:ipv4-network

ipvd-io-cfg:ipvé4-network-forwarding

b) Configure a loopback0 interface on LER1.

Example:

controller:grpc$ more xr-interfaces-lo0-cfg.json

{

"Cisco-I0S-XR-ifmgr-cfg:interface-configurations":
{ "interface-configuration": [

{

"active": "act",
"interface-name": "LoopbackO",
"description": "LOCAL TERMINATION ADDRESS",
"interface-virtual": [

null

] 4
"Cisco-IOS-XR-ipv4-io-cfg:ipv4d-network": {

"addresses": {

"primary": {
"address": "172.16.255.1",

"netmask": "255.255.255.255"

¢) Merge the configuration.

Example:

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |
Configure Interfaces Using Data Models in a gRPC Session

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server addr 198.18.1.11:57400 -json_in file xr-interfaces-giO-cfg.json
emsMergeConfig: Sending Reqgld 1

emsMergeConfig: Received RegId 1, Response '

L}

d) Configure the ethernet interface on LER1.

Example:

controller:grpc$ more xr-interfaces-giO-cfg.json
{
"Cisco-I0S-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [

{

"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"description": "CONNECTS TO LSR1 (g0/0/0/0)",
"Cisco-I0S-XR-ipv4-io-cfg:ipv4-network": {
"addresses": {
"primary": {
"address": "172.16.1.0",

"netmask": "255.255.255.254"

e) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server addr 198.18.1.11:57400 -json in file xr-interfaces-giO-cfg.json
emsMergeConfig: Sending ReqgId 1

emsMergeConfig: Received RegId 1, Response '

f) Enable the ethernet interface GigabitEthernet 0/0/0/0 on LERI to bring up the interface. To do this, delete shutdown
configuration for the interface.

Example:

controller:grpc$ grpcc -username admin -password admin -oper delete-config
-server addr 198.18.1.11:57400 -yang path "$(< xr-interfaces-giO-shutdown-cfg.json)"
emsDeleteConfig: Sending ReqId 1, yangJson {
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": ({
"interface-configuration": [

{

"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"shutdown": [

null

emsDeleteConfig: Received Regld 1, Response ''

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models

Step 3

Configure Interfaces Using Data Models in a gRPC Session .

Verify that the loopback interface and the ethernet interface on router LER1 are operational.

Example:

controller:grpc$ grpcc -username admin -password admin -oper get-oper
-server addr 198.18.1.11:57400 -oper yang path "$(< xr-interfaces-briefs-oper-filter.json)"

emsGetOper:

Sending ReqgId 1, yangPath {

"Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {
"interface-briefs": [

null
]

{ "Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {
"interface-briefs": {
"interface-brief": [

{

"interface-name": "GigabitEthernet0/0/0/0",
"interface": "GigabitEthernet0/0/0/0",
"type": "IFT GETHERNET",

"state": "im-state-up",

"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state”: "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string":
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000

}l

"ARPA",

"interface-name": "GigabitEthernet0/0/0/1",
"interface": "GigabitEthernet0/0/0/1",
"type": "IFT GETHERNET",

"state": "im-state-up",

"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state”: "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string":
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000

}l

"ARPA",

"interface-name": "LoopbackO",
"interface": "LoopbackO0",

"type": "IFT LOOPBACK",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state”: "im-state-up",

"encapsulation": "loopback",
"encapsulation-type-string": "Loopback",
"mtu": 1500,

"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 0

"interface-name": "MgmtEthO/RPO/CPU0/0",
"interface": "MgmtEthO0/RP0O/CPUO/O",

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |
. Configure Interfaces Using Data Models in a gRPC Session

"type": "IFT ETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,

"bandwidth": 1000000

"interface-name": "NullO",
"interface": "NullO",

"type": "IFT NULL",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "null",
"encapsulation-type-string": "Null",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,

"bandwidth": 0

emsGetOper: Reqgld 1, byteRecv: 2325

In summary, router LER1, which had minimal configuration, is now programmatically configured using data models
with an ethernet interface and is assigned a loopback address. Both these interfaces are operational and ready for network
provisioning operations.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

CHAPTER 5

Enhancements to Data Models

This section provides an overview of the enhancements made to data models.

* OpenConfig Data Model Enhancements, on page 50

* Install Label in oc-platform Data Model, on page 50

* OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models, on page 52
* OpenConfig YANG Model:SR-TE Policies, on page 57

» Aggregate Prefix SID Counters for OpenConfig SR YANG Module, on page 58

* OpenConfig YANG Model:AFT, on page 59

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |
. OpenConfig Data Model Enhancements

OpenConfig Data Model Enhancements

Table 3: Feature History Table

Install Label in oc-platform Data Model

Table 4: Feature History Table

Feature Name Release Information Description

Enhancements to Release 7.3.2 The openconfig-platform YANG
openconfig-platform YANG Data data model provides a structure for
Model querying hardware and software

router components via the
NETCONEF protocol. This release
delivers an enhanced
openconfig-platform YANG data
model to provide information
about:

* software version
+ golden ISO (GISO) label

» committed IOS XR packages

You can access this data model
from the Github repository.

The openconfig-platform (oc-platform.yang) data model is enhanced to provide the following data:
* IOS XR software version (optionally with GISO label)

* Type, description, operational status of the component. For example, a CPU component reports its
utilization, temperature or other physical properties.

* List of the committed IOS XR packages

To retrieve oc-platform information from a router via NETCONF, ensure you configured the router with the
SH server and management interface:

Router#show run

Building configuration...

'l TOS XR Configuration version = 7.3.2

!'! Last configuration change at Tue Sep 7 16:18:14 2016 by USERIL

netconf-yang agent ssh
ssh server netconf vrf default
interface MgmtEth 0/RP0O/CPU0/0
no shut
ipv4 address dhcp

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform.yang

| YANG Data Models

Install Label in oc-platform Data Model .

The following example shows the enhanced oPERATING SYSsTEM node component (line card or route processor)
of the oc-platform data model:

<component>
<name>IOSXR-NODE 0/RP0/CPUO</name>
<config>
<name>0/RP0/CPU0O</name>
</config>
<state>
<name>0/RP0/CPU0</name>
<type xmlns:idx="http://openconfig.net/yang/platform-types">idx:0PERATING SYSTEM</type>
<location>0/RP0/CPUO</location>
<description>IOS XR Operating System</description>
<software-version>7.3.2</software-version> —-—————————————————————— > Label Info
<removable>true</removable>
<oper-status xmlns:idx="http://openconfig.net/yang/platform-types">idx:ACTIVE</oper-status>
</state>
<subcomponents>
<subcomponent>
<name><platform>-af-ea-7.3.2v1.0.0.1</name>
<config>
<name><platform>-af-ea-7.3.2v1.0.0.1</name>
</config>
<state>
<name><platform>-af-ea-7.3.2v1.0.0.1</name>
</state>
</subcomponent>

The following example shows the enhanced oPERATING sysTEM UPDATE package component (RPMs) of the
oc-platform data model:

<component>

<name>I0SXR-PKG/1 <platform>-isis-2.1.0.0-r732</name>

<config>

<name><platform>-isis-2.1.0.0-r732</name>

</config>

<state>

<name><platform>-isis-2.1.0.0-r732</name>

<type xmlns:idx="http://openconfig.net/yang/platform-types">idx:0PERATING SYSTEM UPDATE</type>
<description>IOS XR Operating System Update</description>
<software-version>7.3.2</software-version>-—-———————————————————— > Label Info
<removable>true</removable>

<oper-status xmlns:idx="http://openconfig.net/yang/platform-types">idx:ACTIVE</oper-status>
</state>

</component>

Associated Commands
+ show install committed—Shows the committed IOS XR packages.

« show install committed summary—Shows a summary of the committed packages along with the
committed IOS XR version that is displayed as a label.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |
. OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models

OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute
Data Models

Table 5: Feature History Table

Feature Name Release Information Description

YANG Data Models for MPLS Release 7.3.2 This feature introduces the

OAM RPCs Cisco-IOS-XR-mpls-ping-act and
Cisco-IOS-XR-mpls-traceroute-act
YANG data models to

accommodate operations,
administration and maintenance
(OAM) RPCs for MPLS and
SR-MPLS.

You can access these Cisco IOS XR
native data models from the Github
repository.

The Cisco-IOS-XR-mpls-ping-act and Cisco-IOS-XR-mpls-traceroute-act YANG data models are introduced
to provide the following options:

* Ping for MPLS:
« MPLS IPv4 address

* MPLS TE
* FEC-129 Pseudowire
* FEC-128 Pseudowire

* Multisegment Pseudowire

* Ping for SR-MPLS:
* SR policy name or BSID with LSP end-point

¢ SR MPLS IPv4 address
* SR Nil-FEC labels
* SR Flexible Algorithm

* Traceroute for MPLS:
« MPLS IPv4 address

* MPLS TE

* Traceroute for SR-MPLS:
* SR policy name or BSID with LSP end-point

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr/732

| YANG Data Models
0AM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models .

¢ SR MPLS IPv4 address
* SR Nil-FEC labels
* SR Flexible Algorithm

The following example shows the ping operation for an SR policy and LSP end-point:

<mpls-ping xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-mpls-ping-act">
<sr-mpls>
<policy>
<name>srte c 10 ep 10.10.10.1</name>
<lsp-endpoint>10.10.10.4</1lsp-endpoint>
</policy>
</sr-mpls>
<request-options-parameters>
<brief>true</brief>
</request-options-parameters>
</mpls-ping>

Response:

<?xml version="1.0"?>
<mpls-ping-response xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-mpls-ping-act">
<request-options-parameters>
<exp>0</exp>
<fec>false</fec>
<interval>0</interval>
<ddmap>false</ddmap>
<force-explicit-null>false</force-explicit-null>
<packet-output>
<interface-name>None</interface-name>
<next-hop>0.0.0.0</next-hop>
</packet-output>
<pad>abcd</pad>
<repeat>5</repeat>
<reply>
<dscp>255</dscp>
<reply-mode>default</reply-mode>
<pad-tlv>false</pad-tlv>
</reply>
<size>100</size>
<source>0.0.0.0</source>
<destination>127.0.0.1</destination>
<sweep>
<minimum>100</minimum>
<maximum>100</maximum>
<increment>1</increment>
</sweep>
<brief>true</brief>
<timeout>2</timeout>
<ttl>255</ttl>
</request-options-parameters>
<replies>
<reply>
<reply-index>1</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>
</reply>
<reply>
<reply-index>2</reply-index>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |

. OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models

<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>

</reply>

<reply>
<reply-index>3</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>

</reply>

<reply>
<reply-index>4</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>

</reply>

<reply>
<reply-index>5</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>

</reply>

</replies>
</mpls-ping-response>

The following example shows the ping operation for an SR policy BSID and LSP end-point:

<mpls-ping xmlns="http://cisco.com/ns/yang/Cisco-I0OS-XR-mpls-ping-act">
<sr-mpls>
<policy>
<bsid>1000</bsid>
<lsp-endpoint>10.10.10.4</lsp-endpoint>
</policy>
</sr-mpls>
<request-options-parameters>
<prief>true</brief>
</request-options-parameters>
</mpls-ping>

Response:

<?xml version="1.0"?>
<mpls-ping-response xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-mpls-ping-act">
<request-options-parameters>
<exp>0</exp>
<fec>false</fec>
<interval>0</interval>
<ddmap>false</ddmap>
<force-explicit-null>false</force-explicit-null>
<packet-output>
<interface-name>None</interface-name>
<next-hop>0.0.0.0</next-hop>
</packet-output>
<pad>abcd</pad>
<repeat>5</repeat>
<reply>
<dscp>255</dscp>
<reply-mode>default</reply-mode>
<pad-tlv>false</pad-tlv>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models

</reply>
<size>100</size>
<source>0.0.0.0</source>

0AM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models .

<destination>127.0.0.1</destination>

<sweep>
<minimum>100</minimum>
<maximum>100</maximum>
<increment>1l</increment>
</sweep>
<brief>true</brief>
<timeout>2</timeout>
<ttl>255</ttl>
</request-options-parameters>
<replies>
<reply>
<reply-index>1</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>

<reply-addr>14.14.14.3</reply-addr>

<size>100</size>

</reply>

<reply>
<reply-index>2</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>

<reply-addr>14.14.14.3</reply-addr>

<size>100</size>

</reply>

<reply>
<reply-index>3</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>

<reply-addr>14.14.14.3</reply-addr>

<size>100</size>

</reply>

<reply>
<reply-index>4</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>

<reply-addr>14.14.14.3</reply-addr>

<size>100</size>

</reply>

<reply>
<reply-index>5</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>

<reply-addr>14.14.14.3</reply-addr>

<size>100</size>
</reply>
</replies>

</mpls-ping-response>

The following example shows the traceroute operation for an SR policy and LSP end-point:

<mpls-traceroute xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-mpls-traceroute-act">

<sr-mpls>
<policy>

<name>srte c 10 ep 10.10.10.1</name>
<lsp-endpoint>10.10.10.4</lsp-endpoint>

</policy>

</sr-mpls>

<request-options-parameters>
<pbrief>true</brief>

</request-options-parameters>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

. OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models

</mpls-traceroute>

Response:

<?xml version="1.0"?2>

YANG Data Models |

<mpls-traceroute-response xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-mpls-traceroute-act">

<request-options-parameters>
<exp>0</exp>
<fec>false</fec>
<ddmap>false</ddmap>
<force-explicit-null>false</force-explicit-null>
<packet-output>
<interface-name>None</interface-name>
<next-hop>0.0.0.0</next-hop>
</packet-output>
<reply>
<dscp>255</dscp>
<reply-mode>default</reply-mode>
</reply>
<source>0.0.0.0</source>
<destination>127.0.0.1</destination>
<pbrief>true</brief>
<timeout>2</timeout>
<ttl>30</ttl>
</request-options-parameters>
<paths>
<path>
<path-index>0</path-index>
<hops>
<hop>
<hop-index>0</hop-index>
<hop-origin-ip>11.11.11.1</hop-origin-ip>

<hop-destination-ip>11.11.11.2</hop-destination-ip>

<mtu>1500</mtu>
<dsmap-label-stack>
<dsmap-label>
<label>16003</label>
</dsmap-label>
</dsmap-label-stack>
<return-code>0</return-code>
<return-char> </return-char>
</hop>
<hop>
<hop-index>1</hop-index>
<hop-origin-ip>11.11.11.2</hop-origin-ip>

<hop-destination-ip>14.14.14.3</hop-destination-ip>

<mtu>1500</mtu>
<dsmap-label-stack>
<dsmap-label>
<label>3</label>
</dsmap-label>
</dsmap-label-stack>
<return-code>8</return-code>
<return-char>L</return-char>
</hop>
<hop>
<hop-index>2</hop-index>
<hop-origin-ip>14.14.14.3</hop-origin-ip>
<hop-destination-ip></hop-destination-ip>
<mtu>0</mtu>
<dsmap-label-stack/>
<return-code>3</return-code>
<return-char>!</return-char>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models
OpenConfig YANG Model:SR-TE Policies .

</hop>
</hops>
</path>
</paths>
</mpls-traceroute-response>

OpenConfig YANG Model:SR-TE Policies

Table 6: Feature History Table

Feature Name Release Information Description
OpenConfig YANG Model:SR-TE | Release 7.3.4 This release supports the
Policies OpenConfig (OC) Segment

Routing-Traffic Engineering
(SR-TE) YANG data model that
provides data definitions for SR-TE
policy configuration and associated
signaling and traffic engineering
protocols. Using the model, you can
stream a collection of SR-TE
operational statistics, such as color,
endpoint, and state.

You can access the OC data model
from the Github repository.

The OC SR-TE policies YANG Data Model supports Version 0.22. Subscribe to the following sensor path
to send a pull request to the YANG leaf, list, or container:

openconfig-network-instance:network-instances/network-instance/segment-routing/te-policies
The response from the router is a collection of SR-TE operational statistics, such as color, endpoint, and state.
Limitations

* Segment-list ID

* All locally-configured segment-lists have a unique segment-list ID except for the BGP TE controller.
Instead, the BGP TE controller uses the index of the segment-list as the segment-list ID. This ID
depends on the local position of the segment-list and can change over time. Therefore for BGP TE
controller, you must stream the entire table of the segment-list to ensure that the segment-list ID is
always up-to-date.

* Next-hop index

* The Next-hop container is imported from the openconfig-aft-common.yang module where the
next-hop index is defined as Uint64. However, the AFT OC in the FIB uses a positional value of
the index and does not identify the next-hop entry separately. Similarly, the next-hop container for
OC-SRTE ais also implemented as a positional value of the entry in the list. Ensure that you stream
the entire table of the next-hop to get a updated index along with the next-hop entry.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

https://github.com/openconfig/public/tree/master/release/models/mpls

YANG Data Models |
. Aggregate Prefix SID Counters for OpenConfig SR YANG Module

Aggregate Prefix SID Counters for OpenConfig SR YANG Module

Table 7: Feature History Table

Feature Name Release Information Description

Aggregate Prefix SID Counters for | Release 7.3.4 The following components are now

OpenConfig SR YANG Module available in the OpenConfig (OC)
Segment-Routing (SR) YANG
model:

* The aggregate-sid-counters
container in the sr-mpls-top
group to aggregate the prefix
segment identifier (SID)
counters across the router
interfaces.

 The aggregate-sid-counter
and the mpls-label key to
aggregate counters across all
the router interfaces
corresponding to traffic
forwarded with a particular
prefix-SID.

You can access the OC data model
from the Github repository.

The OpenConfig SR YANG model supports Version 0.3. Subscribe to the following sensor path:
openconfig-mpls/mpls/signaling-protocols/segment-routing/aggregate-sid-counters/aggregate-sid-counter/mpls-label /state

When a receiver subscribes to the sensor path, the router periodically streams the statistics to telemetry for
each SR-label. The default collection interval is 30 seconds.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

https://github.com/openconfig/public/tree/master/release/models/mpls

| YANG Data Models
OpenConfig YANG Model:AFT .

OpenConfig YANG Model:AFT

Table 8: Feature History Table

Feature Name Release Information Description

OpenConfig YANG Model:AFT | Release 7.3.4 This release supports the
OpenConfig Abstract Forwarding
Table (AFT) containers, such as
IPv4, IPv6, Network Instance, and
MPLS. With this support, the AFT
sends only essential interface
forwarding entries, such as the
next-hop, next-hop group, and
RSVP-TE for an IP prefix, to the
Network Management System
(NMS). Since the NMS receives
only essential entries, the
forwarding process is simplified.

You can access the OC data model
from the Github repository.

Supported Agents
The following agents are supported in the SAMPLE and ON-CHANGE modes:
* gNMI

» JOS-XR proprietary telemetry dial-in and dial-out

Limitations

* The Netconf agent is not supported on configuration and operation data.
* The ON-CHANGE mode is supported only at the path level as shown below:

* /network-instances/network-instance/afts/ipv4-unicast/ipv4-entry

* /network-instances/network-instance/afts/ipv6-unicast/ipv6-entry

* /network-instances/network-instance/afts/mpls/label-entry

* /network-instances/network-instance/afts/next-hop-groups/next-hop-group/state

* /network-instances/network-instance/afts/next-hop-groups/next-hop-group/next-hops/next-hop

* /network-instances/network-instance/afts/next-hops/next-hop

* The current implementation of the OC-AFT model, version 0.6.0 does not set the atomic flag for atomic
updates for gNMI.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

https://github.com/openconfig/public/tree/master/release/models/aft

YANG Data Models |
. OpenConfig YANG Model:AFT

Response

A SubscribeRequest message is sent by a gNMI client to request updates from the router for a specified set
of paths. The following SubscriptionResponse messages are sent by the router:

AFT IPv4 unicast

SubscribeResponse.update: <

timestamp: 1647978999525525791

prefix: <

origin: openconfig-network-instance

>

update: < path: < element: network-instances network-instance[name=default]
afts ipv4-unicast ipvé-entry[prefix=10.0.0.1/32] > < json ietf val:"{
"state": {

"prefix": "10.0.0.1/32",

"next-hop-group": "1152921642045939938"

}

o> >

SubscribeResponse.update: <

timestamp: 1647978999341662576

prefix: <

origin: openconfig-network-instance

>

update: < path: < element: network-instances network-instance[name=default]
afts ipvé4-unicast ipvé-entry[prefix=10.1.1.1/32] > < json ietf val:"{
"state": {

"prefix": "10.1.1.1/32",

"next-hop-group": "1152921779484853982"

}

o> >

AFT IPv6 unicast

SubscribeResponse.update: <

timestamp: 1647984444644492536

prefix: <

origin: openconfig-network-instance

>

update: < path: < element: network-instances network-instance[name=default]
afts ipv6-unicast ipvé-entry[prefix=50:50:58::331/128] > < json ietf val:"{
"state": {

"prefix": "50:50:58::331/128",

"next-hop-group": "1153062379534237025"

}

s s
List of MPLS entries within the AFT

SubscribeResponse.update: <

timestamp: 1648009876493069763

prefix: <

origin: openconfig-network-instance

>

update: < path: < element: network-instances network-instance[name=default]
afts mpls label-entry[label=12000] > < json ietf val:"{
"state": {

"label": 12000,

"next-hop-group": "1152921642046007012"

}

P> >

SubscribeResponse.update: <
timestamp: 1648011005293000000
prefix: <

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| YANG Data Models
OpenConfig YANG Model:AFT .

origin: openconfig-network-instance

>

update: < path: < element: network-instances network-instance[name=default]
afts mpls label-entry[label=12000] > < json ietf val:"{

"state": {

"label": 12000,
"packets-forwarded": "0",
"octets-forwarded": "0O"

}

P> >

AFT next-hop-group

SubscribeResponse.update: <
timestamp: 1648011006899606800
prefix: <
origin: openconfig-network-instance
>
update: < path: < element: network-instances network-instance[name=default]
afts next-hop-groups next-hop-group[id=1152921642045939938] >
< json_ietf val:"{
"next-hops": {

"next-hop": {

"index": "1152921642045903362",
"state": {

"index": "1152921642045903362",
"weight": "O"

}

}

}

P> >

>

SubscribeResponse.update: <

timestamp: 1648011006899606800

prefix: <

origin: openconfig-network-instance

>

update: < path: < element: network-instances network-instance[name=default]
afts next-hop-groups next-hop-group[id=1152921642045939938] >

< json_ietf val:"{

"next-hops": {

"next-hop": {

"index": "1152921642045903355",
"state": {

"index": "1152921642045903355",
"weight": "O"

}

}

}

P> >

SubscribeResponse.update: <

timestamp: 1648011006899606800

prefix: <

origin: openconfig-network-instance

>

update: < path: < element: network-instances network-instance[name=default]
afts next-hop-groups next-hop-group[id=1152921642045939938] >
< json_ietf val:"{

"next-hops": {

"next-hop": {

"index": "1152921642045903348",

"state": {

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

YANG Data Models |
. OpenConfig YANG Model:AFT

"index": "1152921642045903348",
"weight": "O"

}
}
}
o> >

AFT next-hops next-hop

SubscribeResponse.update: <

timestamp: 1648011006713962739

prefix: <

origin: openconfig-network-instance

>

update: < path: < element: network-instances network-instance[name=default]
afts next-hops next-hop[index=1152921642045903362] > < json_ietf val:"{

"state": {
"index": "1152921642045903362",
"ip-address": "13.1.1.1"

}I

"interface-ref": {

"state": {

"interface": "tunnel-ip2",
"subinterface": 0

}

}

P> >

SubscribeResponse.update: <

timestamp: 1648011006713954259

prefix: <

origin: openconfig-network-instance

>

update: < path: < element: network-instances network-instance[name=default]
afts next-hops next-hop[index=1152921642045903355] > < json_ietf val:"{

"state": {
"index": "1152921642045903355",
"ip-address": "13.1.1.2"

}I

"interface-ref": {

"state": {

"interface": "tunnel-ip3",
"subinterface": 0

}

}

P> >

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

L]
g
-
=
=
-
.-
Z
[+
[+d
i
4

PART I I

Automation Scripts

* New and Changed Feature Information, on page 65

* Achieve Network Operational Simplicity Using Automation Scripts, on page 67
* Config Scripts, on page 71

» Exec Scripts, on page 87

* Process Scripts, on page 101

* EEM Scripts, on page 113

* Model-Driven Command-Line Interface, on page 123

* Manage Automation Scripts Using YANG RPCs, on page 131

* Script Infrastructure and Sample Templates, on page 139

CHAPTER 6

New and Changed Feature Information

This section lists all the new and changed features for the automation script features.

* New and Changed Automation Script Features, on page 65

New and Changed Automation Script Features

Feature Description Changed | Where Documented
in
Release

Operational | This feature provides you the flexibility to deploy your |Release | Achieve Network
Simplicity automation code on your router instead of running it on |7.3.2 Operational Simplicity
Using external controllers. With automation now available Using Automation
Automation |on-box and integrated into the IOS XR software, the Scripts, on page 67
Scripts router processes data locally using Python libraries that

provide direct access to the underlying device operations

to execute CLI commands, monitor router configurations

and status continuously. With on-box automation, you

can efficiently control the end-to-end operations from

script enablement to deployment without depending on

the connectivity, resource, and speed of an external

controller.
Model-driven | This feature enables you to use a traditional CLI command | Release | Model-Driven CLI to
CLI to Show |to display YANG data model structures on the router 732 Display Data Model
YANG console and also obtain operational data from the router Structure, on page 123
Operational |in JSON or XML formats. The functionality helps you
Data transition smoothly between CLI and YANG models,

easing data retrieval from your router and network.

This feature introduces the show yang oper ational
command.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

. New and Changed Automation Script Features

Automation Scripts |

Feature Description Changed | Where Documented

in

Release
Model-driven | This feature enables you to display the configuration data | Release | Model-Driven CLI to
CLI to for Cisco IOS XR platforms in both JSON and XML 7.3.2 Display Running
Display formats. Configuration in XML
Running . | This feature introduces the show run | [xml | json] and JSON Formats, on
Configuration page 127
in XML and command.
JSON
Formats
Manage This feature enables you to use remote procedure calls |Release |Manage Automation
Automation | (RPCs) on YANG data models to perform the same 7.3.2 Scripts Using YANG
Scripts Using | automated operations as CLIs, such as edit configurations RPCs, on page 131
YANG RPCs | or retrieve router information.
Contextual | When you create and run Python scripts on the router, |Release |Script Infrastructure
Script this feature enables a contextual interaction between the | 7.3.2 and Sample Templates,
Infrastructure | scripts, the IOS XR software, and the external servers. on page 139

This context, programmed in the script, uses Cisco IOS
XR Python packages, modules, and libraries to:

* obtain operational data from the router
* set configurations and conditions

* detect events in the network and trigger an
appropriate action

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

CHAPTER 7

Achieve Network Operational Simplicity Using
Automation Scripts

Table 9: Feature History Table

Feature Name Release Information Description
Operational Simplicity Using Release 7.3.2 This feature lets you host and
Automation Scripts execute your automation scripts

directly on a router running I0S XR
software, instead of managing them
on external controllers. The scripts
available on-box can now leverage
Python libraries, access the
underlying router information to
execute CLI commands, and
monitor router configurations
continuously. This results in setting
up a seamless automation workflow
by improving connectivity, access
to resources, and speed of script
execution.

The following categories of on-box
scripts are used to achieve
operational simplicity:

Network automation is imperative to deploy and manage the networks with large-scale cloud-computing
architectures. The automation can be achieved through standard model-driven data models. To cater to the
automation requirements, you leverage the Cisco IOS XR infrastructure to make API calls and run scripts
from an external controller. These off-box scripts take advantage of the exposed interfaces such as NETCONF,
SNMP, SSH to work on the network element. However, there is need to maintain an external controller to
interact with the router.

To simplify the operational infrastructure, the automation scripts can be run on the router, eliminating the
need for an external controller. The execution of the different types of scripts are faster and reliable as it is
not dependent on the speed or network reachability of the external controller. Most script types interact with
I0S XR Software using standard protocols such as NETCONF. You can download script to the router,
configure scripts, view operational data, and set responses to events in the router.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Explore the Types of Automation Scripts

In summary, on-box scripting is similar to off-box scripting, with the exception that the management software
that runs in an external controller is now part of the router software. The scripts programmatically automate
configuration and operational tasks on the network devices. You can create customized scripts that are based
on your network requirement and execute scripts on routers running Cisco IOS XR operating system. The
packages that support scripting are provided in the software image.

\)

Note You can create scripts using Python 3.5.

*» Explore the Types of Automation Scripts, on page 68

Explore the Types of Automation Scripts

There are four types of on-box automation scripts that you can leverage to automate your network operations:
* Configuration (Config) scripts
* Execution (Exec) scripts
* Process scripts

* EEM scripts

The following table provides the scope and benefit of on-box scripts:

Table 10: On-Box Automation Scripts

Config Scripts Exec Scripts Process Scripts EEM Scripts

What is the scope of
the script?

Enforce contextual
and conditional
changes to
configurations,
validate
configurations
before committing
the changes to detect
and notify potential
errors. If
configuration does
not comply with the
rules that are defined
in the script, an
action can be
invoked. For
example, generate a
warning, syslog
message, or halt a
commit operation.

Run operational
commands or RPCs,
process the output,
generate syslogs,
configure system,
perform system
action commands
such as system
reload, process
restarts, and collect
logs for further
evaluation.

Daemonize to
continuously run as
an agent on the
router to execute
additional checks
outside traditional
ZTP. Daemonized
scripts are similar to
exec scripts but run
continuously. The
script executes
operational
commands on the
router and analyzes
the output.

Run operational
commands or RPCs,
generate, and
determine the next
steps like logging
the root cause or
changing device
configuration. Event
policies can upload
the output of event
scripts to an on-box
or off-box location
for further analysis.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Explore the Types of Automation Scripts .

Config Scripts

Exec Scripts

Process Scripts

EEM Scripts

How to invoke the
script?

All config scripts are
processed
automatically when
commit command is
executed on the
router.

Exec script is
invoked manually
via CLI command or
RPC.

Process script is
activated via
configuration CLI
command.

Event scripts are
invoked by defined
event policies in
response to a system
event and allow for
immediate action to
take effect.

What are the main
benefits of using the
script?

Simplifies complex
configurations and
averts potential
errors before a
configuration is
committed.

Ensures that the
network
configuration
complies with rules
and policies that are
defined in the script.

Collects operational
information, and
decreases the time
that is involved in
troubleshooting
issues.

Provides flexibility
in changing the
input parameters for
every script run.
This fosters dynamic
automation of
operational
information.

Runs scripts as a
daemon to
continuously
perform tasks that
are not transient.

Automates log
collection upon
detecting error
conditions that are
defined by event
policies.

Uploads the output
of event scripts to an
on-box or off-box
location for further
analysis.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Explore the Types of Automation Scripts

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

CHAPTER 8

Config Scripts

Cisco IOS XR config scripts can validate and make modifications to configuration changes. They allow device
administrators to enforce custom configuration validation rules, or to simplify certain repetitive configuration
tasks. These scripts are invoked automatically when you change a configuration and commit the changes.
When a configuration commit is in progress, a config script inserts itself into the commit process. The config
script can modify the current config candidate. For example, consider you want to maintain certain parameters
for routers such as switched off ports or security policies. The config script is triggered to validate the updated
configuration and take appropriate action. If the change is valid, the script allows committing the new
configuration. If the configuration is invalid, or does not adhere to the enforced constraints, the script notifies
you about the mismatch and blocks the commit operation. Overall, config scripts help to maintain crucial
device parameters, and reduce human error in managing the network.

When you commit or validate a configuration change, the system invokes each of the active scripts to validate
that change. Config scripts can perform the following actions:

* Analyze the proposed new configuration.

« If the configuration is invalid, block the commit by returning an error message along with the set of
configuration items to which it relates.

* Return a warning message with the related details but does not block the commit operation.

* Modify the configuration to be included in the commit operation to make the configuration valid, or to
simplify certain repetitive configuration tasks. For example, where a value needs duplicating between
one configuration item and another configuration item.

* Generate system log messages for in-depth analysis of the configuration change. This log also helps in
troubleshooting a failed commit operation.

Config Scripts Limitations
The following are the configuration and software restrictions when using config scripts:
* Config scripts cannot make modifications to configuration that is protected by CCV process, in particular:
* Script checksum configuration.
* Other sensitive security configuration such as AAA configuration.
* Config scripts do not explicitly support importing helper modules or other custom imports to provide

shared functionality. Although such imports appear to function correctly when set up, they can potentially
represent a security risk becaue there is no checksum validation on the imported modules. Modifications

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Workflow to Run Config Scripts

to these imported modules are not automatically detected. To reflect changes to the imported module in
the running scripts, you must manually unconfigure and reconfigure any scripts using the imported
module.

Get Started with Config Scripts

Config scripts can be written in Python 3.5 programming language using the packages that Cisco supports.
For more information about the supported packages

This chapter gets you started with provisioning your Python automation scripts on the router.

)

Note This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router.

» Workflow to Run Config Scripts, on page 72
* Manage Scripts, on page 79
» Example: Validate and Activate an SSH Config Script, on page 81

Workflow to Run Config Scripts

Complete the following tasks to provision config scripts:

* Enable the config scripts feature—Globally activate the config scripts feature on the router using
configuration validation scripts command.

» Download the script—Store the config script on an HTTP server or copy to the harddisk of the router.
Add the config script from the HTTP server to the script management repository
(hardisk:/mirror/script-mgmt) on the router using the script add config command.

* Validate the script—Check script integrity and authenticity using the script config script.py checksum
command. A script cannot be used unless the checksum is configured. After the checksum is configured,
the script is active.

N

Note A config script is invoked automatically when you validate or commit a
configuration change to modify the candidate configuration.

* Validate the configuration—Ensure that the configuration changes comply with the predefined conditions
in the script and uncover potential errors using validate config-scripts apply-policy-modifications
command.

* View the script execution details—Retrieve the operational data using the show operational Config
Global Validation Script Execution command.

The following image shows a workflow diagram representing the steps involved in using a config script:

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Enable Config Scripts Feature .

Enable the config scripts feature

configuration validation scripts

h J

Create script and store the script in a
HTTP server or copy to routers’ harddisk

Y
Add script from HTTP server or harddisk
to the script management repositary

| script add |

Y
Verify that the script is added successfully

| show script status |

- O '
™ ,-"'Fcnecksum oy - Configure checksum
L maten? | script config <script> checksum |
i Yes Validate script

" |va|idat|a config-scripts apply-mlit:y-madiﬁcaﬁonﬂ -

" Config scripts are |
invoked automatically |

Rectify gaps-errors/warnings

show configuration failed if-committed
show configuration

Validation
successful?

Yes
h J

Commit configuration L

| Config scripts are |
invoked automatically |

Mo Rectify errors/blockers
show configuration failed if-commited

Commit
successful?

Yes

i J
View results

show running-config
show configuration commit changes last 1
show configuration commit changes original last-modified

SF050

Script run
CLI command
L kv

Internal operation

Enable Config Scripts Feature

Config scripts are driven by commit operations. To run the config scripts, you must enable the feature on the
router. You must have root user privileges to enable the config scripts.

)

Note You must commit the configuration to enable the config scripts feature before committing any script checksum
configuration.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Download the Script to the Router

Step 1 Enable the config scripts.

Example:

Router (config) #configuration validation scripts
Step 2 Commit the configuration.

Example:

Router (config) #commit

Download the Script to the Router

To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Script Type Download Location

config harddisk:/mirror/script-mgmt/config
exec harddisk:/mirror/script-mgmt/exec
process harddisk:/mirror/script-mgmt/process
eem harddisk:/mirror/script-mgmt/eem

The scripts are added to the script management repository using two methods:

» Method 1: Add script from a server

» Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add config-script.py script to the script management repository.

Step 1 Add the script to the script management repository on the router using one of the two options:
» Add Script From a Server

Add the script from a configured HTTP server or the harddisk location in the router.

Router#script add config <script-location> <script.py>

The following example shows a config script config-script.py downloaded from an external repository
http://192.0.2.0/scripts:

Router#script add config http://192.0.2.0/scripts config-script.py
Fri Aug 20 05:03:40.791 UTC
config-script.py has been added to the script repository

You can add a maximum of 10 scripts simultaneously.

Router#script add config <script-location> <scriptl.py> <script2.py> ... <scriptlO.py>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Step 2

Configure Checksum for Config Script .

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.

Router#script add config http://192.0.2.0/scripts config-script.py checksum SHA256 <checksum-value>
For multiple scripts, use the following syntax to specify the checksum:

Router#script add config http://192.0.2.0/scripts <scriptl.py> <scriptl-checksum> <script2.py>
<script2-checksum>
. <scriptlO.py> <scriptlO-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Note Only SHA256 checksum is supported.

» Copy the Script from an External Repository

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.

Router#scp userx@192.0.2.0:/scripts/config-script.py /harddisk:/

b. Add the script from the harddisk to the script management repository.

Router#script add config /harddisk:/ config-script.py
Fri Aug 20 05:03:40.791 UTC
config-script.py has been added to the script repository

Verify that the scripts are downloaded to the script management repository on the router.

Example:

Router#show script status
Router#show script status
Wed Aug 25 23:10:50.453 UTC

Name | Type | Status | Last Action | Action Time

config-script.py | config | Config Checksum | NEW | Tue Aug 24 10:18:23 2021

Script config-script.py is copied to harddisk: /mirror/script-mgmt/config directory on the router.

Configure Checksum for Config Script

Every script is associated with a checksum hash value. This value ensures the integrity of the script, and that
the script is not tampered with. The checksum is a string of numbers and letters that act as a fingerprint for
script. The checksum of the script is compared with the configured checksum. If the values do not match, the
script is not run and a syslog warning message is displayed.

It is mandatory to configure the checksum to run the script.

)

Note Config scripts support SHA256 checksum.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |

. Configure Checksum for Config Script

Step 1

Step 2

Step 3

Before you begin
Ensure that the following prerequisites are met before you run the script:

1. Enable Config Scripts Feature, on page 73
2.

Retrieve the SHA256 checksum hash value for the script. Ideally this action would be performed on a trusted device,
such as the system on which the script was created. This minimizes the possibility that the script is tampered with.
However, if the router is secure, you can retrieve the checksum hash value from the IOS XR Linux bash shell.
Example:

Router#run

[node0 RPO CPUO:~]$sha256sum /harddisk:/mirror/script-mgmt/config/config-script.py
94336£3997521d6elaecOee6£faab0233562d53d4de7b0092e80b53caed58414b
/harddisk:/mirror/script-mgmt/config/config-script.py

Make note of the checksum value.

View the status of the script.

Example:

Router#show script status detail
Fri Aug 20 05:04:13.539 UTC

Name | Type | Status | Last Action | Action Time
config-script.py | config | Config Checksum | NEW | Fri Aug 20 05:03:41 2021
Script Name : config-script.py
History:
1. Action : NEW

Time : Fri Aug 20 05:03:41 2021

Description : User action IN_CLOSE WRITE

The status shows that the checksum is not configured.

Configure the checksum.

Example:

Router#configure

Router (config) #script config config-script.py checksum SHA256
94336£3997521d6elaeclee6faab0233562d53d4de7b0092e80b53caed58414b
Router (config) #commit

Tue Aug 24 10:23:10.546 UTC

Router (config) #end

Note When you commit this configuration, the script is automatically run to validate the resulting running
configuration. If the script returns any errors, this commit operation fails. This way, the running configuration
always remains valid with respect to all currently active scripts with checksums configured.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts
Validate or Commit Configuration to Invoke Config Script .

If you are configuring multiple scripts, the system decides an appropriate order to run the scripts. However, you can
control the order in which scripts execute using a priority value. For more information on configuring the priority value,
see Control Priority When Running Multiple Scripts, on page 80.

Step 4 Verify the status of the script.

Example:

Router#show script status detail
Fri Aug 20 05:06:17.296 UTC

Name | Type | Status | Last Action | Action Time
config-script.py | config | Ready | NEW | Fri Aug 20 05:03:41 2021
Script Name : config-script.py
Checksum : 94336£3997521d6elaeclee6faab0233562d53d4de7b0092e80b53caed58414b
History:
1. Action : NEW

Time : Fri Aug 20 05:03:41 2021

Checksum : 94336£3997521d6elaeclee6faab0233562d53d4de7b0092e80b53caed58414b

Description : User action IN CLOSE WRITE

The status rReady indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script is not
run, and the commit operation that triggered the script is rejected. It is mandatory for the checksum values to match for
the script to run.

Validate or Commit Configuration to Invoke Config Script

You can validate a configuration change on the set of active config scripts (including any scripts newly
activated as part of the configuration change) before committing the changes. This validation ensures that the
configuration complies with predefined conditions defined in the active scripts based on your network
requirements. With validation, you can update the target configuration buffer with any modifications that are
made by the config scripts. You can review the target configuration using the show configuration command,
and further refine the changes to resolve any outstanding errors before revalidating or committing the
configuration.

\)

Note Ifthe config script rejects one or more items in the commit operation, the entire commit operation is rejected.

Before you begin
Ensure that the following prerequisites are met before you run the script:

1. Enable Config Scripts Feature, on page 73

2. Configure Checksum for Config Script, on page 75

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |

. Validate or Commit Configuration to Invoke Config Script

Step 1

Step 2

Step 3

Step 4

Validate the configuration with the conditions in the config script.

Example:

Router (config) #validate config-scripts apply-policy-modifications
Tue Aug 31 08:30:38.613 UTC

% Policy modifications were made to target configuration, please issue 'show configuration'
from this session to view the resulting configuration
figuration' from this session to view the resulting configuration

The output shows that there are no errors in the changed configuration. You can view the modifications made to the target
configuration.

Note If you do not want the config buffer to be updated with the modifications, omit the apply-policy-modifications
keyword in the command.

The script validates the configuration changes with the conditions set in the script. Based on the configuration,
the script stops the commit operation, or modifies the configuration.

View the modified target configuration.

Example:

Router (config) #show configuration

Tue Aug 31 08:30:56.833 UTC

Building configuration...

!'l TOS XR Configuration 7.3.2

script config config-script.py checksum SHA256

94336£3997521d6elaeclee6faab0233562d53d4de7b0092e80b53caed58414b
d342adb35cbc8alcd4b6eal63d0eda2d58

........... configuration details

Commit the configuration.

Example:
Router (config) #commit
Tue Aug 31 08:31:32.926 UTC

If the script returns an error, use the show configuration failed if-committed command to view the errors. If there are
no validation errors, the commit operation is successful including any modifications that are made by config scripts.

You can view the recent commit operation that the script modified, and display the original configuration changes before
the script modified the values using show configuration commit changes original last-modified command.

If the commit operation is successful, you can check what changes were committed including the script modifications
using show configuration commit changeslast 1 command.

Note If a config script returns a modified value that is syntactically invalid, such as an integer that is out of range,
then the configuration is not converted to CLI format for use in operational commands. This action impacts
the validate config-scripts apply-policy-modifications command and show configuration command to
view the modifications, and show configuration failed [if-committed] command during a failed commit
operation.

After the configuration change is successful, view the running configuration and logs for details.

Example:

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Manage Scripts .

Router (config) #show logging
Tue Aug 31 08:31:54.472 UTC
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
Console logging: Disabled
Monitor logging: level debugging, 0 messages logged
Trap logging: level informational, 0 messages logged
Buffer logging: level debugging, 13 messages logged

Log Buffer (2097152 bytes):

———————————————————— snipped for brevity -------"-""""""""""""-"--"""-"-":0-
Configuration committed by user 'cisco'. Use 'show configuration commit changes
1000000006"' to view the changes.

Manage Scripts

This section shows the additional operations that you can perform on a script.

Delete Config Script from the Router

Step 1

Step 2

Step 3

You can delete a config script from the script management repository using the script remove command.

View the active scripts on the router.

Example:

Router#show script status
Wed Aug 24 10:10:50.453 UTC

Name | Type | Status | Last Action | Action Time

ssh config script.py | config | Ready | NEW | Tue Aug 24 09:18:23 2021

Ensure the script that you want to delete is present in the repository.

Alternatively you can also view the list of scripts from the IOS XR Linux bash shell.

[node0 RPO_CPUO:/harddisk:/mirror/script-mgmt/config]$ls -lrt
total 1
-rw-rw-rw-. 1 root root 110 Aug 24 10:44 ssh config script.py

Delete script ssh_config_script.py.

Example:

Router#script remove config ssh_config_script.py
Tue Aug 24 10:19:38.170 UTC
ssh _config script.py has been deleted from the script repository

You can also delete multiple scripts simultaneously.

Router#script remove config samplel.py sample2.py sample3.py

Verify that the script is deleted from the subdirectory.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |

. Control Priority When Running Multiple Scripts

Example:

Router#show script status
Tue Aug 24 10:24:38.170 UTC
No scripts found

The script is deleted from the script management repository.

If a config script is still configured when it is removed, subsequent commit operations are rejected. So, you must also
undo the configuration of the script:

Router (config) #no script config ssh_config_script.py
Router (config) #commit

Control Priority When Running Multiple Scripts

Step 1

Step 2

Step 3

If the set of active scripts includes two (or more) that may attempt to modify the same configuration item but
to different values, whichever script runs last takes precedence. The script that was last run supersedes the
values written by the script (or scripts) that ran before it. It is recommended to avoid such dependencies
between scripts. For example, you can combine such scripts into a single script. If the dependency cannot be
resolved, you can specify which script takes precedence by ensuring it runs last.

Priority can also be used to ensure scripts run in an optimal order, which may be important if scripts consume
resources and impacts performance. For example, consider that script A sets configuration that is validated
by script B. Without a set priority, the system may run script B first, then script A, and then script B a second
time to validate the changes made by script A. With a configured priority, the system ensures that script A
runs first, and script B needs to run only once.

The priority value is an integer between 0-4294967295. The default value is 500.

Consider script samplel.py depends on sample?2.py to validate the configuration that the script sets. The
script samplel.py must be run first, followed by sample2.py. Configure the priority to ensure that the system
runs the scripts in a specified order.

Configure script samplel.py with a lower priority.

Example:

Router (config) #script config samplel.py checksum sha256
2b061lfllede3clcOcl8flee97269fd342adb35cbc8alcd4b6eal063d0eda2d58
priority 10

Configure script sample2.py with a higher priority.

Example:

Router (config) #script config sample2.py checksum sha256
2fa34b64542f005ed58dcaalf3560e92a03855223e130535978£8¢c35bc21290c¢c
priority 20

Commit the configuration.

Example:

Router (config) #commit

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Example: Validate and Activate an SSH Config Script .

The system checks the priority values, and runs the one with lower priority first (samplel.py), followed by the one with
the higher priority value (sample2.py).

Example: Validate and Activate an SSH Config Script

This section presents examples for config script that enforces various constraints related to SSH configuration,
including making modifications to the configuration in some cases. The following sub-sections illustrate the

behaviour of this script in various scenarios.

Before you begin
Ensure you have completed the following prerequisites before you validate the script:

1. Enable config scripts feature on the router. See Enable Config Scripts Feature, on page 73.

2. Create a config script ssh_config_script.py. Store the script on an HTTP server or copy the script to

the harddisk of the router.

import cisco.config validation as xr
from cisco.script mgmt import xrlog
syslog = xrlog.getSysLogger ('xr cli config')

def check ssh late cb(root):
SSH = "/crypto-ssh-cfg:ssh"
SERVER = "/crypto-ssh-cfg:ssh/server"
SESSION LIMIT = "session-limit"
LOGGING = "logging"
RATE LIMIT = "rate-limit"
v2 = "v2"
server = root.get node (SERVER)
if server is None:
xr.add error (SSH, "SSH must be enabled.")

if server
session limit = server.get node (SESSION LIMIT)
rate limit = server.get node (RATE LIMIT)
ssh logging = server.get node (LOGGING)
ssh v2 = server.get node(V2)

if session limit is None or session limit.value >= 100:
server.set node (SESSION LIMIT, 80)
if rate limit.value == 60:

xr.add warning(rate limit, "RATE LIMIT should not be set to default value")

if not ssh logging:
server.set node (LOGGING)
if not ssh v2:
xr.add error (server, "Server V2 need to be set")

xr.register validate callback(["/crypto-ssh-cfg:ssh/server/*"], check ssh late cb)

The script checks the following actions:

* Check if SSH is enabled. If not, generate an error message SSH must be enabled and stop the commit

operation.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |

. Scenario 1: Validate the Script Without SSH Configuration

* Check if the rate-limit is set to 60, display a warning message that the RATE LIMIT should not be
set to default value and allow the commit operation.

¢ Check if the session-limit is set. If the limit is 100 sessions or more, set the value to 80 and allow
the commit operation.

* Set the logging if not already enabled.

3. Add the script from HTTP server or harddisk to the script management repository.

Scenario 1: Validate the Script Without SSH Configuration

Step 1

Step 2

Step 3

Step 4

In this example, you validate a script without SSH configuration. The script is programmed to check the SSH
configuration. If not configured, the script instructs the system to display an error message and stop the commit
operation until SSH is configured.

Configure the checksum to verify the authenticity and integrity of the script. See Configure Checksum for Config Script,
on page 75.

Validate the config script.

Example:

Router (config) #validate config-scripts apply-policy-modifications
Wed Sep 1 23:21:34.730 UTC

)

% Validation of configuration items failed. Please issue 'show configuration failed if-committed'
from this
session to view the errors

The validation of the configuration failed.

View the configuration of the failed operation.

Example:

Router#show configuration failed if-committed

Wed Sep 1 22:01:07.492 UTC

!'! SEMANTIC ERRORS: This configuration was rejected by !! the system due to semantic errors.
!l The individual errors with each failed configuration command can be found below.

script config ssh config script.py checksum SHA256
2pb061fllede3clc0cl8flee97269fd342adb35cbc8alcd4bbeal 063d0eda2d58
!'1% ERROR: SSH must be enabled.

end

The message for the failure is displayed. Here, the error ssi must be enabled is displayed as programmed in the script.
The script stops the commit operation because the changes do not comply with the rule set in the script.

Check the syslog output for the count of errors, warnings, and modifications.

Example:

Router#show logging | in Error

Wed Sep 1 22:02:05.559 UTC

Router:Wed Sep 1 22:45:05.559 UTC: ccv[394]: SMGBL-CCV-6-CONFIG_SCRIPT CALLBACK EXECUTED :
The function check ssh late cb registered by the config script ssh config script.py was
executed in 0.000 seconds.

Error/Warning/Modification counts: 1/0/0

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Scenario 2: Configure SSH and Validate the Script .

In this example, the script displays an error about the missing SSH configuration. When an error is displayed, the warning
and modification count always show 0/0 respectively even if modifications exist on the target buffer.

Scenario 2: Configure SSH and Validate the Script

Step 1

Step 2
Step 3

Step 4

Step 5

Step 6

In this example, you configure SSH to resolve the error displayed in scenario 1, and validate the script again.

Configure SSH.

Example:

Router (config) #ssh server v2
Router (config) #ssh server vrf default
Router (config) #ssh server netconf vrf default

Configure the checksum.

Validate the configuration again.

Example:

Router (config) #validate config-scripts apply-policy-modifications
Wed Sep 1 22:03:05.448 UTC

)

% Policy modifications were made to target configuration, please issue 'show configuration’
from this session to view the resulting configuration

The script is programmed to display an error and stop the commit operation if the system detects that SSH server is not
configured. After the SSH server is configured, the script is validated successfully.

Commit the configuration.

Example:

Router (config) #commit
Tue Aug 31 08:31:32.926 UTC

View the SSH configuration that is applied or modified after the commit operation.

Example:

Router#show running-config ssh
Wed Sep 1 22:15:05.448 UTC

ssh server logging

ssh server session-limit 80
ssh server v2

ssh server vrf default

ssh server netconf vrf default

In addition, you see the modifications that are made by the script to the target buffer. The session-limit is used to configure
the number of allowable concurrent incoming SSH sessions. In this example, the default limit is set to 80 sessions.
Outgoing connections are not part of the limit. The script is programmed to check the session limit. If the limit is greater
or equal to 100 sessions, the script reconfigures the value to the default 80 sessions. However, if the limit is within 100
sessions, the configuration is accepted without modification.

Check the syslog output for the count of errors, warnings, and modifications.

Example:

Router#show logging | in Error
Wed Sep 1 22:45:05.559 UTC

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |

. Scenario 3: Set Rate-limit Value to Default Value in the Script

Router:Wed Sep 1 22:45:05.559 UTC: ccv([394]: %MGBL-CCV-6-CONFIG_SCRIPT_ CALLBACK EXECUTED
The function check ssh late cb registered by the config script ssh _config script.py was
executed in 0.000 seconds.

Error/Warning/Modification counts: 0/0/2

In this example, the script did not display an error or warning, but made two modifications for server logging and
session-limit.

Scenario 3: Set Rate-limit Value to Default Value in the Script

Step 1

Step 2

Step 3

Step 4

In this example, you see the response after setting the rate-limit to the default value configured in the script.
The rate-limit is used to limit the incoming SSH connection requests to the configured rate. The SSH server
rejects any connection request beyond the rate-limit. Changing the rate-limit does not affect established SSH
sessions. For example, if the rate-limit argument is set to 60, then 60 requests are allowed per minute. The
script checks if the rate-limit is set to the default value 60. If yes, the script displays a warning message that
the RATE LIMIT should not be set to default value, but allow the commit operation.

Configure rate-limit to the default value of 60.

Example:

Router (config) #ssh server rate-limit 60

Commit the configuration.

Example:

Router (config) #fcommit
Wed Sep 1 22:11:05.448 UTC

)

% Validation warnings detected as a result of the commit operation.
Please issue 'show configuration warnings' to view the warnings

The script displays a warning message but proceeds with the commit operation.

View the warning message.

Example:

Router (config) #show configuration warnings

Wed Sep 1 22:12:05.448 UTC

!'l SEMANTIC ERRORS: This configuration was rejected by the system due to
semantic errors. The individual errors with each failed configuration command
can be found below.

script config ssh config script.py checksum SHA256
2b061fllede3clc0cl8flee97269fd342adb35cbc8alcd4bbeal063d0eda2ds8
!'l% WARNING: RATE LIMIT should not be set to default value

end

The rate limit is default value of 60. The script is programmed to display a warning message if the rate limit is set to the
default value. You can either change the limit or leave the value as is.

View the running configuration.

Example:

Router (config) #do show running-config script

Wed Sep 1 22:15:05.448 UTC

script config ssh config script.py checksum SHA256
2b061fllede3clc0cl8flee97269fd342adb35cbc8alcd4bbeal063d0eda2ds8

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Scenario 4: Delete SSH Server Configuration .

The script ssh_config script.py is active.

Scenario 4: Delete SSH Server Configuration

Step 1

Step 2

Step 3

In this example, you delete the SSH server configurations, and see the response when the script is validated.

Remove the SSH server configuration.

Example:

Router (config) #no ssh server v2

Commit the configuration.

Example:
Router (config) #fcommit

Wed Sep 1 22:45:05.559 UTC

% Failed to commit one or more configuration items during an atomic operation.
No changes have been made. Please issue 'show configuration failed if-committed' from
this session to view the errors

View the error message.

Example:

Router (config) #show configuration failed if-committed

Wed Sep 1 22:47:53.202 UTC

!'l SEMANTIC ERRORS: This configuration was rejected by the system due to semantic errors. The individual
errors with each failed configuration command can be found below.

no ssh server v2
!'1% ERROR: Server V2 need to be set

end

The message is displayed based on the rule set in the script.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Scenario 4: Delete SSH Server Configuration

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

CHAPTER 9

Exec Scripts

Cisco IOS XR exec scripts are on-box scripts that automate configurations of devices in the network. The
exec scripts are written in Python using the Python libraries that Cisco provides with the base package. For
the list of supported packages

A script management repository on the router manages the exec scripts. This repository is replicated on both
RPs.

In IOS XR, AAA authorization controls the user access and privileges to perform operations. To run the exec
script, you must have root user permissions.

Exec scripts provide the following advantages:
* Provides automation capabilities to simplify complex operations.
* Create customized operations based on the requirement.

* Provide flexibility in changing the input parameters for every script run. This fosters dynamic automation
of operational information.

* Detect and display errors and warnings when executing an operation.

* Run multiple automated operations in parallel without blocking the console.

This chapter gets you started with provisioning your Python automation scripts on the router.

)

Note This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router.

» Workflow to Run an Exec Script, on page 87
* Manage Scripts, on page 95
» Example: Exec Script to Verify Bundle Interfaces, on page 96

Workflow to Run an Exec Script

Complete the following tasks to provision exec scripts:

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |

. Workflow to Run an Exec Script

» Download the script—Add the script to the appropriate exec script directory on the router. using the
script add exec command.

* Configure checksum—Check script integrity and authenticity using the script exec <script.py> checksum
command.

* Run the script—Trigger changes to the router configuration. Include arguments, set the maximum time
for the script to run, setup log levels using the script run command.

* View the script execution details—Validate the script and retrieve the operational data using the show
script execution command.

The following image shows a workflow diagram representing the steps involved in using an exec script:

Stop
script run

Option 1

Y

Add script to script

management repository

.
Create script

Option 2

Y

€=

CLI command

Internal operation

No ,/'/ Checksum ‘\“-\

-.._match found? _/‘""

|

SCP / Copy script
to harddisk

scp

Verify that the script is
added successfully

!

Configure checksum

| script exec <script> checksum ‘

|

Run the script

!

View the status of the script

| show script execution |

Yes

Script
changed
after rectifying
errors?

Script run
complete

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

Rectify errors ‘

A

View the script log ‘

522052

| Automation Scripts
Download the Script to the Router .

Download the Script to the Router

To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Script Type Download Location

config harddisk:/mirror/script-mgmt/config
exec harddisk:/mirror/script-mgmt/exec
process harddisk:/mirror/script-mgmt/process
eem harddisk:/mirror/script-mgmt/eem

The scripts are added to the script management repository using two methods:

* Method 1: Add script from a server

» Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add exec-script.py script to the script management repository.

Step 1 Add the script to the script management repository on the router using one of the two options:
» Add Script From a Server
Add the script from a configured HTTP server or the harddisk location in the router.
Router#script add exec <script-location> <script.py>

The following example shows a config script exec-script.py downloaded from an external repository
http://192.0.2.0/scripts:

Routerf#script add config http://192.0.2.0/scripts exec-script.py
Fri Aug 20 05:03:40.791 UTC
exec-script.py has been added to the script repository

You can add a maximum of 10 scripts simultaneously.
Router#script add exec <script-location> <scriptl.py> <script2.py> ... <scriptlO.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.

Note Only SHA256 checksum is supported.

Router#script add exec http://192.0.2.0/scripts exec-script.py checksum SHA256 <checksum-value>
For multiple scripts, use the following syntax to specify the checksum:

Router#script add exec http://192.0.2.0/scripts <scriptl.py> <scriptl-checksum> <script2.py>
<script2-checksum>
. <scriptlO.py> <scriptlO-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

« Copy the Script from an External Repository

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

. Configure Checksum for Exec Script

Step 2

Automation Scripts |

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@192.0.2.0:/scripts/exec-script.py /harddisk:/

b. Add the script from the harddisk to the script management repository.

Router#script add exec /harddisk:/ exec-script.py
Fri Aug 20 05:03:40.791 UTC
exec-script.py has been added to the script repository

Verify that the scripts are downloaded to the script management repository on the router.

Example:

Router#show script status
Wed Aug 25 23:10:50.453 UTC

Name | Type | Status | Last Action | Action Time

exec-script.py | exec | Config Checksum | NEW | Tue Aug 24 10:18:23 2021

Script exec-script.py is copied to harddisk: /mirror/script-mgmt/exec directory on the router.

Configure Checksum for Exec Script

Step 1

Every script is associated with a checksum value. The checksum ensures the integrity of the script that is
downloaded from the server or external repository is intact, and that the script is not tampered. The checksum
is a string of numbers and letters that act as a fingerprint for script. The checksum of the script is compared
with the configured checksum. If the values do not match, the script is not run and a syslog warning message
is displayed.

It is mandatory to configure the checksum to run the script.

)

Note Exec scripts support SHA256 checksum.

Before you begin

Ensure that the script is added to the script management repository. See Download the Script to the Router,
on page 89.

Retrieve the SHA256 checksum hash value for the script. Ideally this action would be performed on a trusted device,
such as the system on which the script was created. This minimizes the possibility that the script is tampered with.

Example:

Server$sha256sum samplel.py
94336£3997521d6elaecOee6faab0233562d53d4de7b0092e80b53caed58414b samplel.py

Make note of the checksum value.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts
Configure Checksum for Exec Script .

Step 2 View the status of the script.

Example:

Routerf#show script status detail
Fri Aug 20 05:04:13.539 UTC

Name | Type | Status | Last Action | Action Time
samplel.py | exec | Config Checksum | NEW | Fri Aug 20 05:03:41 2021
Script Name : samplel.py
History:
1. Action : NEW
Time : Fri Aug 20 05:03:41 2021
Description : User action IN_CLOSE WRITE

The status shows that the checksum is not configured.

Step 3 Enter global configuration mode.
Example:
Router#configure

Step 4 Configure the checksum.

Example:

Router (config) #script exec samplel.py checksum SHA256
94336£3997521d6elaeclee6faab0233562d53d4de7b0092e80b53caed58414b
Router (config) #commit

Tue Aug 24 10:23:10.546 UTC

Router (config) #end

Step 5 Verify the status of the script.

Example:

Routerf#show script status detail
Fri Aug 20 05:06:17.296 UTC

Name | Type | Status | Last Action | Action Time
samplel.py | exec | Ready | NEW | Fri Aug 20 05:03:41 2021
Script Name : cpu load.py
Checksum : 94336£3997521d6elaeclee6faab0233562d53d4de7b0092e80b53caed58414b
History:
1. Action : NEW
Time : Fri Aug 20 05:03:41 2021
Checksum : 94336£3997521d6elaeclee6faab0233562d53d4de7b0092e80b53caed58414b
Description : User action IN_CLOSE WRITE

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Run the Exec Script

The status ready indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script fails.
It is mandatory for the checksum values to match for the script to run.

Run the Exec Script

To run an exec script, use the script run command. After the script is run, a request ID is generated. Each
script run is associated with a unique request ID.

Before you begin
Ensure the following prerequisites are met before you run the script:

1. Download the Script to the Router, on page 89

2. Configure Checksum for Exec Script, on page 90

Run the exec script.

Example:

Router#script run samplel.py
Wed Aug 25 16:40:59.134 UTC

Script run scheduled: samplel.py. Request ID: 1629800603
Script samplel.py (exec) Execution complete: (Reqg. ID 1629800603) : Return Value: 0 (Executed)

Scripts can be run with more options. The following table lists the various options that you can provide at run time:

Keyword Description

arguments Script command-line arguments. Syntax: Strings in single quotes. Escape double quotes
inside string arguments (if any).

For example:

Router#script run samplel.py arguments 'hello world' '-r' '-t' 'exec' '--sleep'

'5' description "Sample exec script"

background Run script in background. By default, the script runs in the foreground.

When a script is run in the background, the console is accessible only after the script run is
complete.

description Description about the script run.

Router#script run samplel.py arguments '-argl' 'reload' '-arg2' 'all'
'description' "Script reloads the router"

When you provide both the argument and description ensure that the arguments are in single
quote and description is in double quotes.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

View the Script Execution Details .

Keyword Description

log-level Script logging level. The default value is 1nFo.

You can specifiy what information is to be logged. The log level can be set to one of these
options—Ceritical, Debug, Error, Info, or Warning.

log-path Location to store the script logs. The default log file location is in the script management
repository harddisk:/mirror/script-mgmt/logs.

max-runtime Maximum run-time of script can be set between 1-3600 seconds. The default value is 300.

The script run is complete.

View the Script Execution Details

Step 1

Step 2

View the status of the script execution.

Before you begin

Ensure the following prerequisites are met before you run the script:
1. Download the Script to the Router, on page 89

2. Configure Checksum for Exec Script, on page 90

3. Run the Exec Script, on page 92

View the status of the script execution.

Example:

Router#show script execution
Wed Aug 25 18:32:12.351 UTC

Reg. ID | Name (type) | Start | Duration | Return | Status

1629800603 | samplel.py (exec) | Wed Aug 25 16:40:59 2021 | 60.62s | 0 | Executed

You can view detailed or filtered data for every script run.

Filter the script execution status to view the detailed output of a specific script run via request ID.

Example:

Router#show script execution request-id 1629800603 detail output
Wed Aug 25 18:37:12.920 UTC

Reqg. ID | Name (type) | Start | Duration
Return | Status

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. View the Script Execution Details

1629800603| samplel.py (exec) | Wed Aug 25 16:40:59 2021 | 60.62s | 0
| Executed

Execution Details:
Script Name
Log location

samplel.py
/harddisk:/mirror/script-mgmt/logs/samplel.py exec 1629800603

Arguments
Run Options Logging level - INFO, Max. Runtime - 300s, Mode - Foreground
Events:
1 Event New
Time Wed Aug 25 16:40:59 2021
Time Elapsed 0.00s Seconds
Description None
2. Event Started
Time Wed Aug 25 16:40:59 2021

Time Elapsed

0.03s Seconds

Description Script execution started. PID (20736)
3. Event Executed
Time Wed Aug 25 16:42:00 2021

Time Elapsed

Description

60.62s Seconds

Script execution complete

Script Output:

Output File

/harddisk:/mirror/script-mgmt/logs/samplel.py exec 1629800603/stdout.log

Content
Keyword Description
detail Display detailed script execution history, errors, output and deleted scripts.

Router#show script execution detail [errors | output | show-del]

last <number>

Show last N (1-100) execution requests.
Router#show script execution last 10

This example will display the list of last 10 script runs with their request IDs, type of script,
timestamp, duration that the script was run, number of errrors, and the status of the script
run.

name <filename>

Filter operational data based on script name. If not specified, all scripts are displayed.

Router#show script execution name samplel.py

request-id <value>

Display summary of the script using request-ID that is generated with each script run.

Router#show script execution request-ID 1629800603

reverse

Display the request IDs from the script execution in reverse chronological order. For example,
the request-ID from the latest run is displayed first, followed by the descending order of
request-1Ds.

Router#script script execution reverse

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Manage Scripts .

Keyword Description

status Filter data based on script status.

Router#[status {Exception, Executed, Killed, Started, Stopped, Timed-out}]

Manage Scripts

This section shows the additional operations that you can perform on a script.

Delete Exec Script from the Router

Step 1

Step 2

Step 3

Delete the script from the script management repository using the script remove command. This repository
stores the downloaded scripts.

View the list of scripts present in the script management repository.

Example:

Router#show script status
Wed Aug 25 23:10:50.453 UTC

Name | Type | Status | Last Action | Action Time

samplel.py | exec | Config Checksum | NEW | Tue Aug 24 10:18:23 2021
sample2.py | exec | Config Checksum | NEW | Wed Aug 25 23:44:53 2021
sample3.py | config | Config Checksum | NEW | Wed Aug 25 23:44:57 2021

Ensure the script you want to delete is present in the repository.

Delete the script.

Example:

Router#script remove exec sample2.py
Wed Aug 25 231:46:38.170 UTC
sample2.py has been deleted from the script repository

You can also delete multiple scripts simulataneoulsy.

Verify the script is deleted from the subdirectory.

Example:

Router#show script status
Wed Aug 25 23:48:50.453 UTC

Name | Type | Status | Last Action | Action Time
samplel.py | exec | Config Checksum | NEW | Tue Aug 24 10:18:23 2021
sample3.py | config | Config Checksum | NEW | Wed Aug 25 10:44:57 2021

The script is deleted from the script management repository.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Example: Exec Script to Verify Bundle Interfaces

Example: Exec Script to Verify Bundle Interfaces

In this example, you create a script to verify the bandwidth usage of bundle interfaces on the router, and check
if it is beyond the defined limit. If usage is above the limit, the script generates a syslog indicating that the
bandwidth is above the limit, and additional interfaces must be added to the bundle.

Before you begin
Ensure you have completed the following prerequisites before you validate the script:

1. Create an exec script verify bundle.py. Store the script on an HTTP server or copy the script to the
harddisk of the router.

Bundle interfaces bandwidth verification script

Verify bundle interfaces mpls packets per sec is below threshold.
If pkts/sec is greater than threshold then print syslog message
and add list of new interfaces to bundle

Arguments:
-h, --help show this help message and exit
-n NAME, --name NAME Bundle interface name
-t THRESHOLD, --threshold THRESHOLD
Bandwidth threshold
-m MEMBERS, --members MEMBERS

interfaces (coma separated) to add to bundle
import re
import argparse
from iosxr.xrcli.xrcli helper import XrcliHelper
from cisco.script mgmt import xrlog

syslog = xrlog.getSysLogger ('verify bundle')
log = xrlog.getScriptLogger ('verify bundle')

def add bundle members (bundle name, members) :

helper = XrcliHelper ()
bundle pattern = re.compile('[A-Z,a-z,]([0-9]+)")
match = bundle pattern.search(bundle name)
if match:
bundle id = match.group (1)
else:
raise Exception('Invalid bundle name')
cfg = "'
for member in members:

o

cfg = cfg + 'interface %s \nbundle id %s mode active\nno shutdown\n' % \

(member.strip (), bundle id)
log.info("Configs to be added : \n%s" % cfqg)
result = helper.xr apply config string(cfg)
if result['status'] == 'success':
msg = "Configuring new bundle members successful”

syslog.info (msqg)
log.info (msqg)
else:
msg = "Configuring new bundle members failed"
syslog.warning (msg)

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts
Example: Exec Script to Verify Bundle Interfaces .

log.warning (msg)

def verify bundle(script_args):

helper = XrcliHelper ()
cmd = "show interfaces %s accounting rates" % script_args.name
cmd_out = helper.xrcli exec(cmd)
if not cmd out['status'] == 'success':
raise Exception('Invalid bundle or error getting interface accounting rates')

log.info ('Command output : \n%s' % cmd_out['output'])

rate pattern = re.compile ("MPLS +[0-9]+ +[0-9]+ +[0-9]+ +([0-9]+)")
match = rate pattern.search(cmd_out['output'])

if match:

pktspersec = int (match.group(l))
if pktspersec > int(script_args.threshold):
msg = 'Bundle %s bandwidth of %d pps is above threshold of %s pps' % \
(script_args.name, pktspersec, script_args.threshold)
log.info (msg)
syslog.info (msg)
return False
else:
msg = 'Bundle %s bandwidth of %d pps is below threshold of %s pps' % \
(script_args.name, pktspersec, script_args.threshold)
log.info (msg)
return True

if name == ' main ':

parser = argparse.ArgumentParser (description="Verify budle")

parser.add_argument ("-n", "--name",

help="Bundle interface name")
parser.add_argument ("-t", "--threshold",

help="Bandwidth threshold")
parser.add_argument ("-m", "--members",

help="interfaces (coma separated) to add to bundle")
args = parser.parse_args()

log.info('Script arguments :')
log.info (args)
if not verify bundle(args):
syslog.info ("Adding new members (%s) to bundle interfaces %$s" %
(args.members, args.name))
add_bundle members (args.name, args.members.split(',"'))

2. Add the script from HTTP server or harddisk to the script management repository. See Download the
Script to the Router, on page 89.

3. Configure the checksum to verify the authenticity and integrity of the script.

Step 1 View the script status.

Example:

Router#show script status
Sat Sep 25 00:10:11.222 UTC

Name | Type | Status | Last Action | Action Time

verify bundle.py | exec | Ready | MODIFY | Sat Sep 25 00:08:55 2021

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |

. Example: Exec Script to Verify Bundle Interfaces

Step 2

Step 3

The status indicates that the script is ready to be run.
Run the script.

Example:

Router#script run verify bundle.py arguments '--name' 'Bundle-Ether6432' '-t'
'400000' '-m' 'FourHundredGigE0/0/0/2

Sat Sep 25 00:11:14.183 UTC

Script run scheduled: verify bundle.py. Request ID: 1632528674

[2021-09-25 00:11:14,579] INFO [verify bundle]:: Script arguments

[2021-09-25 00:11:14,579] INFO [verify bundle]:: Namespace (members='FourHundredGigE0/0/0/2,
FourHundredGigEO/0/0/3', name='Bundle-Ether6432', threshold='400000")

[2021-09-25 00:11:14,735] INFO [verify bundle]:: Command output

—————————————— show interfaces Bundle-Ether6432 accounting rates --------------
Bundle-Ether6432

Ingress Egress
Protocol Bits/sec Pkts/sec Bits/sec Pkts/sec
IPV4_UNICAST 22000 40 0 0
MPLS 0 0 1979249000 430742
ARP 0 0 0 0
IPV6 ND 0 0 0 0
CLNS 1000 1 26000 3

[2021-09-25 00:11:14,736] INFO [verify bundle]:: Bundle Bundle-Ether6432 bandwidth
of 430742 pps is above threshold of 400000 pps

[2021-09-25 00:11:14,737] INFO [verify bundle]:: Configs to be added

interface FourHundredGigE(0/0/0/2

bundle id 6432 mode active

no shutdown

interface FourHundredGigE0/0/0/3

bundle id 6432 mode active

no shutdown

[2021-09-25 00:11:18,254] INFO [verify bundle]:: Configuring new bundle members successful
Script verify bundle.py (exec) Execution complete: (Req. ID 1632528674) : Return Value: 0 (Executed)

View the detailed output based on request ID. A request ID is generated for each script run.

Example:

Router#show script execution request-id 1632528674 detail output
Sat Sep 25 00:11:58.141 UTC

Reqg. ID | Name (type) | Start | Duration | Return | Status

Script Name : verify bundle.py
Log location : /harddisk:/mirror/script-mgmt/logs/verify bundle.py exec 1632528674
Arguments : '--name', 'Bundle-Ether6432', '-t', '400000', '-m', 'FourHundredGigE0/0/0/2,
FourHundredGigE0/0/0/3"
Run Options : Logging level - INFO, Max. Runtime - 300s, Mode - Foreground
Events:
1. Event : New
Time : Sat Sep 25 00:11:14 2021
Time Elapsed : 0.00s Seconds
Description : None

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts
Example: Exec Script to Verify Bundle Interfaces .

2. Event Started

Time Sat Sep 25 00:11:14 2021

Time Elapsed 0.02s Seconds

Description Script execution started. PID (29768)
3. Event Executed

Time Sat Sep 25 00:11:18 2021

Time Elapsed 4.06s Seconds

Description Script execution complete

Script Output:
Output File

Content H
[2021-09-25 00:11:14,579] INFO [verify bundle]::
[2021-09-25 00:11:14,579] INFO [verify bundle]::
FourHundredGigE0/0/0/3",
name='Bundle-Ether6432"',
[2021-09-25 00:11:14,735]

/harddisk:/mirror/script-mgmt/logs/verify bundle.py exec 1632528674/stdout.log

Script arguments
Namespace (members="'FourHundredGigE0/0/0/2,

threshold='400000")
INFO [verify bundle]:: Command output

show interfaces Bundle-Ether6432 accounting rates
Bundle-Ether6432

Ingress Egress
Protocol Bits/sec Pkts/sec Bits/sec Pkts/sec
IPV4_UNICAST 22000 40 0 0
MPLS 0 0 1979249000 430742
ARP 0 0 0 0
IPV6 ND 0 0 0 0
CLNS 1000 1 26000 3

[2021-09-25 00:11:14,736]
above threshold

of 400000 pps

[2021-09-25 00:11:14,737] INFO [verify bundle]::
interface FourHundredGigE0/0/0/2

bundle id 6432 mode active

no shutdown

interface FourHundredGigE0/0/0/3

bundle id 6432 mode active

no shutdown

INFO [verify bundle]:: Bundle Bundle-Ether6432 bandwidth of 430742 pps is

Configs to be added

[2021-09-25 00:11:18,254] INFO [verify bundle]:: Configuring new bundle members successful

Step 4 View the running configuration for the bundle interfaces.

Example:

Routerf#show running-config interface FourHundredGigE0/0/0/2
Sat Sep 25 00:12:30.765 UTC
interface FourHundredGigE0/0/0/2

bundle id 6432 mode active
|

Router#show running-config interface FourHundredGigE0/0/0/3
Sat Sep 25 00:12:38.659 UTC
interface FourHundredGigEO/0/0/3

bundle id 6432 mode active
|

Step 5 View the latest logs for more details about the script run. Here, the last 10 logs are displayed. The logs show that configuring

new bundle members is successful.

Example:

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |

. Example: Exec Script to Verify Bundle Interfaces

Router#show logging last 10
Sat Sep 25 00:13:34.383 UTC
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
Console logging: level warnings, 178 messages logged
Monitor logging: level debugging, 0 messages logged
Trap logging: level informational, 0 messages logged
Buffer logging: level debugging, 801 messages logged

Log Buffer (2097152 bytes):

RP/0/RP0O/CPUO:Sep 25 00:10:05.763 UTC: config[66385]: $MGBL-CONFIG-6-DB COMMIT : Configuration
committed by user 'cisco'.

Use 'show configuration commit changes 1000000045' to view the changes.

RP/0/RPO/CPUO:Sep 25 00:10:07.971 UTC: config[66385]: $MGBL-SYS-5-CONFIG I : Configured from console
by cisco on vty0 (6.3.65.175)

RP/0/RPO/CPUO:Sep 25 00:11:14.447 UTC: script control cli[66627]: $0S-SCRIPT MGMT-6-INFO
Script-control: Script run scheduled:

verify bundle.py. Request ID: 1632528674

RP/0/RPO/CPUO:Sep 25 00:11:14.453 UTC: script agent main[347]: $0S-SCRIPT MGMT-6-INFO

Script-script agent: Script execution

verify bundle.py (exec) Started : Request ID : 1632528674 :: PID: 29768

RP/0/RPO/CPUO:Sep 25 00:11:14.453 UTC: script agent main[347]: $0S-SCRIPT MGMT-6-INFO

Script-script agent: Starting execution

verify bundle.py (exec) (Req. ID: 1632528674) : Logs directory:
/harddisk:/mirror/script-mgmt/logs/verify bundle.py exec 1632528674

RP/0/RP0O/CPUO:Sep 25 00:11:14.736 UTC: python3 xr[66632]: $0S-SCRIPT MGMT-6-INFO : Script-verify bundle:
Bundle Bundle-Ether6432

bandwidth of 430742 pps is above threshold of 400000 pps

RP/0/RP0O/CPUO:Sep 25 00:11:14.736 UTC: python3 xr[66632]: $0S-SCRIPT MGMT-6-INFO : Script-verify bundle:
Adding new members

(FourHundredGigE0/0/0/2, FourHundredGigEO/0/0/3) to bundle interfaces Bundle-Ether6432

RP/0/RP0O/CPUO:Sep 25 00:11:16.916 UTC: config[66655]: $MGBL-CONFIG-6-DB COMMIT : Configuration
committed by user 'cisco'. Use 'show

configuration commit changes 1000000046' to view the changes.

RP/0/RP0O/CPUO:Sep 25 00:11:18.254 UTC: python3 xr[66632]: $0S-SCRIPT MGMT-6-INFO : Script-verify bundle:
Configuring new bundle members

successful

RP/0/RP0O/CPUO:Sep 25 00:11:18.497 UTC: script agent main[347]: $0S-SCRIPT MGMT-6-INFO

Script-script agent: Script verify bundle.py

(exec) Execution complete: (Reg. ID 1632528674) : Return Value: 0 (Executed)

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

CHAPTER 1 0

Process Scripts

Cisco I0S XR process scripts are also called daemon scripts. The process scripts are persistent scripts that
continue to run as long as you have activated the scripts. An IOS XR process, Application manager (AppMgr
or app manager), manages the lifecycle of process scripts. The scripts are registered as an application on the
app manager. This application represents the instance of the script that is running on the router.

The app manager is used to:

» Start, stop, monitor, or retrieve the operational status of the script.
* Maintain the startup dependencies between the processes.
* Restart the process if the script terminates unexpectedly based on the configured restart policy.

Process scripts support Python 3.5 programming language. For the list of supported packages, see Cisco I0S
XR Python Packages, on page 139.

This chapter gets you started with provisioning your Python automation scripts on the router.

N

Note This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router.

» Workflow to Run Process Scripts, on page 101
* Managing Actions on Process Script, on page 109
» Example: Check CPU Utilization at Regular Intervals Using Process Script, on page 109

Workflow to Run Process Scripts

Complete the following tasks to provision process scripts:

» Download the script—Store the script on an HTTP server or copy to the harddisk of the router. Add the
script from the HTTP server or harddisk to the script management repository on the router using the
script add process command.

* Configure the checksum—Check script integrity and authenticity using the script process <script.py>
checksum command.

* Register the script—Register the script as an application in the app manager using appmgr process-script
command.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Download the Script to the Router

* Activate the script—Activate the registered application using appmgr process-script activate command.

* View the script execution details—Retrieve the operational data using the show appmgr process-script
command.

The following image shows the workflow diagram representing the steps that are involved in using a process
script:

Create script and store the script in an
HTTP server or copy to routers’ harddisk

v

Add script from HTTP server or harddisk
to the script management repository

script add |

.

Verify that the script is added successfully

show script status |

v

Configure checksum

Checksum match?

show script status

Investigate and Mo
rectify checksum
mismatch

| script process =script> checksum |

v

Register the process as an application

| appmgr process-script |

.

Activate the registered application

| appmgr process-script activate |

Activation

successful? Rectify error

:l CLl command View operational status of the application

B22064

show a r process—scri
i } Internal operation PPmarp ot

Download the Script to the Router

To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Script Type Download Location

config harddisk:/mirror/script-mgmt/config
exec harddisk:/mirror/script-mgmt/exec
process harddisk:/mirror/script-mgmt/process
eem harddisk:/mirror/script-mgmt/eem

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts
Download the Script to the Router .

The scripts are added to the script management repository using two methods:

* Method 1: Add script from a server

» Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add process-script.py script to the script management repository.

Step 1 Add the script to the script management repository on the router using one of the two options:
» Add Script From a Server

Add the script from a configured HTTP server or the harddisk location in the router.
Router#script add process <script-location> <script.py>

The following example shows a process script process-script.py downloaded from an external repository
http://192.0.2.0/scripts:

Router#script add process http://192.0.2.0/scripts process-script.py
Fri Aug 20 05:03:40.791 UTC
process-script.py has been added to the script repository

You can add a maximum of 10 scripts simultaneously.
Router#script add process <script-location> <scriptl.py> <script2.py> ... <scriptlO.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.

Router#script add process http://192.0.2.0/scripts process-script.py checksum SHA256
<checksum-value>

For multiple scripts, use the following syntax to specify the checksum:

Routerf#script add process http://192.0.2.0/scripts <scriptl.py> <scriptl-checksum> <script2.py>
<script2-checksum>
. <scriptlO.py> <scriptlO-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Note Only SHA256 checksum is supported.

Copy the Script from an External Repository

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.

Router#scp userx@192.0.2.0:/scripts/process-script.py /harddisk:/

b. Add the script from the harddisk to the script management repository.

Router#script add process /harddisk:/ process-script.py
Fri Aug 20 05:03:40.791 UTC
process-script.py has been added to the script repository

Step 2 Verify that the scripts are downloaded to the script management repository on the router.

Example:

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Configure Checksum for Process Script

Router#show script status
Wed Aug 25 23:10:50.453 UTC

Name | Type | Status | Last Action | Action Time

process-script.py | process | Config Checksum | NEW | Tue Aug 24 10:44:53 2021

Script process-script.py is copied to harddisk: /mirror/script-mgmt/process directory on the router.

Configure Checksum for Process Script

Every script is associated with a checksum hash value. This value ensures the integrity of the script, and that
the script is not tampered. The checksum is a string of numbers and letters that acts as a fingerprint for script.
The checksum of the script is compared with the configured checksum. If the values do not match, the script
is not run and a warning message is displayed.

It is mandatory to configure the checksum to run the script.

\}

Note Process scripts support the SHA256 checksum hash.

Before you begin

Ensure that the script is added to the script management repository. See Download the Script to the Router,
on page 89.

Step 1 Retrieve the SHA256 checksum hash value for the script from the IOS XR Linux bash shell.

Example:

Router#run

[node0 RPO CPUO:~]$sha256sum /harddisk:/mirror/script-mgmt/process/process-script.py
94336£3997521d6elaecOee6faab0233562d53d4de7b0092e80b53caed58414b
/harddisk:/mirror/script-mgmt/process/process-script.py

Make note of the checksum value.

Step 2 View the status of the script.

Example:

Router#show script status detail
Fri Aug 20 05:04:13.539 UTC

Name | Type | Status | Last Action | Action Time
process-script.py | process | Config Checksum | NEW | Fri Aug 20 05:03:41 2021
Script Name : process-script.py
History:
1. Action : NEW
Time : Fri Aug 20 05:03:41 2021
Description : User action IN_CLOSE_WRITE

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Register the Process Script as an Application .

The status shows that the checksum is not configured.

Step 3 Configure the checksum.

Example:

Router#configure

Router (config) #script process process-script.py checksum SHA256
94336£3997521d6elaeclOee6faab0233562d53d4de7b0092e80b53caed58414b
Router (config) #commit

Tue Aug 20 05:10:10.546 UTC

Router (config) #end

Step 4 Verify the status of the script.

Example:

Router#show script status detail
Fri Aug 20 05:15:17.296 UTC

Name | Type | Status | Last Action | Action Time
process-script.py | process | Ready | NEW | Fri Aug 20 05:20:41 2021
Script Name : process-script.py
Checksum : 94336£3997521d6elaecOee6faab0233562d53d4de7b0092e80b53caed58414b
History:
1. Action : NEW
Time : Fri Aug 20 05:20:41 2021
Checksum : 94336£3997521d6elaecOee6faab0233562d53d4de7b0092e80b53caed58414b
Description : User action IN_CLOSE WRITE

The status rReady indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script fails.
It is mandatory for the checksum values to match for the script to run.

Register the Process Script as an Application

Register the process script with the app manager to enable the script. The registration is mandatory for using
process script on the router.
Before you begin
Ensure that the following prerequisites are met before you register the script:
» Download the Script to the Router, on page 89

* Configure Checksum for Process Script, on page 104

Step 1 Register the script with an application (instance) name in the app manager.

Example:

Router#configure
Fri Aug 20 06:10:19.284 UTC

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

. Activate the Process Script

Step 2

Step 3

Step 4

Router (config) #appmgr process-script my-process-app
Router (config-process) #executable process-script.py

Here, my-process-app is the application for the executable process-script.py script.

Provide the arguments for the script.

Example:

Router (config-process) #run-args --host <host-name> --runtime 3 --log script
Set a restart policy for the script if there is an error.

Example:

Router (config-process) #restart on-failure max-retries 3
Router (config-process) #commit

Here, the maximum attempts to restart the script is set to 3. After 3 attempts, the script stops.

You can set more options to restart the process:

Automation Scripts |

an action command to invoke the process.

Keyword Description

always Always restart automatically. If the process exits, a scheduler queues the script and restarts
the script.
Note This is the default restart policy.

never Never restart automatically. If the process exits, the script is not rerun unless you provide

on-failure Restart on failure automatically. If the script exits successfully, the script is not scheduled
again.

unless-errored Restart script automatically unless errored.

unless-stopped Restart script automatically unless stopped by the user using an action command.

View the status of the registered script.

Example:

Router#show appmgr process-script-table
Fri Aug 20 06:15:44.244 UTC

Name Executable Activated Status Restart Policy Config Pending

my-process-app process-script.py No Not Started On Failure

The script is registered but is not active.

Activate the Process Script

Activate the process script that you registered with the app manager.

Before you begin

Ensure that the following prerequisites are met before you run the script:

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Step 1

Step 2

Obtain Operational Data and Logs .

» Download the Script to the Router, on page 89
* Configure Checksum for Process Script, on page 104

* Register the Process Script as an Application, on page 105

Activate the process script.

Example:
Router#appmgr process-script activate name my-process-app

Fri Aug 20 06:20:55.006 UTC

The instance my-process-app is activated for the process script.

View the status of the activated script.

Example:

Router#show appmgr process-script-table
Fri Aug 20 06:22:03.201 UTC
Name Executable Activated Status Restart Policy Config Pending

my-process-app process-script.py Yes Running On Failure No
The process script is activated and running.

Note You can modify the script while the script is running. However, for the changes to take effect, you must
deactivate and activate the script again. Until then, the configuration changes are pending. The status of the
modification is indicated in the config Pending option. In the example, value No indicates that there are no
configuration changes that must be activated.

Obtain Operational Data and Logs

Step 1

Retrieve the operational data and logs of the script.

Before you begin

Ensure that the following prerequisites are met before you obtain the operational data:
» Download the Script to the Router, on page 89
* Configure Checksum for Process Script, on page 104
* Register the Process Script as an Application, on page 105

* Activate the Process Script, on page 106

View the registration information, pending configuration, execution information, and run time of the process script.

Example:

Router#show appmgr process-script my-process-app info
Fri Aug 20 06:20:21.947 UTC
Application: my-process-app

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

. Obtain Operational Data and Logs

Step 2

Registration info:
Executable
Run arguments
Restart policy On Failure
Maximum restarts 0 3

Pending Configuration:

Run arguments --host <host-

Restart policy Always
Execution info and status:

Activated : Yes

Status Running

Executable Checksum

Last started time :
Restarts since last activate : 0/3
Log location :

Automation Scripts |

process-script.py
--host <host-

name> --runtime 3 --log script

name> --runtime 3 --log script

94336£3997521d6elaecOee6faab0233562d53d4de7b0092e80b53caed58414b

Fri Aug 20 06:20:21.947

/harddisk:/mirror/script-mgmt/logs/process-script.py process my-process-app

Last exit code : 1

View the logs for the process scripts. App manager shows the logs for errors and output.

Example:
The following example shows the output logs:

Router#show appmgr process-script my-process-app
Fri Aug 20 06:25:20.912 UTC

[2021-08-20 06:20:55,609] INFO [sample-process]
[2021-08-20 06:20:55,609] INFO [sample-process]::
[2021-08-20 06:20:56,610] INFO [sample-process]::
[2021-08-20 06:20:58,609] INFO [sample-process]

The following example shows the error logs with errors:

Router#show appmgr process-script my-process-app
Fri Aug 20 06:30:20.912 UTC
—————————— Run ID:1632914459
Traceback

Fri Aug 20 06:30:20
(most recent call last):

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 121,

main (args)

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 97,

printer ()

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 37,

result = func(*args, **kwargs)

File "/harddisk:/mirror/script-mgmt/process/process-script.py",

time.sleep (1)

File "/harddisk:/mirror/script-mgmt/process/process-script.py",

raise TimeoutError (error message)
~_main .TimeoutError: Timer expired
—————————— Run ID:1632914460 Fri Aug 20 06:31:03

This example shows the log without errors:

Router#show appmgr process-script my-process-app
Fri Aug 20 06:30:20.912 UTC

—————————— Run ID:1624346220 Fri Aug 20 10:46:44
—————————— Run ID:1624346221 Fri Aug 20 10:47:50
—————————— Run ID:1624346222 Fri Aug 20 10:52:39
—————————— Run ID:1624346223 Fri Aug 20 10:53:45
—————————— Run ID:1624346224 Fri Aug 20 11:07:17
—————————— Run ID:1624346225 Fri Aug 20 11:08:23
—————————— Run ID:1624346226 Fri Aug 20 11:09:29

logs output
Beginning execution of process..
Connecting to host '<host-name>'

Reading database..
Listening for requests..

logs errors
2021--=====----
in <module>
in main

in wrapper

line 88,

in printer

line 30, in _handle timeout

2021-=—===-=--

logs errors

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Managing Actions on Process Script .

—————————— Run ID:1624346227 Fri Aug 20 11:10:35 2021--—---—-----
—————————— Run ID:1624346228 Fri Aug 20 11:11:41 2021-----—-----

Managing Actions on Process Script

The process script runs as a daemon continuously. You can, however, perform the following actions on the
process script and its application:

Table 11: Feature History Table

Action

Description

Deactivate

Clears all the resources that the application uses.
Router#appmgr process-script deactivate name my-process-app

You can modify the script while the script is running. However, for the changes
to take effect, you must deactivate and activate the script again. Until then, the
configuration changes do not take effect.

Kill

Terminates the script if the option to stop the script is unresponsive.

Router#appmgr process-script kill name my-process-app

Restart

Restarts the process script.

Router#appmgr process-script restart name my-process-app

Start

Starts an application that is already registered and activated with the app manager.

Router#appmgr process-script start name my-process-app

Stop

Stops an application that is already registered, activated, and is currently running.
Only the application is stopped; resources that the application uses is not cleared.

Router#appmgr process-script stop name my-process-app

Example: Check CPU Utilization at Regular Intervals Using

Process Script

In this example, you use the process script to check CPU utilization at regular intervals. The script does the

following actions:

» Monitor the CPU threshold value.

* [f the threshold value equals or exceeds the value passed as argument to the script, log an error message
that the threshold value has exceeded.

Before you begin

Ensure you have completed the following prerequisites before you register and activate the script:

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Example: Check CPU Utilization at Regular Intervals Using Process Script

1. Create a process script cpu-utilization-process.py. Store the script on an HTTP server or copy the
script to the harddisk of the router.

import time
import os

import xmltodict
import re

import argparse

from cisco.script mgmt import xrlog
from iosxr.netconf.netconf 1lib import NetconfClient

log = xrlog.getScriptlLogger ('Sample')
syslog = xrlog.getSysLogger ('Sample')

def cpu memory check (threshold) :

Check total routes in router

filter string =
<system-monitoring xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-wdsysmon-fd-oper">

<cpu-utilization>

<node-name>0/RP0/CPUO</node-name>
<total-cpu-one-minute/>

</cpu-utilization>
</system-monitoring>"""
nc = NetconfClient (debug=True)
nc.connect ()
do_get(nc, filter=filter string)

ret dict = xml to _dict(nc.reply, 'system-monitoring')
total cpu =
int (ret_dict['system-monitoring']['cpu-utilization']['total-cpu-one-minute'])

if total cpu >= threshold:
syslog.error ("CPU utilization is %s, threshold value is %s"
% (str(total_cpu),str (threshold)))
nc.close ()

def xml to_dict(xml output, xml tag=None) :
convert netconf rpc request to dict
:param xml_output:

creturn:
if xml tag:
pattern = "<data>\s+(<%s.*</%s>).*</data>" % (xml tag, xml tag)
else:
pattern = " (<data>.*</data>)"
xml_output = xml output.replace('\n', ' ')
xml_data match = re.search(pattern, xml output)

ret dict = xmltodict.parse(xml_data match.group (1))
return ret dict

def do_get(nc, filter=None, path=None):
try:
if path is not None:
nc.rpc.get (file=path)
elif filter is not None:
nc.rpc.get (request=filter)
else:
return False
except Exception as e:
return False
return True

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Step 1

Step 2

Step 3

Step 4

Example: Check CPU Utilization at Regular Intervals Using Process Script .

if name == ' main ':

parser = argparse.ArgumentParser ()

parser.add argument ("threshold", help="cpu utilization threshold", type=int)

args = parser.parse_args()
threshold = args.threshold
while (1) :

cpu_memory check (threshold)
time.sleep (30)

Configure the script with the desired threshold criteria. This default threshold is configured to alert when
CPU utilization exceeds this value. The script checks the CPU utilization every 30 seconds.

2. Add the script from HTTP server or harddisk to the script management repository. See Download the

Script to the Router, on page 89.

3. Configure the checksum to verify the authenticity and integrity of the script. See Configure Checksum

for Process Script, on page 104.

Register the process script cpu-utilization-process.py With an instance name my-process-app in the app manager.

Example:

Router (config) #appmgr process-script my-process-app
Router (config-process) #executable cpu-utilization-process.py
Router (config-process) #run-args <threshold-value>

Activate the registered application.

Example:

Router (config-process) #appmgr process-script activate name my-process-app
Check the script status.

Example:

Router#show appmgr process-script-table
Thu Sep 30 18:15:03.201 UTC

Name Executable Activated Status Restart Policy
my-process-app cpu-utilization-process.py Yes Running On Failure
View the log.

Example:

Router#show appmgr process-script my-process-app logs errors
RP/0/RP0O/CPUO:Sep 30 18:03:54.391 UTC: python3 xr[68378]: %$0S-SCRIPT MGMT-3-ERROR :
Script-test process: CPU utilization is 6, threshold value is 5

Config Pending

An error message is displayed that the CPU utilization has exceeded the configured threshold value, and helps you take

corrective actions.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Example: Check CPU Utilization at Regular Intervals Using Process Script

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

CHAPTER 1 1

EEM Scripts

Cisco IOS XR Embedded Event Manager (EEM) scripts are also known as event scripts that are triggered
automatically in response to events on the router. An event can be any significant occurrence, not limited to
errors, that has happened within the system. You can use these scripts to detect issues in the network in real
time, program certain conditions in response to the event, detect and generate an action when those conditions
are met, and execute policy (script) when an event is generated. The script acts in response to the events and
reduces the troubleshooting time involved in resolving the issues. For example, you can enforce LACP
dampening if a bundle interface has flapped 5 times in less than 30 secs, and define the script to disable the
interface for 2 minutes.

You can programmatically define the event and actions separately and map them using a policy map via CLI
or NETCONF RPCs. Whenever the configured event occurs, the action that is mapped to it is executed. The
same event and action can be mapped to multiple policy maps. You can map the same event and action in 64
policy maps, and add a maximum of 5 different actions in a policy map.

You can create event scripts using Python 3.5 programming language. For the list of supported Python packages

This chapter gets you started with provisioning your Python automation scripts on the router.

)

Note This section does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router.

» Workflow to Run Event Scripts, on page 113
» Example: Shut Inactive Bundle Interfaces Using EEM Script, on page 121

Workflow to Run Event Scripts

Complete the following tasks to provision eem scripts:

» Download the script—Store the eem script on an HTTP server or copy to the harddisk of the router. Add
the eem script from the HTTP server or harddisk to the script management repository on the router using
the script add eem command.

* Define events—Configure the events with the trigger conditions using the event manager event-trigger
command.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

. Workflow to Run Event Scripts

Automation Scripts |

* Define actions to the events—Setup the actions that must be performed in response to an event using
event manager action command.

* Create policy map—Put together the events and the actions in a policy map using event manager

policy-map command.

\}

Note

An eem script is invoked automatically when the event occurs. With the event,

the event-trigger invokes the corresponding policy-map to implement the actions

in response to the event.

* View operational status of the event—Retrieve the operational data using the show event-manager
action | event-trigger | policy-map command.

The following image shows a workflow diagram representing the steps involved in using an event script:

Create script and store the script in a
HTTP server or copy to routers’ harddisk

'

Add script from HTTP server or harddisk
to the script management repository

script add |

!

Verify that the script is added successfully

show script status type eem |

v

Define conditions that trigger an event

| event manager event-trigger |

‘ Eventl H Event2 H Event3 |

h A

!

Set actions for the events

| event manager action

[Action1 |[Action2 | Action3 |

CLI command

Internal operation

v

Map combinations of the event and the action

event manager policy-map

EERTER N S, SR R N R
Register the syslog with the pattern !
configured in event-trigger .

,,,,,,,,,,,,,,,,,,,,,,, A e S

: 7 lssyslog e
“with the registered pattern it
... generatedin .-

. _router? -~

e

iYes

G, — jToTm T]
Trigger the event - » Invoke the associated
! ' policy map

Execute the action |
for the event !

View operational status of the event

522067

show event manager action | event-trigger | policy-map

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts
Download the Script to the Router .

Download the Script to the Router

To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Script Type Download Location

config harddisk:/mirror/script-mgmt/config
exec harddisk:/mirror/script-mgmt/exec
process harddisk:/mirror/script-mgmt/process
eem harddisk:/mirror/script-mgmt/eem

The scripts are added to the script management repository using two methods:

* Method 1: Add script from a server

» Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add eem-script.py script to the script management repository.

Step 1 Add the script to the script management repository on the router using one of the two options:
» Add Script From a Server
Add the script from a configured HTTP server or the harddisk location in the router.
Router#script add eem <script-location> <script.py>

The following example shows a process script eem-script.py downloaded from an external repository
http://192.0.2.0/scripts:

Routerfscript add eem http://192.0.2.0/scripts eem-script.py
Fri Aug 20 05:03:40.791 UTC
eem-script.py has been added to the script repository

You can add a maximum of 10 scripts simultaneously.
Router#script add eem <script-location> <scriptl.py> <script2.py> ... <scriptlO.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.

Router#script add eem http://192.0.2.0/scripts eem-script.py checksum SHA256 <checksum-value>
For multiple scripts, use the following syntax to specify the checksum:

Router#script add eem http://192.0.2.0/scripts <scriptl.py> <scriptl-checksum> <script2.py>
<script2-checksum>
. <scriptlO.py> <scriptlO-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Note Only SHA256 checksum is supported.

« Copy the Script from an External Repository

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |

. Define Trigger Conditions for an Event

Step 2

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@192.0.2.0:/scripts/eem-script.py /harddisk:/
b. Add the script from the harddisk to the script management repository.

Router#script add eem /harddisk:/ eem-script.py
Fri Aug 20 05:03:40.791 UTC
eem-script.py has been added to the script repository

Verify that the scripts are downloaded to the script management repository on the router.

Example:

Router#show script status
Wed Aug 25 23:10:50.453 UTC

Name | Type | Status | Last Action | Action Time

eem-script.py | eem | Config Checksum | NEW | Tue Aug 24 10:44:53 2021

Script eem-script.py is copied to harddisk: /mirror/script-mgmt/eem directory on the router.

Define Trigger Conditions for an Event

Step 1

You define the event, and create a set of instructions that trigger a match to this event. You can create multiple
events.

Before you begin

Ensure that the script is added to the script management repository..

Register the event.

Example:

Router (config) #event manager event-trigger eventT10

You can configure more options to trigger an event:

Keyword Description
occurrence Number of occurrences before the event is raised.

Note The occurrence keyword is supported only for syslog events.
period Time interval during which configured occurrence should take place.

Note The period keyword is supported only for syslog events.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Define Trigger Conditions for an Event .

Keyword

Description

type

Configure the type of event.
Note In Cisco I0S XR Release 7.3.2, you can configure only syslog events.

In Cisco IOS XR Release 7.5.1 and later, you can configure the following
events:

* Rate limit—Configure rate limit in seconds or milliseconds. After the
event is triggered, the event trigger does not happen even if the event
occurs any number of times, till this time has elapsed.

* Syslog—Configure syslog pattern, severity.

*» Timer—Configure watch dog timer in seconds; cron timer as a text string
with five fields separated by a space.

*» Track—Configure event-trigger for track (object tracking), track state (ue,
DOWN, or ANY). If event-trigger is configured for track state up, then it gets
triggered when the track state changes from pown to up, and vice-versa.

* Telemetry—Define events based on telemetry data. With this feature, you
can perform the following operations:

a. Monitor any operational state such as interface status, and trigger an
action when the state changes to a specific value.

b. Monitor any counter or statistics in an operational data, and trigger an
action when it reaches a threshold.

C. Monitor rate of change of any operational attribute, and trigger an
action based on threshold.

Note exact match supported on string and threshold or rate limit
is supported only for integer type telemetry data

Configure sensor path for exact match, threshold or rate depending on the
telemetry data type. The exact match is supported on string data type, and
threshold and rate limit is supported only for interger data type. Use the
following command to verify the sensor path or query before configuring
the event trigger.

Router#event manager telemetry sensor-path
<sensor-path> json-query <query>

It is mandatory to enable model-driven telemetry using the command:

Router#telemetry model-driven

Step 2 Configure the type for the event.

* Syslog:

Router (config) #event manager event-trigger eventTl0 type syslog pattern

"L2-BM-6-ACTIVE"

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |

. Create Actions for Events

For syslog, set the pattern to match. In this example, the pattern 1.2-BM-6-ACTIVE is the match value. If a syslog is
generated on the router with a pattern that matches this configured pattern, the event gets triggered.

Example

Example: The following example shows the configuration for syslog event type. If severity is
configured, the event gets triggered only if both the syslog severity and the syslog pattern match with
the syslog generated on the router. If severity is not configured, it is set to a11, where only pattern
match is considered for the event to trigger.

Router (config) #event manager event-trigger eventT10
type syslog pattern "<pattern-to-match>" severity <value>

Router (config) #event manager event-trigger eventT10
rate-limit seconds <time-in-seconds>
type syslog pattern "<pattern-to-match>" severity <value>

The severity values are:

alert Syslog priority 1
critical Syslog priority 2
debug Syslog priority 7 (lowest)
emergency Syslog priority 0 (highest)
error Syslog priority 3
info Syslog priority 6
notice Syslog priority 5
warning Syslog priority 4

The following example shows a syslog pattern 1.2-BM-6-ACTIVE with severity value critical:

Router (config) #event manager event-trigger eventT10
type syslog pattern "L2-BM-6-ACTIVE" severity info

The event gets triggered, if both the syslog pattern 1.2-Bu-6-aAcTIVE and severity value info match.

Create Actions for Events

Step 1

Step 2

Define the actions that must be taken when an event occurs.

Before you begin

Ensure that the following prerequisites are met before you configure the action:

* Define Trigger Conditions for an Event, on page 116

Set the event action.

Router (config) #event manager action actionl

Define the type of action. For example, the action is a Python script.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Step 3

Step 4

Step 5

Create a Policy Map of Events and Actions .

Router (config) #event manager action actionl type script actionl.py

Configure the maximum run time of the script for the event.

Example:

Router (config) fevent manager action actionl type script actionl.py maxrun seconds 30

The default value is 20 seconds.

Configure the checksum for the script. This configuration is mandatory. Every script is associated with a checksum hash
value. This value ensures the integrity of the script, and that the script is not tampered. The checksum is a string of numbers
and letters that act as a fingerprint for script.

a) Retrieve the SHA256 checksum hash value for the script from the IOS XR Linux bash shell.

Example:

Router#run

[node0 RPO CPUO:~]$sha256sum /harddisk:/mirror/script-mgmt/eem/actionl.py
407ce32678a5fc4b0ad49e83acadb453adld47e8dad9501cf139daa75d53e3dd
/harddisk:/mirror/script-mgmt/eem/actionl.py

b) Configure the checksum for the script.

Example:

Router (config) #event manager action actionl type script actionl.py checksum
sha256 407ce32678a5fc4b0ad49e83acad6453adl1d47e8dad9501c£f139daa75d53e3dd

Enter the username for the script to execute.

Example:

Router (config) #event manager action actionl username eem_ user

Create a Policy Map of Events and Actions

Step 1

Create a policy to map events and actions. You can configure a policy that associates multiple actions with
an event or use the same action with different events.
Before you begin
Ensure that the following prerequisites are met before you create a policy map:
* Define Trigger Conditions for an Event, on page 116

* Create Actions for Events, on page 118

Create a policy map.

Example:

Router (config) #event manager policy-map policyl

Note Ensure that the operations when configuring multiple events are within double quotes "".

where,

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. View Operational Status of Event Scripts

* occurrence: Specifies the number of times the total correlation occurs before an EEM event is raised. If occurrence
is not specified, the policy-map gets triggered on every occurrence of the event. The occurance vale ranges from 1
to 32. An occurrence that is configured with multiple events is considered as only one occurrence if the boolean
logic operations becomes true.

* period: Time interval in seconds, during which the event occurs. The period must be an integer number between 1
to 429496729 seconds.

Step 2 Define the action that must be implemeted when the event occurs. Maximum of 5 actions can be mapped to a policy map.
Example:
Router (config-policy-map) #action actionl

Step 3 Configure the name of the event to trigger the policy-map.

Example:
Router (config-policy-map) #trigger event eventlO
The following example shows the policy-map for multiple events:

event manager policy-map policy001

trigger multi-event “eventl OR (event4 AND event2)”
period 60

action action2

occurrence 2
|

View Operational Status of Event Scripts

Retrieve the operational status of events, actions and policy maps.

Before you begin
Ensure that the following prerequisites are met before you trigger the event:

* Define Trigger Conditions for an Event, on page 116
* Create Actions for Events, on page 118

* Create a Policy Map of Events and Actions, on page 119

Step 1 Run the show event manager event-trigger all command to view the summary of basic data of all events that are
configured.

Example:

Router#show event manager event-trigger all

Tue Aug 24 14:47:35.803 IST

Thu May 20 20:41:03.690 UTC

No. Name esid Type Occurs Period Trigger-Count Policy-Count Status

1 eventl 1008 syslog 2 1800 4 1 active
2 event2 1009 syslog 2 1800 4 active
3 event3 1010 syslog 2 1800 4 1 active
4 event4 1011 syslog 2 1800 4 1 active
5 event5 1012 syslog 2 1800 4 1 active

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Step 2

Step 3

Example: Shut Inactive Bundle Interfaces Using EEM Script .

6 event6 1013 syslog 2 1800 4 1 active
7 event7 1014 syslog 2 1800 4 1 active
8 event8 1015 syslog 2 1800 4 1 active
9 event9 1016 syslog 2 1800 4 1 active

Use the show event manager event-trigger all detailed command to view the details about the match criteria that you
configured, severity level, policies mapped to the events and so on.

Use the show event manager event-trigger <event-name> detailed command to view the details about the individual
events.

Run the show event manager policy-map all command to view the summary of all the configured policy maps.

Example:

Router#show event manager policy-map all
Tue Aug 24 14:48:52.153 IST

No. Name Occurs period Trigger-Count Status
1 policyl NA NA 1 active
2 policy2 NA NA 1 active
3 policy3 NA NA 1 active
4 policy4 NA NA 1 active

Use the show event manager policy-map all detailed command to view the details about mapping of associated events
and actions in the policy maps.

Use the show event manager policy-map <policy-map-name> detailed command to view the details about the individual
policy maps.

Run the show event manager action <action-name> detailed commad to view the details of an action.

Example:

Router#show event manager action actionl detailed
Tue Aug 24 16:05:44.298 UTC

Action name: actionl

Action type: script

EEM Script name: event script 1.py

Action triggered count: 1

Action policy count: 1

Username: eem user

Checksum: 407ce32678a5fc4b0ad49e83acad6453adld47e8dad9501cfl139daa’75d53e3dd
Last execution status: Success

Policy mapping info
1 actionl policyl

Use the show event manager action all and show event manager action all detailed command to view the summary
and details about all the configured actions.

Example: Shut Inactive Bundle Interfaces Using EEM Script

In this example, you use an EEM event to look for a syslog message and trigger a Python script. The script
does two things:

» Triggers an event on the interface inactive log as part of Bundle-Etherl, and shuts down the interface.

* Runs the show tech-support bundles command to collect debug data.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |

. Example: Shut Inactive Bundle Interfaces Using EEM Script

Step 1

Step 2
Step 3

Create an eem script event script action bundle shut.py. Store the script on an HTTP server or copy the script to
the harddisk of the router.

Example:

from iosxr.xrcli.xrcli helper import *

from cisco.script mgmt import xrlog

logger = xrlog.getScriptLogger ('sample script')
syslog = xrlog.getSysLogger ('sample script')
helper = XrcliHelper (debug = True)

syslog.info ('Execution of event manager action script event script action bundle shut.py started')

config = """interface Bundle-Etherl

shutdown"""

cmd = "show tech-support bundles"

if name == "' main_ ':
res = helper.xr apply config string(config)
if res['status'] == 'success':

syslog.info ('OPS EVENT SCRIPT ACTION : Configuration succeeded')

else:

syslog.error ('OPS_EVENT SCRIPT ACTION : Configuration failed')

res = helper.xrcli exec(cmd)
if res['status'] == 'success':
syslog.info ('OPS _EVENT SCRIPT ACTION : show tech started')
else:
syslog.error ('OPS_EVENT SCRIPT ACTION : show tech failed')

syslog.info('Execution of event manager action script event script action bundle shut.py ended')

Add the script from HTTP server or harddisk to the script management repository..

After the configured type matches the syslog pattern, the script is triggered in response to the detected event. You can
view the running configuration for the event manager.

Example:

Router#show running-config event manager
Mon Aug 30 06:23:32.974 UTC
event manager action actionl
username eem user
type script script-name eem script bundle shut.py maxrun seconds 600 checksum sha256
2386d8f71b2d6f6f6e77a7a39d3b4d38ccal7f9%eaf2ad4de7cd40clb027a4e248
|
event manager policy-map policyl
trigger event eventl
action actionl
|
event manager event-trigger eventl

type syslog pattern "$L2-BM-6-ACTIVE : FortyGigE0/0/0/13 is no longer Active as part of Bundle-Etherl"
|

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

CHAPTER 1 2

Model-Driven Command-Line Interface

This section shows the CLI commands that are based on YANG data models and can be used on the router
console.

* Model-Driven CLI to Display Data Model Structure, on page 123
* Model-Driven CLI to Display Running Configuration in XML and JSON Formats, on page 127

Model-Driven CLI to Display Data Model Structure

Table 12: Feature History Table

Feature Name Release Information Description
Model-driven CLI to Show YANG | Release 7.3.2 This feature enables you to use a
Operational Data traditional CLI command to display

YANG data model structures on the
router console and also obtain
operational data from the router in
JSON or XML formats. The
functionality helps you transition
smoothly between CLI and YANG
models, easing data retrieval from
your router and network.

This feature introduces the show
yang oper ational command.

Cisco I0S XR Software provides a rich set of show commands and data models to access data from the router
and network. The show commands present unstructured data, whereas data models are structured data that
can be encoded in XML or JSON formats. However, both the access points do not always present the same
view. Network operators who work on show commands face challenges with adopting the data models when
transitioning to programmatic interfaces.

With this feature, these adoption challenges are overcome using show yang oper ational command that is
driven by data models. The command uses the data model as the base to display the structured data using
traditional CLI command. Using this command, you can simplify parsing scripts via XML and JSON formats.

A data model has a structured hierarchy: model, module, container, and leaf. The following example shows
the structure of ietf-interfaces.yang data model:

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Model-Driven CLI to Display Data Model Structure

ietf-interfaces.yang
module: ietf-interfaces
+--rw interfaces
| +--rw interface* [name]

| +--rw name string
| +--rw description? string
| +--rw type identityref
| +--rw enabled? boolean
| +--rw link-up-down-trap-enable? enumeration {if-mib}?
+--ro interfaces-state
+--ro interface* [name]
+--ro name string
+--ro type identityref

+--ro admin-status enumeration {if-mib}
In the example, the hierarchy of the data model is as follows:

* Model—ietf-interfaces.yang

* Module—ietf-interfaces

» Container—interfaces, interface-state

* Node—interface* [name]

» Leaf—name, description, type, enabled, link-up-down-trap-enable, admin-status

You can use the show yang operational command to navigate to the leaf level as you do in a data model.

The image show a mapping between CLI and data model, and how the structured data is displayed on the
console.

RP/0/RSPQ/CPU@:vkg4# show yang 7
aaa
acl
arp

module: Cisco-I0S-XR-invmgr-oper
+—ro inventory
+—ro entities

en +—ro racks
inventory

Yang module: Cisco-I0S-XR-invmgr-oper
+—ro inventory
+—ro entities
+—ro entityx [name]
+—ro attributes
+—ro inv-basic-bag

+—ro description? string

+—ro vendor-type? string

+—ro name? string

+—ro hardware-revision? string

+—ro firmware-revision? string

+—ro software-revision? string

+—r0 chip-hardware-revision? string

+—ro serial-number? string

+—ro manufacturer-name? string
mode l-name? string
asset-id-str? string

+==ro asset-identification? int32

+—ro is-field-replaceable-unit? boolean

+—ro manufacturer-asset-tags? int32

+—ro composite-class-code? int32

+—ro memory-size? int32

+—ro environmental-monitor-path? string

+—ro alias? string

+—ro group-flag? boolean

+—ro new-deviation-number? int32

+=—ro physical-layer-interface-module-type? int32

+—ro0 unrecognized-fru? boolean

+—ro redundancystate? int32

+-—ro ceport? boolean

RP/@/RSP@/CPU@: vkg4#show yang inventory ?
entities Entities Table
racks Rack Table
xml Output in XML format.
| Output Modifiers
<cr>

RP/@/RSPO/CPU@:vkg4# show yang inventory entities 7
enitity Actual entity name

RP/@/RSPO/CPUR: vkgd# show yang inventory entities
[Cisco-I0S-XR-invmgr—oper inventory entities]
entity/name=Rack @
attributes
inv-basic-bag
description: ASR-9984 AC Chassis
vendor-type: 1.3.6.1.4, .12.3.1.3.1301
name: Rack @
hardware-revision: Vel
software-revision: 7.2.1.241
serial-number: FOX2012GA1)
manufacturer-name: CISCO SYSTEMS, INC
model-name: ASR-9904-AC

is-field-replaceable-unit: true
composite-class-code: 65536
unrecognized-fru: false
unique-: 8384513
inv-asset-bag
part-number: E@
manufacturer-assembly-number: 68-4854-01
manufacturer-assembly-revision: E@
manufacturer-common-language-equipment-identifier: IPMWDBBARA

+—ro xr-scoped? boolean
+—ro unique-id?
int32
+—ro inv-asset-bag
+——ro part-number?
+—ro manufacturer-assembly-number?
+—ro manufacturer-assembly-revision?
+==ro manufacturer-firmware-identifier?
+—ro manufacturer-software-identifier?
+—ro manufacturer-common-language-equipment-identifier?
+—ro original-equipment-manufacturer-string?

522068

The table shows various queries that can be used to navigate through the hierarchy of a data model using the
CLI command. The queries are demonstrated using Cisco-I0S-XR-interfaces-oper.yang data model as an
example.

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Model-Driven CLI to Display Data Model Structure .

Operational Query

Description

Search specific top-level
nodes

Search and produce the output of keywords from top-level nodes.
Router#show yang operational

Router#show yang operational | include <component>

The following example shows the search result for interfaces:

Router#show yang operational | include interface
Wed Jul 7 00:02:37.982 PDT
drivers-media-eth-oper:ethernet-interface
ifmgr-oper:interface-dampening
ifmgr-oper:interface-properties
interface-cem-oper:cem
12vpn-oper:generic-interface-1list-v2
pfi-im-cmd-oper:interfaces

All the instances of the
container

Lists all the models at the root level container and its container name.
Router#show yang operational ?

You can also see the containers for a partially typed keyword. For example,
keyword search for mp1s- displays all the containers with mp1s :

Router#show yang operational mpls-
mpls-io-oper-mpls-ea mpls-io-oper-mpls-ma
mpls-ldp-mldp-oper:mpls-mldp

mpls-lsd-oper:mpls-1sd mpls-lsp-oper:mpls-lsd-nodes
mpls-ldp-mldp-oper:mpls-mldp

mpls-vpn-oper:13vpn mpls-te-oper:mpls-tp
mpls-te-oper:mpls-te

View the container data. The output of the command is in-line with the structure
of the data model.

Router#show yang operational mpls-static-oper:mpls-static
Request datatree:
filter
mpls-static (ka)
{
"Cisco-IOS-XR-mpls-static-oper:mpls-static": {

"vrfs": {
"vrf": [
{
"vrf-name": "default"
}
]
}!
"summary": {

"lsp-count": O,
"label-count": 0,
"label-error-count": O,
"label-discrepancy-count": 0,
"vrf-count": 1,
"active-vrf-count": 1,
"interface-count": O,
"interface-forward-reference-count": O,
"lsd-connected": true,
"ribv4-connected": false,
"ribvé-connected": false

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

. Model-Driven CLI to Display Data Model Structure

Automation Scripts |

Operational Query

All the nodes of the
container

Description
Router#show yang operational mpls-static-oper:mpls-static ?
JSON Output in JSON format
XML Output in XML format
local-labels
summary
vrfs

| Output Modifiers
<cr>

Output in JSON For mat:

Router#show yang operational man-netconf-oper:netconf-yang clients
JSON

Mon Sep 27 11:38:27.158 PST

Request datatree:

filter
netconf-yang (ka)
clients
{
"Cisco-IOS-XR-man-netconf-oper:netconf-yang": {
"clients": {
"client": [

{
"session-id": "1396267443",

"version": "1.1",

"connect-time": "52436839",
"last-op-time": "1545",
"last-op-type": "get",

"locked": "No"

Output in XML Format:

Router#show yang operational man-netconf-oper:netconf-yang clients
XML
Mon Sep 27 11:38:34.218 PST
Request datatree:
filter
netconf-yang (ka)
clients

<netconf-yang
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-man-netconf-oper">
<clients>

<client>

<session-1d>1396267443</session-id>

<version>1.1</version>

<connect-time>52443884</connect-time>

<last-op-time>1545</last-op-time>

<last-op-type>get</last-op-type>

<locked>No</locked>

</client>
</clients>
</netconf-yang>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Model-Driven CLI to Display Running Configuration in XML and JSON Formats .

Operational Query

Description

Navigate until the last
leaf level

Router#show yang operational mpls-static-oper:mpls-static summary ?
JSON Output in JSON format
XML Output in XML format
active-vrf-count
im-connected
interface-count
interface-forward-reference-count
mpls-enbled-interface-count
vrf-count
| Output Modifiers
<cr>

View data specific to the leaf value. The read only (r0) leaves in a YANG model
are considered as the state data (operational).

Router#show yang operational mpls-static-oper:mpls-static summary
active-vrf-count
Request datatree:
filter
mpls-static (ka)
summary
active-vrf-count
{
"Cisco-IOS-XR-mpls-static-oper:mpls-static": {
"summary": {
"active-vrf-count": [

}

Model-Driven CLI to Display Running Configuration in XML and

JSON Formats

Table 13: Feature History Table

Feature Name

Release Information Description

and JSON Formats

Model-driven CLI to Display
Running Configuration in XML

Release 7.3.2 This feature enables you to display
the configuration data for Cisco
IOS XR platforms in both JSON

and XML formats.

This feature introduces the show
run | [xml | json] command.

The show run | [xml | json] command uses native, OpenConfig and unified models to retrieve and display

data.

Use the following variations of the command to generate output:

* show run | [xml | json]—Shows configuration in YANG XML or JSON tree.

+ show run | [xml | json] openconfig—Shows configuration in OpenConfig YANG XML tree.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
Model-Driven CLI to Display Running Configuration in XML and JSON Formats

+ show run | [xml | json] unified—Shows configuration in unified model YANG XML tree.

* show run component | [xml | json]—Shows configuration in YANG XML or JSON tree for the top-level
component. For example, show run interface | xml

+ show run component | [xml | json] unified—Shows configuration in unified model YANG XML or
JSON tree for the top-level component. For example, show run interface | json unified

« show run component subcomponent | [xml | json]—Shows configuration in YANG XML or JSON tree
for the granular-level component. For example, show run router bgp 12 neighbor 12.12.12.12 | xml

+ show run component subcomponent | [xml | json] unified—Shows configuration in unified model
YANG XML or JSON tree for the granular-level component. For example, show run router bgp 12
neighbor 12.12.12.12 | json unified

XML Output

Router#show run | xml
Building configuration...
<data>
<interface-configurations xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ifmgr-cfg">
<interface-configuration>
<active>act</active>
<interface-name>GigabitEthernet0/0/0/0</interface-name>
<shutdown></shutdown>
</interface-configuration>
<interface-configuration>
<active>act</active>
<interface-name>GigabitEthernet0/0/0/1</interface-name>
<shutdown></shutdown>
</interface-configuration>
<interface-configuration>
<active>act</active>
<interface-name>GigabitEthernet0/0/0/2</interface-name>
<shutdown></shutdown>
</interface-configuration>
</interface-configurations>
<interfaces xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-um-interface-cfg">
<interface>
<interface-name>GigabitEthernet0/0/0/0</interface-name>
<shutdown/>
</interface>
<interface>
<interface-name>GigabitEthernet0/0/0/1</interface-name>
<shutdown/>
</interface>
<interface>
<interface-name>GigabitEthernet0/0/0/2</interface-name>
<shutdown/>
</interface>
</interfaces>
</data>

JSON Output

Routerf#show run | json
Building configuration...
{
"data": {
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [

"active": "act",

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts
Model-Driven CLI to Display Running Configuration in XML and JSON Formats .

"interface-name": "GigabitEthernet0/0/0/0",
"shutdown": [
null
1
}I
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/1",
"shutdown": [
null
1
}I
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/2",
"shutdown": [
null

]
}
]I
"Cisco-IOS-XR-man-netconf-cfg:netconf-yang": {
"agent": {
"ssh": true
}
}I
}

Granular-L evel Component Output

Router#sh run router bgp 12 neighbor 12.12.12.12 | json unified
{

"data": {
"Cisco-IOS-XR-um-router-bgp-cfg:router": {
"bgp": {
"as": [
{
"as-number": 12,
"neighbors": {
"neighbor": [
{
"neighbor-address™: "12.12.12.12",

"remote-as": 12,
"address-families": {
"address-family": [

{

"af-name": "ipv4-unicast"

Unified Model Output

Router#sh run router bgp 12 | xml unified

<data>

<router xmlns=http://cisco.com/ns/yang/Cisco-IOS-XR-um-router-bgp-cfg>
<bgp>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
Model-Driven CLI to Display Running Configuration in XML and JSON Formats

<as>
<as-number>12</as-number>
<bgp>
<router-id>1.1.1.1</router-id>
</bgp>
<address-families>
<address-family>
<af-name>ipv4-unicast</af-name>
</address-family>
</address-families>
<neighbors>
<neighbor>
<neighbor-address>12.12.12.12</neighbor-address>
<remote-as>12</remote-as>
<address-families>
<address-family>
<af-name>ipv4-unicast</af-name>
</address-family>
</address-families>
</neighbor>
</neighbors>
</as>
</bgp>
</router>
</data>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

CHAPTER 1 3

Manage Automation Scripts Using YANG RPCs

Table 14: Feature History Table

Feature Name Release Information Description
Manage Automation Scripts Using | Release 7.3.2 This feature enables you to use
YANG RPCs remote procedure calls (RPCs) on

YANG data models to perform the
same automated operations as CLIs,
such as edit configurations or
retrieve router information.

You can use automation scripts to interact with the router using NETCONF, helper modules or gNMI python
modules.

An SSH session must be established between the client and the server to run RPCs on a device. The client
can be a script or application that runs as part of a network manager. The server is a network device such as
a router. To enable the NETCONF SSH agent, use the following commands:

ssh server v2
netconf agent tty

After a NETCONTF session is established, the client sends one or more RPC requests to the server. The server
processes the requests and sends an RPC response back to the client. For example, the get-config operation
retrieves the configuration of the device and the edit-config operation edits the configuration on the device.

For more information about data models and how to use the models

» Manage Exec Scripts Using RPCs, on page 131
* Manage EEM Script Using RPCs, on page 135

Manage Exec Scripts Using RPCs
The following data models support exec scripts:
* Edit or get configuration—Cisco-I0S-XR-infra-script-mgmt-cfg.yang
* Perform action—Cisco-10S-XR-infra-script-mgmt-act.yang

* Retrieve operational data—Cisco-IOS-XR-infra-script-mgmt-oper.yang

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
Manage Exec Scripts Using RPCs

This section provides examples of using RPC messages on exec scripts, and also the YANG data model and
equivalent CLI command to perform the tasks:

Add Script

You use data model to add an exec script from an external repository to the
harddisk:/mirror/script-mgmt/exec script management repository on the router.

YANG Data Model Equivalent CLI

Cisco-I0S-XR-infra-script-mgmt-act.yang script add exec script-location script.py
See.

RPC Request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<script-add-type-source xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<type>exec</type>
<source>/harddisk:</source>
<file-name-1>samplel.py</file-name-1>
</script-add-type-source>
</rpc>

Syslog:

Router: script manager[66762]: %0S-SCRIPT MGMT-6-INFO

Script-script manager: samplel.py has been added to the script repository
Configure Checksum

Every script is associated with a checksum value for integrity. You can configure the checksum using data

models.
YANG Data Model Equivalent CLI
Cisco-I0S-XR-infra-script-mgmt-act.yang script exec samplel.py checksum SHA256
checksum-value
See, .
RPC Request:

<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:16fa22ed-3f46-4369-806a-3bccdlaefcaf">
<nc:edit-config>
<nc:target>
<nc:candidate/>
</nc:target>
<nc:config>
<scripts xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-cfg">
<exec-script>
<scripts>
<script>
<script-name>samplel.py</script-name>
<checksum>
<checksum-type>sha256</checksum-type>

<checksum>5103a843032505decc37££21089336edbcc6al061341056ca8add3ac5d6620ef</checksum>

</checksum>
</script>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Manage Exec Scripts Using RPCs .

</scripts>
</exec-script>
</scripts>
</nc:config>
</nc:edit-config>
</nc:rpc>

RPC Response:

<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:16fa22ed-3f46-4369-806a-3bccdlaefcaf"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

Run Script

YANG Data Model Equivalent CLI
Cisco-I0S-XR-infra-script-mgmt-act.yang script run samplel.py
RPC Request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<script-run xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<name>samplel.py</name>
</script-run>
</rpc>

RPC Response:

<?xml version="1.0" ?>

<rpc-reply message-id="urn:uuid:d54247c7-cf£29-42f2-bfb8-517d6458£77c" xmlns="urn:ietf:

params:xml:ns:netconf:base:1.0" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Syslog:

Router: UTC: script control cli[67858]: %0S-SCRIPT MGMT-6-INFO : Script-control:
Script run scheduled: samplel.py. Request ID: 1631795207
Router: script _agent main[248]: %0S-SCRIPT_MGMT-6-INFO : Script-script_agent: Script

execution samplel.py (exec) Started : Request ID : 1631795207 :: PID: 18710
Stop Script

YANG Data Model Equivalent CLI
Cisco-I0S-XR-infra-script-mgmt-act.yang script stop value [short-decription]

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<script-stop-request xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<request>1614930988</request>
</script-stop-request>
</rpc>

Remove Script

You can remove scripts from the script management repository. The data about script management and
execution history is not deleted when the script is removed.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
Manage Exec Scripts Using RPCs

YANG Data Model Equivalent CLI
Cisco-I0S-XR-infra-script-mgmt-act.yang script remove exec script.py
See,.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<script-remove-type xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<type>exec</type>
<file-name-1>load modules ut.py</file-name-1>
</script-remove-type>
</rpc>

Show Script Execution

View the status of the script execution.

YANG Data Model Equivalent CLI

Cisco-I0S-XR-infra-script-mgmt-oper.yang show script execution [request-id <value>] [name
<filename>] [status {Exception | Executed | Killed |
Sarted | Sopped | Timed-out}] [reverse] [last
<number>]

RPC Request:

—————————————— Sent to NETCONF Agent ------—-—-——————-
<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message—-id="urn:uuid:7£d0d184-0004-4a51-9765-d29bc94c793b">
<get>
<filter>
<script xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-oper">
<execution>
<requests>
<request>
<request-id>1631795207</request-id>
<detail>
<execution-detail/>
</detail>
</request>
</requests>
</execution>
</script>
</filter>
</get>
</rpc>

RPC Response:

————————————————— Received from NETCONF agent --—--—--—--—-—-——————
<?xml version="1.0" 72>
<rpc-reply message-id="urn:uuid:7£d0d184-0004-4a51-9765-d29bc94c793b"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<script xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-oper">
<execution>
<requests>
<request>
<request-id>1631795207</request-id>
<detail>
<execution-detail>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts
Manage EEM Script Using RPCs .

<execution-summary>
<request-1d>1631795207</request-id>
<return-val>0</return-val>
<script-type>exec</script-type>
<script-name>samplel.py</script-name>
<duration>60.65s</duration>
<event-time>Thu Sep 16 12:26:46 2021</event-time>
<status>Executed</status>

</execution-summary>

<execution-detail>

<log-path>/harddisk:/mirror/script-mgmt/logs/samplel.py exec 1631795207</log-path>
<run-options>Logging level - INFO, Max. Runtime - 300s, Mode -
Background</run-options>
</execution-detail>
<execution-event>
<description>None</description>
<duration>0.00s</duration>
<event>New</event>
<time>Thu Sep 16 12:26:46 2021</time>
</execution-event>
<execution-event>
<description>Script execution started. PID (18710)</description>
<duration>0.03s</duration>
<event>Started</event>
<time>Thu Sep 16 12:26:46 2021</time>
</execution-event>
<execution-event>
<description>Script execution complete</description>
<duration>60.65s</duration>
<event>Executed</event>
<time>Thu Sep 16 12:27:47 2021</time>
</execution-event>
</execution-detail>
</detail>
</request>
</requests>
</execution>
</script>
</data>
</rpc-reply>

Manage EEM Script Using RPCs

The following data model supports eem scripts:

* Edit configuration—Cisco-I0OS-XR-um-event-manager-policy-map-cfg.yang

The model is augmented to Cisco-I0S-XR-um-event-manager-cfg.yang data model.

This section provides examples of using RPC messages on eem scripts, and also the YANG data model and
equivalent CLI command to perform the tasks:

Define Actions for Events Using Data Model

You use data model to create actions for events.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Manage EEM Script Using RPCs

YANG Data Model Equivalent CLI

Cisco-I0S-XR-um-event-manager-policy-map-cfg | event manager event-trigger event-name
occurance value
period seconds value

period seconds valuetype syslog pattern
"syslog-pattern” severity syslog-severity

See
event manager action action-name
username username

type script script-name python-script-name.py
maxrun seconds value checksum sha256
checksum-value

See.

RPC Request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>
</target>
<config>
<event xmlns="http://cisco.com/ns/yang/Cisco-I0OS-XR-um-event-manager-cfg">
<manager>
<event-trigger
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-um-event-manager-policy-map-cfg">
<event>
<event-name>event 1</event-name>
<occurrence>2</occurrence>
<period>
<seconds>60</seconds>
</period>
<type>
<syslog>
<pattern>"Syslog for EEM script"</pattern>
<severity>
<warning/>
</severity>
</syslog>
</type>
</event>
</event-trigger>
<actions xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-um-event-manager-policy-map-cfg">

<action>
<action-name>action_ 1</action-name>
<type>
<script>
<script-name>event script 1.py</script-name>
<maxrun>
<seconds>30</seconds>
</maxrun>
<checksum>
<sha256>bbl9%a7a286db72aa7c7bd75ad5f224eeal062b7cdaaceec06£11£f0£86£976831d</sha256>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts
Manage EEM Script Using RPCs .

</checksum>
</script>
</type>
<username>eem user l</username>
</action>
</actions>
</manager>
</event>
</config>
</edit-config>
</rpc>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">
<commit>
</rpc>

RPC Response:

<?xml version="1.0" ?>

<rpc-reply message-id="urn:uuid:16fa22ed-3f46-4369-806a-3bccdlaefcaf"

xmlns="urn:ietf:params:xml:ns:

netconf:base:1.0" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Create Policy Map for Events and Actions Using Data Model

You use data model to create actions for events.

YANG Data Model Equivalent CLI

Cisco-I0S-XR-um-event-manager-policy-map-cfg | event manager policy-map policy-name
action action-name
trigger event event-name

See, .

RPC Request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>
</target>
<config>
<event xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-um-event-manager-cfg">
<manager>
<policy-maps xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-um-event-manager-policy-map-cfg">

<policy-map>
<policy-map-name>policy 1</policy-map-name>
<trigger>
<event>event 1</event>
</trigger>
<actions>
<action>
<action-name>action 1</action-name>
</action>
</actions>
</policy-map>
</policy-maps>
</manager>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Manage EEM Script Using RPCs

</config>
</edit-config>
</rpc>

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">
<commit/>
</rpc>

RPC Response:

<?xml version="1.0" ?>

<rpc-reply message-id="urn:uuid:16fa22ed-3f46-4369-806a-3bccdlaefcaf"

xmlns="urn:ietf:params:xml:ns:

netconf:base:1.0" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

CHAPTER 1 4

Script Infrastructure and Sample Templates

Table 15: Feature History Table

Feature Name Release Information Description

Contextual Script Infrastructure | Release 7.3.2 When you create and run Python
scripts on the router, this feature
enables a contextual interaction
between the scripts, the IOS XR
software, and the external servers.
This context, programmed in the
script, uses Cisco IOS XR Python
packages, modules, and libraries to:

* obtain operational data from
the router

* set configurations and
conditions

* detect events in the network
and trigger an appropriate
action

You can create Python scripts and execute the scripts on routers running Cisco IOS XR software. The software
supports the Python packages, libraries and dictionaries in the software image. For more informtion about the
script types and to run the scripts using CLI commands To run the same actions using NETCONF RPCs,

Cisco IOS XR, Release 7.3.2 supports creating scripts using Python version 3.5.

* Cisco IOS XR Python Packages, on page 139
* Cisco IOS XR Python Libraries, on page 141
» Sample Script Templates, on page 142

Cisco 10S XR Python Packages

With on-box Python scripting, automation scripts that was run from an external controller is now run on the
router. To achieve this functionality, Cisco IOS XR software provides contextual support using SDK libraries
and standard protocols.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

. Cisco 10S XR Python Packages

Automation Scripts |

The following Python third party application packages are supported by the scripting infrastructure and can

be used to create automation scripts.

Package

Description

Support Introduced in Release

appdirs

Chooses the appropriate
platform-specific directories for
user data.

Release 7.3.2

array

Defines an object type that can
compactly represent an array of
basic values: characters, integers,
floating point numbers.

Release 7.3.2

asnlcrypto

Parses and serializes Abstract
Syntax Notation One (ASN.1) data
structures.

Release 7.3.2

chardet

Universal character encoding
auto-detector.

Release 7.3.2

concurrent.futures

Provides a high-level interface for
asynchronously executing callables.

Release 7.3.2

ecdsa

Implements Elliptic Curve Digital
Signature Algorithm (ECDSA)
cryptography library to create
keypairs (signing key and verifying
key), sign messages, and verify the
signatures.

Release 7.3.2

cnum

Enumerates symbolic names
(members) bound to unique,
constant values.

Release 7.3.2

email

Manages email messages.

Release 7.3.2

google.protobuf

Supports language-neutral,
platform-neutral, extensible
mechanism for serializing
structured data.

Release 7.3.2

ipaddress

Provides capability to create,
manipulate and operate on IPv4 and
IPv6 addresses and networks.

Release 7.3.2

jinja2

Supports adding functionality
useful for templating environments.

Release 7.3.2

json

Provides a lightweight data
interchange format.

Release 7.3.2

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Cisco 10S XR Python Libraries .

Package

Description

Support Introduced in Release

markupsafe

Implements a text object that
escapes characters so it is safe to
use in HTML and XML.

Release 7.3.2

netaddr

Enables system-independent
network address manipulation and
processing of Layer 3 network
addresses.

Release 7.3.2

pdb

Defines an interactive source code
debugger for Python programs.

Release 7.3.2

pkg resources

Provides runtime facilities for
finding, introspecting, activating
and using installed distributions.

Release 7.3.2

psutil

Provides library to retrieve
information on running processes
and system utilization such as CPU,
memory, disks, sensors and
processes.

Release 7.3.2

pyasnl

Provides a collection of ASN.1
modules expressed in form of
pyasnl classes. Includes protocols
PDUs definition (SNMP, LDAP
etc.) and various data structures
(X.509, PKCS).

Release 7.3.2

requests

Allows sending HTTP/1.1 requests
using Python.

Release 7.3.2

shellescape

Defines the function that returns a
shell-escaped version of a Python
string.

Release 7.3.2

subprocess

Spawns new processes, connects to
input/output/error pipes, and obtain
return codes.

Release 7.3.2

urllib3

HTTP client for Python.

Release 7.3.2

xmltodict

Makes working with XML feel like
you are working with JSON.

Release 7.3.2

Cisco 10S XR Python Libraries

Cisco IOS XR software provides support for the following SDK libraries and standard protocols.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

. Sample Script Templates

Automation Scripts |

Library

Syntax

xrlog

To generate syslogs
from cisco.script mgmt import xrlog

syslog = xrlog.getSysLogger ('template exec')

netconf

#To connect to netconf client #
from iosxr.netconf.netconf lib import
NetconfClient

nc = NetconfClient (debug=True)

xrclihelper

To run native xr cli and config commands
from iosxr.xrcli.xrcli helper import *

helper = XrcliHelper (debug = True)

config_validation

To validate configuration
import cisco.config validation as xr

eem # For EEM operations #
from iosxr import eem
preconnnﬁ # For Precommit script operations #

from cisco.script mgmt import precommit

Sample Script Templates

Use these sample script templates based on script type to build your custom script.

Follow these instructions to download the sample scripts from the Github repository to your router, and run

the scripts:

1. Clone the Github repository.

$Sgit clone https://github.com/CiscoDevNet/iosxr-ops.git

2. Copy the Python files to the router's harddisk or a remote repository.

Config Script

The following example shows a code snippet for config script. Use this snippet in your script to import the
libraries required to validate configuration and also generate syslogs.

#Needed for config validation
import cisco.config validation as xr

#Used for generating syslogs
from cisco.script mgmt import xrlog
syslog = xrlog.getSysLogger ('Add script name here')

def check config(root):
#Add config validations
pass

xr.register validate callback([<Add config path here>],check config)

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

| Automation Scripts

Sample Script Templates .

Exec Script

Use this sample code snippet in your exec script to import Python libraries to connect to NETCONF client
and also to generate syslogs.

#To connect to netconf client
from iosxr.netconf.netconf 1lib import NetconfClient

#To generate syslogs
syslog = xrlog.getSysLogger ('template exec')

def test exec():

[IRIR1]

Testcase for exec script

wnn

nc = NetconfClient (debug=True)
nc.connect ()

#Netconf or processing operations
nc.close ()

if name == "'_main_ ':
test_exec()

Process Script

Use the following sample code snippet to trigger a process script and perform various actions on the script.
You can leverage this snippet to create your own custom process script. Any exec script can be used as a
process script.

To trigger script
Step 1: Add and configure script as shown in README.MD

Step 2: Register the application with Appmgr

Configuraton:

appmgr process-script my-process-app
executable test process.py

run args --threshold <threshold-value>

Step 3: Activate the registered application
appmgr process-script activate name my-process-app

Step 4: Check script status
show appmgr process-script-table

Router#show appmgr process-script-table
Name Executable Activated Status Restart Policy Config Pending

my-process-app test process.py Yes Running On Failure No

Step 5: More operations
Router#appmgr process-script ?

activate Activate process script
deactivate Deactivate process script
kill Kill process script
restart Restart process script
start Start process script

stop Stop process script

wun

#To connect to netconf client
from iosxr.netconf.netconf lib import NetconfClient

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x .

Automation Scripts |
. Sample Script Templates

#To generate syslogs
syslog = xrlog.getSysLogger ('template exec')

def test process():

wnn

Testcase for process script

nc = NetconfClient (debug=True)
nc.connect ()

#Netconf or any other operations
nc.close ()

if name == ' main ':

test process()

EEM Script

You can leverage the following sample code to import Python libraries to create your custom eem script and
also generate syslogs.

Required configuration:
User and AAA configuration

event manager event-trigger <trigger-name>
type syslog pattern "PROC RESTART NAME"

event manager action <action-name>
username <user>
type script script-name <script-name> checksum sha256 <checksum>

event manager policy-map policyl
trigger event <trigger-name>
action <action-name>

To verify:
Check for syslog EVENT SCRIPT EXECUTED: User restarted <process-name>

wun

#Needed for eem operations
from iosxr import eem

#Used to generate syslogs
from cisco.script mgmt import xrlog

syslog = xrlog.getSysLogger (<add your script name here>)

event_dict consists of details of the event
rc, event dict = eem.event reqginfo()

#You can process the information as needed and take action for example: generate a syslog.
#Syslog type can be emergency, alert, critical, error, exception, warning, notification,

info, debug

syslog.info (<Add you syslog here>)

. Programmability Configuration Guide for Cisco NCS 5500 Series Routers, I0S XR Release 7.3.x

	Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 7.3.x
	Contents
	YANG Data Models
	New and Changed Feature Information
	New and Changed Programmability Features

	Drive Network Automation Using Programmable YANG Data Models
	YANG Data Model
	Access the Data Models
	Communication Protocols
	NETCONF Protocol
	gRPC Protocol

	YANG Actions

	Use NETCONF Protocol to Define Network Operations with Data Models
	NETCONF Operations
	Retrieve Default Parameters Using with-defaults Capability
	Set Router Clock Using Data Model in a NETCONF Session

	Use gRPC Protocol to Define Network Operations with Data Models
	gRPC Operations
	gRPC Network Management Interface
	gRPC Network Operations Interface
	gNOI RPCs

	Configure Interfaces Using Data Models in a gRPC Session

	Enhancements to Data Models
	OpenConfig Data Model Enhancements
	Install Label in oc-platform Data Model
	OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models
	OpenConfig YANG Model:SR-TE Policies
	Aggregate Prefix SID Counters for OpenConfig SR YANG Module
	OpenConfig YANG Model:AFT

	Automation Scripts
	New and Changed Feature Information
	New and Changed Automation Script Features

	Achieve Network Operational Simplicity Using Automation Scripts
	Explore the Types of Automation Scripts

	Config Scripts
	Workflow to Run Config Scripts
	Enable Config Scripts Feature
	Download the Script to the Router
	Configure Checksum for Config Script
	Validate or Commit Configuration to Invoke Config Script

	Manage Scripts
	Delete Config Script from the Router
	Control Priority When Running Multiple Scripts

	Example: Validate and Activate an SSH Config Script
	Scenario 1: Validate the Script Without SSH Configuration
	Scenario 2: Configure SSH and Validate the Script
	Scenario 3: Set Rate-limit Value to Default Value in the Script
	Scenario 4: Delete SSH Server Configuration

	Exec Scripts
	Workflow to Run an Exec Script
	Download the Script to the Router
	Configure Checksum for Exec Script
	Run the Exec Script
	View the Script Execution Details

	Manage Scripts
	Delete Exec Script from the Router

	Example: Exec Script to Verify Bundle Interfaces

	Process Scripts
	Workflow to Run Process Scripts
	Download the Script to the Router
	Configure Checksum for Process Script
	Register the Process Script as an Application
	Activate the Process Script
	Obtain Operational Data and Logs

	Managing Actions on Process Script
	Example: Check CPU Utilization at Regular Intervals Using Process Script

	EEM Scripts
	Workflow to Run Event Scripts
	Download the Script to the Router
	Define Trigger Conditions for an Event
	Create Actions for Events
	Create a Policy Map of Events and Actions
	View Operational Status of Event Scripts

	Example: Shut Inactive Bundle Interfaces Using EEM Script

	Model-Driven Command-Line Interface
	Model-Driven CLI to Display Data Model Structure
	Model-Driven CLI to Display Running Configuration in XML and JSON Formats

	Manage Automation Scripts Using YANG RPCs
	Manage Exec Scripts Using RPCs
	Manage EEM Script Using RPCs

	Script Infrastructure and Sample Templates
	Cisco IOS XR Python Packages
	Cisco IOS XR Python Libraries
	Sample Script Templates

